Chemtec Publishing offers a large collection of books on polymers, plastics, and rubber.
- Grid List
Filter
Handbook of Molded Par...
$260.00
{"id":11242222660,"title":"Handbook of Molded Part Shrinkage and Warpage","handle":"1-884207-72-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jerry M. Fischer \u003cbr\u003eISBN 1-884207-72-3 \u003cbr\u003e\u003cbr\u003eTools and Troubleshooting, Inc., USA\u003cbr\u003e\u003cbr\u003epages 252, figures : 302\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the first and only handbook to deal with these fundamental problems. \u003cbr\u003e\u003cbr\u003eThe handbook explains in plain terms why moldings shrink and warp, shows how additives and reinforcements change the picture, sets out the effects of the molding process conditions, and reveals why you never can have a single \"correct\" shrinkage value. But, that's not all. The handbook shows you how to alleviate problems by careful design of the molded part and the mold, careful selection of materials, and proper process techniques. It examines computer-aided methods of forecasting shrinkage and warpage. And, most important of all, the handbook provides representative data to work with. \u003cbr\u003e\u003cbr\u003eThis is the most comprehensive collection of shrinkage data ever compiled in a book and includes hard-to-find multi-point information on how materials, part design, mold design processing, and post mold treatment affect the part's shrinkage and warpage. This book for all people who live and work with mold and shrinkage and warpage.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction to Plastics Processing\u003cbr\u003e1.1. Interactivity Basics \u003cbr\u003e1.2. Thermodynamic Principles Governing Injection Molding\u003cbr\u003e1.2.1 Filling\u003cbr\u003e1.2.2 Holding\u003cbr\u003e1.2.3 Cooling \u003cbr\u003e\u003cbr\u003e2. Shrinkage and Warpage\u003cbr\u003e2.1 Mold Shrinkage \u003cbr\u003e2.1.1 Determination of Shrinkage\u003cbr\u003e2.1.2 Molded-in Stress\u003cbr\u003e2.2 Warpage \u003cbr\u003e2.2.1 Common Causes of Non-Uniform Shrinkage\u003cbr\u003e2.2.2 principles of Minimizing Warpage \u003cbr\u003e2.3 Post-Mold Shrinkage \u003cbr\u003e\u003cbr\u003e3. Causes of Molded Part Variation - Part Design \u003cbr\u003e3.1 Wall Thickness\u003cbr\u003e3.2 Ribs\u003cbr\u003e3.3 Bosses\u003cbr\u003e3.4 Example of Proper Part Design\u003cbr\u003e3.5 Other Design Consideration \u003cbr\u003e\u003cbr\u003e4. Causes of Molded Part Variation - Material \u003cbr\u003e4.1 Amorphous and Semi-Crystalline Resins \u003cbr\u003e4.1.1 Amorphous Materials\u003cbr\u003e4.1.2 Semi-Crystalline Materials\u003cbr\u003e4.2 Effects of Fillers, Reinforcements, Pigments, Time and Stress\u003cbr\u003e4.2.1 Effects of Fillers and Fibers\u003cbr\u003e4.2.2 Minimizing the Effects of Fiber Reinforcements\u003cbr\u003e4.2.3 Effects of Pigments\u003cbr\u003e4.2.4 Effects of Time and Stress\u003cbr\u003e4.3 Shrinkage Prediction : Pressure-Volume-Temperature (PVT) Behavior \u003cbr\u003e4.3.1 PVT System Properties\u003cbr\u003e4.3.2 Predicting Mold Shrinkage\u003cbr\u003e4.3.3 Accuracy of Shrinkage Prediction \u003cbr\u003e\u003cbr\u003e5. Causes of Molded Part Variation - Mold Design \u003cbr\u003e5.1 Cavity Dimensions and Design Factors \u003cbr\u003e5.2 Gate Types\u003cbr\u003e5.2.1 Sprue Gate\u003cbr\u003e5.2.2 Pin, Pinpoint, Tunnel, and Submarine Gates\u003cbr\u003e5.2.3 Edge and Straight Gates\u003cbr\u003e5.2.4 Fan, Film, Diaphram, Ring, Disk, Cone, and Double-Sided Gates\u003cbr\u003e5.2.5 Multiple Gates\u003cbr\u003e\u003cbr\u003e5.3 Gate Location \u003cbr\u003e5.3.1 Side and End gates\u003cbr\u003e5.3.2 Determining Gate Position \u003cbr\u003e5.4 Gate Size \u003cbr\u003e5.5 Gate Design Systems\u003cbr\u003e5.6 Runner Design \u003cbr\u003e5.6.1 Multiple Cavity Molds\u003cbr\u003e5.6.2 Poor Ejection\u003cbr\u003e5.7 Mold Cooling Design\u003cbr\u003e5.7.1 Cooling Channels\u003cbr\u003e5.7.2 Effects of Corners\u003cbr\u003e5.7.3 Thickness Variations\u003cbr\u003e5.7.4 Runnerless Molds\u003cbr\u003e5.7.5 Slides\u003cbr\u003e5.7.6 Venting \u003cbr\u003e5.8 Mold Construction Materials\u003cbr\u003e5.9 Annealing \u003cbr\u003e5.10 Gas Assist \u003cbr\u003e5.11 Pitfalls to Avoid \u003cbr\u003e\u003cbr\u003e6. Causes of Molded Part Variation - Processing \u003cbr\u003e6.1 Molding Conditions\u003cbr\u003e6.1 (Injection melt Temperature) - if should be a separate section, renumber as 6.2 and renumber subsequent sections)\u003cbr\u003e6.2 Injection Rate\/Pressure\u003cbr\u003e6.2.1 Injection Speed\u003cbr\u003e6.2.2 Injection Pressure\u003cbr\u003e6.3 Holding Pressure\/Time\u003cbr\u003e6.3.1 Holding Pressure \u003cbr\u003e6.3.2 Holding pressure Time\u003cbr\u003e6.4 Mold Temperature\u003cbr\u003e6.4.1 Predicting mold Temperature Effects\u003cbr\u003e6.4.2 Relationship Between Mold Temperature and Wall Thickness\u003cbr\u003e6.5 Demolding Temperature\u003cbr\u003e6.6 Molded-in Stresses\u003cbr\u003e\u003cbr\u003e7. Factors Affecting Post-Mold Shrinkage\u003cbr\u003e7.1 Effects of Temperatures on Dimensions\u003cbr\u003e7.2 Effects of Moisture on Dimensions\u003cbr\u003e\u003cbr\u003e8. How to Control Mold and Post-mold Shrinkage and Warpage \u003cbr\u003e8.1 Find the Cause\u003cbr\u003e8.2 Part Geometry\u003cbr\u003e8.2.1 Overall Part Dimensions\u003cbr\u003e8.2.2 Wall Thickness\u003cbr\u003e8.2.3 Shrinkage Restricting Features\u003cbr\u003e8.3 Material Consideration\u003cbr\u003e8.3.1 Filler or Reinforcement Content\u003cbr\u003e8.3.2 Degree of Moisture Absorption\u003cbr\u003e8.4 Tooling Considerations \u003cbr\u003e8.4.1 Gate Locations\u003cbr\u003e8.4.2 Types and Sizes of Gates\u003cbr\u003e8.4.3 Runner Systems\u003cbr\u003e8.4.4 Mold Cooling Layout\u003cbr\u003e8.4.5 Tool Tolerances \u003cbr\u003e8.4.6 Draft Angles \u003cbr\u003e8.4.7 Ejection system Design\u003cbr\u003e8.4.8 Elastic Deformation of Mold\u003cbr\u003e8.4.9 Mold Wear\u003cbr\u003e8.4.10 Mold Contamination\u003cbr\u003e8.4.11 Position Deviations of Movable Mold Components\u003cbr\u003e8.4.12 Special Issues with Gears\u003cbr\u003e8.5 Processing Considerations\u003cbr\u003e8.5.1 Melt Temperatures and Uniformity \u003cbr\u003e8.5.2 Mold Temperatures and Uniformity \u003cbr\u003e8.5.3 Filling, Packing, and Holding Pressures\u003cbr\u003e8.5.4 Filling, Packing, and Holding Times\u003cbr\u003e8.5.5 Part Temperature at Ejection\u003cbr\u003e8.5.6 Clamp Tonnage\u003cbr\u003e8.5.7 Post-Mold Fixturing\/Annealing\u003cbr\u003e8.5.8 Special Problems with Thick Walls and Sink Marks\u003cbr\u003e8.5.9 Nozzles \u003cbr\u003e8.5.10 Excessive or Insufficient Shrinkage\u003cbr\u003e8.5.11 Secondary Machining\u003cbr\u003e8.5.12 Quality Control\u003cbr\u003e8.6 Controlling Warpage \u003cbr\u003e\u003cbr\u003e9. Computer Analysis\u003cbr\u003e9.1 How It Works\u003cbr\u003e9.1.1 Assumptions \u003cbr\u003e9.1.2 Generic Elements and Potential Limitations\u003cbr\u003e9.2 Does It Work \u003cbr\u003e9.2.1 Machine Settings and Controls\u003cbr\u003e9.2.2 Different Parts, Different Problems \u003cbr\u003e9.2.3 Differing Capabilities of Software\u003cbr\u003e9.3 What are Realistic Expectations of CAE?\u003cbr\u003e9.4 Resources\u003cbr\u003e9.4.1 How Much Does it Cost?\u003cbr\u003e9.4.2 Consultants \u003cbr\u003e9.5 OR Chapter 9 Appendix: Extended Illustration\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e10. Case studies\u003cbr\u003e10.1 Unexpected Housing Shrink and Combing of the Glass Fibers\u003cbr\u003e10.2 Changing Materials Triggers Warpage \u003cbr\u003e10.3 Thin-Molded Lids\u003cbr\u003e10.4 Oversize Part Injection Molding Alkyd Thermoset\u003cbr\u003e10.5 Inadequate Mold: Baby Dish\u003cbr\u003e10.6 Gas Entrapment: Baby Dish\u003cbr\u003e10.7 Sprue and Runners\u003cbr\u003e10.8 Spool Mold \u003cbr\u003e10.9 Thermoplastic Engineering Design Study \u003cbr\u003e10.10 CDs\u003cbr\u003e10.11 Flat Parts\u003cbr\u003e10.12 Electronic Connectors\u003cbr\u003eData\u003cbr\u003eGlossary\u003cbr\u003eAbbreviations \u003cbr\u003eReferences\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJerry Fischer, CEO of Tools and Troubleshooting, Inc., brings to this handbook over 35 years experience as a mold designer and builder and consultant on mold shrinkage and warpage conditions. In the 1980s, Jerry published two books with McGraw-Hill on computer-aided design.","published_at":"2017-06-22T21:13:50-04:00","created_at":"2017-06-22T21:13:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","blow molding","book","compression molding","cooling","extrusion","fabrication","fillers","fluoropolymers","gate types","injection molding","injection rate","melt-processible","mold design","mould","moulding","p-processing","polymer","polymerization","reinforcement","rotational molding","shrinkage","tooling","transfer molding","tube","warpage","wire"],"price":26000,"price_min":26000,"price_max":26000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378376452,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Molded Part Shrinkage and Warpage","public_title":null,"options":["Default Title"],"price":26000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-884207-72-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-72-3.jpg?v=1499442251"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-72-3.jpg?v=1499442251","options":["Title"],"media":[{"alt":null,"id":355727966301,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-72-3.jpg?v=1499442251"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-72-3.jpg?v=1499442251","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jerry M. Fischer \u003cbr\u003eISBN 1-884207-72-3 \u003cbr\u003e\u003cbr\u003eTools and Troubleshooting, Inc., USA\u003cbr\u003e\u003cbr\u003epages 252, figures : 302\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the first and only handbook to deal with these fundamental problems. \u003cbr\u003e\u003cbr\u003eThe handbook explains in plain terms why moldings shrink and warp, shows how additives and reinforcements change the picture, sets out the effects of the molding process conditions, and reveals why you never can have a single \"correct\" shrinkage value. But, that's not all. The handbook shows you how to alleviate problems by careful design of the molded part and the mold, careful selection of materials, and proper process techniques. It examines computer-aided methods of forecasting shrinkage and warpage. And, most important of all, the handbook provides representative data to work with. \u003cbr\u003e\u003cbr\u003eThis is the most comprehensive collection of shrinkage data ever compiled in a book and includes hard-to-find multi-point information on how materials, part design, mold design processing, and post mold treatment affect the part's shrinkage and warpage. This book for all people who live and work with mold and shrinkage and warpage.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction to Plastics Processing\u003cbr\u003e1.1. Interactivity Basics \u003cbr\u003e1.2. Thermodynamic Principles Governing Injection Molding\u003cbr\u003e1.2.1 Filling\u003cbr\u003e1.2.2 Holding\u003cbr\u003e1.2.3 Cooling \u003cbr\u003e\u003cbr\u003e2. Shrinkage and Warpage\u003cbr\u003e2.1 Mold Shrinkage \u003cbr\u003e2.1.1 Determination of Shrinkage\u003cbr\u003e2.1.2 Molded-in Stress\u003cbr\u003e2.2 Warpage \u003cbr\u003e2.2.1 Common Causes of Non-Uniform Shrinkage\u003cbr\u003e2.2.2 principles of Minimizing Warpage \u003cbr\u003e2.3 Post-Mold Shrinkage \u003cbr\u003e\u003cbr\u003e3. Causes of Molded Part Variation - Part Design \u003cbr\u003e3.1 Wall Thickness\u003cbr\u003e3.2 Ribs\u003cbr\u003e3.3 Bosses\u003cbr\u003e3.4 Example of Proper Part Design\u003cbr\u003e3.5 Other Design Consideration \u003cbr\u003e\u003cbr\u003e4. Causes of Molded Part Variation - Material \u003cbr\u003e4.1 Amorphous and Semi-Crystalline Resins \u003cbr\u003e4.1.1 Amorphous Materials\u003cbr\u003e4.1.2 Semi-Crystalline Materials\u003cbr\u003e4.2 Effects of Fillers, Reinforcements, Pigments, Time and Stress\u003cbr\u003e4.2.1 Effects of Fillers and Fibers\u003cbr\u003e4.2.2 Minimizing the Effects of Fiber Reinforcements\u003cbr\u003e4.2.3 Effects of Pigments\u003cbr\u003e4.2.4 Effects of Time and Stress\u003cbr\u003e4.3 Shrinkage Prediction : Pressure-Volume-Temperature (PVT) Behavior \u003cbr\u003e4.3.1 PVT System Properties\u003cbr\u003e4.3.2 Predicting Mold Shrinkage\u003cbr\u003e4.3.3 Accuracy of Shrinkage Prediction \u003cbr\u003e\u003cbr\u003e5. Causes of Molded Part Variation - Mold Design \u003cbr\u003e5.1 Cavity Dimensions and Design Factors \u003cbr\u003e5.2 Gate Types\u003cbr\u003e5.2.1 Sprue Gate\u003cbr\u003e5.2.2 Pin, Pinpoint, Tunnel, and Submarine Gates\u003cbr\u003e5.2.3 Edge and Straight Gates\u003cbr\u003e5.2.4 Fan, Film, Diaphram, Ring, Disk, Cone, and Double-Sided Gates\u003cbr\u003e5.2.5 Multiple Gates\u003cbr\u003e\u003cbr\u003e5.3 Gate Location \u003cbr\u003e5.3.1 Side and End gates\u003cbr\u003e5.3.2 Determining Gate Position \u003cbr\u003e5.4 Gate Size \u003cbr\u003e5.5 Gate Design Systems\u003cbr\u003e5.6 Runner Design \u003cbr\u003e5.6.1 Multiple Cavity Molds\u003cbr\u003e5.6.2 Poor Ejection\u003cbr\u003e5.7 Mold Cooling Design\u003cbr\u003e5.7.1 Cooling Channels\u003cbr\u003e5.7.2 Effects of Corners\u003cbr\u003e5.7.3 Thickness Variations\u003cbr\u003e5.7.4 Runnerless Molds\u003cbr\u003e5.7.5 Slides\u003cbr\u003e5.7.6 Venting \u003cbr\u003e5.8 Mold Construction Materials\u003cbr\u003e5.9 Annealing \u003cbr\u003e5.10 Gas Assist \u003cbr\u003e5.11 Pitfalls to Avoid \u003cbr\u003e\u003cbr\u003e6. Causes of Molded Part Variation - Processing \u003cbr\u003e6.1 Molding Conditions\u003cbr\u003e6.1 (Injection melt Temperature) - if should be a separate section, renumber as 6.2 and renumber subsequent sections)\u003cbr\u003e6.2 Injection Rate\/Pressure\u003cbr\u003e6.2.1 Injection Speed\u003cbr\u003e6.2.2 Injection Pressure\u003cbr\u003e6.3 Holding Pressure\/Time\u003cbr\u003e6.3.1 Holding Pressure \u003cbr\u003e6.3.2 Holding pressure Time\u003cbr\u003e6.4 Mold Temperature\u003cbr\u003e6.4.1 Predicting mold Temperature Effects\u003cbr\u003e6.4.2 Relationship Between Mold Temperature and Wall Thickness\u003cbr\u003e6.5 Demolding Temperature\u003cbr\u003e6.6 Molded-in Stresses\u003cbr\u003e\u003cbr\u003e7. Factors Affecting Post-Mold Shrinkage\u003cbr\u003e7.1 Effects of Temperatures on Dimensions\u003cbr\u003e7.2 Effects of Moisture on Dimensions\u003cbr\u003e\u003cbr\u003e8. How to Control Mold and Post-mold Shrinkage and Warpage \u003cbr\u003e8.1 Find the Cause\u003cbr\u003e8.2 Part Geometry\u003cbr\u003e8.2.1 Overall Part Dimensions\u003cbr\u003e8.2.2 Wall Thickness\u003cbr\u003e8.2.3 Shrinkage Restricting Features\u003cbr\u003e8.3 Material Consideration\u003cbr\u003e8.3.1 Filler or Reinforcement Content\u003cbr\u003e8.3.2 Degree of Moisture Absorption\u003cbr\u003e8.4 Tooling Considerations \u003cbr\u003e8.4.1 Gate Locations\u003cbr\u003e8.4.2 Types and Sizes of Gates\u003cbr\u003e8.4.3 Runner Systems\u003cbr\u003e8.4.4 Mold Cooling Layout\u003cbr\u003e8.4.5 Tool Tolerances \u003cbr\u003e8.4.6 Draft Angles \u003cbr\u003e8.4.7 Ejection system Design\u003cbr\u003e8.4.8 Elastic Deformation of Mold\u003cbr\u003e8.4.9 Mold Wear\u003cbr\u003e8.4.10 Mold Contamination\u003cbr\u003e8.4.11 Position Deviations of Movable Mold Components\u003cbr\u003e8.4.12 Special Issues with Gears\u003cbr\u003e8.5 Processing Considerations\u003cbr\u003e8.5.1 Melt Temperatures and Uniformity \u003cbr\u003e8.5.2 Mold Temperatures and Uniformity \u003cbr\u003e8.5.3 Filling, Packing, and Holding Pressures\u003cbr\u003e8.5.4 Filling, Packing, and Holding Times\u003cbr\u003e8.5.5 Part Temperature at Ejection\u003cbr\u003e8.5.6 Clamp Tonnage\u003cbr\u003e8.5.7 Post-Mold Fixturing\/Annealing\u003cbr\u003e8.5.8 Special Problems with Thick Walls and Sink Marks\u003cbr\u003e8.5.9 Nozzles \u003cbr\u003e8.5.10 Excessive or Insufficient Shrinkage\u003cbr\u003e8.5.11 Secondary Machining\u003cbr\u003e8.5.12 Quality Control\u003cbr\u003e8.6 Controlling Warpage \u003cbr\u003e\u003cbr\u003e9. Computer Analysis\u003cbr\u003e9.1 How It Works\u003cbr\u003e9.1.1 Assumptions \u003cbr\u003e9.1.2 Generic Elements and Potential Limitations\u003cbr\u003e9.2 Does It Work \u003cbr\u003e9.2.1 Machine Settings and Controls\u003cbr\u003e9.2.2 Different Parts, Different Problems \u003cbr\u003e9.2.3 Differing Capabilities of Software\u003cbr\u003e9.3 What are Realistic Expectations of CAE?\u003cbr\u003e9.4 Resources\u003cbr\u003e9.4.1 How Much Does it Cost?\u003cbr\u003e9.4.2 Consultants \u003cbr\u003e9.5 OR Chapter 9 Appendix: Extended Illustration\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e10. Case studies\u003cbr\u003e10.1 Unexpected Housing Shrink and Combing of the Glass Fibers\u003cbr\u003e10.2 Changing Materials Triggers Warpage \u003cbr\u003e10.3 Thin-Molded Lids\u003cbr\u003e10.4 Oversize Part Injection Molding Alkyd Thermoset\u003cbr\u003e10.5 Inadequate Mold: Baby Dish\u003cbr\u003e10.6 Gas Entrapment: Baby Dish\u003cbr\u003e10.7 Sprue and Runners\u003cbr\u003e10.8 Spool Mold \u003cbr\u003e10.9 Thermoplastic Engineering Design Study \u003cbr\u003e10.10 CDs\u003cbr\u003e10.11 Flat Parts\u003cbr\u003e10.12 Electronic Connectors\u003cbr\u003eData\u003cbr\u003eGlossary\u003cbr\u003eAbbreviations \u003cbr\u003eReferences\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJerry Fischer, CEO of Tools and Troubleshooting, Inc., brings to this handbook over 35 years experience as a mold designer and builder and consultant on mold shrinkage and warpage conditions. In the 1980s, Jerry published two books with McGraw-Hill on computer-aided design."}
Filled PolymersScience...
$170.00
{"id":11242222596,"title":"Filled PolymersScience and Industrial Applications","handle":"978-1-4398004-2-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jean L. Leblanc \u003cbr\u003eISBN 978-1-4398004-2-3 \u003cbr\u003e\u003cbr\u003ePages: 444 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe idea of mixing single available materials into compounds to fulfill a set of desired properties is likely as old as mankind. Highly sophisticated polymer applications would simply be impossible without the enhancement of some of their properties through the addition of fine mineral particles or synthetic or natural short fibers. Many filled polymers, either thermoplastics or vulcanizable rubbers, have different chemical natures but exhibit common singular properties. An understanding of why they do so is likely to be the source of promising scientific and engineering developments—and Filled Polymers: Science and Industrial Applications thoroughly explores the question. \u003cbr\u003e\u003cbr\u003eBased on the author’s 30 years of research, engineering activities, and teaching in the field of complex polymer systems, this comprehensive survey of polymer applications illustrates their commonalities and the scientific background behind their many industrial uses. The text analyzes theoretical considerations which explain the origin of the singular properties of filled polymers, and it includes appendices which feature a selection of calculation worksheets that offer numerical illustrations of several of the theoretical considerations discussed in the book.\u003cbr\u003e\u003cbr\u003eOur understanding of polymer reinforcement remains incomplete because any progress in the field is strongly connected with either the availability of appropriate experimental and observation techniques or theoretical views about polymer-filler interactions, or both. This book presents tools—such as equations tested with familiar calculation software—to clarify these concepts and take understanding to the highest possible level.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eIntroduction\u003c\/strong\u003e\u003cstrong\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eScope of the Book\u003cbr\u003e\u003cbr\u003eFilled Polymers vs. Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTypes of Fillers\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eConcept of Reinforcement\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eTypical Fillers for Polymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCarbon Black\u003cbr\u003e\u003cbr\u003eWhite Fillers\u003cbr\u003e\u003cbr\u003eShort Synthetic Fibers\u003cbr\u003e\u003cbr\u003eShort Fibers of Natural Origin\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCarbon Black Data\u003cbr\u003e\u003cbr\u003eMedalia’s Floc Simulation for Carbon Black Aggregate\u003cbr\u003e\u003cbr\u003eMedalia’s Aggregate Morphology Approach\u003cbr\u003e\u003cbr\u003eCarbon Black: Number of Particles\/Aggregate\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and Carbon Black\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eElastomers and Carbon Black (CB)\u003cbr\u003e\u003cbr\u003eThermoplastics and Carbon Black \u003cbr\u003e\u003cbr\u003eAppendix\u003cbr\u003e\u003cbr\u003eNetwork Junction Theory\u003cbr\u003e\u003cbr\u003eKraus Deagglomeration–Reagglomeration Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003eUlmer Modification of the Kraus Model for Dynamic Strain Softening (DSS): Fitting the Model\u003cbr\u003e\u003cbr\u003eAggregates Flocculation\/Entanglement\u003cbr\u003e\u003cbr\u003eModel (Cluster–Cluster Aggregation (CCA) Model, Klüppel et al.)\u003cbr\u003e\u003cbr\u003eLion et al. Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003eMaier and Göritz Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and White Fillers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eElastomers and White Fillers\u003cbr\u003e\u003cbr\u003eThermoplastics and White Fillers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eAdsorption Kinetics of Silica on Silicone Polymers\u003cbr\u003e\u003cbr\u003eModeling the Shear Viscosity Function of Filled\u003cbr\u003e\u003cbr\u003ePolymer Systems\u003cbr\u003e\u003cbr\u003eModels for the Rheology of Suspensions of Rigid Particles,\u003cbr\u003e\u003cbr\u003eInvolving the Maximum Packing Fraction Φm\u003cbr\u003e\u003cbr\u003eAssessing the Capabilities of Model for the Shear\u003cbr\u003e\u003cbr\u003eViscosity Function of Filled Polymers\u003cbr\u003e\u003cbr\u003eExpanding the Krieger–Dougherty Relationship\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and Short Fibers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eGeneralities\u003cbr\u003e\u003cbr\u003eMicromechanic Models for Short Fibers-Filled Polymer\u003cbr\u003e\u003cbr\u003eComposites\u003cbr\u003e\u003cbr\u003eThermoplastics and Short Glass Fibers\u003cbr\u003e\u003cbr\u003eTypical Rheological Aspect of Short Fiber-Filled\u003cbr\u003e\u003cbr\u003eThermoplastic Melts\u003cbr\u003e\u003cbr\u003eThermoplastics and Short Fibers of Natural Origin\u003cbr\u003e\u003cbr\u003eElastomers and Short Fibers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eShort Fiber-Reinforced Composites: Minimum Fiber Aspect Ratio\u003cbr\u003e\u003cbr\u003eHalpin–Tsai Equations for Short Fibers Filled Systems: Numerical Illustration\u003cbr\u003e\u003cbr\u003eNielsen Modification of Halpin–Tsai Equations with Respect to the Maximum Packing Fraction: Numerical Illustration\u003cbr\u003e\u003cbr\u003eMori–Tanaka’s Average Stress Concept: Tandon–Weng\u003cbr\u003e\u003cbr\u003eExpressions for Randomly Distributed Ellipsoidal (Fiber-Like) Particles: Numerical Illustration\u003cbr\u003e\u003cbr\u003eShear Lag Model: Numerical illustration\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eIndex\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJean L. Leblanc is the director of the Polymer Rheology and Processing Laboratory at the University P \u0026amp; M Curie in Paris. He has published more than 120 scientific papers and two books, contributed chapters in several collective books, made numerous presentations in international conferences, and has given seminars in Brazil, Canada, Thailand, the USA, and several European countries.","published_at":"2017-06-22T21:13:50-04:00","created_at":"2017-06-22T21:13:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","book","fillers","p-properties","polymer","polymer-fillers interactions","properties","reinforcement"],"price":17000,"price_min":17000,"price_max":17000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378376388,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Filled PolymersScience and Industrial Applications","public_title":null,"options":["Default Title"],"price":17000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4398004-2-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398004-2-3.jpg?v=1499385887"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398004-2-3.jpg?v=1499385887","options":["Title"],"media":[{"alt":null,"id":354805776477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398004-2-3.jpg?v=1499385887"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398004-2-3.jpg?v=1499385887","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jean L. Leblanc \u003cbr\u003eISBN 978-1-4398004-2-3 \u003cbr\u003e\u003cbr\u003ePages: 444 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe idea of mixing single available materials into compounds to fulfill a set of desired properties is likely as old as mankind. Highly sophisticated polymer applications would simply be impossible without the enhancement of some of their properties through the addition of fine mineral particles or synthetic or natural short fibers. Many filled polymers, either thermoplastics or vulcanizable rubbers, have different chemical natures but exhibit common singular properties. An understanding of why they do so is likely to be the source of promising scientific and engineering developments—and Filled Polymers: Science and Industrial Applications thoroughly explores the question. \u003cbr\u003e\u003cbr\u003eBased on the author’s 30 years of research, engineering activities, and teaching in the field of complex polymer systems, this comprehensive survey of polymer applications illustrates their commonalities and the scientific background behind their many industrial uses. The text analyzes theoretical considerations which explain the origin of the singular properties of filled polymers, and it includes appendices which feature a selection of calculation worksheets that offer numerical illustrations of several of the theoretical considerations discussed in the book.\u003cbr\u003e\u003cbr\u003eOur understanding of polymer reinforcement remains incomplete because any progress in the field is strongly connected with either the availability of appropriate experimental and observation techniques or theoretical views about polymer-filler interactions, or both. This book presents tools—such as equations tested with familiar calculation software—to clarify these concepts and take understanding to the highest possible level.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eIntroduction\u003c\/strong\u003e\u003cstrong\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eScope of the Book\u003cbr\u003e\u003cbr\u003eFilled Polymers vs. Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTypes of Fillers\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eConcept of Reinforcement\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eTypical Fillers for Polymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCarbon Black\u003cbr\u003e\u003cbr\u003eWhite Fillers\u003cbr\u003e\u003cbr\u003eShort Synthetic Fibers\u003cbr\u003e\u003cbr\u003eShort Fibers of Natural Origin\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCarbon Black Data\u003cbr\u003e\u003cbr\u003eMedalia’s Floc Simulation for Carbon Black Aggregate\u003cbr\u003e\u003cbr\u003eMedalia’s Aggregate Morphology Approach\u003cbr\u003e\u003cbr\u003eCarbon Black: Number of Particles\/Aggregate\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and Carbon Black\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eElastomers and Carbon Black (CB)\u003cbr\u003e\u003cbr\u003eThermoplastics and Carbon Black \u003cbr\u003e\u003cbr\u003eAppendix\u003cbr\u003e\u003cbr\u003eNetwork Junction Theory\u003cbr\u003e\u003cbr\u003eKraus Deagglomeration–Reagglomeration Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003eUlmer Modification of the Kraus Model for Dynamic Strain Softening (DSS): Fitting the Model\u003cbr\u003e\u003cbr\u003eAggregates Flocculation\/Entanglement\u003cbr\u003e\u003cbr\u003eModel (Cluster–Cluster Aggregation (CCA) Model, Klüppel et al.)\u003cbr\u003e\u003cbr\u003eLion et al. Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003eMaier and Göritz Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and White Fillers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eElastomers and White Fillers\u003cbr\u003e\u003cbr\u003eThermoplastics and White Fillers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eAdsorption Kinetics of Silica on Silicone Polymers\u003cbr\u003e\u003cbr\u003eModeling the Shear Viscosity Function of Filled\u003cbr\u003e\u003cbr\u003ePolymer Systems\u003cbr\u003e\u003cbr\u003eModels for the Rheology of Suspensions of Rigid Particles,\u003cbr\u003e\u003cbr\u003eInvolving the Maximum Packing Fraction Φm\u003cbr\u003e\u003cbr\u003eAssessing the Capabilities of Model for the Shear\u003cbr\u003e\u003cbr\u003eViscosity Function of Filled Polymers\u003cbr\u003e\u003cbr\u003eExpanding the Krieger–Dougherty Relationship\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and Short Fibers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eGeneralities\u003cbr\u003e\u003cbr\u003eMicromechanic Models for Short Fibers-Filled Polymer\u003cbr\u003e\u003cbr\u003eComposites\u003cbr\u003e\u003cbr\u003eThermoplastics and Short Glass Fibers\u003cbr\u003e\u003cbr\u003eTypical Rheological Aspect of Short Fiber-Filled\u003cbr\u003e\u003cbr\u003eThermoplastic Melts\u003cbr\u003e\u003cbr\u003eThermoplastics and Short Fibers of Natural Origin\u003cbr\u003e\u003cbr\u003eElastomers and Short Fibers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eShort Fiber-Reinforced Composites: Minimum Fiber Aspect Ratio\u003cbr\u003e\u003cbr\u003eHalpin–Tsai Equations for Short Fibers Filled Systems: Numerical Illustration\u003cbr\u003e\u003cbr\u003eNielsen Modification of Halpin–Tsai Equations with Respect to the Maximum Packing Fraction: Numerical Illustration\u003cbr\u003e\u003cbr\u003eMori–Tanaka’s Average Stress Concept: Tandon–Weng\u003cbr\u003e\u003cbr\u003eExpressions for Randomly Distributed Ellipsoidal (Fiber-Like) Particles: Numerical Illustration\u003cbr\u003e\u003cbr\u003eShear Lag Model: Numerical illustration\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eIndex\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJean L. Leblanc is the director of the Polymer Rheology and Processing Laboratory at the University P \u0026amp; M Curie in Paris. He has published more than 120 scientific papers and two books, contributed chapters in several collective books, made numerous presentations in international conferences, and has given seminars in Brazil, Canada, Thailand, the USA, and several European countries."}
Colorimetry: Understan...
$180.00
{"id":11242222404,"title":"Colorimetry: Understanding the CIE System","handle":"978-0-470-04904-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed., J. Schanda \u003cbr\u003eISBN 978-0-470-04904-4 \u003cbr\u003e\u003cbr\u003epages 459, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eColorimetry: Understanding the CIE System summarizes and explains the standards of CIE colorimetry in one comprehensive source.\u003c\/li\u003e\n\u003cli\u003ePresents the material in a tutorial form, for easy understanding by students and engineers dealing with colorimetry.\u003c\/li\u003e\n\u003cli\u003eProvides an overview of the area of CIE colorimetry, including colorimetric principles, the historical background of colorimetric measurements, uncertainty analysis, open problems of colorimetry and their possible solutions, etc.\u003c\/li\u003e\n\u003cli\u003eIncludes several appendices, which provide a listing of CIE colorimetric tables as well as an annotated list of CIE publications.\u003c\/li\u003e\n\u003cli\u003eCommemorates the 75th anniversary of the CIE's System of Colorimetry.\u003c\/li\u003e\n\u003c\/ul\u003e\n \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003eContributors and Referees. \u003cbr\u003e\u003cb\u003ePart I: Historic Retrospection.\u003c\/b\u003e \u003cbr\u003e1. Translation of CIE 1931 Resolutions on Colorimetry (Translated by P. Bodrogi). \u003cbr\u003e2. Professor Wright’s Paper from the Golden Jubilee Book: The Historical and Experimental Background to the 1931 CIE System of Colorimetry (W. D. Wright). \u003cbr\u003e3. CIE Colorimetry (János Schanda). \u003cbr\u003e4. CIE Color Difference Metrics (Klaus Witt). \u003cbr\u003e5. Spectral Color Measurement (Yoshi Ohno). \u003cbr\u003e6. Tristimulus Color Measurement of Self-Luminous Sources (János Schanda, George Eppeldauer, and Georg Sauter). \u003cbr\u003e7. Color Management (Ján Morovic and Johan Lammens). \u003cbr\u003e8. Color Rendering of Light Sources (János Schanda). \u003cbr\u003e\u003cb\u003ePart III: Advances in Colorimetry.\u003c\/b\u003e \u003cbr\u003e9. Color-Matching Functions: Physiological Basis (Francoise Vienot and Pieter Walraven). \u003cbr\u003e10. Open Problems on the Validity of Grassmann's Laws (Michael H. Brill and Alan R. Robertson). \u003cbr\u003e11. CIE Color Appearance Models and Associated Color Spaces (M. Ronnier Luo and Changjun Li). \u003cbr\u003e12. Image Appearance Modeling (Garrett M. Johnson and Mark D. Fairchild). \u003cbr\u003e13. Spatial and Temporal Problems of Colorimetry (Eugenio Martinez–Uriegas). \u003cbr\u003e14. The Future of Colorimetry in the CIE (Robert W.G. Hunt). \u003cbr\u003e\u003cbr\u003eAppendix 1: Measurement Uncertainty (Georg Sauter). \u003cbr\u003e\u003cbr\u003eAppendix 2: Uncertainties in Spectral Color Measurement (James L. Gardner). \u003cbr\u003e\u003cbr\u003eAppendix 3: Use of CIE Colorimetry in the Pulp, Paper, and Textile Industries (Robert Hirschler and Joanne Zwinkels). \u003cbr\u003e\u003cbr\u003eAppendix 4: List of CIE Publications. \u003cbr\u003e\u003cbr\u003eGlossary. \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJanos Schanda, PhD, is Professor Emeritus of the University of Pannonia in Hungary, where he taught colorimetry and visual ergonomics. He headed the Department of Image Processing and Neurocomputing between 1996 and 2000, and served as secretary of the CIE. He is a member of the advisory boards of Color Research and Application, Lighting Research and Technology, Light and Engineering, and Journal of Light and Visual Environment","published_at":"2017-06-22T21:13:50-04:00","created_at":"2017-06-22T21:13:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","book","CIE","color","color difference","color-matching","colorimetry","light sources","measurement","p-testing","paper","polymer","pulp","self-luminous","spectral","textile"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378376196,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Colorimetry: Understanding the CIE System","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-04904-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-04904-4.jpg?v=1499211133"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-04904-4.jpg?v=1499211133","options":["Title"],"media":[{"alt":null,"id":353961246813,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-04904-4.jpg?v=1499211133"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-04904-4.jpg?v=1499211133","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed., J. Schanda \u003cbr\u003eISBN 978-0-470-04904-4 \u003cbr\u003e\u003cbr\u003epages 459, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eColorimetry: Understanding the CIE System summarizes and explains the standards of CIE colorimetry in one comprehensive source.\u003c\/li\u003e\n\u003cli\u003ePresents the material in a tutorial form, for easy understanding by students and engineers dealing with colorimetry.\u003c\/li\u003e\n\u003cli\u003eProvides an overview of the area of CIE colorimetry, including colorimetric principles, the historical background of colorimetric measurements, uncertainty analysis, open problems of colorimetry and their possible solutions, etc.\u003c\/li\u003e\n\u003cli\u003eIncludes several appendices, which provide a listing of CIE colorimetric tables as well as an annotated list of CIE publications.\u003c\/li\u003e\n\u003cli\u003eCommemorates the 75th anniversary of the CIE's System of Colorimetry.\u003c\/li\u003e\n\u003c\/ul\u003e\n \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003eContributors and Referees. \u003cbr\u003e\u003cb\u003ePart I: Historic Retrospection.\u003c\/b\u003e \u003cbr\u003e1. Translation of CIE 1931 Resolutions on Colorimetry (Translated by P. Bodrogi). \u003cbr\u003e2. Professor Wright’s Paper from the Golden Jubilee Book: The Historical and Experimental Background to the 1931 CIE System of Colorimetry (W. D. Wright). \u003cbr\u003e3. CIE Colorimetry (János Schanda). \u003cbr\u003e4. CIE Color Difference Metrics (Klaus Witt). \u003cbr\u003e5. Spectral Color Measurement (Yoshi Ohno). \u003cbr\u003e6. Tristimulus Color Measurement of Self-Luminous Sources (János Schanda, George Eppeldauer, and Georg Sauter). \u003cbr\u003e7. Color Management (Ján Morovic and Johan Lammens). \u003cbr\u003e8. Color Rendering of Light Sources (János Schanda). \u003cbr\u003e\u003cb\u003ePart III: Advances in Colorimetry.\u003c\/b\u003e \u003cbr\u003e9. Color-Matching Functions: Physiological Basis (Francoise Vienot and Pieter Walraven). \u003cbr\u003e10. Open Problems on the Validity of Grassmann's Laws (Michael H. Brill and Alan R. Robertson). \u003cbr\u003e11. CIE Color Appearance Models and Associated Color Spaces (M. Ronnier Luo and Changjun Li). \u003cbr\u003e12. Image Appearance Modeling (Garrett M. Johnson and Mark D. Fairchild). \u003cbr\u003e13. Spatial and Temporal Problems of Colorimetry (Eugenio Martinez–Uriegas). \u003cbr\u003e14. The Future of Colorimetry in the CIE (Robert W.G. Hunt). \u003cbr\u003e\u003cbr\u003eAppendix 1: Measurement Uncertainty (Georg Sauter). \u003cbr\u003e\u003cbr\u003eAppendix 2: Uncertainties in Spectral Color Measurement (James L. Gardner). \u003cbr\u003e\u003cbr\u003eAppendix 3: Use of CIE Colorimetry in the Pulp, Paper, and Textile Industries (Robert Hirschler and Joanne Zwinkels). \u003cbr\u003e\u003cbr\u003eAppendix 4: List of CIE Publications. \u003cbr\u003e\u003cbr\u003eGlossary. \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJanos Schanda, PhD, is Professor Emeritus of the University of Pannonia in Hungary, where he taught colorimetry and visual ergonomics. He headed the Department of Image Processing and Neurocomputing between 1996 and 2000, and served as secretary of the CIE. He is a member of the advisory boards of Color Research and Application, Lighting Research and Technology, Light and Engineering, and Journal of Light and Visual Environment"}
Plastics, Rubber and H...
$198.00
{"id":11242222148,"title":"Plastics, Rubber and Health","handle":"978-1-84735-081-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Guneri Akovali \u003cbr\u003eISBN 978-1-84735-081-7 \u003cbr\u003e\u003cbr\u003eSoft-backed, 310 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics and rubber are two very different, important materials which are used a great deal in our everyday life, both in indoors and outdoors. However, there is still, the controversy surrounding the use of certain polymers and there are also some misconceptions surrounding their use. \u003cbr\u003e\u003cbr\u003eIn recent years there have been certain scare stories about the possible negative effects on human health from some of these materials. However, today it is realised that it is often not the polymers themselves, but their monomers or the additives used that are responsible for these negative effects. And the reality is that a lot of polymers are used in medical applications without adverse effects on patients. Hence, the dividing line between whether something is toxic and harmful to health or not (and if it is, under what conditions) is a very critical issue and therefore, there needs to be a better understanding of these systems. \u003cbr\u003e\u003cbr\u003eThis book presents the available information on the eternal triangle of plastics and rubber and health, to enable a better understanding of the facts.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e1 Introduction\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Some Basic Concepts and Definitions\u003c\/strong\u003e \u003cbr\u003e2.1 Plastics and Rubbers and Health, in Brief \u003cbr\u003e2.2 A Brief Account of ‘Chemicals’ and ‘Human Health’ \u003cbr\u003e2.2.1 Chemicals that Cause Health Hazards \u003cbr\u003e2.2.2 Carcinogen(ic)s \u003cbr\u003e2.2.3 Endocrine Disrupters (ECD) \u003cbr\u003e2.3 A Final Note \u003cbr\u003eReferences \u003cbr\u003eAppendix 2.A.1 Some Organic Indoor Pollutant Classifications by WHO \u003cbr\u003eAppendix 2.A.2 Some Definitions of Lethal and Toxic Doses and Concentrations \u003cbr\u003eAppendix 2.A.3 Inherent Toxicity Levels of Chemicals Hazardous to Health (OSHA) \u003cbr\u003eAppendix 2.A.4 Some OSHA and ACGIH Definitions of Exposure Limits \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 General Issues of Toxicity for Plastics and Rubber\u003c\/strong\u003e \u003cbr\u003e3.1 Plastics and Rubber, In Brief \u003cbr\u003e3.1.1 Combinations of Plastics, Combinations of Rubbers \u003cbr\u003e3.2 Additives \u003cbr\u003e3.2.1 Migration of Additives \u003cbr\u003e3.2.2 Antistatic (Electrostatic-discharge-dissipating) (ESD) Intentional Additives \u003cbr\u003e3.2.3 Colorants \u003cbr\u003e3.2.4 Curing Agents, Cure Accelerators, Crosslinkers (XL) \u003cbr\u003e3.2.5 Coupling Agents and Compatibilisers \u003cbr\u003e3.2.6 Foaming (Blowing) Agents \u003cbr\u003e3.2.7 Stabilisers \u003cbr\u003e3.2.8 Impact Modifiers \u003cbr\u003e3.2.9 Nucleating Agents \u003cbr\u003e3.2.10 Plasticisers (Flexibilisers) \u003cbr\u003e3.2.11 Preservatives (Antimicrobials, Biocides) \u003cbr\u003e3.2.12 Processing Aids (or Polymer Processing Additives, PPA) \u003cbr\u003e3.2.13 Compatibilisers (Adhesion Promoters) \u003cbr\u003e3.2.14 Other Intentional and Unintentional Additives \u003cbr\u003e3.3 Health Hazards of Heavy Metals and Heavy Metal Ions \u003cbr\u003e3.3.1 Some Elements, Common Heavy Metals and Heavy Metal Ions \u003cbr\u003e3.4 Regulatory Bodies for Heavy Metals and Metal Ions \u003cbr\u003e3.5 Toxic Chemicals from Degradation, Combustion, and Sterilisation of Plastics and Rubbers \u003cbr\u003e3.6 Effect of Migrant Compounds on Taste and Odour \u003cbr\u003eReferences \u003cbr\u003eBibliography \u003cbr\u003eWeb Sites \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Toxicity of Rubber and Plastics Due to their Non-Additive Ingredients\u003c\/strong\u003e \u003cbr\u003e4.1 General Outline \u003cbr\u003e4.2 Polymers, Monomers, Oligomers \u003cbr\u003e4.2.1 Thermopolymers\/Thermoplastics \u003cbr\u003e4.2.2 Thermosets and some Thermoset Composites \u003cbr\u003e4.2.3 Rubbers\/Elastomers \u003cbr\u003e4.3 Some Additional Notes on the Toxic Chemicals Evolving from Degradation, Combustion and Sterilisation of Polymers \u003cbr\u003e4.3.1 On Toxics from Degradation of Polymers \u003cbr\u003e4.3.2 Toxic Compounds from Combustion, Thermo-Oxidative Degradation, Sterilisation and Others \u003cbr\u003eReferences \u003cbr\u003eSome Additional References \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Plastics as Food and Packaging Materials, Rubbers in Contact with Food, and their Possible Health Effects\u003c\/strong\u003e \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Outline of Plastics Packaging and Possible Health Effects Involved \u003cbr\u003e5.2.1 Why Plastics in Packaging? \u003cbr\u003e5.2.2 Types of Plastics Used in Packaging \u003cbr\u003e5.2.3 Types and Forms of Plastics Packaging \u003cbr\u003e5.2.4 Smart Packaging \u003cbr\u003e5.2.5 Active Packaging (Antimicrobial Packaging with Biocidal Polymers) \u003cbr\u003e5.3 Rubbers Used in Contact With Food and Possible Health Effects \u003cbr\u003e5.3.1 Some Rubber Types Used in Contact with Food \u003cbr\u003e5.3.2 Issue of Monomers and Oligomers (Left) in Rubbers \u003cbr\u003e5.3.3 Issue of Vulcanisation Agents (and Cure Products) Left in Rubbers \u003cbr\u003e5.3.4 Plasticisers and Antidegradants in Rubbers \u003cbr\u003e5.3.5 Migration from Food-Contact Rubbers and Some Tests \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related Literature \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Plastics Use in Healthcare and Their Possible Health Effects\u003c\/strong\u003e \u003cbr\u003e6.1 Plastics in Biomedical and Healthcare Applications \u003cbr\u003e6.1.1 ‘Commodity’ and ‘Specialty’ Medical Plastics \u003cbr\u003e6.2 Fibre Reinforced Plastics as Medical Materials \u003cbr\u003e6.3 Direct Use of Synthetic Polymers as Drugs and Therapeutic Agents \u003cbr\u003e6.4 Dental Resin Composites \u003cbr\u003e6.5 Use of Polymers in Dialysis \u003cbr\u003e6.6 Ophthalmic, Prostheses and Other Applications of Medical Polymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Plastics and Rubbers Applications in Construction and Their Possible Health Effects\u003c\/strong\u003e \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Indoor Air Quality and Sick Building Syndrome \u003cbr\u003e7.2.1 What is Sick Building Syndrome? \u003cbr\u003e7.2.2 Possible Sources of IAQ\/Sick Building Syndrome Problems, in General, and Some Solutions \u003cbr\u003e7.2.3 Four Elements of Sick Building Syndrome \u003cbr\u003e7.3 Volatile Organic Compounds (VOC) \u003cbr\u003e7.3.1 Possible Sources of VOC \u003cbr\u003e7.3.2 Permissible Limits for VOC Indoors \u003cbr\u003e7.4 Risk Management and Some Notes on Toxic Compounds that can be Found in Indoor Spaces \u003cbr\u003e7.4.1 Risk Management \u003cbr\u003e7.5 Some Notes on Toxic Materials that can be Found Indoors \u003cbr\u003e7.5.1 Endocrine Disrupters (ECD) and Some Suspected ECD Agents Indoors \u003cbr\u003e7.5.2 Effect of Some Plastics, Rubbers and Wood-Related Materials on the Indoors Atmosphere in Houses \u003cbr\u003e7.5.3 Some Construction Applications and Related Possible Health Hazards Indoors \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related Bibliography \u003cbr\u003eAppendix \u003cbr\u003eA-7.1 Radon Indoors \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Use of Plastic and Rubber in Various Applications and Possible Health Effects\u003c\/strong\u003e \u003cbr\u003e8.1 Plastic and Rubber Use in Sports and Leisure and Possible Health Effects \u003cbr\u003e8.1.1 Plastics and Rubbers as ‘Artificial Surfaces’ in Sports and Leisure \u003cbr\u003e8.1.2 Plastic and Rubber Use as ‘Clothing’ in Sports and Leisure \u003cbr\u003e8.1.3 Plastics and Rubbers Use in ‘Water and Motor Sports’ \u003cbr\u003e8.2 Automotive and Transportation Applications \u003cbr\u003e8.2.1 Why Use Plastics and Rubbers in Automotive Applications? \u003cbr\u003e8.2.2 Which Plastic\/Rubber to Use for Automotive Applications? \u003cbr\u003e8.3 Plastic Use in Agriculture and Possible Health Effects \u003cbr\u003e8.4 Plastic and Rubber in Electric and Electronics Applications, Their Health Effects \u003cbr\u003e8.5 Outline of Plastics Use as Other Consumer Products and Possible Health Effects \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related Literature \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Sustainability Through Plastics and Rubbers\u003c\/strong\u003e \u003cbr\u003e9.1 Sustainability in General \u003cbr\u003e9.2 The EU - Sustainable Development Strategy (SDS) \u003cbr\u003e9.3 A Briefing on Environmental Laws and Sustainable Use of Plastics and Rubbers \u003cbr\u003e9.3.1 Plastics, Rubbers and the Environment \u003cbr\u003e9.3.2 Plastics and Rubbers Waste \u003cbr\u003e9.3.3 Polymers from Natural Renewable Sources (Sustainability Through Green Polymers) \u003cbr\u003e9.3.4 Sustainability Through Additives \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related References \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 List of Some Health Hazard Causing Solvents, Monomers and Chemicals Common for Plastics and Rubbers\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related References \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Short Lists of Some Extremely Hazardous Substances and IARC Groups 1, 2a, 2b, 3 and 4 Carcinogens Related to Plastics and Rubbers\u003c\/strong\u003e \u003cbr\u003e11.1 A List of Some Extremely Hazardous Substances Related to Plastics and Rubbers \u003cbr\u003e11.2 A Brief List of IARC Group 1 Carcinogens for Chemicals Related to Plastics and Rubbers \u003cbr\u003e11.3 A Brief List of IARC Group 2A Carcinogens for Chemicals Related to Plastics and Rubbers \u003cbr\u003e11.5 A Brief List of IARC Group 3 Carcinogens for Chemicals Related to Plastics and Rubbers \u003cbr\u003e11.6 A Brief List of IARC Group 4 Carcinogens for Chemicals Related to Plastics and Rubbers \u003cbr\u003e\u003cbr\u003eAppendix \u003cbr\u003eWebsite \u003cbr\u003eCompany\/Organisation \u003cbr\u003eGlossary \u003cbr\u003eAbbreviations \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGuneri AKOVALI is a Professor Emeritus, at the Middle East Technical University (METU) of Ankara. He is a Chemical Engineer, with an MSc and Ph.D. (the latter earned for work on Polymer Chemistry and Physics). He was a staff member of the Departments. of Chemistry and Polymer Science and Technology, of METU, until his retirement. He is the founder of the Department of Polymer Science and technology of METU. He also worked for at Princeton University and the University of California (at Berkeley) as a visiting scientist, at different times in his career. \u003cbr\u003e\u003cbr\u003eProfessor Akovali is one of the founding members of the Turkish Polymer Engineering and Science Society and the Asian Polymer Federation, and he is currently the Deputy President of the latter. He is the Turkish representative for the European Polymer Federation. \u003cbr\u003e\u003cbr\u003eProfessor Akovali has written over 150 scientific papers, which have been published in leading refereed international scientific journals, in addition to a number of other technical articles. He has written four books and acted as General Editor for seven books.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:49-04:00","created_at":"2017-06-22T21:13:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additives","book","food packaging","health and safety","health effect","indoor plastics","outdoor plastics","plastics","rubber","toxicity"],"price":19800,"price_min":19800,"price_max":19800,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378375300,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics, Rubber and Health","public_title":null,"options":["Default Title"],"price":19800,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-081-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-081-7.jpg?v=1499727835"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-081-7.jpg?v=1499727835","options":["Title"],"media":[{"alt":null,"id":358548570205,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-081-7.jpg?v=1499727835"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-081-7.jpg?v=1499727835","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Guneri Akovali \u003cbr\u003eISBN 978-1-84735-081-7 \u003cbr\u003e\u003cbr\u003eSoft-backed, 310 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics and rubber are two very different, important materials which are used a great deal in our everyday life, both in indoors and outdoors. However, there is still, the controversy surrounding the use of certain polymers and there are also some misconceptions surrounding their use. \u003cbr\u003e\u003cbr\u003eIn recent years there have been certain scare stories about the possible negative effects on human health from some of these materials. However, today it is realised that it is often not the polymers themselves, but their monomers or the additives used that are responsible for these negative effects. And the reality is that a lot of polymers are used in medical applications without adverse effects on patients. Hence, the dividing line between whether something is toxic and harmful to health or not (and if it is, under what conditions) is a very critical issue and therefore, there needs to be a better understanding of these systems. \u003cbr\u003e\u003cbr\u003eThis book presents the available information on the eternal triangle of plastics and rubber and health, to enable a better understanding of the facts.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e1 Introduction\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Some Basic Concepts and Definitions\u003c\/strong\u003e \u003cbr\u003e2.1 Plastics and Rubbers and Health, in Brief \u003cbr\u003e2.2 A Brief Account of ‘Chemicals’ and ‘Human Health’ \u003cbr\u003e2.2.1 Chemicals that Cause Health Hazards \u003cbr\u003e2.2.2 Carcinogen(ic)s \u003cbr\u003e2.2.3 Endocrine Disrupters (ECD) \u003cbr\u003e2.3 A Final Note \u003cbr\u003eReferences \u003cbr\u003eAppendix 2.A.1 Some Organic Indoor Pollutant Classifications by WHO \u003cbr\u003eAppendix 2.A.2 Some Definitions of Lethal and Toxic Doses and Concentrations \u003cbr\u003eAppendix 2.A.3 Inherent Toxicity Levels of Chemicals Hazardous to Health (OSHA) \u003cbr\u003eAppendix 2.A.4 Some OSHA and ACGIH Definitions of Exposure Limits \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 General Issues of Toxicity for Plastics and Rubber\u003c\/strong\u003e \u003cbr\u003e3.1 Plastics and Rubber, In Brief \u003cbr\u003e3.1.1 Combinations of Plastics, Combinations of Rubbers \u003cbr\u003e3.2 Additives \u003cbr\u003e3.2.1 Migration of Additives \u003cbr\u003e3.2.2 Antistatic (Electrostatic-discharge-dissipating) (ESD) Intentional Additives \u003cbr\u003e3.2.3 Colorants \u003cbr\u003e3.2.4 Curing Agents, Cure Accelerators, Crosslinkers (XL) \u003cbr\u003e3.2.5 Coupling Agents and Compatibilisers \u003cbr\u003e3.2.6 Foaming (Blowing) Agents \u003cbr\u003e3.2.7 Stabilisers \u003cbr\u003e3.2.8 Impact Modifiers \u003cbr\u003e3.2.9 Nucleating Agents \u003cbr\u003e3.2.10 Plasticisers (Flexibilisers) \u003cbr\u003e3.2.11 Preservatives (Antimicrobials, Biocides) \u003cbr\u003e3.2.12 Processing Aids (or Polymer Processing Additives, PPA) \u003cbr\u003e3.2.13 Compatibilisers (Adhesion Promoters) \u003cbr\u003e3.2.14 Other Intentional and Unintentional Additives \u003cbr\u003e3.3 Health Hazards of Heavy Metals and Heavy Metal Ions \u003cbr\u003e3.3.1 Some Elements, Common Heavy Metals and Heavy Metal Ions \u003cbr\u003e3.4 Regulatory Bodies for Heavy Metals and Metal Ions \u003cbr\u003e3.5 Toxic Chemicals from Degradation, Combustion, and Sterilisation of Plastics and Rubbers \u003cbr\u003e3.6 Effect of Migrant Compounds on Taste and Odour \u003cbr\u003eReferences \u003cbr\u003eBibliography \u003cbr\u003eWeb Sites \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Toxicity of Rubber and Plastics Due to their Non-Additive Ingredients\u003c\/strong\u003e \u003cbr\u003e4.1 General Outline \u003cbr\u003e4.2 Polymers, Monomers, Oligomers \u003cbr\u003e4.2.1 Thermopolymers\/Thermoplastics \u003cbr\u003e4.2.2 Thermosets and some Thermoset Composites \u003cbr\u003e4.2.3 Rubbers\/Elastomers \u003cbr\u003e4.3 Some Additional Notes on the Toxic Chemicals Evolving from Degradation, Combustion and Sterilisation of Polymers \u003cbr\u003e4.3.1 On Toxics from Degradation of Polymers \u003cbr\u003e4.3.2 Toxic Compounds from Combustion, Thermo-Oxidative Degradation, Sterilisation and Others \u003cbr\u003eReferences \u003cbr\u003eSome Additional References \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Plastics as Food and Packaging Materials, Rubbers in Contact with Food, and their Possible Health Effects\u003c\/strong\u003e \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Outline of Plastics Packaging and Possible Health Effects Involved \u003cbr\u003e5.2.1 Why Plastics in Packaging? \u003cbr\u003e5.2.2 Types of Plastics Used in Packaging \u003cbr\u003e5.2.3 Types and Forms of Plastics Packaging \u003cbr\u003e5.2.4 Smart Packaging \u003cbr\u003e5.2.5 Active Packaging (Antimicrobial Packaging with Biocidal Polymers) \u003cbr\u003e5.3 Rubbers Used in Contact With Food and Possible Health Effects \u003cbr\u003e5.3.1 Some Rubber Types Used in Contact with Food \u003cbr\u003e5.3.2 Issue of Monomers and Oligomers (Left) in Rubbers \u003cbr\u003e5.3.3 Issue of Vulcanisation Agents (and Cure Products) Left in Rubbers \u003cbr\u003e5.3.4 Plasticisers and Antidegradants in Rubbers \u003cbr\u003e5.3.5 Migration from Food-Contact Rubbers and Some Tests \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related Literature \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Plastics Use in Healthcare and Their Possible Health Effects\u003c\/strong\u003e \u003cbr\u003e6.1 Plastics in Biomedical and Healthcare Applications \u003cbr\u003e6.1.1 ‘Commodity’ and ‘Specialty’ Medical Plastics \u003cbr\u003e6.2 Fibre Reinforced Plastics as Medical Materials \u003cbr\u003e6.3 Direct Use of Synthetic Polymers as Drugs and Therapeutic Agents \u003cbr\u003e6.4 Dental Resin Composites \u003cbr\u003e6.5 Use of Polymers in Dialysis \u003cbr\u003e6.6 Ophthalmic, Prostheses and Other Applications of Medical Polymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Plastics and Rubbers Applications in Construction and Their Possible Health Effects\u003c\/strong\u003e \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Indoor Air Quality and Sick Building Syndrome \u003cbr\u003e7.2.1 What is Sick Building Syndrome? \u003cbr\u003e7.2.2 Possible Sources of IAQ\/Sick Building Syndrome Problems, in General, and Some Solutions \u003cbr\u003e7.2.3 Four Elements of Sick Building Syndrome \u003cbr\u003e7.3 Volatile Organic Compounds (VOC) \u003cbr\u003e7.3.1 Possible Sources of VOC \u003cbr\u003e7.3.2 Permissible Limits for VOC Indoors \u003cbr\u003e7.4 Risk Management and Some Notes on Toxic Compounds that can be Found in Indoor Spaces \u003cbr\u003e7.4.1 Risk Management \u003cbr\u003e7.5 Some Notes on Toxic Materials that can be Found Indoors \u003cbr\u003e7.5.1 Endocrine Disrupters (ECD) and Some Suspected ECD Agents Indoors \u003cbr\u003e7.5.2 Effect of Some Plastics, Rubbers and Wood-Related Materials on the Indoors Atmosphere in Houses \u003cbr\u003e7.5.3 Some Construction Applications and Related Possible Health Hazards Indoors \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related Bibliography \u003cbr\u003eAppendix \u003cbr\u003eA-7.1 Radon Indoors \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Use of Plastic and Rubber in Various Applications and Possible Health Effects\u003c\/strong\u003e \u003cbr\u003e8.1 Plastic and Rubber Use in Sports and Leisure and Possible Health Effects \u003cbr\u003e8.1.1 Plastics and Rubbers as ‘Artificial Surfaces’ in Sports and Leisure \u003cbr\u003e8.1.2 Plastic and Rubber Use as ‘Clothing’ in Sports and Leisure \u003cbr\u003e8.1.3 Plastics and Rubbers Use in ‘Water and Motor Sports’ \u003cbr\u003e8.2 Automotive and Transportation Applications \u003cbr\u003e8.2.1 Why Use Plastics and Rubbers in Automotive Applications? \u003cbr\u003e8.2.2 Which Plastic\/Rubber to Use for Automotive Applications? \u003cbr\u003e8.3 Plastic Use in Agriculture and Possible Health Effects \u003cbr\u003e8.4 Plastic and Rubber in Electric and Electronics Applications, Their Health Effects \u003cbr\u003e8.5 Outline of Plastics Use as Other Consumer Products and Possible Health Effects \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related Literature \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Sustainability Through Plastics and Rubbers\u003c\/strong\u003e \u003cbr\u003e9.1 Sustainability in General \u003cbr\u003e9.2 The EU - Sustainable Development Strategy (SDS) \u003cbr\u003e9.3 A Briefing on Environmental Laws and Sustainable Use of Plastics and Rubbers \u003cbr\u003e9.3.1 Plastics, Rubbers and the Environment \u003cbr\u003e9.3.2 Plastics and Rubbers Waste \u003cbr\u003e9.3.3 Polymers from Natural Renewable Sources (Sustainability Through Green Polymers) \u003cbr\u003e9.3.4 Sustainability Through Additives \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related References \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 List of Some Health Hazard Causing Solvents, Monomers and Chemicals Common for Plastics and Rubbers\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003eSome Additional Related References \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Short Lists of Some Extremely Hazardous Substances and IARC Groups 1, 2a, 2b, 3 and 4 Carcinogens Related to Plastics and Rubbers\u003c\/strong\u003e \u003cbr\u003e11.1 A List of Some Extremely Hazardous Substances Related to Plastics and Rubbers \u003cbr\u003e11.2 A Brief List of IARC Group 1 Carcinogens for Chemicals Related to Plastics and Rubbers \u003cbr\u003e11.3 A Brief List of IARC Group 2A Carcinogens for Chemicals Related to Plastics and Rubbers \u003cbr\u003e11.5 A Brief List of IARC Group 3 Carcinogens for Chemicals Related to Plastics and Rubbers \u003cbr\u003e11.6 A Brief List of IARC Group 4 Carcinogens for Chemicals Related to Plastics and Rubbers \u003cbr\u003e\u003cbr\u003eAppendix \u003cbr\u003eWebsite \u003cbr\u003eCompany\/Organisation \u003cbr\u003eGlossary \u003cbr\u003eAbbreviations \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGuneri AKOVALI is a Professor Emeritus, at the Middle East Technical University (METU) of Ankara. He is a Chemical Engineer, with an MSc and Ph.D. (the latter earned for work on Polymer Chemistry and Physics). He was a staff member of the Departments. of Chemistry and Polymer Science and Technology, of METU, until his retirement. He is the founder of the Department of Polymer Science and technology of METU. He also worked for at Princeton University and the University of California (at Berkeley) as a visiting scientist, at different times in his career. \u003cbr\u003e\u003cbr\u003eProfessor Akovali is one of the founding members of the Turkish Polymer Engineering and Science Society and the Asian Polymer Federation, and he is currently the Deputy President of the latter. He is the Turkish representative for the European Polymer Federation. \u003cbr\u003e\u003cbr\u003eProfessor Akovali has written over 150 scientific papers, which have been published in leading refereed international scientific journals, in addition to a number of other technical articles. He has written four books and acted as General Editor for seven books.\u003cbr\u003e\u003cbr\u003e"}
Developments in Colora...
$153.00
{"id":11242222212,"title":"Developments in Colorants for Plastics","handle":"978-1-85957-373-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: I. Christensen \u003cbr\u003eISBN 978-1-85957-373-0 \u003cbr\u003e\u003cbr\u003eFirst Edition, Pages 120, Figures 4, Tables 2\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are two types of colorants in use: dyes and pigments. Pigments are insoluble and must be adequately dispersed in the plastic to achieve a uniform color. This can be a problem in very thin moldings where particle agglomerates are highly visible. Dyes are soluble in plastics and give a more transparent finish. \u003cbr\u003e\u003cbr\u003eHealth, safety, and environmental issues have brought about changes in the marketplace as manufacturers strive to meet national and international regulations. Factors to consider in colorant selection include the presence of heavy metal compounds, migration of colorants into food or packaged goods (contamination issues), toxicity in the fire, etc. \u003cbr\u003e\u003cbr\u003eThere are many functional considerations when selecting colorants. For example, many plastics are processed at very high temperatures and shear, and products are exposed to heat and light. The colorants must tolerate these conditions to function adequately. The basic pigments and dyes used to achieve different color effects at different performance levels are described in this review. The economics of different colorant types are outlined. \u003cbr\u003e\u003cbr\u003eThere have been developments across the color spectrum and in the field of special effects. Manufacturers are looking at ways to eliminate cadmium and lead pigments and to improve existing products, for example by coating pigment particles to improve compatibility with plastics and aid dispersion. They are also experimenting with new chemicals as colorants and there is scope for an increased range of products particularly in the yellow region. \u003cbr\u003e\u003cbr\u003eSpecial effect colorants are being used to generate effects such as fluorescence, phosphorescence, pearlescence and holographics. These are relatively expensive products, are often difficult to process and many are used for specialist niche applications. These issues are discussed and referenced in this new review. \u003cbr\u003e\u003cbr\u003eOverall, this is a very well written, clear review of the subject of colorants for plastics. It is based on practical information for plastics processors with regard to colorant selection and the range of products and effects available. References are included throughout the review for further reading and key manufacturers of colorants are listed where relevant. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from the Rapra Polymer Library database, to facilitate further reading on this subject. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCommon colorants \u003cbr\u003eDevelopments in colorants \u003cbr\u003eSpecial effects \u003cbr\u003ePractical information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Definitions \u003cbr\u003e1.2 Pigments versus Dyes \u003cbr\u003e1.3 Organic versus Inorganic \u003cbr\u003e1.4 Environmental and Occupational Health and Safety (OHS) Issues \u003cbr\u003e1.5 Decision Factors in Selecting Colorants \u003cbr\u003e1.6 Hotter, Faster, Thinner \u003cbr\u003e1.7 Delivery Systems \u003cbr\u003e1.8 Easy Dispersing Pigments \u003cbr\u003e1.9 Non-Dusting, Free Flowing \u003cbr\u003e\u003cbr\u003e2. The Colorants \u003cbr\u003e2.1 Yellow Color \u003cbr\u003e2.1.1 Low Performance Applications \u003cbr\u003e2.1.2 Medium Performance Applications \u003cbr\u003e2.1.3 High Performance Applications \u003cbr\u003e2.2 Orange Color \u003cbr\u003e2.2.1 Low Performance Applications \u003cbr\u003e\u003cbr\u003e2.2.2 Medium Performance Applications \u003cbr\u003e2.2.3 High Performance Applications \u003cbr\u003e2.3 Brown Color \u003cbr\u003e2.4 Red Color \u003cbr\u003e2.4.1 Low Performance Applications \u003cbr\u003e2.4.2 Medium Performance Applications \u003cbr\u003e2.4.3 High Performance Applications \u003cbr\u003e2.5 Maroon and Violet Color \u003cbr\u003e2.5.1 Low Performance Applications \u003cbr\u003e2.5.2 Medium Performance Applications \u003cbr\u003e2.5.3 High Performance Applications \u003cbr\u003e2.6 Blue Color \u003cbr\u003e2.7 Green Color \u003cbr\u003e\u003cbr\u003e3. Special Effects \u003cbr\u003e3.1 Metallic \u003cbr\u003e3.2 Pearlescent \u003cbr\u003e3.3 Holographic \u003cbr\u003e3.4 Fluorescent \u003cbr\u003e3.5 Phosphorescent \u003cbr\u003e3.6 Thermochromic and Photochromic \u003cbr\u003e\u003cbr\u003e4. Summary and Conclusions \u003cbr\u003eAcknowledgments \u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nIan Christensen spent ten years working in colorant development, pigment marketing, and masterbatching with Ciba Specialty Chemicals in both technical and managerial roles. He recently changed continents and industries and is now involved in licensing intellectual property and some freelance technical writing. He has chemistry and MBA degrees.","published_at":"2017-06-22T21:13:49-04:00","created_at":"2017-06-22T21:13:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","agglomerates","applications","book","colorants","dispersing","dyes","fluorescence","fluorescent","food","holographic","holographics coloring","metallic","p-additives","pearlescence","pearlescent","phosphorescence","phosphorescent","photochromic","pigments","polymer","special effects","thermochromic"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378375364,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Developments in Colorants for Plastics","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-373-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-373-0.jpg?v=1499213315"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-373-0.jpg?v=1499213315","options":["Title"],"media":[{"alt":null,"id":353972650077,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-373-0.jpg?v=1499213315"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-373-0.jpg?v=1499213315","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: I. Christensen \u003cbr\u003eISBN 978-1-85957-373-0 \u003cbr\u003e\u003cbr\u003eFirst Edition, Pages 120, Figures 4, Tables 2\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are two types of colorants in use: dyes and pigments. Pigments are insoluble and must be adequately dispersed in the plastic to achieve a uniform color. This can be a problem in very thin moldings where particle agglomerates are highly visible. Dyes are soluble in plastics and give a more transparent finish. \u003cbr\u003e\u003cbr\u003eHealth, safety, and environmental issues have brought about changes in the marketplace as manufacturers strive to meet national and international regulations. Factors to consider in colorant selection include the presence of heavy metal compounds, migration of colorants into food or packaged goods (contamination issues), toxicity in the fire, etc. \u003cbr\u003e\u003cbr\u003eThere are many functional considerations when selecting colorants. For example, many plastics are processed at very high temperatures and shear, and products are exposed to heat and light. The colorants must tolerate these conditions to function adequately. The basic pigments and dyes used to achieve different color effects at different performance levels are described in this review. The economics of different colorant types are outlined. \u003cbr\u003e\u003cbr\u003eThere have been developments across the color spectrum and in the field of special effects. Manufacturers are looking at ways to eliminate cadmium and lead pigments and to improve existing products, for example by coating pigment particles to improve compatibility with plastics and aid dispersion. They are also experimenting with new chemicals as colorants and there is scope for an increased range of products particularly in the yellow region. \u003cbr\u003e\u003cbr\u003eSpecial effect colorants are being used to generate effects such as fluorescence, phosphorescence, pearlescence and holographics. These are relatively expensive products, are often difficult to process and many are used for specialist niche applications. These issues are discussed and referenced in this new review. \u003cbr\u003e\u003cbr\u003eOverall, this is a very well written, clear review of the subject of colorants for plastics. It is based on practical information for plastics processors with regard to colorant selection and the range of products and effects available. References are included throughout the review for further reading and key manufacturers of colorants are listed where relevant. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from the Rapra Polymer Library database, to facilitate further reading on this subject. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCommon colorants \u003cbr\u003eDevelopments in colorants \u003cbr\u003eSpecial effects \u003cbr\u003ePractical information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Definitions \u003cbr\u003e1.2 Pigments versus Dyes \u003cbr\u003e1.3 Organic versus Inorganic \u003cbr\u003e1.4 Environmental and Occupational Health and Safety (OHS) Issues \u003cbr\u003e1.5 Decision Factors in Selecting Colorants \u003cbr\u003e1.6 Hotter, Faster, Thinner \u003cbr\u003e1.7 Delivery Systems \u003cbr\u003e1.8 Easy Dispersing Pigments \u003cbr\u003e1.9 Non-Dusting, Free Flowing \u003cbr\u003e\u003cbr\u003e2. The Colorants \u003cbr\u003e2.1 Yellow Color \u003cbr\u003e2.1.1 Low Performance Applications \u003cbr\u003e2.1.2 Medium Performance Applications \u003cbr\u003e2.1.3 High Performance Applications \u003cbr\u003e2.2 Orange Color \u003cbr\u003e2.2.1 Low Performance Applications \u003cbr\u003e\u003cbr\u003e2.2.2 Medium Performance Applications \u003cbr\u003e2.2.3 High Performance Applications \u003cbr\u003e2.3 Brown Color \u003cbr\u003e2.4 Red Color \u003cbr\u003e2.4.1 Low Performance Applications \u003cbr\u003e2.4.2 Medium Performance Applications \u003cbr\u003e2.4.3 High Performance Applications \u003cbr\u003e2.5 Maroon and Violet Color \u003cbr\u003e2.5.1 Low Performance Applications \u003cbr\u003e2.5.2 Medium Performance Applications \u003cbr\u003e2.5.3 High Performance Applications \u003cbr\u003e2.6 Blue Color \u003cbr\u003e2.7 Green Color \u003cbr\u003e\u003cbr\u003e3. Special Effects \u003cbr\u003e3.1 Metallic \u003cbr\u003e3.2 Pearlescent \u003cbr\u003e3.3 Holographic \u003cbr\u003e3.4 Fluorescent \u003cbr\u003e3.5 Phosphorescent \u003cbr\u003e3.6 Thermochromic and Photochromic \u003cbr\u003e\u003cbr\u003e4. Summary and Conclusions \u003cbr\u003eAcknowledgments \u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nIan Christensen spent ten years working in colorant development, pigment marketing, and masterbatching with Ciba Specialty Chemicals in both technical and managerial roles. He recently changed continents and industries and is now involved in licensing intellectual property and some freelance technical writing. He has chemistry and MBA degrees."}
Handbook of Polymers, ...
$425.00
{"id":11242222020,"title":"Handbook of Polymers, 2nd Edition","handle":"978-1-895198-92-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-92-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003ePages: 705\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2016. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical \u003cbr\u003e\u003cbr\u003eproblems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003ePresentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, \u003cbr\u003e\u003cbr\u003eFree enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, \u003cbr\u003e\u003cbr\u003eVan der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photooxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book or the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:48-04:00","created_at":"2017-06-22T21:13:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","biodegradation","blends","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","monomers","physical properties","polymeric materials","polymerization","processing","processing methods","structure","structures","synthesis","toxicity","weather stability"],"price":42500,"price_min":42500,"price_max":42500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378375172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers, 2nd Edition","public_title":null,"options":["Default Title"],"price":42500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-92-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966","options":["Title"],"media":[{"alt":null,"id":356336369757,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-92-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003ePages: 705\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2016. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical \u003cbr\u003e\u003cbr\u003eproblems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003ePresentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, \u003cbr\u003e\u003cbr\u003eFree enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, \u003cbr\u003e\u003cbr\u003eVan der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photooxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book or the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
PVC Formulary, 2nd Edi...
$285.00
{"id":11242221700,"title":"PVC Formulary, 2nd Edition","handle":"978-1-895198-84-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-84-3 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eSecond edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eFigures: 130\u003c\/div\u003e\n\u003cdiv\u003eTables: 450\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In the first introductory chapter, the new product development and product re-engineering tools and the market for PVC products are discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear form in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains about 600 formulations of products belonging to 23 categories derived from characteristic methods of production. Formulations come from patents, publications in journals, and from suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This part results from a review of thousands of patents, over two thousands of research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, use, and application information. The data are based on information contained in over 1450 research papers and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization, the new edition will be published in 2015) is to provide the reader with complete information and data required to formulate successful and durable products or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Powder coating \u003cbr\u003e4.15 Printing \u003cbr\u003e4.16 Rotational molding \u003cbr\u003e4.17 Sintering \u003cbr\u003e4.18 Slush molding \u003cbr\u003e4.19 Solvent casting \u003cbr\u003e4.20 Spraying \u003cbr\u003e4.21 Thermoforming \u003cbr\u003e4.22 Web coating \u003cbr\u003e4.22.1 General \u003cbr\u003e4.22.2 Coated fabrics \u003cbr\u003e4.22.3 Conveyor belts \u003cbr\u003e4.22.4 Flooring \u003cbr\u003e4.22.5 Swimming pool liners \u003cbr\u003e4.22.6 Tarpaulin \u003cbr\u003e4.22.7 Upholstery \u003cbr\u003e4.22.8 Wallcovering \u003cbr\u003e4.22.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.23 Wire \u0026amp; cable \u003cbr\u003e4.23.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.23.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:47-04:00","created_at":"2017-06-22T21:13:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","book","George Wypych","p-chemistry","polymer","PVC additives","PVC compounding","PVC compounds","PVC compounds and processing","PVC formulary","PVC formulations","PVC processing","PVC stabbilization","the compounding of PVC"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374724,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Formulary, 2nd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-84-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386","options":["Title"],"media":[{"alt":null,"id":358727909469,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-84-3 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eSecond edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eFigures: 130\u003c\/div\u003e\n\u003cdiv\u003eTables: 450\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In the first introductory chapter, the new product development and product re-engineering tools and the market for PVC products are discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear form in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains about 600 formulations of products belonging to 23 categories derived from characteristic methods of production. Formulations come from patents, publications in journals, and from suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This part results from a review of thousands of patents, over two thousands of research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, use, and application information. The data are based on information contained in over 1450 research papers and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization, the new edition will be published in 2015) is to provide the reader with complete information and data required to formulate successful and durable products or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Powder coating \u003cbr\u003e4.15 Printing \u003cbr\u003e4.16 Rotational molding \u003cbr\u003e4.17 Sintering \u003cbr\u003e4.18 Slush molding \u003cbr\u003e4.19 Solvent casting \u003cbr\u003e4.20 Spraying \u003cbr\u003e4.21 Thermoforming \u003cbr\u003e4.22 Web coating \u003cbr\u003e4.22.1 General \u003cbr\u003e4.22.2 Coated fabrics \u003cbr\u003e4.22.3 Conveyor belts \u003cbr\u003e4.22.4 Flooring \u003cbr\u003e4.22.5 Swimming pool liners \u003cbr\u003e4.22.6 Tarpaulin \u003cbr\u003e4.22.7 Upholstery \u003cbr\u003e4.22.8 Wallcovering \u003cbr\u003e4.22.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.23 Wire \u0026amp; cable \u003cbr\u003e4.23.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.23.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Atlas of Material Damage
$325.00
{"id":11242221572,"title":"Atlas of Material Damage","handle":"978-1-895198-48-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-48-5 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 310 \u003cbr\u003eChapter 7\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAtlas of Material Damage has 464 microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform particular functions to make outstanding products. Findings presented by each illustration are fully explained in the text and labeled. \u003cbr\u003e\u003cbr\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end). \u003cbr\u003e\u003cbr\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, a technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics. \u003cbr\u003e\u003cbr\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality. \u003cbr\u003e\u003cbr\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003cbr\u003e\u003cbr\u003e1 Effect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003cbr\u003e2 Analysis of causes of material damage and degradation\u003cbr\u003e3 Effect of processing conditions on material damage\u003cbr\u003e4 Effect of singular and combined action of different degradants on industrial products\u003cbr\u003e5 Systematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003cbr\u003e6 Technological steps required to obtain specifically designed morphology required for specific performance \u003cbr\u003e7 Comparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003cbr\u003e\u003cbr\u003eThe above information is based on the most recent publications. Only 3% of sources were published before 2000 and about 65% appeared in 2009-2012. \u003cbr\u003e\u003cbr\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003cbr\u003e\u003cbr\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables. \u003cbr\u003e\u003cbr\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003eIn 1981, Carl Hanser Verlag published An Atlas of Polymer Damage by Lothar Engel, Hermann Klingele, Gottfried Ehrenstein, and Helmut Schaper. This unique publication became my favorite book, which I have frequently consulted throughout the last thirty years. \u003cbr\u003e\u003cbr\u003eUsing it I have learned that there are very many applications of this knowledge, such as:\u003cbr\u003e• Materials can be made stronger and more durable with little or no cost by proper use of morphological structure\u003cbr\u003e• In many cases, polymer additives could be eliminated \u003cbr\u003e• Their useful life in product can be extended\u003cbr\u003e• Material damage can be avoided \u003cbr\u003eThese and other findings are discussed in this book, which is meant to be easy to read because it is composed of hundreds of pictures and mechanisms of performance, with a little text just to explain what can be learned from the illustrations. Its description is as close to the observations of the original authors as permitted by the integrity of narration since they have the privilege of knowing more because they have seen the information within a broader scope of their research.\u003cbr\u003e\u003cbr\u003eI hope this book will have many readers because it opens so many unexploited possibilities to make what we use today much better. Many recently introduced products use these principles. Also, a great deal of research concentrates on using specially developed structural features for the betterment of properties of their materials. Many excellent products of today cannot be made without the application of the knowledge discussed in this book.\u003cbr\u003e\u003cbr\u003eUsers of the book will find that most of the research included was done between 2009 and today, which underlines the value of these findings, considering that many problems of the past are no longer important today because they were not only solved but already implemented in product manufacture.\u003cbr\u003e\u003cbr\u003eMy goal was to produce a book which can add value to the previously published volume since so many things have changed in the last thirty years. This book has no boundaries of application because it is clear from the analysis of a large number of research projects that structural knowledge and practical ideas are useful in very different applications. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e2 Material composition, structure, and morphological features\u003cbr\u003e2.1 Materials having predominantly homogeneous structure and composition \u003cbr\u003e2.2 Heterogeneous materials \u003cbr\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e2.2.2 Materials containing insoluble additives \u003cbr\u003e2.2.3 Materials containing immiscible phases \u003cbr\u003e2.2.4 Composites \u003cbr\u003e2.2.5 Multi-component layered materials \u003cbr\u003e2.2.6 Foams, porosity \u003cbr\u003e2.2.7 Compressed solids \u003cbr\u003e2.3 Material surface versus bulk \u003cbr\u003e\u003cbr\u003e3 Effect of processing on material structure \u003cbr\u003e3.1 Temperature \u003cbr\u003e3.2 Pressure \u003cbr\u003e3.3 Time\u003cbr\u003e3.4 Viscosity \u003cbr\u003e3.5 Flow rate (shear rate) \u003cbr\u003e3.6 Deformation \u003cbr\u003e3.7 Orientation \u003cbr\u003e\u003cbr\u003e4 Scale of damage – basic concept \u003cbr\u003e4.1 Atomic \u003cbr\u003e4.2 Microscale \u003cbr\u003e4.3 Macroscale \u003cbr\u003e\u003cbr\u003e5 Microscopic mechanisms of damage caused by degradants \u003cbr\u003e5.1 Bulk (mechanical forces) \u003cbr\u003e5.1.1 Elastic-brittle fracture \u003cbr\u003e5.1.2 Elastic-plastic deformation \u003cbr\u003e5.1.3 Time-related damage \u003cbr\u003e5.1.3.1 Fatigue \u003cbr\u003e5.1.3.2 Creep \u003cbr\u003e5.1.4 Impact damage \u003cbr\u003e5.1.5 Shear fracture \u003cbr\u003e5.16 Compression set \u003cbr\u003e5.1.7 Bending forces \u003cbr\u003e5.1.8 Anisotropic damage \u003cbr\u003e5.2 Electric forces \u003cbr\u003e5.2.1 Tracking \u003cbr\u003e5.2.2 Arcing \u003cbr\u003e5.2.3 Drying out in batteries \u003cbr\u003e5.2.4 Pin-holes \u003cbr\u003e5.2.5 Cracks\u003cbr\u003e5.2.6 Delamination \u003cbr\u003e5.3 Surface-initiated damage \u003cbr\u003e5.3.1 Physical forces \u003cbr\u003e5.3.1.1 Thermal treatment \u003cbr\u003e5.3.1.1.1 Process heat \u003cbr\u003e5.3.1.1.2 Conditions of performance \u003cbr\u003e5.3.1.1.3 Infrared \u003cbr\u003e5.3.1.1.4 Frictional heat \u003cbr\u003e5.3.1.1.5 Low-temperature effects \u003cbr\u003e5.3.1.1.6 Thermal stresses \u003cbr\u003e5.3.1.2 Radiation \u003cbr\u003e5.3.1.2.1 Alpha and beta rays \u003cbr\u003e5.3.1.2.2 Gamma rays \u003cbr\u003e5.3.1.2.3 Laser beam \u003cbr\u003e5.3.1.2.4 Cosmic rays \u003cbr\u003e5.3.1.2.5 Plasma \u003cbr\u003e5.3.1.3 Weathering \u003cbr\u003e5.3.2 Mechanical action \u003cbr\u003e5.3.2.1 Scratching \u003cbr\u003e5.3.2.2 Impact \u003cbr\u003e5.3.2.3 Adhesive failure, sliding, rolling \u003cbr\u003e5.3.3 Chemical reactions \u003cbr\u003e5.3.3.1 Molecular oxygen \u003cbr\u003e5.3.3.2 Ozone \u003cbr\u003e5.3.3.3 Atomic oxygen \u003cbr\u003e5.3.3.4 Sulfur dioxide \u003cbr\u003e5.3.3.5 Particulate matter \u003cbr\u003e5.3.3.6 Other gaseous pollutants \u003cbr\u003e5.4 Combination of degrading elements \u003cbr\u003e5.4.1 Environmental stress cracking \u003cbr\u003e5.4.2 Biodegradation and biodeterioration \u003cbr\u003e5.4.3 Effect of body fluids \u003cbr\u003e5.4.4 Controlled–release substances in pharmaceutical applications \u003cbr\u003e5.4.5 Corrosion\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:47-04:00","created_at":"2017-06-22T21:13:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","analysis","biodegradation","book","chemical reactions","cracks","deformation","degradation","demage","humidity","material","mechanical action","methods of analysis","morphology of damaged material","physical forces","polymers","processing and degradation","thermal","weathering"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374596,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Atlas of Material Damage","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-48-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053","options":["Title"],"media":[{"alt":null,"id":350156750941,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-48-5 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 310 \u003cbr\u003eChapter 7\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAtlas of Material Damage has 464 microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform particular functions to make outstanding products. Findings presented by each illustration are fully explained in the text and labeled. \u003cbr\u003e\u003cbr\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end). \u003cbr\u003e\u003cbr\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, a technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics. \u003cbr\u003e\u003cbr\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality. \u003cbr\u003e\u003cbr\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003cbr\u003e\u003cbr\u003e1 Effect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003cbr\u003e2 Analysis of causes of material damage and degradation\u003cbr\u003e3 Effect of processing conditions on material damage\u003cbr\u003e4 Effect of singular and combined action of different degradants on industrial products\u003cbr\u003e5 Systematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003cbr\u003e6 Technological steps required to obtain specifically designed morphology required for specific performance \u003cbr\u003e7 Comparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003cbr\u003e\u003cbr\u003eThe above information is based on the most recent publications. Only 3% of sources were published before 2000 and about 65% appeared in 2009-2012. \u003cbr\u003e\u003cbr\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003cbr\u003e\u003cbr\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables. \u003cbr\u003e\u003cbr\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003eIn 1981, Carl Hanser Verlag published An Atlas of Polymer Damage by Lothar Engel, Hermann Klingele, Gottfried Ehrenstein, and Helmut Schaper. This unique publication became my favorite book, which I have frequently consulted throughout the last thirty years. \u003cbr\u003e\u003cbr\u003eUsing it I have learned that there are very many applications of this knowledge, such as:\u003cbr\u003e• Materials can be made stronger and more durable with little or no cost by proper use of morphological structure\u003cbr\u003e• In many cases, polymer additives could be eliminated \u003cbr\u003e• Their useful life in product can be extended\u003cbr\u003e• Material damage can be avoided \u003cbr\u003eThese and other findings are discussed in this book, which is meant to be easy to read because it is composed of hundreds of pictures and mechanisms of performance, with a little text just to explain what can be learned from the illustrations. Its description is as close to the observations of the original authors as permitted by the integrity of narration since they have the privilege of knowing more because they have seen the information within a broader scope of their research.\u003cbr\u003e\u003cbr\u003eI hope this book will have many readers because it opens so many unexploited possibilities to make what we use today much better. Many recently introduced products use these principles. Also, a great deal of research concentrates on using specially developed structural features for the betterment of properties of their materials. Many excellent products of today cannot be made without the application of the knowledge discussed in this book.\u003cbr\u003e\u003cbr\u003eUsers of the book will find that most of the research included was done between 2009 and today, which underlines the value of these findings, considering that many problems of the past are no longer important today because they were not only solved but already implemented in product manufacture.\u003cbr\u003e\u003cbr\u003eMy goal was to produce a book which can add value to the previously published volume since so many things have changed in the last thirty years. This book has no boundaries of application because it is clear from the analysis of a large number of research projects that structural knowledge and practical ideas are useful in very different applications. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e2 Material composition, structure, and morphological features\u003cbr\u003e2.1 Materials having predominantly homogeneous structure and composition \u003cbr\u003e2.2 Heterogeneous materials \u003cbr\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e2.2.2 Materials containing insoluble additives \u003cbr\u003e2.2.3 Materials containing immiscible phases \u003cbr\u003e2.2.4 Composites \u003cbr\u003e2.2.5 Multi-component layered materials \u003cbr\u003e2.2.6 Foams, porosity \u003cbr\u003e2.2.7 Compressed solids \u003cbr\u003e2.3 Material surface versus bulk \u003cbr\u003e\u003cbr\u003e3 Effect of processing on material structure \u003cbr\u003e3.1 Temperature \u003cbr\u003e3.2 Pressure \u003cbr\u003e3.3 Time\u003cbr\u003e3.4 Viscosity \u003cbr\u003e3.5 Flow rate (shear rate) \u003cbr\u003e3.6 Deformation \u003cbr\u003e3.7 Orientation \u003cbr\u003e\u003cbr\u003e4 Scale of damage – basic concept \u003cbr\u003e4.1 Atomic \u003cbr\u003e4.2 Microscale \u003cbr\u003e4.3 Macroscale \u003cbr\u003e\u003cbr\u003e5 Microscopic mechanisms of damage caused by degradants \u003cbr\u003e5.1 Bulk (mechanical forces) \u003cbr\u003e5.1.1 Elastic-brittle fracture \u003cbr\u003e5.1.2 Elastic-plastic deformation \u003cbr\u003e5.1.3 Time-related damage \u003cbr\u003e5.1.3.1 Fatigue \u003cbr\u003e5.1.3.2 Creep \u003cbr\u003e5.1.4 Impact damage \u003cbr\u003e5.1.5 Shear fracture \u003cbr\u003e5.16 Compression set \u003cbr\u003e5.1.7 Bending forces \u003cbr\u003e5.1.8 Anisotropic damage \u003cbr\u003e5.2 Electric forces \u003cbr\u003e5.2.1 Tracking \u003cbr\u003e5.2.2 Arcing \u003cbr\u003e5.2.3 Drying out in batteries \u003cbr\u003e5.2.4 Pin-holes \u003cbr\u003e5.2.5 Cracks\u003cbr\u003e5.2.6 Delamination \u003cbr\u003e5.3 Surface-initiated damage \u003cbr\u003e5.3.1 Physical forces \u003cbr\u003e5.3.1.1 Thermal treatment \u003cbr\u003e5.3.1.1.1 Process heat \u003cbr\u003e5.3.1.1.2 Conditions of performance \u003cbr\u003e5.3.1.1.3 Infrared \u003cbr\u003e5.3.1.1.4 Frictional heat \u003cbr\u003e5.3.1.1.5 Low-temperature effects \u003cbr\u003e5.3.1.1.6 Thermal stresses \u003cbr\u003e5.3.1.2 Radiation \u003cbr\u003e5.3.1.2.1 Alpha and beta rays \u003cbr\u003e5.3.1.2.2 Gamma rays \u003cbr\u003e5.3.1.2.3 Laser beam \u003cbr\u003e5.3.1.2.4 Cosmic rays \u003cbr\u003e5.3.1.2.5 Plasma \u003cbr\u003e5.3.1.3 Weathering \u003cbr\u003e5.3.2 Mechanical action \u003cbr\u003e5.3.2.1 Scratching \u003cbr\u003e5.3.2.2 Impact \u003cbr\u003e5.3.2.3 Adhesive failure, sliding, rolling \u003cbr\u003e5.3.3 Chemical reactions \u003cbr\u003e5.3.3.1 Molecular oxygen \u003cbr\u003e5.3.3.2 Ozone \u003cbr\u003e5.3.3.3 Atomic oxygen \u003cbr\u003e5.3.3.4 Sulfur dioxide \u003cbr\u003e5.3.3.5 Particulate matter \u003cbr\u003e5.3.3.6 Other gaseous pollutants \u003cbr\u003e5.4 Combination of degrading elements \u003cbr\u003e5.4.1 Environmental stress cracking \u003cbr\u003e5.4.2 Biodegradation and biodeterioration \u003cbr\u003e5.4.3 Effect of body fluids \u003cbr\u003e5.4.4 Controlled–release substances in pharmaceutical applications \u003cbr\u003e5.4.5 Corrosion\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Fillers, 4...
$350.00
{"id":11242221188,"title":"Handbook of Fillers, 4th Edition","handle":"978-1-895198-91-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-91-1 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003eFigures: 615\u003c\/div\u003e\n\u003cdiv\u003eTables: 190\u003c\/div\u003e\n\u003cdiv\u003ePages: 922\u003c\/div\u003e\n\u003cdiv\u003eFourth Edition\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003e\u003cbr\u003eOver 4,000 research papers, mostly published from 1994 to 2015 (over 1000 new papers in this edition), technical data from over 200 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e\u003cbr\u003eThe book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous editions, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers, graphene and other novelty products. \u003cbr\u003e\u003cbr\u003eFillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e\u003cbr\u003eThe book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e\u003cbr\u003eOne third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by over 200 SEM TEM, AFM micrographs.\u003cbr\u003e\u003cbr\u003eThe second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e\u003cbr\u003eThe last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. This part is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace.\u003cbr\u003e\u003cbr\u003eTo summarize, major features of this handbook are:\u003cbr\u003e\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Expectations from fillers \u003cbr\u003e1.2 Typical filler properties \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e1.5 Markets and trends \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders \u003cbr\u003e2.1.2 Aluminum borate whiskers \u003cbr\u003e2.1.3 Aluminum nitride \u003cbr\u003e2.1.4 Aluminum oxide \u003cbr\u003e2.1.5 Aluminum trihydroxide \u003cbr\u003e2.1.6 Anthracite \u003cbr\u003e2.1.7 Antimonate of sodium \u003cbr\u003e2.1.8 Antimony pentoxide \u003cbr\u003e2.1.8 Antimony trioxide \u003cbr\u003e2.1.10 Ammonium octamolybdate \u003cbr\u003e2.1.11 Apatite \u003cbr\u003e2.1.12 Ash, fly \u003cbr\u003e2.1.13 Attapulgite \u003cbr\u003e2.1.14 Barium metaborate \u003cbr\u003e2.1.15 Barium sulfate \u003cbr\u003e2.1.16 Barium \u0026amp; strontium sulfates \u003cbr\u003e2.1.17 Barium titanate \u003cbr\u003e2.1.18 Bentonite \u003cbr\u003e2.1.19 Beryllium oxide \u003cbr\u003e2.1.20 Boron nitride \u003cbr\u003e2.1.21 Calcium carbonate \u003cbr\u003e2.1.22 Calcium fluoride \u003cbr\u003e2.1.23 Calcium hydroxide \u003cbr\u003e2.1.24 Calcium phosphate \u003cbr\u003e2.1.25 Calcium silicate \u003cbr\u003e2.1.26 Calcium sulfate \u003cbr\u003e2.1.27 Carbon black \u003cbr\u003e2.1.28 Carbonyl iron powder \u003cbr\u003e2.1.29 Cellulose particles \u003cbr\u003e2.1.30 Ceramic beads \u003cbr\u003e2.1.31 Chitosan \u003cbr\u003e2.1.32 Clamshell powder \u003cbr\u003e2.1.33 Clay \u003cbr\u003e2.1.34 Cobalt powder \u003cbr\u003e2.1.35 Copper \u003cbr\u003e2.1.36 Corn cob powder \u003cbr\u003e2.1.37 Cristobalite \u003cbr\u003e2.1.38 Diatomaceous earth \u003cbr\u003e2.1.39 Dolomite \u003cbr\u003e2.1.40 Eggshell filler \u003cbr\u003e2.1.41 Ferrites \u003cbr\u003e2.1.42 Feldspar \u003cbr\u003e2.1.43 Gandolinium oxide \u003cbr\u003e2.1.44 Glass beads \u003cbr\u003e2.1.45 Gold \u003cbr\u003e2.1.46 Graphene \u003cbr\u003e2.1.47 Graphene oxide \u003cbr\u003e2.1.48 Graphite \u003cbr\u003e2.1.49 Ground tire powder \u003cbr\u003e2.1.50 Halloysite \u003cbr\u003e2.1.51 Huntite \u003cbr\u003e2.1.52 Hydrous calcium silicate \u003cbr\u003e2.1.53 Illite \u003cbr\u003e2.1.54 Iron \u003cbr\u003e2.1.55 Iron oxide \u003cbr\u003e2.1.56 Kaolin \u003cbr\u003e2.1.57 Lead oxide \u003cbr\u003e2.1.58 Lithopone \u003cbr\u003e2.1.59 Magnesium oxide \u003cbr\u003e2.1.60 Magnesium hydroxide \u003cbr\u003e2.1.61 Magnetite \u003cbr\u003e2.1.62 Metal-containing conductive materials \u003cbr\u003e2.1.63 Mica \u003cbr\u003e2.1.64 Molybdenum \u003cbr\u003e2.1.65 Molybdenum disulfide \u003cbr\u003e2.1.66 Molybdic oxide \u003cbr\u003e2.1.67 Nanofillers \u003cbr\u003e2.1.68 Nickel \u003cbr\u003e2.1.69 Nickel oxide \u003cbr\u003e2.1.70 Nickel zinc ferrite \u003cbr\u003e2.1.71 Nutshell powder \u003cbr\u003e2.1.72 Perlite \u003cbr\u003e2.1.73 Polymeric fillers \u003cbr\u003e2.1.74 Potassium hexatitanate whiskers \u003cbr\u003e2.1.75 Pumice \u003cbr\u003e2.1.76 Pyrophyllite \u003cbr\u003e2.1.77 Rubber particles \u003cbr\u003e2.1.78 Sepiolite \u003cbr\u003e2.1.79 Silica \u003cbr\u003e2.1.79.1 Fumed silica \u003cbr\u003e2.1.79.2 Fused silica \u003cbr\u003e2.1.79.3 Precipitated silica \u003cbr\u003e2.1.79.4 Quartz (Tripoli) \u003cbr\u003e2.1.79.5 Sand \u003cbr\u003e2.1.79.6 Silica gel \u003cbr\u003e2.1.80 Silicon carbide \u003cbr\u003e2.1.81 Silicon nitride \u003cbr\u003e2.1.82 Silver powder and flakes \u003cbr\u003e2.1.83 Slate flour \u003cbr\u003e2.1.84 Talc \u003cbr\u003e2.1.85 Titanium dioxide \u003cbr\u003e2.1.86 Tungsten \u003cbr\u003e2.1.87 Vermiculite \u003cbr\u003e2.1.88 Wollastonite \u003cbr\u003e2.1.89 Wood flour and similar materials \u003cbr\u003e2.1.90 Zeolites \u003cbr\u003e2.1.91 Zinc borate \u003cbr\u003e2.1.92 Zinc oxide \u003cbr\u003e2.1.93 Zinc stannate \u003cbr\u003e2.1.94 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers \u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Carbon nanotubes \u003cbr\u003e2.2.4 Cellulose fibers \u003cbr\u003e2.2.5 Glass fibers \u003cbr\u003e2.2.6 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING \u003cbr\u003e3.1 Filler packaging \u003cbr\u003e3.2 External transportation \u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems \u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 QUALITY CONTROL OF FILLERS \u003cbr\u003e4.1 Absorption coefficient \u003cbr\u003e4.2 Acidity or alkalinity of water extract \u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles \u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area \u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties \u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments \u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties \u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light \u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue \u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area \u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e5.1 Density \u003cbr\u003e5.2 Particle size \u003cbr\u003e5.3 Particle size distribution \u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness \u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing \u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure \u003cbr\u003e5.11 Flocculation and sedimentation \u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH \u003cbr\u003e5.15 Zeta-potential \u003cbr\u003e5.16 Surface energy \u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling \u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties \u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties \u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient \u003cbr\u003e5.29 Thermal degradation \u003cbr\u003e5.30 Melting temperature \u003cbr\u003e5.31 Glass transition temperature \u003cbr\u003e5.32 Electrical properties \u003cbr\u003e5.33 Relative permittivity \u003cbr\u003e5.34 Electrical percolation \u003cbr\u003e5.35 EMI shielding \u003cbr\u003e5.36 Magnetic properties \u003cbr\u003e5.37 Shape memory \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e6.1 Reactivity \u003cbr\u003e6.2 Chemical groups on the filler surface \u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties \u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence \u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003cbr\u003e7.1 Particle distribution in matrix \u003cbr\u003e7.2 Orientation of filler particles in a matrix \u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction \u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization \u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e8.1 Tensile strength and elongation \u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Mullins’ effect \u003cbr\u003e8.4 Elastic modulus \u003cbr\u003e8.5 Flexural strength and modulus \u003cbr\u003e8.6 Impact resistance \u003cbr\u003e8.7 Hardness \u003cbr\u003e8.8 Tear strength \u003cbr\u003e8.9 Compressive strength \u003cbr\u003e8.10 Fracture resistance \u003cbr\u003e8.11 Wear \u003cbr\u003e8.12 Friction \u003cbr\u003e8.13 Abrasion \u003cbr\u003e8.14 Scratch resistance \u003cbr\u003e8.15 Fatigue \u003cbr\u003e8.16 Failure \u003cbr\u003e8.17 Adhesion \u003cbr\u003e8.18 Thermal deformation \u003cbr\u003e8.19 Shrinkage \u003cbr\u003e8.20 Warpage \u003cbr\u003e8.21 Compression set \u003cbr\u003e8.22 Load transfer \u003cbr\u003e8.23 Residual stress \u003cbr\u003e8.24 \u003cbr\u003eCreep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e9.1 Viscosity \u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation \u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity \u003cbr\u003e9.6 Dynamic mechanical behavior \u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity \u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003cbr\u003e10.1 Crystallinity \u003cbr\u003e10.2 Crystallization behavior \u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity \u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS \u003cbr\u003e11.1 Irradiation \u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors \u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 FLAMMABILITY OF FILLED MATERIALS \u003cbr\u003e12.1 Definitions \u003cbr\u003e12.2 Limiting oxygen index \u003cbr\u003e12.3 Ignition and flame spread rate \u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion \u003cbr\u003e12.6 Emission of gaseous components \u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003cbr\u003e13.1 Adhesion promoters \u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers \u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents \u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003cbr\u003e14.1 Physical methods \u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement \u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis \u003cbr\u003e14.1.11 Electric constants determination \u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test \u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index \u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy \u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area \u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis \u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis \u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy \u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy \u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 FILLERS IN COMMERCIAL POLYMERS \u003cbr\u003e15.1 Acrylics \u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer \u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Bismaleimide \u003cbr\u003e15.7 Cellulose acetate \u003cbr\u003e15.8 Chitosan \u003cbr\u003e15.9 Elastomers \u003cbr\u003e15.10 Epoxy resins \u003cbr\u003e15.11 Ethylene vinyl acetate copolymer \u003cbr\u003e15.12 Ethylene vinyl alcohol copolymer \u003cbr\u003e15.13 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.14 Ethylene-propylene copolymers \u003cbr\u003e15.15 Ionomers \u003cbr\u003e15.16 Liquid crystalline polymers \u003cbr\u003e15.17 Perfluoroalkoxy resin \u003cbr\u003e15.18 Phenolic resins \u003cbr\u003e15.19 Poly(acrylic acid) \u003cbr\u003e15.20 Polyacrylonitrile \u003cbr\u003e15.21 Polyamides \u003cbr\u003e15.22 Polyamideimide \u003cbr\u003e15.23 Polyamines \u003cbr\u003e15.24 Polyaniline \u003cbr\u003e15.25 Polyaryletherketone \u003cbr\u003e15.26 Poly(butylene succinate) \u003cbr\u003e15.27 Poly(butylene terephthalate) \u003cbr\u003e15.28 Polycaprolactone \u003cbr\u003e15.29 Polycarbonate \u003cbr\u003e15.30 Polydicyclopentadiene \u003cbr\u003e15.31 Polyetheretherketone \u003cbr\u003e15.32 Polyetherimide \u003cbr\u003e15.33 Polyether sulfone \u003cbr\u003e15.34 Polyethylene \u003cbr\u003e15.35 Polyethylene, chlorinated \u003cbr\u003e15.36 Polyethylene, chlorosulfonated \u003cbr\u003e15.37 Poly(ethylene oxide) \u003cbr\u003e15.38 Poly(ethylene terephthalate) \u003cbr\u003e15.39 Polyimide \u003cbr\u003e15.41 Polymethylmethacrylate \u003cbr\u003e15.42 Polyoxymethylene \u003cbr\u003e15.43 Poly(phenylene ether) \u003cbr\u003e15.44 Poly(phenylene sulfide) \u003cbr\u003e15.45 Polypropylene \u003cbr\u003e15.46 Polypyrrole \u003cbr\u003e15.47 Polystyrene \u0026amp; high impact \u003cbr\u003e15.48 Polysulfide \u003cbr\u003e15.49 Polysulfone \u003cbr\u003e15.50 Polytetrafluoroethylene \u003cbr\u003e15.51 Polyurethanes \u003cbr\u003e15.52 Poly(vinyl acetate) \u003cbr\u003e15.53 Poly(vinyl alcohol) \u003cbr\u003e15.54 Poly(vinyl butyral) \u003cbr\u003e15.55 Poly(vinyl chloride) \u003cbr\u003e15.56 Rubbers \u003cbr\u003e15.56.1 Natural rubber \u003cbr\u003e15.56.2 Nitrile rubber \u003cbr\u003e15.56.3 Polybutadiene rubber \u003cbr\u003e15.56.4 Polybutyl rubber \u003cbr\u003e15.56.5 Polychloroprene \u003cbr\u003e15.56.6 Polyisobutylene \u003cbr\u003e15.56.7 Polyisoprene \u003cbr\u003e15.56.8 Styrene-butadiene rubber \u003cbr\u003e15.57 Silicones \u003cbr\u003e15.58 Styrene-acrylonitrile copolymer \u003cbr\u003e15.59 Tetrafluoroethylene-perfluoropropylene \u003cbr\u003e15.60 Unsaturated polyesters \u003cbr\u003e15.61 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 FILLER IN MATERIALS COMBINATIONS \u003cbr\u003e16.1 Blends, alloys and interpenetrating networks \u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 FORMULATION WITH FILLERS \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS \u003cbr\u003e18.1 Blow molding \u003cbr\u003e18.2 Calendering and hot-melt coating \u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding \u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding \u003cbr\u003e18.13 Resin transfer molding \u003cbr\u003e18.14 Rotational molding \u003cbr\u003e18.15 Sheet molding \u003cbr\u003e18.16 Spinning \u003cbr\u003e18.17 Thermoforming \u003cbr\u003e18.18 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace \u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints \u003cbr\u003e19.12 Cosmetics and pharmaceutical products \u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed \u003cbr\u003e19.20 Friction materials \u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields \u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication \u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 HAZARDS IN FILLER USE \u003cbr\u003eReferences \u003cbr\u003eINDEX\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:46-04:00","created_at":"2017-06-22T21:13:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","additives for plastics","best","book","calcium carbon","compounding of rubber","fillers additives","fillers and environment","flame retardanst for plastics","graphite","magnesium","mica","nanofillers","p-additives","particular fillers","physical properties","polymer","quality control","silica"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374020,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Fillers, 4th Edition","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-91-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-91-1.jpg?v=1499719932"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-91-1.jpg?v=1499719932","options":["Title"],"media":[{"alt":null,"id":355725115485,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-91-1.jpg?v=1499719932"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-91-1.jpg?v=1499719932","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-91-1 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003eFigures: 615\u003c\/div\u003e\n\u003cdiv\u003eTables: 190\u003c\/div\u003e\n\u003cdiv\u003ePages: 922\u003c\/div\u003e\n\u003cdiv\u003eFourth Edition\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003e\u003cbr\u003eOver 4,000 research papers, mostly published from 1994 to 2015 (over 1000 new papers in this edition), technical data from over 200 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e\u003cbr\u003eThe book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous editions, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers, graphene and other novelty products. \u003cbr\u003e\u003cbr\u003eFillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e\u003cbr\u003eThe book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e\u003cbr\u003eOne third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by over 200 SEM TEM, AFM micrographs.\u003cbr\u003e\u003cbr\u003eThe second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e\u003cbr\u003eThe last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. This part is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace.\u003cbr\u003e\u003cbr\u003eTo summarize, major features of this handbook are:\u003cbr\u003e\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Expectations from fillers \u003cbr\u003e1.2 Typical filler properties \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e1.5 Markets and trends \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders \u003cbr\u003e2.1.2 Aluminum borate whiskers \u003cbr\u003e2.1.3 Aluminum nitride \u003cbr\u003e2.1.4 Aluminum oxide \u003cbr\u003e2.1.5 Aluminum trihydroxide \u003cbr\u003e2.1.6 Anthracite \u003cbr\u003e2.1.7 Antimonate of sodium \u003cbr\u003e2.1.8 Antimony pentoxide \u003cbr\u003e2.1.8 Antimony trioxide \u003cbr\u003e2.1.10 Ammonium octamolybdate \u003cbr\u003e2.1.11 Apatite \u003cbr\u003e2.1.12 Ash, fly \u003cbr\u003e2.1.13 Attapulgite \u003cbr\u003e2.1.14 Barium metaborate \u003cbr\u003e2.1.15 Barium sulfate \u003cbr\u003e2.1.16 Barium \u0026amp; strontium sulfates \u003cbr\u003e2.1.17 Barium titanate \u003cbr\u003e2.1.18 Bentonite \u003cbr\u003e2.1.19 Beryllium oxide \u003cbr\u003e2.1.20 Boron nitride \u003cbr\u003e2.1.21 Calcium carbonate \u003cbr\u003e2.1.22 Calcium fluoride \u003cbr\u003e2.1.23 Calcium hydroxide \u003cbr\u003e2.1.24 Calcium phosphate \u003cbr\u003e2.1.25 Calcium silicate \u003cbr\u003e2.1.26 Calcium sulfate \u003cbr\u003e2.1.27 Carbon black \u003cbr\u003e2.1.28 Carbonyl iron powder \u003cbr\u003e2.1.29 Cellulose particles \u003cbr\u003e2.1.30 Ceramic beads \u003cbr\u003e2.1.31 Chitosan \u003cbr\u003e2.1.32 Clamshell powder \u003cbr\u003e2.1.33 Clay \u003cbr\u003e2.1.34 Cobalt powder \u003cbr\u003e2.1.35 Copper \u003cbr\u003e2.1.36 Corn cob powder \u003cbr\u003e2.1.37 Cristobalite \u003cbr\u003e2.1.38 Diatomaceous earth \u003cbr\u003e2.1.39 Dolomite \u003cbr\u003e2.1.40 Eggshell filler \u003cbr\u003e2.1.41 Ferrites \u003cbr\u003e2.1.42 Feldspar \u003cbr\u003e2.1.43 Gandolinium oxide \u003cbr\u003e2.1.44 Glass beads \u003cbr\u003e2.1.45 Gold \u003cbr\u003e2.1.46 Graphene \u003cbr\u003e2.1.47 Graphene oxide \u003cbr\u003e2.1.48 Graphite \u003cbr\u003e2.1.49 Ground tire powder \u003cbr\u003e2.1.50 Halloysite \u003cbr\u003e2.1.51 Huntite \u003cbr\u003e2.1.52 Hydrous calcium silicate \u003cbr\u003e2.1.53 Illite \u003cbr\u003e2.1.54 Iron \u003cbr\u003e2.1.55 Iron oxide \u003cbr\u003e2.1.56 Kaolin \u003cbr\u003e2.1.57 Lead oxide \u003cbr\u003e2.1.58 Lithopone \u003cbr\u003e2.1.59 Magnesium oxide \u003cbr\u003e2.1.60 Magnesium hydroxide \u003cbr\u003e2.1.61 Magnetite \u003cbr\u003e2.1.62 Metal-containing conductive materials \u003cbr\u003e2.1.63 Mica \u003cbr\u003e2.1.64 Molybdenum \u003cbr\u003e2.1.65 Molybdenum disulfide \u003cbr\u003e2.1.66 Molybdic oxide \u003cbr\u003e2.1.67 Nanofillers \u003cbr\u003e2.1.68 Nickel \u003cbr\u003e2.1.69 Nickel oxide \u003cbr\u003e2.1.70 Nickel zinc ferrite \u003cbr\u003e2.1.71 Nutshell powder \u003cbr\u003e2.1.72 Perlite \u003cbr\u003e2.1.73 Polymeric fillers \u003cbr\u003e2.1.74 Potassium hexatitanate whiskers \u003cbr\u003e2.1.75 Pumice \u003cbr\u003e2.1.76 Pyrophyllite \u003cbr\u003e2.1.77 Rubber particles \u003cbr\u003e2.1.78 Sepiolite \u003cbr\u003e2.1.79 Silica \u003cbr\u003e2.1.79.1 Fumed silica \u003cbr\u003e2.1.79.2 Fused silica \u003cbr\u003e2.1.79.3 Precipitated silica \u003cbr\u003e2.1.79.4 Quartz (Tripoli) \u003cbr\u003e2.1.79.5 Sand \u003cbr\u003e2.1.79.6 Silica gel \u003cbr\u003e2.1.80 Silicon carbide \u003cbr\u003e2.1.81 Silicon nitride \u003cbr\u003e2.1.82 Silver powder and flakes \u003cbr\u003e2.1.83 Slate flour \u003cbr\u003e2.1.84 Talc \u003cbr\u003e2.1.85 Titanium dioxide \u003cbr\u003e2.1.86 Tungsten \u003cbr\u003e2.1.87 Vermiculite \u003cbr\u003e2.1.88 Wollastonite \u003cbr\u003e2.1.89 Wood flour and similar materials \u003cbr\u003e2.1.90 Zeolites \u003cbr\u003e2.1.91 Zinc borate \u003cbr\u003e2.1.92 Zinc oxide \u003cbr\u003e2.1.93 Zinc stannate \u003cbr\u003e2.1.94 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers \u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Carbon nanotubes \u003cbr\u003e2.2.4 Cellulose fibers \u003cbr\u003e2.2.5 Glass fibers \u003cbr\u003e2.2.6 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING \u003cbr\u003e3.1 Filler packaging \u003cbr\u003e3.2 External transportation \u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems \u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 QUALITY CONTROL OF FILLERS \u003cbr\u003e4.1 Absorption coefficient \u003cbr\u003e4.2 Acidity or alkalinity of water extract \u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles \u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area \u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties \u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments \u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties \u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light \u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue \u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area \u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e5.1 Density \u003cbr\u003e5.2 Particle size \u003cbr\u003e5.3 Particle size distribution \u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness \u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing \u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure \u003cbr\u003e5.11 Flocculation and sedimentation \u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH \u003cbr\u003e5.15 Zeta-potential \u003cbr\u003e5.16 Surface energy \u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling \u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties \u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties \u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient \u003cbr\u003e5.29 Thermal degradation \u003cbr\u003e5.30 Melting temperature \u003cbr\u003e5.31 Glass transition temperature \u003cbr\u003e5.32 Electrical properties \u003cbr\u003e5.33 Relative permittivity \u003cbr\u003e5.34 Electrical percolation \u003cbr\u003e5.35 EMI shielding \u003cbr\u003e5.36 Magnetic properties \u003cbr\u003e5.37 Shape memory \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e6.1 Reactivity \u003cbr\u003e6.2 Chemical groups on the filler surface \u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties \u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence \u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003cbr\u003e7.1 Particle distribution in matrix \u003cbr\u003e7.2 Orientation of filler particles in a matrix \u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction \u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization \u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e8.1 Tensile strength and elongation \u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Mullins’ effect \u003cbr\u003e8.4 Elastic modulus \u003cbr\u003e8.5 Flexural strength and modulus \u003cbr\u003e8.6 Impact resistance \u003cbr\u003e8.7 Hardness \u003cbr\u003e8.8 Tear strength \u003cbr\u003e8.9 Compressive strength \u003cbr\u003e8.10 Fracture resistance \u003cbr\u003e8.11 Wear \u003cbr\u003e8.12 Friction \u003cbr\u003e8.13 Abrasion \u003cbr\u003e8.14 Scratch resistance \u003cbr\u003e8.15 Fatigue \u003cbr\u003e8.16 Failure \u003cbr\u003e8.17 Adhesion \u003cbr\u003e8.18 Thermal deformation \u003cbr\u003e8.19 Shrinkage \u003cbr\u003e8.20 Warpage \u003cbr\u003e8.21 Compression set \u003cbr\u003e8.22 Load transfer \u003cbr\u003e8.23 Residual stress \u003cbr\u003e8.24 \u003cbr\u003eCreep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e9.1 Viscosity \u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation \u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity \u003cbr\u003e9.6 Dynamic mechanical behavior \u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity \u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003cbr\u003e10.1 Crystallinity \u003cbr\u003e10.2 Crystallization behavior \u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity \u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS \u003cbr\u003e11.1 Irradiation \u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors \u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 FLAMMABILITY OF FILLED MATERIALS \u003cbr\u003e12.1 Definitions \u003cbr\u003e12.2 Limiting oxygen index \u003cbr\u003e12.3 Ignition and flame spread rate \u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion \u003cbr\u003e12.6 Emission of gaseous components \u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003cbr\u003e13.1 Adhesion promoters \u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers \u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents \u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003cbr\u003e14.1 Physical methods \u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement \u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis \u003cbr\u003e14.1.11 Electric constants determination \u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test \u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index \u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy \u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area \u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis \u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis \u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy \u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy \u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 FILLERS IN COMMERCIAL POLYMERS \u003cbr\u003e15.1 Acrylics \u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer \u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Bismaleimide \u003cbr\u003e15.7 Cellulose acetate \u003cbr\u003e15.8 Chitosan \u003cbr\u003e15.9 Elastomers \u003cbr\u003e15.10 Epoxy resins \u003cbr\u003e15.11 Ethylene vinyl acetate copolymer \u003cbr\u003e15.12 Ethylene vinyl alcohol copolymer \u003cbr\u003e15.13 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.14 Ethylene-propylene copolymers \u003cbr\u003e15.15 Ionomers \u003cbr\u003e15.16 Liquid crystalline polymers \u003cbr\u003e15.17 Perfluoroalkoxy resin \u003cbr\u003e15.18 Phenolic resins \u003cbr\u003e15.19 Poly(acrylic acid) \u003cbr\u003e15.20 Polyacrylonitrile \u003cbr\u003e15.21 Polyamides \u003cbr\u003e15.22 Polyamideimide \u003cbr\u003e15.23 Polyamines \u003cbr\u003e15.24 Polyaniline \u003cbr\u003e15.25 Polyaryletherketone \u003cbr\u003e15.26 Poly(butylene succinate) \u003cbr\u003e15.27 Poly(butylene terephthalate) \u003cbr\u003e15.28 Polycaprolactone \u003cbr\u003e15.29 Polycarbonate \u003cbr\u003e15.30 Polydicyclopentadiene \u003cbr\u003e15.31 Polyetheretherketone \u003cbr\u003e15.32 Polyetherimide \u003cbr\u003e15.33 Polyether sulfone \u003cbr\u003e15.34 Polyethylene \u003cbr\u003e15.35 Polyethylene, chlorinated \u003cbr\u003e15.36 Polyethylene, chlorosulfonated \u003cbr\u003e15.37 Poly(ethylene oxide) \u003cbr\u003e15.38 Poly(ethylene terephthalate) \u003cbr\u003e15.39 Polyimide \u003cbr\u003e15.41 Polymethylmethacrylate \u003cbr\u003e15.42 Polyoxymethylene \u003cbr\u003e15.43 Poly(phenylene ether) \u003cbr\u003e15.44 Poly(phenylene sulfide) \u003cbr\u003e15.45 Polypropylene \u003cbr\u003e15.46 Polypyrrole \u003cbr\u003e15.47 Polystyrene \u0026amp; high impact \u003cbr\u003e15.48 Polysulfide \u003cbr\u003e15.49 Polysulfone \u003cbr\u003e15.50 Polytetrafluoroethylene \u003cbr\u003e15.51 Polyurethanes \u003cbr\u003e15.52 Poly(vinyl acetate) \u003cbr\u003e15.53 Poly(vinyl alcohol) \u003cbr\u003e15.54 Poly(vinyl butyral) \u003cbr\u003e15.55 Poly(vinyl chloride) \u003cbr\u003e15.56 Rubbers \u003cbr\u003e15.56.1 Natural rubber \u003cbr\u003e15.56.2 Nitrile rubber \u003cbr\u003e15.56.3 Polybutadiene rubber \u003cbr\u003e15.56.4 Polybutyl rubber \u003cbr\u003e15.56.5 Polychloroprene \u003cbr\u003e15.56.6 Polyisobutylene \u003cbr\u003e15.56.7 Polyisoprene \u003cbr\u003e15.56.8 Styrene-butadiene rubber \u003cbr\u003e15.57 Silicones \u003cbr\u003e15.58 Styrene-acrylonitrile copolymer \u003cbr\u003e15.59 Tetrafluoroethylene-perfluoropropylene \u003cbr\u003e15.60 Unsaturated polyesters \u003cbr\u003e15.61 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 FILLER IN MATERIALS COMBINATIONS \u003cbr\u003e16.1 Blends, alloys and interpenetrating networks \u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 FORMULATION WITH FILLERS \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS \u003cbr\u003e18.1 Blow molding \u003cbr\u003e18.2 Calendering and hot-melt coating \u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding \u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding \u003cbr\u003e18.13 Resin transfer molding \u003cbr\u003e18.14 Rotational molding \u003cbr\u003e18.15 Sheet molding \u003cbr\u003e18.16 Spinning \u003cbr\u003e18.17 Thermoforming \u003cbr\u003e18.18 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace \u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints \u003cbr\u003e19.12 Cosmetics and pharmaceutical products \u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed \u003cbr\u003e19.20 Friction materials \u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields \u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication \u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 HAZARDS IN FILLER USE \u003cbr\u003eReferences \u003cbr\u003eINDEX\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Antiblocki...
$285.00
{"id":11242221380,"title":"Handbook of Antiblocking, Release, and Slip Additives","handle":"978-1-895198-83-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-83-6 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eThird Edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2014\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eTables: 124\u003c\/div\u003e\n\u003cdiv\u003eFigures: 145\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first ever book written on the subject of antiblocking, release, and slip additives, which are of high industrial importance. The third edition has included all new information which became available in the last 8 years since the publication of the first edition.\u003cbr\u003e\u003cbr\u003eEighteen chemical families form a core of industrial developments, which resulted in a large number of commercial products used by industry as antiblocking, release, and slip additives.\u003cbr\u003e \u003cbr\u003eThese additives are used in the production of materials from 44 generic families of polymers. Polymers containing antiblocking, release, and slip additives are processed by 17 groups of processing methods. The processing methods are used by 29 industries.\u003cbr\u003e\u003cbr\u003eInformation on the use of additives in various polymers is divided into the following sections: Types and concentrations, Effect on polymer and\/or other additives, and Typical formulations.\u003cbr\u003e\u003cbr\u003eInformation on the use of additives in various products is divided into the following sections: Types and concentrations, Reasons for use, Advantages and disadvantages of additive use, Effect on product properties, and Examples of formulations.\u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: Types and concentrations, Effect on a process, Effect on product properties, Advantages and disadvantages of additive use, Examples of formulations.\u003cbr\u003e\u003cbr\u003eA complete analysis of literature and patents available from the first use of these additives until now is included in the book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and environment.\u003cbr\u003e\u003cbr\u003eThe book contains 18 chapters, each addressing the specific aspect of properties and applications of antiblocking, release, and slip agents. In addition, a separate publication is available (Database of Antiblocking, Release, and Slip Agents), which is a database of commercial and generic materials used as antiblocking, release, and slip additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eAlso, Databook of Antiblocking, Release, and Slip Additives has been published last year. Databook of Antiblocking, Release, and Slip Additives contains data on over 300 the most important additives.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from commercial additives \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e2 Generic Types \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of commercial additives \u003cbr\u003e2.2.1 Antiblocking agents \u003cbr\u003e2.2.2 Mold release agents \u003cbr\u003e2.2.3 Slip agents \u003cbr\u003e\u003cbr\u003e3 Standard Methods of Control \u003cbr\u003e3.1 Adhesives \u003cbr\u003e3.2 Floor coverings \u003cbr\u003e3.3 Footwear and walkway surfaces \u003cbr\u003e3.4 Geosynthetics \u003cbr\u003e3.5 Leather and coated fabrics \u003cbr\u003e3.6 Lubricants \u003cbr\u003e3.7 Medical \u003cbr\u003e3.8 Paints and Coatings \u003cbr\u003e3.9 Paper \u003cbr\u003e3.10 Plastics and rubber \u003cbr\u003e3.11 Roads and pavement \u003cbr\u003e3.12 Sport equipment \u003cbr\u003e3.13 Textiles \u003cbr\u003e\u003cbr\u003e4 Transportation and Storage \u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e5 Mechanisms of Action \u003cbr\u003e5.1 Antiblocking agents \u003cbr\u003e5.2 Slip agents \u003cbr\u003e5.3 Release agents \u003cbr\u003e\u003cbr\u003e6 Compatibility and Performance \u003cbr\u003e\u003cbr\u003e7 Diffusion and Migration \u003cbr\u003e7.1 Diffusion \u003cbr\u003e7.2 Distribution of additive in bulk and on surface \u003cbr\u003e7.3 How mobility affects additive selection? \u003cbr\u003e7.4 Additive transfer to material in contact\u003cbr\u003e7.5 Additive loss \u003cbr\u003e\u003cbr\u003e8 Interaction with Other Components of Formulation \u003cbr\u003e8.1 Fillers \u003cbr\u003e8.2 Other components of formulation \u003cbr\u003e8.3 Synergy between surface additives \u003cbr\u003e8.4 Other properties \u003cbr\u003e\u003cbr\u003e9 Processing and Additive Performance \u003cbr\u003e\u003cbr\u003e10 Effect on Product Properties \u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.2 Mar and abrasion \u003cbr\u003e10.3 Shrinkage and warpage \u003cbr\u003e10.4 Blocking force \u003cbr\u003e10.5 Adhesion to mold and demolding \u003cbr\u003e10.6 Coefficient of friction \u003cbr\u003e10.7 Residues on molds \u003cbr\u003e10.8 Residues on molded parts \u003cbr\u003e10.9 Optical properties \u003cbr\u003e10.10 Rheological properties \u003cbr\u003e10.11 Electrical properties \u003cbr\u003e10.12 Structure and orientation \u003cbr\u003e10.13 Thermal aging \u003cbr\u003e10.14 UV radiation \u003cbr\u003e10.15 Effect on other properties \u003cbr\u003e\u003cbr\u003e11 Use in Specific Polymers \u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Cellulose acetate \u003cbr\u003e11.5 Cellulose, acetate, butyrate and propionate \u003cbr\u003e11.6 Cellulose nitrate\u003cbr\u003e11.7 Chlorinated polyvinylchloride \u003cbr\u003e11.8 Chlorosulfonated polyethylene \u003cbr\u003e11.9 Copolymers \u003cbr\u003e11.10 Cyanoacrylates \u003cbr\u003e11.11 Ethyl cellulose \u003cbr\u003e11.12 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.13 Ethylene-propylene rubber, EPR \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.15 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.16 Ionomers \u003cbr\u003e11.17 Nitrile rubber \u003cbr\u003e11.18 Polyamide \u003cbr\u003e11.19 Polybutadiene \u003cbr\u003e11.20 Polycarbonate \u003cbr\u003e11.21 Polyester \u003cbr\u003e11.22 Polyetherimide \u003cbr\u003e11.23 Polyethylene \u003cbr\u003e11.24 Polyimide \u003cbr\u003e11.25 Polylactide \u003cbr\u003e11.26 Polymethylmethacrylate \u003cbr\u003e11.27 Polyoxymethylene \u003cbr\u003e11.28 Poly(N-vinylcarbazole) \u003cbr\u003e11.29 Poly(phenylene ether) \u003cbr\u003e11.30 Polypropylene \u003cbr\u003e11.31 Polystyrene \u003cbr\u003e11.32 Polysulfone \u003cbr\u003e11.33 Poly(phenylene sulfide) \u003cbr\u003e11.34 Polyvinylacetate \u003cbr\u003e11.35 Polyvinylalcohol \u003cbr\u003e11.36 Polyvinylbutyral \u003cbr\u003e11.37 Polyvinylchloride \u003cbr\u003e11.38 Polyurethanes \u003cbr\u003e11.39 Proteins \u003cbr\u003e11.40 Rubber, natural \u003cbr\u003e11.41 Silicone \u003cbr\u003e11.42 Styrene-butadiene rubber \u003cbr\u003e11.43 Styrene-butadiene-styrene \u003cbr\u003e11.44 Starch \u003cbr\u003e\u003cbr\u003e12 Use in Industrial Products \u003cbr\u003e12.1 Adhesives and sealants \u003cbr\u003e12.2 Aerospace \u003cbr\u003e12.3 Agriculture \u003cbr\u003e12.4 Automotive applications \u003cbr\u003e12.5 Bottles \u003cbr\u003e12.6 Ceramic materials \u003cbr\u003e12.7 Composites \u003cbr\u003e12.8 Coated fabrics \u003cbr\u003e12.9 Cosmetics \u003cbr\u003e12.10 Dental materials \u003cbr\u003e12.11 Electronics \u003cbr\u003e12.12 Fibers \u003cbr\u003e12.13 Film \u003cbr\u003e12.14 Food \u003cbr\u003e12.15 Foams \u003cbr\u003e12.16 Gaskets \u003cbr\u003e12.17 Inks, varnishes, and lacquers \u003cbr\u003e12.18 Medical devices \u003cbr\u003e12.19 Membranes \u003cbr\u003e12.20 Paints and coatings \u003cbr\u003e12.21 Pharmaceutical products \u003cbr\u003e12.22 Photographic materials \u003cbr\u003e12.23 Pipes \u003cbr\u003e12.24 Road construction \u003cbr\u003e12.25 Roofing materials \u003cbr\u003e12.26 Synthetic paper \u003cbr\u003e12.27 Tires \u003cbr\u003e12.28 Toys \u003cbr\u003e12.29 Wire \u0026amp; cable \u003cbr\u003e \u003cbr\u003e13 Various Processing Methods \u003cbr\u003e13.1 Blow molding \u003cbr\u003e13.2 Calendering \u003cbr\u003e13.3 Coextrusion \u003cbr\u003e13.4 Compression molding \u003cbr\u003e13.5 Compounding (mixing) \u003cbr\u003e13.6 Dip coating \u003cbr\u003e13.7 Dryblending \u003cbr\u003e13.8 Extrusion \u003cbr\u003e13.9 Extrusion blow molding \u003cbr\u003e13.10 Injection molding \u003cbr\u003e13.11 Lithography \u003cbr\u003e13.12 Printing \u003cbr\u003e13.13 Reaction injection molding \u003cbr\u003e13.14 Rotational molding \u003cbr\u003e13.15 Rubber processing \u003cbr\u003e13.16 Slip casting \u003cbr\u003e13.17 Thermoforming \u003cbr\u003e13.18 Transfer molding \u003cbr\u003e\u003cbr\u003e14 Specialized Analytical Methods \u003cbr\u003e14.1 Identification \u003cbr\u003e14.2 Determination of concentration \u003cbr\u003e14.3 Determination of volatility and molecular motion \u003cbr\u003e14.4 Study of materials containing additives \u003cbr\u003e\u003cbr\u003e15 Mathematical Modelling \u003cbr\u003e \u003cbr\u003e16 Health, Safety and Environmental Issues \u003cbr\u003e16.1 Antiblocking agents \u003cbr\u003e16.1.1 Inorganic \u003cbr\u003e16.1.2 Organic \u003cbr\u003e16.2 Release agents \u003cbr\u003e16.2.1 Fluorocompounds \u003cbr\u003e16.2.2 Polydimethylsiloxane \u003cbr\u003e16.2.3 Polymeric waxes \u003cbr\u003e16.2.4 Other chemical compounds \u003cbr\u003e16.3 Slip agents \u003cbr\u003e16.3.1 Acids \u003cbr\u003e16.3.2 Esters \u003cbr\u003e16.3.3 Fatty acid amides \u003cbr\u003e16.3.4 Natural wax \u003cbr\u003e16.3.5 Salts \u003cbr\u003e\u003cbr\u003e17 Regulations and Data \u003cbr\u003e17.1 Toxic substance control \u003cbr\u003e17.2. Carcinogenic effect \u003cbr\u003e17.3 Workplace exposure limits \u003cbr\u003e17.4 Food regulatory acts \u003cbr\u003e\u003cbr\u003e18 Personal Protection \u003cbr\u003e18.1 Clothing \u003cbr\u003e18.2 Gloves \u003cbr\u003e18.3 Eye protection \u003cbr\u003e18.4 Respiratory protection \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:46-04:00","created_at":"2017-06-22T21:13:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","antiblocking additives","antiblocking agents","book","characteristic properties of commercial additives","formulation","general","modelling","properties","regulations","release agents","slip additives","slip agents"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374404,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Antiblocking, Release, and Slip Additives","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-83-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-83-6.jpg?v=1499887491"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-83-6.jpg?v=1499887491","options":["Title"],"media":[{"alt":null,"id":354809217117,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-83-6.jpg?v=1499887491"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-83-6.jpg?v=1499887491","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-83-6 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eThird Edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2014\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eTables: 124\u003c\/div\u003e\n\u003cdiv\u003eFigures: 145\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first ever book written on the subject of antiblocking, release, and slip additives, which are of high industrial importance. The third edition has included all new information which became available in the last 8 years since the publication of the first edition.\u003cbr\u003e\u003cbr\u003eEighteen chemical families form a core of industrial developments, which resulted in a large number of commercial products used by industry as antiblocking, release, and slip additives.\u003cbr\u003e \u003cbr\u003eThese additives are used in the production of materials from 44 generic families of polymers. Polymers containing antiblocking, release, and slip additives are processed by 17 groups of processing methods. The processing methods are used by 29 industries.\u003cbr\u003e\u003cbr\u003eInformation on the use of additives in various polymers is divided into the following sections: Types and concentrations, Effect on polymer and\/or other additives, and Typical formulations.\u003cbr\u003e\u003cbr\u003eInformation on the use of additives in various products is divided into the following sections: Types and concentrations, Reasons for use, Advantages and disadvantages of additive use, Effect on product properties, and Examples of formulations.\u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: Types and concentrations, Effect on a process, Effect on product properties, Advantages and disadvantages of additive use, Examples of formulations.\u003cbr\u003e\u003cbr\u003eA complete analysis of literature and patents available from the first use of these additives until now is included in the book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and environment.\u003cbr\u003e\u003cbr\u003eThe book contains 18 chapters, each addressing the specific aspect of properties and applications of antiblocking, release, and slip agents. In addition, a separate publication is available (Database of Antiblocking, Release, and Slip Agents), which is a database of commercial and generic materials used as antiblocking, release, and slip additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eAlso, Databook of Antiblocking, Release, and Slip Additives has been published last year. Databook of Antiblocking, Release, and Slip Additives contains data on over 300 the most important additives.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from commercial additives \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e2 Generic Types \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of commercial additives \u003cbr\u003e2.2.1 Antiblocking agents \u003cbr\u003e2.2.2 Mold release agents \u003cbr\u003e2.2.3 Slip agents \u003cbr\u003e\u003cbr\u003e3 Standard Methods of Control \u003cbr\u003e3.1 Adhesives \u003cbr\u003e3.2 Floor coverings \u003cbr\u003e3.3 Footwear and walkway surfaces \u003cbr\u003e3.4 Geosynthetics \u003cbr\u003e3.5 Leather and coated fabrics \u003cbr\u003e3.6 Lubricants \u003cbr\u003e3.7 Medical \u003cbr\u003e3.8 Paints and Coatings \u003cbr\u003e3.9 Paper \u003cbr\u003e3.10 Plastics and rubber \u003cbr\u003e3.11 Roads and pavement \u003cbr\u003e3.12 Sport equipment \u003cbr\u003e3.13 Textiles \u003cbr\u003e\u003cbr\u003e4 Transportation and Storage \u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e5 Mechanisms of Action \u003cbr\u003e5.1 Antiblocking agents \u003cbr\u003e5.2 Slip agents \u003cbr\u003e5.3 Release agents \u003cbr\u003e\u003cbr\u003e6 Compatibility and Performance \u003cbr\u003e\u003cbr\u003e7 Diffusion and Migration \u003cbr\u003e7.1 Diffusion \u003cbr\u003e7.2 Distribution of additive in bulk and on surface \u003cbr\u003e7.3 How mobility affects additive selection? \u003cbr\u003e7.4 Additive transfer to material in contact\u003cbr\u003e7.5 Additive loss \u003cbr\u003e\u003cbr\u003e8 Interaction with Other Components of Formulation \u003cbr\u003e8.1 Fillers \u003cbr\u003e8.2 Other components of formulation \u003cbr\u003e8.3 Synergy between surface additives \u003cbr\u003e8.4 Other properties \u003cbr\u003e\u003cbr\u003e9 Processing and Additive Performance \u003cbr\u003e\u003cbr\u003e10 Effect on Product Properties \u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.2 Mar and abrasion \u003cbr\u003e10.3 Shrinkage and warpage \u003cbr\u003e10.4 Blocking force \u003cbr\u003e10.5 Adhesion to mold and demolding \u003cbr\u003e10.6 Coefficient of friction \u003cbr\u003e10.7 Residues on molds \u003cbr\u003e10.8 Residues on molded parts \u003cbr\u003e10.9 Optical properties \u003cbr\u003e10.10 Rheological properties \u003cbr\u003e10.11 Electrical properties \u003cbr\u003e10.12 Structure and orientation \u003cbr\u003e10.13 Thermal aging \u003cbr\u003e10.14 UV radiation \u003cbr\u003e10.15 Effect on other properties \u003cbr\u003e\u003cbr\u003e11 Use in Specific Polymers \u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Cellulose acetate \u003cbr\u003e11.5 Cellulose, acetate, butyrate and propionate \u003cbr\u003e11.6 Cellulose nitrate\u003cbr\u003e11.7 Chlorinated polyvinylchloride \u003cbr\u003e11.8 Chlorosulfonated polyethylene \u003cbr\u003e11.9 Copolymers \u003cbr\u003e11.10 Cyanoacrylates \u003cbr\u003e11.11 Ethyl cellulose \u003cbr\u003e11.12 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.13 Ethylene-propylene rubber, EPR \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.15 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.16 Ionomers \u003cbr\u003e11.17 Nitrile rubber \u003cbr\u003e11.18 Polyamide \u003cbr\u003e11.19 Polybutadiene \u003cbr\u003e11.20 Polycarbonate \u003cbr\u003e11.21 Polyester \u003cbr\u003e11.22 Polyetherimide \u003cbr\u003e11.23 Polyethylene \u003cbr\u003e11.24 Polyimide \u003cbr\u003e11.25 Polylactide \u003cbr\u003e11.26 Polymethylmethacrylate \u003cbr\u003e11.27 Polyoxymethylene \u003cbr\u003e11.28 Poly(N-vinylcarbazole) \u003cbr\u003e11.29 Poly(phenylene ether) \u003cbr\u003e11.30 Polypropylene \u003cbr\u003e11.31 Polystyrene \u003cbr\u003e11.32 Polysulfone \u003cbr\u003e11.33 Poly(phenylene sulfide) \u003cbr\u003e11.34 Polyvinylacetate \u003cbr\u003e11.35 Polyvinylalcohol \u003cbr\u003e11.36 Polyvinylbutyral \u003cbr\u003e11.37 Polyvinylchloride \u003cbr\u003e11.38 Polyurethanes \u003cbr\u003e11.39 Proteins \u003cbr\u003e11.40 Rubber, natural \u003cbr\u003e11.41 Silicone \u003cbr\u003e11.42 Styrene-butadiene rubber \u003cbr\u003e11.43 Styrene-butadiene-styrene \u003cbr\u003e11.44 Starch \u003cbr\u003e\u003cbr\u003e12 Use in Industrial Products \u003cbr\u003e12.1 Adhesives and sealants \u003cbr\u003e12.2 Aerospace \u003cbr\u003e12.3 Agriculture \u003cbr\u003e12.4 Automotive applications \u003cbr\u003e12.5 Bottles \u003cbr\u003e12.6 Ceramic materials \u003cbr\u003e12.7 Composites \u003cbr\u003e12.8 Coated fabrics \u003cbr\u003e12.9 Cosmetics \u003cbr\u003e12.10 Dental materials \u003cbr\u003e12.11 Electronics \u003cbr\u003e12.12 Fibers \u003cbr\u003e12.13 Film \u003cbr\u003e12.14 Food \u003cbr\u003e12.15 Foams \u003cbr\u003e12.16 Gaskets \u003cbr\u003e12.17 Inks, varnishes, and lacquers \u003cbr\u003e12.18 Medical devices \u003cbr\u003e12.19 Membranes \u003cbr\u003e12.20 Paints and coatings \u003cbr\u003e12.21 Pharmaceutical products \u003cbr\u003e12.22 Photographic materials \u003cbr\u003e12.23 Pipes \u003cbr\u003e12.24 Road construction \u003cbr\u003e12.25 Roofing materials \u003cbr\u003e12.26 Synthetic paper \u003cbr\u003e12.27 Tires \u003cbr\u003e12.28 Toys \u003cbr\u003e12.29 Wire \u0026amp; cable \u003cbr\u003e \u003cbr\u003e13 Various Processing Methods \u003cbr\u003e13.1 Blow molding \u003cbr\u003e13.2 Calendering \u003cbr\u003e13.3 Coextrusion \u003cbr\u003e13.4 Compression molding \u003cbr\u003e13.5 Compounding (mixing) \u003cbr\u003e13.6 Dip coating \u003cbr\u003e13.7 Dryblending \u003cbr\u003e13.8 Extrusion \u003cbr\u003e13.9 Extrusion blow molding \u003cbr\u003e13.10 Injection molding \u003cbr\u003e13.11 Lithography \u003cbr\u003e13.12 Printing \u003cbr\u003e13.13 Reaction injection molding \u003cbr\u003e13.14 Rotational molding \u003cbr\u003e13.15 Rubber processing \u003cbr\u003e13.16 Slip casting \u003cbr\u003e13.17 Thermoforming \u003cbr\u003e13.18 Transfer molding \u003cbr\u003e\u003cbr\u003e14 Specialized Analytical Methods \u003cbr\u003e14.1 Identification \u003cbr\u003e14.2 Determination of concentration \u003cbr\u003e14.3 Determination of volatility and molecular motion \u003cbr\u003e14.4 Study of materials containing additives \u003cbr\u003e\u003cbr\u003e15 Mathematical Modelling \u003cbr\u003e \u003cbr\u003e16 Health, Safety and Environmental Issues \u003cbr\u003e16.1 Antiblocking agents \u003cbr\u003e16.1.1 Inorganic \u003cbr\u003e16.1.2 Organic \u003cbr\u003e16.2 Release agents \u003cbr\u003e16.2.1 Fluorocompounds \u003cbr\u003e16.2.2 Polydimethylsiloxane \u003cbr\u003e16.2.3 Polymeric waxes \u003cbr\u003e16.2.4 Other chemical compounds \u003cbr\u003e16.3 Slip agents \u003cbr\u003e16.3.1 Acids \u003cbr\u003e16.3.2 Esters \u003cbr\u003e16.3.3 Fatty acid amides \u003cbr\u003e16.3.4 Natural wax \u003cbr\u003e16.3.5 Salts \u003cbr\u003e\u003cbr\u003e17 Regulations and Data \u003cbr\u003e17.1 Toxic substance control \u003cbr\u003e17.2. Carcinogenic effect \u003cbr\u003e17.3 Workplace exposure limits \u003cbr\u003e17.4 Food regulatory acts \u003cbr\u003e\u003cbr\u003e18 Personal Protection \u003cbr\u003e18.1 Clothing \u003cbr\u003e18.2 Gloves \u003cbr\u003e18.3 Eye protection \u003cbr\u003e18.4 Respiratory protection \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Polymers
$395.00
{"id":11242220932,"title":"Handbook of Polymers","handle":"978-1-895198-47-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:44:36-05:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","physical properties","polymeric materials","processing","structure","synthesis","toxicity","weather stability"],"price":39500,"price_min":39500,"price_max":39500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372932,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers","public_title":null,"options":["Default Title"],"price":39500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-47-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588","options":["Title"],"media":[{"alt":null,"id":356336173149,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Nucleating...
$285.00
{"id":11242221124,"title":"Handbook of Nucleating Agents","handle":"978-1-895198-93-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-93-5 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003c\/span\u003e\u003cbr\u003ePages: 252\u003c\/div\u003e\n\u003cdiv\u003eFigures: 77\u003c\/div\u003e\n\u003cdiv\u003eTables: 19\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Nucleating Agents is the most extensive monograph on the subject ever written. In addition to the Handbook, Databook of Nucleating Agents is simultaneously published to give readers comprehensive information on this important subject. \u003cbr\u003e\u003cbr\u003eHandbook of Nucleating Agents gives information on how to increase the production rate, modify structure and morphology, improve mechanical performance, and reduce haze of polymeric products with a proper selection of nucleating agents (and\/or the so-called clarifying agents). Handbook of Nucleating Agents brings analyses of important publications found in open and patent literature. Special attention is given to the findings of the last five years which brought many new important developments. \u003cbr\u003e\u003cbr\u003eThe book is divided into 14 chapters each of which concentrates on essential performance of nucleating agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in Databook of Nucleating Agents which is published as a separate book to help in selection of product available in the commercial markets and analyze properties of different products. Information in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe next six chapters of Handbook discuss the most essential theoretical knowledge required for the proper selection and use of nucleating and clarifying agents. These include polymer crystallization in the presence and without nucleating agents, parameters of crystallization, essential influences on the nucleation processes, the measures of nucleation efficiency, the mechanisms of nucleation, and the effective methods of dispersion of nucleating agents. \u003cbr\u003e\u003cbr\u003eFollowing three chapters concentrate on the application aspects in different formulations. Here extensive use is being made of patent literature and research papers available for different applications. Discussed are 19 polymer processing methods which require use of nucleating agents, 40 different polymers which are known to use nucleating agents, and 16 groups of commercial products in which nucleating agents found applications. This shows that the modern use nucleating agent is widespread in industry.\u003cbr\u003e\u003cbr\u003eThe last three chapters discuss the effects of nucleating agents on physical and mechanical properties of materials, the most essential analytical techniques used to analyze systems containing nucleating agents, and health and safety in use of nucleating agents.\u003cbr\u003e\u003cbr\u003eThis important and timely publication(s) should not be missed. They contain essential information for upgrading production to the more economical level and products to the highest performance standards possible today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e\u003cbr\u003e2 Chemical Origin of Nucleating Agents \u003cbr\u003e2.1 Acids \u003cbr\u003e2.2 Amides \u003cbr\u003e2.3 Carbon nanotubes \u003cbr\u003e2.4 Graphene derivatives \u003cbr\u003e2.5 Hydrazides \u003cbr\u003e2.6 Inorganic materials \u003cbr\u003e2.6.1 Boron nitride \u003cbr\u003e2.6.2 Calcium carbonate \u003cbr\u003e2.6.3 Hydroxides \u003cbr\u003e2.6.4 Silica \u003cbr\u003e2.6.5 Talc \u003cbr\u003e2.6.6 Others \u003cbr\u003e2.7 Masterbatch \u003cbr\u003e2.8 Phosphate salts \u003cbr\u003e2.9 Polymeric \u003cbr\u003e2.10 Proprietary nucleating agents \u003cbr\u003e2.11 Salts of carboxylic acids \u003cbr\u003e2.12 Sorbitol derivatives \u003cbr\u003e2.13 Xylan esters \u003cbr\u003e2.14 Other nucleating agents \u003cbr\u003e\u003cbr\u003e3 Polymer Crystallization with and without Nucleating Agents\u003cbr\u003e\u003cbr\u003e4 Parameters of Crystallization \u003cbr\u003e\u003cbr\u003e5 What Influences Nucleation?\u003cbr\u003e5.1 Concentration \u003cbr\u003e5.2 Solubility of nucleating agent in polymer \u003cbr\u003e5.3 Shear rate and time \u003cbr\u003e5.4 Form of nucleating agent \u003cbr\u003e5.5 Mixtures of nucleating agents \u003cbr\u003e\u003cbr\u003e6 Nucleation Efficiency Measures \u003cbr\u003e6.1 Nuclei density\u003cbr\u003e6.2 Nucleation activity and constant \u003cbr\u003e6.3 Nucleation efficiency \u003cbr\u003e6.4 Activation energy \u003cbr\u003e\u003cbr\u003e7 Mechanisms of Crystallization \u003cbr\u003e\u003cbr\u003e8 Dispersion of Nucleating Agents \u003cbr\u003e\u003cbr\u003e9 Nucleating Agents in Different Processing Methods \u003cbr\u003e9.1 Blow molding \u003cbr\u003e9.2 Blown film extrusion \u003cbr\u003e9.3 Calendering \u003cbr\u003e9.4 Compression molding \u003cbr\u003e9.5 Dip coating \u003cbr\u003e9.6 Extrusion \u003cbr\u003e9.7 Foaming \u003cbr\u003e9.8 Hot-melt coating \u003cbr\u003e9.9 Injection molding \u003cbr\u003e9.10 Micro-injection molding \u003cbr\u003e9.11 Powder injection molding \u003cbr\u003e9.12 Pultrusion \u003cbr\u003e9.13 Reaction injection molding \u003cbr\u003e9.14 Rotational molding \u003cbr\u003e9.15 Sheet molding \u003cbr\u003e9.16 Spinning \u003cbr\u003e9.17 Thermoforming \u003cbr\u003e9.18 Welding and machining \u003cbr\u003e9.19 Wire coating\u003cbr\u003e\u003cbr\u003e10 Application of Nucleating Agents in Specific Polymers \u003cbr\u003e10.1 Poly(acrylonitrile-co-butadiene-co-styrene) \u003cbr\u003e10.2 Cellulose acetate \u003cbr\u003e10.3 Epoxy resin \u003cbr\u003e10.4 Ethylene-propylene diene terpolymer \u003cbr\u003e10.5 Ethylene-vinyl acetate copolymer \u003cbr\u003e10.6 Fluorinated ethylene-propylene copolymer \u003cbr\u003e10.7 Liquid crystalline polymer \u003cbr\u003e10.8 Polyamide \u003cbr\u003e10.9 Poly(acrylic acid) \u003cbr\u003e10.10 Polyacrylonitrile \u003cbr\u003e10.11 Polyaniline\u003cbr\u003e10.12 Poly(butylene terephthalate) \u003cbr\u003e10.13 Polycarbonate\u003cbr\u003e10.14 Poly(?-caprolactone) \u003cbr\u003e10.15 Polychlorotrifluoroethylene \u003cbr\u003e10.16 Polyethylene \u003cbr\u003e10.17 Polyetheretherketone \u003cbr\u003e10.18 Polyetherketoneketone \u003cbr\u003e10.19 Poly(ethylene oxide) \u003cbr\u003e10.20 Poly(ether sulfone) \u003cbr\u003e10.21 Poly(ethylene terephthalate) \u003cbr\u003e10.22 Polyethylene, silane-crosslinkable \u003cbr\u003e10.23 Poly(glycolic acid) \u003cbr\u003e10.24 Poly(3-hydroxybutyrate) \u003cbr\u003e10.25 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)\u003cbr\u003e10.26 Polyimide \u003cbr\u003e10.27 Poly(lactic acid) \u003cbr\u003e10.28 Polyoxymethylene \u003cbr\u003e10.29 Polypropylene \u003cbr\u003e10.30 Polyphthalamide \u003cbr\u003e10.31 Poly(p-phenylene sulfide)\u003cbr\u003e10.32 Polystyrene \u003cbr\u003e10.33 Poly(trimethylene terephthalate) \u003cbr\u003e10.34 Polyurethane \u003cbr\u003e10.35 Poly(vinyl alcohol) \u003cbr\u003e10.36 Poly(vinylidene fluoride) \u003cbr\u003e10.37 Poly(vinylidene fluoride-co-hexafluoropropylene) \u003cbr\u003e10.38 Poly(vinyl fluoride) \u003cbr\u003e10.39 Poly(N-vinyl carbazole) \u003cbr\u003e10.40 Unsaturated polyester \u003cbr\u003e\u003cbr\u003e11 Nucleating Agents in Various Products\u003cbr\u003e11.1 Adhesives\u003cbr\u003e11.2 Aerospace \u003cbr\u003e11.3 Appliances \u003cbr\u003e11.4 Automotive materials \u003cbr\u003e11.5 Bottles \u003cbr\u003e11.6 Building construction \u003cbr\u003e11.7 Cable \u0026amp; wire \u003cbr\u003e11.8 Coatings \u0026amp; paints \u003cbr\u003e11.9 Electronics and electrical \u003cbr\u003e11.10 Fibers \u003cbr\u003e11.11 Films \u003cbr\u003e11.12 Medical applications \u003cbr\u003e11.13 Pharmaceutical applications \u003cbr\u003e11.14 Railway \u003cbr\u003e11.15 Roofing \u003cbr\u003e11.16 Window profiles \u003cbr\u003e\u003cbr\u003e12 Effect of Nucleating Agents on Physical-mechanical Properties \u003cbr\u003e12.1 Physical properties\u003cbr\u003e12.1.1 Agglomeration \u003cbr\u003e12.1.2 Aspect ratio \u003cbr\u003e12.1.3 Crystalline structure \u003cbr\u003e12.1.4 Hydrophilic\/hydrophobic properties \u003cbr\u003e12.1.5 Melting temperature \u003cbr\u003e12.1.6 Moisture \u003cbr\u003e12.1.7 Optical properties \u003cbr\u003e12.1.8 Particle size \u003cbr\u003e12.1.9 Refractive index \u003cbr\u003e12.1.10 Shape memory \u003cbr\u003e12.1.11 Solubility \u003cbr\u003e12.1.12 Surface energy\u003cbr\u003e12.1.13 Thermal conductivity \u003cbr\u003e12.1.14 Transition temperature \u003cbr\u003e12.1.15 Zeta potential \u003cbr\u003e12.2 Mechanical properties \u003cbr\u003e12.2.1 Flexural strength\u003cbr\u003e12.2.2 Hardness\u003cbr\u003e12.2.3 Impact strength \u003cbr\u003e12.2.4 Residual stress \u003cbr\u003e12.2.5 Scratch resistance \u003cbr\u003e12.2.6 Shrinkage \u003cbr\u003e12.2.7 Tear strength \u003cbr\u003e12.2.8 Thermal deformation \u003cbr\u003e12.2.9 Tensile strength \u003cbr\u003e\u003cbr\u003e13 Important Analytical Methods Used in the Studies of Nucleating Agents \u003cbr\u003e13.1 Crystallinity \u003cbr\u003e13.2 Crystallization half-time \u003cbr\u003e13.3 Differential scanning calorimetry \u003cbr\u003e13.4 Fast scanning chip calorimetry\u003cbr\u003e13.5 FTIR \u003cbr\u003e13.6 Haze\u003cbr\u003e13.7 Orientation degree \u003cbr\u003e13.8 Polarized light microscopy \u003cbr\u003e13.9 Quenching device\u003cbr\u003e13.10 Small angle x-ray diffraction \u003cbr\u003e13.11 Spherulite size \u003cbr\u003e13.12 Thermogravimetric analysis \u003cbr\u003e13.13 Vicat softening temperature \u003cbr\u003e13.14 Wide angle x-ray diffraction\u003cbr\u003e\u003cbr\u003e14 Health and Safety with Nucleating Agents \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:45-04:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","alpha crystallization","beta crystallization","book","material","nucleating agent","nucleation","p-additives"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378373444,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Nucleating Agents","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-93-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-93-5.jpg?v=1499442373"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-93-5.jpg?v=1499442373","options":["Title"],"media":[{"alt":null,"id":355729408093,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-93-5.jpg?v=1499442373"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-93-5.jpg?v=1499442373","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-93-5 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003c\/span\u003e\u003cbr\u003ePages: 252\u003c\/div\u003e\n\u003cdiv\u003eFigures: 77\u003c\/div\u003e\n\u003cdiv\u003eTables: 19\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Nucleating Agents is the most extensive monograph on the subject ever written. In addition to the Handbook, Databook of Nucleating Agents is simultaneously published to give readers comprehensive information on this important subject. \u003cbr\u003e\u003cbr\u003eHandbook of Nucleating Agents gives information on how to increase the production rate, modify structure and morphology, improve mechanical performance, and reduce haze of polymeric products with a proper selection of nucleating agents (and\/or the so-called clarifying agents). Handbook of Nucleating Agents brings analyses of important publications found in open and patent literature. Special attention is given to the findings of the last five years which brought many new important developments. \u003cbr\u003e\u003cbr\u003eThe book is divided into 14 chapters each of which concentrates on essential performance of nucleating agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in Databook of Nucleating Agents which is published as a separate book to help in selection of product available in the commercial markets and analyze properties of different products. Information in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe next six chapters of Handbook discuss the most essential theoretical knowledge required for the proper selection and use of nucleating and clarifying agents. These include polymer crystallization in the presence and without nucleating agents, parameters of crystallization, essential influences on the nucleation processes, the measures of nucleation efficiency, the mechanisms of nucleation, and the effective methods of dispersion of nucleating agents. \u003cbr\u003e\u003cbr\u003eFollowing three chapters concentrate on the application aspects in different formulations. Here extensive use is being made of patent literature and research papers available for different applications. Discussed are 19 polymer processing methods which require use of nucleating agents, 40 different polymers which are known to use nucleating agents, and 16 groups of commercial products in which nucleating agents found applications. This shows that the modern use nucleating agent is widespread in industry.\u003cbr\u003e\u003cbr\u003eThe last three chapters discuss the effects of nucleating agents on physical and mechanical properties of materials, the most essential analytical techniques used to analyze systems containing nucleating agents, and health and safety in use of nucleating agents.\u003cbr\u003e\u003cbr\u003eThis important and timely publication(s) should not be missed. They contain essential information for upgrading production to the more economical level and products to the highest performance standards possible today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e\u003cbr\u003e2 Chemical Origin of Nucleating Agents \u003cbr\u003e2.1 Acids \u003cbr\u003e2.2 Amides \u003cbr\u003e2.3 Carbon nanotubes \u003cbr\u003e2.4 Graphene derivatives \u003cbr\u003e2.5 Hydrazides \u003cbr\u003e2.6 Inorganic materials \u003cbr\u003e2.6.1 Boron nitride \u003cbr\u003e2.6.2 Calcium carbonate \u003cbr\u003e2.6.3 Hydroxides \u003cbr\u003e2.6.4 Silica \u003cbr\u003e2.6.5 Talc \u003cbr\u003e2.6.6 Others \u003cbr\u003e2.7 Masterbatch \u003cbr\u003e2.8 Phosphate salts \u003cbr\u003e2.9 Polymeric \u003cbr\u003e2.10 Proprietary nucleating agents \u003cbr\u003e2.11 Salts of carboxylic acids \u003cbr\u003e2.12 Sorbitol derivatives \u003cbr\u003e2.13 Xylan esters \u003cbr\u003e2.14 Other nucleating agents \u003cbr\u003e\u003cbr\u003e3 Polymer Crystallization with and without Nucleating Agents\u003cbr\u003e\u003cbr\u003e4 Parameters of Crystallization \u003cbr\u003e\u003cbr\u003e5 What Influences Nucleation?\u003cbr\u003e5.1 Concentration \u003cbr\u003e5.2 Solubility of nucleating agent in polymer \u003cbr\u003e5.3 Shear rate and time \u003cbr\u003e5.4 Form of nucleating agent \u003cbr\u003e5.5 Mixtures of nucleating agents \u003cbr\u003e\u003cbr\u003e6 Nucleation Efficiency Measures \u003cbr\u003e6.1 Nuclei density\u003cbr\u003e6.2 Nucleation activity and constant \u003cbr\u003e6.3 Nucleation efficiency \u003cbr\u003e6.4 Activation energy \u003cbr\u003e\u003cbr\u003e7 Mechanisms of Crystallization \u003cbr\u003e\u003cbr\u003e8 Dispersion of Nucleating Agents \u003cbr\u003e\u003cbr\u003e9 Nucleating Agents in Different Processing Methods \u003cbr\u003e9.1 Blow molding \u003cbr\u003e9.2 Blown film extrusion \u003cbr\u003e9.3 Calendering \u003cbr\u003e9.4 Compression molding \u003cbr\u003e9.5 Dip coating \u003cbr\u003e9.6 Extrusion \u003cbr\u003e9.7 Foaming \u003cbr\u003e9.8 Hot-melt coating \u003cbr\u003e9.9 Injection molding \u003cbr\u003e9.10 Micro-injection molding \u003cbr\u003e9.11 Powder injection molding \u003cbr\u003e9.12 Pultrusion \u003cbr\u003e9.13 Reaction injection molding \u003cbr\u003e9.14 Rotational molding \u003cbr\u003e9.15 Sheet molding \u003cbr\u003e9.16 Spinning \u003cbr\u003e9.17 Thermoforming \u003cbr\u003e9.18 Welding and machining \u003cbr\u003e9.19 Wire coating\u003cbr\u003e\u003cbr\u003e10 Application of Nucleating Agents in Specific Polymers \u003cbr\u003e10.1 Poly(acrylonitrile-co-butadiene-co-styrene) \u003cbr\u003e10.2 Cellulose acetate \u003cbr\u003e10.3 Epoxy resin \u003cbr\u003e10.4 Ethylene-propylene diene terpolymer \u003cbr\u003e10.5 Ethylene-vinyl acetate copolymer \u003cbr\u003e10.6 Fluorinated ethylene-propylene copolymer \u003cbr\u003e10.7 Liquid crystalline polymer \u003cbr\u003e10.8 Polyamide \u003cbr\u003e10.9 Poly(acrylic acid) \u003cbr\u003e10.10 Polyacrylonitrile \u003cbr\u003e10.11 Polyaniline\u003cbr\u003e10.12 Poly(butylene terephthalate) \u003cbr\u003e10.13 Polycarbonate\u003cbr\u003e10.14 Poly(?-caprolactone) \u003cbr\u003e10.15 Polychlorotrifluoroethylene \u003cbr\u003e10.16 Polyethylene \u003cbr\u003e10.17 Polyetheretherketone \u003cbr\u003e10.18 Polyetherketoneketone \u003cbr\u003e10.19 Poly(ethylene oxide) \u003cbr\u003e10.20 Poly(ether sulfone) \u003cbr\u003e10.21 Poly(ethylene terephthalate) \u003cbr\u003e10.22 Polyethylene, silane-crosslinkable \u003cbr\u003e10.23 Poly(glycolic acid) \u003cbr\u003e10.24 Poly(3-hydroxybutyrate) \u003cbr\u003e10.25 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)\u003cbr\u003e10.26 Polyimide \u003cbr\u003e10.27 Poly(lactic acid) \u003cbr\u003e10.28 Polyoxymethylene \u003cbr\u003e10.29 Polypropylene \u003cbr\u003e10.30 Polyphthalamide \u003cbr\u003e10.31 Poly(p-phenylene sulfide)\u003cbr\u003e10.32 Polystyrene \u003cbr\u003e10.33 Poly(trimethylene terephthalate) \u003cbr\u003e10.34 Polyurethane \u003cbr\u003e10.35 Poly(vinyl alcohol) \u003cbr\u003e10.36 Poly(vinylidene fluoride) \u003cbr\u003e10.37 Poly(vinylidene fluoride-co-hexafluoropropylene) \u003cbr\u003e10.38 Poly(vinyl fluoride) \u003cbr\u003e10.39 Poly(N-vinyl carbazole) \u003cbr\u003e10.40 Unsaturated polyester \u003cbr\u003e\u003cbr\u003e11 Nucleating Agents in Various Products\u003cbr\u003e11.1 Adhesives\u003cbr\u003e11.2 Aerospace \u003cbr\u003e11.3 Appliances \u003cbr\u003e11.4 Automotive materials \u003cbr\u003e11.5 Bottles \u003cbr\u003e11.6 Building construction \u003cbr\u003e11.7 Cable \u0026amp; wire \u003cbr\u003e11.8 Coatings \u0026amp; paints \u003cbr\u003e11.9 Electronics and electrical \u003cbr\u003e11.10 Fibers \u003cbr\u003e11.11 Films \u003cbr\u003e11.12 Medical applications \u003cbr\u003e11.13 Pharmaceutical applications \u003cbr\u003e11.14 Railway \u003cbr\u003e11.15 Roofing \u003cbr\u003e11.16 Window profiles \u003cbr\u003e\u003cbr\u003e12 Effect of Nucleating Agents on Physical-mechanical Properties \u003cbr\u003e12.1 Physical properties\u003cbr\u003e12.1.1 Agglomeration \u003cbr\u003e12.1.2 Aspect ratio \u003cbr\u003e12.1.3 Crystalline structure \u003cbr\u003e12.1.4 Hydrophilic\/hydrophobic properties \u003cbr\u003e12.1.5 Melting temperature \u003cbr\u003e12.1.6 Moisture \u003cbr\u003e12.1.7 Optical properties \u003cbr\u003e12.1.8 Particle size \u003cbr\u003e12.1.9 Refractive index \u003cbr\u003e12.1.10 Shape memory \u003cbr\u003e12.1.11 Solubility \u003cbr\u003e12.1.12 Surface energy\u003cbr\u003e12.1.13 Thermal conductivity \u003cbr\u003e12.1.14 Transition temperature \u003cbr\u003e12.1.15 Zeta potential \u003cbr\u003e12.2 Mechanical properties \u003cbr\u003e12.2.1 Flexural strength\u003cbr\u003e12.2.2 Hardness\u003cbr\u003e12.2.3 Impact strength \u003cbr\u003e12.2.4 Residual stress \u003cbr\u003e12.2.5 Scratch resistance \u003cbr\u003e12.2.6 Shrinkage \u003cbr\u003e12.2.7 Tear strength \u003cbr\u003e12.2.8 Thermal deformation \u003cbr\u003e12.2.9 Tensile strength \u003cbr\u003e\u003cbr\u003e13 Important Analytical Methods Used in the Studies of Nucleating Agents \u003cbr\u003e13.1 Crystallinity \u003cbr\u003e13.2 Crystallization half-time \u003cbr\u003e13.3 Differential scanning calorimetry \u003cbr\u003e13.4 Fast scanning chip calorimetry\u003cbr\u003e13.5 FTIR \u003cbr\u003e13.6 Haze\u003cbr\u003e13.7 Orientation degree \u003cbr\u003e13.8 Polarized light microscopy \u003cbr\u003e13.9 Quenching device\u003cbr\u003e13.10 Small angle x-ray diffraction \u003cbr\u003e13.11 Spherulite size \u003cbr\u003e13.12 Thermogravimetric analysis \u003cbr\u003e13.13 Vicat softening temperature \u003cbr\u003e13.14 Wide angle x-ray diffraction\u003cbr\u003e\u003cbr\u003e14 Health and Safety with Nucleating Agents \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Fillers
$285.00
{"id":11242220868,"title":"Handbook of Fillers","handle":"978-1-895198-41-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-41-6 \u003cbr\u003e\u003cbr\u003eFigures: 578\u003cbr\u003eTables: 190\u003cbr\u003ePages: 774\u003cbr\u003eThird Edition\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003eOver 3,000 research papers, mostly published from 1994 to 2009 (over 1500 new papers in this edition), technical data from over 160 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous edition, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers. \u003cbr\u003e Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by 154 SEM TEM, AFM micrographs.\u003cbr\u003e The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. \u003cbr\u003e This book is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace. The previous edition was very popular among environmental engineers, patent and litigation lawyers, and employees of various governmental agencies. \u003cbr\u003e To summarize, major features of this handbook are:\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1.1 Expectations from fillers\u003cbr\u003e1.2 Typical filler properties\u003cbr\u003e1.3 Definitions\u003cbr\u003e1.4 Classification\u003cbr\u003e1.5 Markets and trends\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders\u003cbr\u003e2.1.2 Aluminum borate whiskers\u003cbr\u003e2.1.3 Aluminum oxide \u003cbr\u003e2.1.4 Aluminum trihydroxide\u003cbr\u003e2.1.5 Anthracite\u003cbr\u003e2.1.6 Antimonate of sodium\u003cbr\u003e2.1.7 Antimony pentoxide\u003cbr\u003e2.1.8 Antimony trioxide\u003cbr\u003e2.1.9 Ammonium octamolybdate\u003cbr\u003e2.1.10 Apatite\u003cbr\u003e2.1.11 Ash, fly\u003cbr\u003e2.1.12 Attapulgite\u003cbr\u003e2.1.13 Barium metaborate\u003cbr\u003e2.1.14 Barium sulfate\u003cbr\u003e2.1.15 Barium \u0026amp; strontium sulfates\u003cbr\u003e2.1.16 Barium titanate\u003cbr\u003e2.1.17 Bentonite\u003cbr\u003e2.1.18 Beryllium oxide\u003cbr\u003e2.1.19 Boron nitride\u003cbr\u003e2.1.20 Calcium carbonate\u003cbr\u003e2.1.21 Calcium hydroxide\u003cbr\u003e2.1.22 Calcium sulfate\u003cbr\u003e2.1.23 Carbon black \u003cbr\u003e2.1.24 Ceramic beads\u003cbr\u003e2.1.25 Clay\u003cbr\u003e2.1.26 Copper\u003cbr\u003e2.1.27 Cobalt powder\u003cbr\u003e2.1.28 Cristobalite\u003cbr\u003e2.1.29 Diatomaceous earth\u003cbr\u003e2.1.30 Dolomite\u003cbr\u003e2.1.31 Ferrites\u003cbr\u003e2.1.32 Feldspar\u003cbr\u003e2.1.33 Glass beads\u003cbr\u003e2.1.34 Gold\u003cbr\u003e2.1.35 Graphite\u003cbr\u003e2.1.36 Hydrous calcium silicate\u003cbr\u003e2.1.37 Iron oxide \u003cbr\u003e2.1.38 Kaolin \u003cbr\u003e2.1.39 Lithopone \u003cbr\u003e2.1.40 Magnesium oxide \u003cbr\u003e2.1.41 Magnesium hydroxide \u003cbr\u003e2.1.42 Metal-containing conductive materials\u003cbr\u003e2.1.43 Mica\u003cbr\u003e2.1.44 Molybdenum\u003cbr\u003e2.1.45 Molybdenum disulfide\u003cbr\u003e2.1.46 Molybdic oxide\u003cbr\u003e2.1.47 Nanofillers\u003cbr\u003e2.1.48 Nickel\u003cbr\u003e2.1.49 Nickel oxide\u003cbr\u003e2.1.50 Nickel zinc ferrite\u003cbr\u003e2.1.51 Perlite\u003cbr\u003e2.1.52 Polymeric fillers\u003cbr\u003e2.1.53 Potassium hexatitanate whiskers\u003cbr\u003e2.1.54 Pumice\u003cbr\u003e2.1.55 Pyrophyllite\u003cbr\u003e2.1.56 Rubber particles\u003cbr\u003e2.1.57 Sepiolite\u003cbr\u003e2.1.58 Silica \u003cbr\u003e2.1.58.1 Fumed silica\u003cbr\u003e2.1.58.2 Fused silica \u003cbr\u003e2.1.58.3 Precipitated silica\u003cbr\u003e2.1.58.4 Nanosilica\u003cbr\u003e2.1.58.5 Quartz (Tripoli) \u003cbr\u003e2.1.58.6 Sand \u003cbr\u003e2.1.58.7 Silica gel\u003cbr\u003e2.1.59 Silicon carbide\u003cbr\u003e2.1.60 Silicon nitride\u003cbr\u003e2.1.61 Silver powder and flakes\u003cbr\u003e2.1.62 Slate flour \u003cbr\u003e2.1.63 Talc \u003cbr\u003e2.1.64 Titanium dioxide\u003cbr\u003e2.1.65 Tungsten \u003cbr\u003e2.1.66 Vermiculite \u003cbr\u003e2.1.67 Wollastonite \u003cbr\u003e2.1.68 Wood flour and similar materials\u003cbr\u003e2.1.69 Zeolites \u003cbr\u003e2.1.70 Zinc borate \u003cbr\u003e2.1.71 Zinc oxide \u003cbr\u003e2.1.72 Zinc stannate \u003cbr\u003e2.1.73 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers\u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Cellulose fibers \u003cbr\u003e2.2.4 Glass fibers \u003cbr\u003e2.2.5 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e3.1 Filler packaging\u003cbr\u003e3.2 External transportation\u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems\u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 QUALITY CONTROL OF FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e4.1 Absorption coefficient\u003cbr\u003e4.2 Acidity or alkalinity of water extract\u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles\u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area\u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties\u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments\u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties\u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light\u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue\u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area\u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5.1 Density\u003cbr\u003e5.2 Particle size\u003cbr\u003e5.3 Particle size distribution\u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness\u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing\u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure\u003cbr\u003e5.11 Flocculation and sedimentation\u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH\u003cbr\u003e5.15 Zeta-potential\u003cbr\u003e5.16 Surface energy\u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling\u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties\u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties\u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient\u003cbr\u003e5.29 Melting temperature \u003cbr\u003e5.30 Electrical properties \u003cbr\u003e5.31 Magnetic properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e6.1 Reactivity\u003cbr\u003e6.2 Chemical groups on the filler surface\u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties\u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence\u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1 Particle distribution in matrix\u003cbr\u003e7.2 Orientation of filler particles in a matrix\u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction\u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization\u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e8.1 Tensile strength and elongation\u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Elastic modulus \u003cbr\u003e8.4 Flexural strength and modulus \u003cbr\u003e8.5 Impact resistance \u003cbr\u003e8.6 Hardness \u003cbr\u003e8.7 Tear strength\u003cbr\u003e8.8 Compressive strength\u003cbr\u003e8.9 Fracture resistance \u003cbr\u003e8.10 Wear \u003cbr\u003e8.11 Friction \u003cbr\u003e8.12 Abrasion \u003cbr\u003e8.13 Scratch resistance\u003cbr\u003e8.14 Fatigue \u003cbr\u003e8.15 Failure \u003cbr\u003e8.16 Adhesion \u003cbr\u003e8.17 Thermal deformation\u003cbr\u003e8.18 Shrinkage \u003cbr\u003e8.19 Warpage \u003cbr\u003e8.20 Compression set\u003cbr\u003e8.21 Load transfer \u003cbr\u003e8.22 Residual stress \u003cbr\u003e8.23 Creep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e9.1 Viscosity\u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation\u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity\u003cbr\u003e9.6 Dynamic mechanical behavior\u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity\u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e10.1 Crystallinity\u003cbr\u003e10.2 Crystallization behavior\u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity\u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e11.1 Irradiation\u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors\u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 FLAMMABILITY OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e12.1 Definitions\u003cbr\u003e12.2 Limiting oxygen index\u003cbr\u003e12.3 Ignition and flame spread rate\u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion\u003cbr\u003e12.6 Emission of gaseous components\u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e13.1 Adhesion promoters\u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers\u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents\u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e14.1 Physical methods\u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement\u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis\u003cbr\u003e14.1.11 Electric constants determination\u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test\u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index\u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy\u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area\u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis\u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis\u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy\u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy\u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 FILLERS IN COMMERCIAL POLYMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e15.1 Acrylics\u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer\u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Elastomers \u003cbr\u003e15.7 Epoxy resins \u003cbr\u003e15.8 Ethylene vinyl acetate copolymers \u003cbr\u003e15.9 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.10 Ethylene-propylene copolymers \u003cbr\u003e15.11 Ionomers \u003cbr\u003e15.12 Liquid crystalline polymers\u003cbr\u003e15.13 Perfluoroalkoxy resin \u003cbr\u003e15.14 Phenolic resins \u003cbr\u003e15.15 Poly(acrylic acid) \u003cbr\u003e15.16 Polyamides \u003cbr\u003e15.17 Polyamideimide \u003cbr\u003e15.18 Polyamines \u003cbr\u003e15.19 Polyaniline \u003cbr\u003e15.20 Polyaryletherketone\u003cbr\u003e15.21 Poly(butylene terephthalate) \u003cbr\u003e15.22 Polycarbonate \u003cbr\u003e15.23 Polyetheretherketone\u003cbr\u003e15.24 Polyetherimide \u003cbr\u003e15.25 Polyether sulfone \u003cbr\u003e15.26 Polyethylene \u003cbr\u003e15.27 Polyethylene, chlorinated \u003cbr\u003e15.28 Polyethylene, chlorosulfonated \u003cbr\u003e15.29 Poly(ethylene oxide) \u003cbr\u003e15.30 Poly(ethylene terephthalate)\u003cbr\u003e15.31 Polyimide \u003cbr\u003e15.32 Polymethylmethacrylate\u003cbr\u003e15.33 Polyoxymethylene \u003cbr\u003e15.34 Poly(phenylene ether)\u003cbr\u003e15.35 Poly(phenylene sulfide) \u003cbr\u003e15.36 Polypropylene \u003cbr\u003e15.37 Polypyrrole \u003cbr\u003e15.38 Polystyrene \u0026amp; high impact \u003cbr\u003e15.39 Polysulfides \u003cbr\u003e15.40 Polysulfone \u003cbr\u003e15.41 Polytetrafluoroethylene\u003cbr\u003e15.42 Polyurethanes \u003cbr\u003e15.43 Poly(vinyl acetate)\u003cbr\u003e15.44 Poly(vinyl alcohol)\u003cbr\u003e15.45 Poly(vinyl butyral) \u003cbr\u003e15.46 Poly(vinyl chloride) \u003cbr\u003e15.47 Rubbers \u003cbr\u003e15.47.1 Natural rubber\u003cbr\u003e15.47.2 Nitrile rubber \u003cbr\u003e15.47.3 Polybutadiene rubber \u003cbr\u003e15.47.4 Polybutyl rubber \u003cbr\u003e15.47.5 Polychloroprene \u003cbr\u003e15.47.6 Polyisobutylene \u003cbr\u003e15.47.7 Polyisoprene \u003cbr\u003e15.47.8 Styrene-butadiene rubber\u003cbr\u003e15.48 Silicones \u003cbr\u003e15.49 Styrene-acrylonitrile copolymer\u003cbr\u003e15.50 Tetrafluoroethylene-perfluoropropylene\u003cbr\u003e15.51 Unsaturated polyesters \u003cbr\u003e15.52 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 FILLER IN MATERIALS COMBINATIONS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e16.1 Blends, alloys and interpenetrating networks\u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 FORMULATION WITH FILLERS\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e18.1 Blow molding\u003cbr\u003e18.2 Calendering and hot-melt coating\u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding\u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding\u003cbr\u003e18.13 Rotational molding \u003cbr\u003e18.14 Sheet molding \u003cbr\u003e18.15 Thermoforming \u003cbr\u003e18.16 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace\u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints\u003cbr\u003e19.12 Cosmetics and pharmaceutical products\u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed\u003cbr\u003e19.20 Friction materials\u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields\u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication\u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 HAZARDS IN FILLER USE\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:50:53-05:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","additives for plastics","book","calcium carbon","compounding of rubber","fillers additives","fillers and environment","flame retardanst for plastics","graphite","magnesium","mica","nanofillers","p-additives","particular fillers","physical properties","polymer","polymers","quality control","silica"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372804,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Fillers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-41-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-41-6.jpg?v=1499441992"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-41-6.jpg?v=1499441992","options":["Title"],"media":[{"alt":null,"id":355724558429,"position":1,"preview_image":{"aspect_ratio":0.667,"height":499,"width":333,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-41-6.jpg?v=1499441992"},"aspect_ratio":0.667,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-41-6.jpg?v=1499441992","width":333}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-41-6 \u003cbr\u003e\u003cbr\u003eFigures: 578\u003cbr\u003eTables: 190\u003cbr\u003ePages: 774\u003cbr\u003eThird Edition\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003eOver 3,000 research papers, mostly published from 1994 to 2009 (over 1500 new papers in this edition), technical data from over 160 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous edition, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers. \u003cbr\u003e Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by 154 SEM TEM, AFM micrographs.\u003cbr\u003e The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. \u003cbr\u003e This book is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace. The previous edition was very popular among environmental engineers, patent and litigation lawyers, and employees of various governmental agencies. \u003cbr\u003e To summarize, major features of this handbook are:\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1.1 Expectations from fillers\u003cbr\u003e1.2 Typical filler properties\u003cbr\u003e1.3 Definitions\u003cbr\u003e1.4 Classification\u003cbr\u003e1.5 Markets and trends\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders\u003cbr\u003e2.1.2 Aluminum borate whiskers\u003cbr\u003e2.1.3 Aluminum oxide \u003cbr\u003e2.1.4 Aluminum trihydroxide\u003cbr\u003e2.1.5 Anthracite\u003cbr\u003e2.1.6 Antimonate of sodium\u003cbr\u003e2.1.7 Antimony pentoxide\u003cbr\u003e2.1.8 Antimony trioxide\u003cbr\u003e2.1.9 Ammonium octamolybdate\u003cbr\u003e2.1.10 Apatite\u003cbr\u003e2.1.11 Ash, fly\u003cbr\u003e2.1.12 Attapulgite\u003cbr\u003e2.1.13 Barium metaborate\u003cbr\u003e2.1.14 Barium sulfate\u003cbr\u003e2.1.15 Barium \u0026amp; strontium sulfates\u003cbr\u003e2.1.16 Barium titanate\u003cbr\u003e2.1.17 Bentonite\u003cbr\u003e2.1.18 Beryllium oxide\u003cbr\u003e2.1.19 Boron nitride\u003cbr\u003e2.1.20 Calcium carbonate\u003cbr\u003e2.1.21 Calcium hydroxide\u003cbr\u003e2.1.22 Calcium sulfate\u003cbr\u003e2.1.23 Carbon black \u003cbr\u003e2.1.24 Ceramic beads\u003cbr\u003e2.1.25 Clay\u003cbr\u003e2.1.26 Copper\u003cbr\u003e2.1.27 Cobalt powder\u003cbr\u003e2.1.28 Cristobalite\u003cbr\u003e2.1.29 Diatomaceous earth\u003cbr\u003e2.1.30 Dolomite\u003cbr\u003e2.1.31 Ferrites\u003cbr\u003e2.1.32 Feldspar\u003cbr\u003e2.1.33 Glass beads\u003cbr\u003e2.1.34 Gold\u003cbr\u003e2.1.35 Graphite\u003cbr\u003e2.1.36 Hydrous calcium silicate\u003cbr\u003e2.1.37 Iron oxide \u003cbr\u003e2.1.38 Kaolin \u003cbr\u003e2.1.39 Lithopone \u003cbr\u003e2.1.40 Magnesium oxide \u003cbr\u003e2.1.41 Magnesium hydroxide \u003cbr\u003e2.1.42 Metal-containing conductive materials\u003cbr\u003e2.1.43 Mica\u003cbr\u003e2.1.44 Molybdenum\u003cbr\u003e2.1.45 Molybdenum disulfide\u003cbr\u003e2.1.46 Molybdic oxide\u003cbr\u003e2.1.47 Nanofillers\u003cbr\u003e2.1.48 Nickel\u003cbr\u003e2.1.49 Nickel oxide\u003cbr\u003e2.1.50 Nickel zinc ferrite\u003cbr\u003e2.1.51 Perlite\u003cbr\u003e2.1.52 Polymeric fillers\u003cbr\u003e2.1.53 Potassium hexatitanate whiskers\u003cbr\u003e2.1.54 Pumice\u003cbr\u003e2.1.55 Pyrophyllite\u003cbr\u003e2.1.56 Rubber particles\u003cbr\u003e2.1.57 Sepiolite\u003cbr\u003e2.1.58 Silica \u003cbr\u003e2.1.58.1 Fumed silica\u003cbr\u003e2.1.58.2 Fused silica \u003cbr\u003e2.1.58.3 Precipitated silica\u003cbr\u003e2.1.58.4 Nanosilica\u003cbr\u003e2.1.58.5 Quartz (Tripoli) \u003cbr\u003e2.1.58.6 Sand \u003cbr\u003e2.1.58.7 Silica gel\u003cbr\u003e2.1.59 Silicon carbide\u003cbr\u003e2.1.60 Silicon nitride\u003cbr\u003e2.1.61 Silver powder and flakes\u003cbr\u003e2.1.62 Slate flour \u003cbr\u003e2.1.63 Talc \u003cbr\u003e2.1.64 Titanium dioxide\u003cbr\u003e2.1.65 Tungsten \u003cbr\u003e2.1.66 Vermiculite \u003cbr\u003e2.1.67 Wollastonite \u003cbr\u003e2.1.68 Wood flour and similar materials\u003cbr\u003e2.1.69 Zeolites \u003cbr\u003e2.1.70 Zinc borate \u003cbr\u003e2.1.71 Zinc oxide \u003cbr\u003e2.1.72 Zinc stannate \u003cbr\u003e2.1.73 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers\u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Cellulose fibers \u003cbr\u003e2.2.4 Glass fibers \u003cbr\u003e2.2.5 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e3.1 Filler packaging\u003cbr\u003e3.2 External transportation\u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems\u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 QUALITY CONTROL OF FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e4.1 Absorption coefficient\u003cbr\u003e4.2 Acidity or alkalinity of water extract\u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles\u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area\u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties\u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments\u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties\u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light\u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue\u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area\u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5.1 Density\u003cbr\u003e5.2 Particle size\u003cbr\u003e5.3 Particle size distribution\u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness\u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing\u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure\u003cbr\u003e5.11 Flocculation and sedimentation\u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH\u003cbr\u003e5.15 Zeta-potential\u003cbr\u003e5.16 Surface energy\u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling\u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties\u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties\u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient\u003cbr\u003e5.29 Melting temperature \u003cbr\u003e5.30 Electrical properties \u003cbr\u003e5.31 Magnetic properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e6.1 Reactivity\u003cbr\u003e6.2 Chemical groups on the filler surface\u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties\u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence\u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1 Particle distribution in matrix\u003cbr\u003e7.2 Orientation of filler particles in a matrix\u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction\u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization\u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e8.1 Tensile strength and elongation\u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Elastic modulus \u003cbr\u003e8.4 Flexural strength and modulus \u003cbr\u003e8.5 Impact resistance \u003cbr\u003e8.6 Hardness \u003cbr\u003e8.7 Tear strength\u003cbr\u003e8.8 Compressive strength\u003cbr\u003e8.9 Fracture resistance \u003cbr\u003e8.10 Wear \u003cbr\u003e8.11 Friction \u003cbr\u003e8.12 Abrasion \u003cbr\u003e8.13 Scratch resistance\u003cbr\u003e8.14 Fatigue \u003cbr\u003e8.15 Failure \u003cbr\u003e8.16 Adhesion \u003cbr\u003e8.17 Thermal deformation\u003cbr\u003e8.18 Shrinkage \u003cbr\u003e8.19 Warpage \u003cbr\u003e8.20 Compression set\u003cbr\u003e8.21 Load transfer \u003cbr\u003e8.22 Residual stress \u003cbr\u003e8.23 Creep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e9.1 Viscosity\u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation\u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity\u003cbr\u003e9.6 Dynamic mechanical behavior\u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity\u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e10.1 Crystallinity\u003cbr\u003e10.2 Crystallization behavior\u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity\u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e11.1 Irradiation\u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors\u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 FLAMMABILITY OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e12.1 Definitions\u003cbr\u003e12.2 Limiting oxygen index\u003cbr\u003e12.3 Ignition and flame spread rate\u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion\u003cbr\u003e12.6 Emission of gaseous components\u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e13.1 Adhesion promoters\u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers\u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents\u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e14.1 Physical methods\u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement\u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis\u003cbr\u003e14.1.11 Electric constants determination\u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test\u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index\u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy\u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area\u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis\u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis\u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy\u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy\u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 FILLERS IN COMMERCIAL POLYMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e15.1 Acrylics\u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer\u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Elastomers \u003cbr\u003e15.7 Epoxy resins \u003cbr\u003e15.8 Ethylene vinyl acetate copolymers \u003cbr\u003e15.9 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.10 Ethylene-propylene copolymers \u003cbr\u003e15.11 Ionomers \u003cbr\u003e15.12 Liquid crystalline polymers\u003cbr\u003e15.13 Perfluoroalkoxy resin \u003cbr\u003e15.14 Phenolic resins \u003cbr\u003e15.15 Poly(acrylic acid) \u003cbr\u003e15.16 Polyamides \u003cbr\u003e15.17 Polyamideimide \u003cbr\u003e15.18 Polyamines \u003cbr\u003e15.19 Polyaniline \u003cbr\u003e15.20 Polyaryletherketone\u003cbr\u003e15.21 Poly(butylene terephthalate) \u003cbr\u003e15.22 Polycarbonate \u003cbr\u003e15.23 Polyetheretherketone\u003cbr\u003e15.24 Polyetherimide \u003cbr\u003e15.25 Polyether sulfone \u003cbr\u003e15.26 Polyethylene \u003cbr\u003e15.27 Polyethylene, chlorinated \u003cbr\u003e15.28 Polyethylene, chlorosulfonated \u003cbr\u003e15.29 Poly(ethylene oxide) \u003cbr\u003e15.30 Poly(ethylene terephthalate)\u003cbr\u003e15.31 Polyimide \u003cbr\u003e15.32 Polymethylmethacrylate\u003cbr\u003e15.33 Polyoxymethylene \u003cbr\u003e15.34 Poly(phenylene ether)\u003cbr\u003e15.35 Poly(phenylene sulfide) \u003cbr\u003e15.36 Polypropylene \u003cbr\u003e15.37 Polypyrrole \u003cbr\u003e15.38 Polystyrene \u0026amp; high impact \u003cbr\u003e15.39 Polysulfides \u003cbr\u003e15.40 Polysulfone \u003cbr\u003e15.41 Polytetrafluoroethylene\u003cbr\u003e15.42 Polyurethanes \u003cbr\u003e15.43 Poly(vinyl acetate)\u003cbr\u003e15.44 Poly(vinyl alcohol)\u003cbr\u003e15.45 Poly(vinyl butyral) \u003cbr\u003e15.46 Poly(vinyl chloride) \u003cbr\u003e15.47 Rubbers \u003cbr\u003e15.47.1 Natural rubber\u003cbr\u003e15.47.2 Nitrile rubber \u003cbr\u003e15.47.3 Polybutadiene rubber \u003cbr\u003e15.47.4 Polybutyl rubber \u003cbr\u003e15.47.5 Polychloroprene \u003cbr\u003e15.47.6 Polyisobutylene \u003cbr\u003e15.47.7 Polyisoprene \u003cbr\u003e15.47.8 Styrene-butadiene rubber\u003cbr\u003e15.48 Silicones \u003cbr\u003e15.49 Styrene-acrylonitrile copolymer\u003cbr\u003e15.50 Tetrafluoroethylene-perfluoropropylene\u003cbr\u003e15.51 Unsaturated polyesters \u003cbr\u003e15.52 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 FILLER IN MATERIALS COMBINATIONS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e16.1 Blends, alloys and interpenetrating networks\u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 FORMULATION WITH FILLERS\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e18.1 Blow molding\u003cbr\u003e18.2 Calendering and hot-melt coating\u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding\u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding\u003cbr\u003e18.13 Rotational molding \u003cbr\u003e18.14 Sheet molding \u003cbr\u003e18.15 Thermoforming \u003cbr\u003e18.16 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace\u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints\u003cbr\u003e19.12 Cosmetics and pharmaceutical products\u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed\u003cbr\u003e19.20 Friction materials\u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields\u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication\u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 HAZARDS IN FILLER USE\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of UV Degrada...
$275.00
{"id":11242220420,"title":"Handbook of UV Degradation and Stabilization, 2nd Edition","handle":"978-1-895198-86-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-86-7 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 420\u003c\/div\u003e\n\u003cdiv\u003eFigures 101\u003c\/div\u003e\n\u003cdiv\u003eTables 256\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book, the first monograph fully devoted to UV degradation and stabilization ever published in the English language, has 12 chapters, each discussing different aspect of UV related phenomena occurring when polymeric materials are exposed to UV radiation.\u003cbr\u003e\u003cbr\u003eIn the introduction, the existing literature has been reviewed to find out how plants, animals, and humans protect themselves against UV radiation. This review permits evaluation of mechanisms of protection against UV used by living things and potential application of these mechanisms in the protection of natural and synthetic polymeric materials. \u003cbr\u003e\u003cbr\u003ePhotophysics, discussed in the second chapter, helps to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process. \u003cbr\u003e\u003cbr\u003eThese effects are combined with photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a set of data prepared according to a systematic outline as listed in the Table of Contents. \u003cbr\u003e\u003cbr\u003eStability of UV stabilizers, important for predicting the lifetime of their protection is discussed in Chapter 5. Different reasons of instability are pointed out in the evaluation.\u003cbr\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003cbr\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7 and 38 groups of final products, which use the majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003cbr\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential for further understanding of UV degradation and stabilization.\u003cbr\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and commercial use of the products (Chapter 12).\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 16 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization, Handbook of UV Degradation and Stabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:43-04:00","created_at":"2017-06-22T21:13:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","book","environment","health and safety","mechanisms of UV degradation","mechanisms of UV stabilization","p-properties","photophysics and photochemistry","polymer","PVC degradation","sunscreen","sustainability of polymers materials","uv degradation","UV stabilizers","UV stabilizers health and safety"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371972,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of UV Degradation and Stabilization, 2nd Edition","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-86-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-86-7.jpg?v=1499887422"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-86-7.jpg?v=1499887422","options":["Title"],"media":[{"alt":null,"id":356343447645,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-86-7.jpg?v=1499887422"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-86-7.jpg?v=1499887422","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-86-7 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 420\u003c\/div\u003e\n\u003cdiv\u003eFigures 101\u003c\/div\u003e\n\u003cdiv\u003eTables 256\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book, the first monograph fully devoted to UV degradation and stabilization ever published in the English language, has 12 chapters, each discussing different aspect of UV related phenomena occurring when polymeric materials are exposed to UV radiation.\u003cbr\u003e\u003cbr\u003eIn the introduction, the existing literature has been reviewed to find out how plants, animals, and humans protect themselves against UV radiation. This review permits evaluation of mechanisms of protection against UV used by living things and potential application of these mechanisms in the protection of natural and synthetic polymeric materials. \u003cbr\u003e\u003cbr\u003ePhotophysics, discussed in the second chapter, helps to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process. \u003cbr\u003e\u003cbr\u003eThese effects are combined with photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a set of data prepared according to a systematic outline as listed in the Table of Contents. \u003cbr\u003e\u003cbr\u003eStability of UV stabilizers, important for predicting the lifetime of their protection is discussed in Chapter 5. Different reasons of instability are pointed out in the evaluation.\u003cbr\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003cbr\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7 and 38 groups of final products, which use the majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003cbr\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential for further understanding of UV degradation and stabilization.\u003cbr\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and commercial use of the products (Chapter 12).\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 16 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization, Handbook of UV Degradation and Stabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of UV Degrada...
$275.00
{"id":11242220356,"title":"Handbook of UV Degradation and Stabilization","handle":"978-1-895198-46-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-895198-46-1 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eFirst Edition\u003cbr\u003ePages: 354\u003cbr\u003eChapters: 12\u003cbr\u003eFigures: 94\u003cbr\u003eTables: 232\u003c\/p\u003e\n\u003cp\u003eHardcover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book, the first monograph fully devoted to UV degradation and stabilization ever published in the English language, has 12 chapters, each discussing different aspect of UV related phenomena. In the introduction, the existing literature has been reviewed to find out how plants, animals, and humans protect themselves against UV radiation, and which lessons were already applied to the protection of man-made materials and final products, and which mechanisms work in living things but are not in the use of technical products.\n\u003cp\u003e\u003cbr\u003ePhotophysics is discussed in the second chapter to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process but these effects are also combined with photochemical properties of stabilizers and their mechanisms of stabilization, and this subject is discussed in Chapter 3.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a set of data prepared according to a systematic outline as listed in the Table of Contents. Stability of UV stabilizers, important for predicting the lifetime of their protection is discussed in Chapter 5. Different reasons of instability are included in the evaluation.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. 50 polymers and rubbers are discussed in different sections of Chapter 7 and 40 groups of final products which use a majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential in further understanding of UV degradation and stabilization.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and public using the products (Chapter 12).\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003cbr\u003e\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e2. Photophysics and photochemistry\u003cbr\u003e\u003cbr\u003e3. Mechanisms of UV stabilization\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e3.1. Absorption, reflection, and refraction\u003cbr\u003e\u003cbr\u003e3.2. Energy dissipation\u003cbr\u003e\u003cbr\u003e3.3. Radical deactivation and retarding propagation of reaction chain\u003cbr\u003e\u003cbr\u003e3.4. Singlet oxygen quenching\u003cbr\u003e\u003cbr\u003e3.5. Degree of hindrance\u003cbr\u003e\u003cbr\u003e3.6. Antioxidation\u003cbr\u003e\u003cbr\u003e3.7. Peroxide and hydroperoxide decomposition\u003cbr\u003e\u003cbr\u003e3.8. Acid neutralization\u003cbr\u003e\u003cbr\u003e3.9. Repairing defects caused by degradation\u003cbr\u003e\u003cbr\u003e3.10. Synergism\u003cbr\u003e\u003cbr\u003e3.11. Antagonism\u003cbr\u003e\u003cbr\u003e3.12. Effect of physical properties\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. UV stabilizers \u003c\/strong\u003e(chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e\u003cbr\u003e4.1. Organic UV absorbers\u003cbr\u003e\u003cbr\u003e4.2. Inorganic materials\u003cbr\u003e\u003cbr\u003e4.3. Particulate UV screeners\u003cbr\u003e\u003cbr\u003e4.4. Fiber\u003cbr\u003e\u003cbr\u003e4.5. Hindered amine stabilizers\u003cbr\u003e\u003cbr\u003e4.6. Phenolic antioxidants\u003cbr\u003e\u003cbr\u003e4.7. Phosphites \u0026amp; phosphonites\u003cbr\u003e\u003cbr\u003e4.8. Thiosynergists\u003cbr\u003e\u003cbr\u003e4.9. Amines\u003cbr\u003e\u003cbr\u003e4.10. Quencher\u003cbr\u003e\u003cbr\u003e4.11. Optical brighteners\u003cbr\u003e\u003cbr\u003e4.12. Synergistic mixtures of stabilizers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Stability of UV stabilizers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e5.1. UV degradation\u003cbr\u003e\u003cbr\u003e5.2. Electronic structure\u003cbr\u003e\u003cbr\u003e5.3. Chemical reactivity\u003cbr\u003e\u003cbr\u003e5.4. Volatility\u003cbr\u003e\u003cbr\u003e5.5. Effect of temperature\u003cbr\u003e\u003cbr\u003e5.6. Oxygen partial pressure\u003cbr\u003e\u003cbr\u003e5.7. Pollutants\u003cbr\u003e\u003cbr\u003e5.8. Acid neutralization\u003cbr\u003e\u003cbr\u003e5.9. Radical attack\u003cbr\u003e\u003cbr\u003e5.10. Diffusion and migration\u003cbr\u003e\u003cbr\u003e5.11. Grafting\u003cbr\u003e\u003cbr\u003e5.12. Polymerization and copolymerization\u003cbr\u003e\u003cbr\u003e5.13. Effect of pesticides\u003cbr\u003e\u003cbr\u003e5.14. Complexation and ligand formation\u003cbr\u003e\u003cbr\u003e5.15. Excited state interactions\u003cbr\u003e\u003cbr\u003e5.16. Sol-gel protective coatings\u003cbr\u003e\u003cbr\u003e5.17. Interaction with pigments\u003cbr\u003e\u003cbr\u003e5.18. Gas fading\u003cbr\u003e\u003cbr\u003e5.19. Effect of stress\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Principles of stabilizer selection\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e6.1. Polarity\u003cbr\u003e\u003cbr\u003e6.2. Acid\/base\u003cbr\u003e\u003cbr\u003e6.3. Hydrogen bonding\u003cbr\u003e\u003cbr\u003e6.4. Process temperature\u003cbr\u003e\u003cbr\u003e6.5. Color\u003cbr\u003e\u003cbr\u003e6.6. Part thickness\u003cbr\u003e\u003cbr\u003e6.7. Volatility, diffusion, migration, and extraction\u003cbr\u003e\u003cbr\u003e6.8. Food contact\u003cbr\u003e\u003cbr\u003e6.9. Thermal stabilizing performance\u003cbr\u003e\u003cbr\u003e6.10. State\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1. Polymers\u003cbr\u003e\u003cbr\u003e7.1.1. Acrylonitrile-styrene-acrylate\u003cbr\u003e\u003cbr\u003e7.1.2. Acrylonitrile-butadiene-styrene\u003cbr\u003e\u003cbr\u003e7.1.3. Acrylic resins\u003cbr\u003e\u003cbr\u003e7.1.4. Alkyd resins\u003cbr\u003e\u003cbr\u003e7.1.5. Cellulose-based polymers\u003cbr\u003e\u003cbr\u003e7.1.6. Chlorosulfonated polyethylene\u003cbr\u003e\u003cbr\u003e7.1.7. Copolymers\u003cbr\u003e\u003cbr\u003e7.1.8. Epoxy resin\u003cbr\u003e\u003cbr\u003e7.1.9. Ethylene-propylene copolymer\u003cbr\u003e\u003cbr\u003e7.1.10. Ethylene-propylene diene monomer\u003cbr\u003e\u003cbr\u003e7.1.11. Ethylene-tetrafluoroethylene copolymer\u003cbr\u003e\u003cbr\u003e7.1.12. Ethylene-vinyl acetate copolymer\u003cbr\u003e\u003cbr\u003e7.1.13. Fluorinated ethyl-propylene\u003cbr\u003e\u003cbr\u003e7.1.14. Polyacrylamide\u003cbr\u003e\u003cbr\u003e7.1.15. Polyacrylonitrile\u003cbr\u003e\u003cbr\u003e7.1.16. Polyalkylfluorene\u003cbr\u003e\u003cbr\u003e7.1.17. Polyamide\u003cbr\u003e\u003cbr\u003e7.1.18. Polyaniline\u003cbr\u003e\u003cbr\u003e7.1.19. Polyarylate\u003cbr\u003e\u003cbr\u003e7.1.20. Polybutylthiophene\u003cbr\u003e\u003cbr\u003e7.1.21. Polycarbonate\u003cbr\u003e\u003cbr\u003e7.1.22. Polyesters\u003cbr\u003e\u003cbr\u003e7.1.23. Polyetherimide\u003cbr\u003e\u003cbr\u003e7.1.24. Polyethylene\u003cbr\u003e\u003cbr\u003e7.1.25. Polyfluorenes\u003cbr\u003e\u003cbr\u003e7.1.26. Polyimide\u003cbr\u003e\u003cbr\u003e7.1.27. Poly(L-lactic acid)\u003cbr\u003e\u003cbr\u003e7.1.28. Polymethylmethacrylate\u003cbr\u003e\u003cbr\u003e7.1.29. Polymethylpentene\u003cbr\u003e\u003cbr\u003e7.1.30. Polyoxymethylene\u003cbr\u003e\u003cbr\u003e7.1.31. Polyphthalamide\u003cbr\u003e\u003cbr\u003e7.1.32. Poly(phenylene oxide)\u003cbr\u003e\u003cbr\u003e7.1.33. Poly(p-phenylene sulfide)\u003cbr\u003e\u003cbr\u003e7.1.34. Polypropylene\u003cbr\u003e\u003cbr\u003e7.1.35. Polypyrrole\u003cbr\u003e\u003cbr\u003e7.1.36. Polystyrene\u003cbr\u003e\u003cbr\u003e7.1.37. Polytetrafluoroethylene\u003cbr\u003e\u003cbr\u003e7.1.38. Polyurethane\u003cbr\u003e\u003cbr\u003e7.1.39. Poly(vinyl chloride)\u003cbr\u003e\u003cbr\u003e7.1.40. Poly(vinyl fluoride)\u003cbr\u003e\u003cbr\u003e7.1.41. Poly(vinylidene fluoride)\u003cbr\u003e\u003cbr\u003e7.1.42. Silicone\u003cbr\u003e\u003cbr\u003e7.1.43. Styrene-acrylonitrile\u003cbr\u003e\u003cbr\u003e7.1.44. Vinyl ester resin\u003cbr\u003e\u003cbr\u003e7.2. Rubber\u003cbr\u003e\u003cbr\u003e7.2.1. Polybutadiene\u003cbr\u003e\u003cbr\u003e7.2.2. Polychloroprene\u003cbr\u003e\u003cbr\u003e7.2.3. Polyisoprene\u003cbr\u003e\u003cbr\u003e7.2.4. Polyisobutylene\u003cbr\u003e\u003cbr\u003e7.2.5. Styrene-butadiene rubber\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003e8.1. Adhesives\u003cbr\u003e\u003cbr\u003e8.2. Aerospace\u003cbr\u003e\u003cbr\u003e8.3. Agriculture\u003cbr\u003e\u003cbr\u003e8.4. Automotive\u003cbr\u003e\u003cbr\u003e8.5. Biology\u003cbr\u003e\u003cbr\u003e8.6. Coated fabrics\u003cbr\u003e\u003cbr\u003e8.7. Coatings and paints\u003cbr\u003e\u003cbr\u003e8.8. Coil-coated materials\u003cbr\u003e\u003cbr\u003e8.9. Cosmetics\u003cbr\u003e\u003cbr\u003e8.10. Dental\u003cbr\u003e\u003cbr\u003e8.11. Door and window profiles\u003cbr\u003e\u003cbr\u003e8.12. Electrical and electronic applications\u003cbr\u003e\u003cbr\u003e8.13. Fibers and yarns\u003cbr\u003e\u003cbr\u003e8.14. Films\u003cbr\u003e\u003cbr\u003e8.15. Fishing net\u003cbr\u003e\u003cbr\u003e8.16. Foams\u003cbr\u003e\u003cbr\u003e8.17. Food\u003cbr\u003e\u003cbr\u003e8.18. Furniture\u003cbr\u003e\u003cbr\u003e8.19. Geosynthetics\u003cbr\u003e\u003cbr\u003e8.20. Glazing\u003cbr\u003e\u003cbr\u003e8.21. Medical supplies\u003cbr\u003e\u003cbr\u003e8.22. Optical fibers\u003cbr\u003e\u003cbr\u003e8.23. Packaging\u003cbr\u003e\u003cbr\u003e8.24. Pharmaceutical\u003cbr\u003e\u003cbr\u003e8.25. Pipes\u003cbr\u003e\u003cbr\u003e8.26. Pulp and paper\u003cbr\u003e\u003cbr\u003e8.27. Railway materials\u003cbr\u003e\u003cbr\u003e8.28. Rotational molded products\u003cbr\u003e\u003cbr\u003e8.29. Roofing materials\u003cbr\u003e\u003cbr\u003e8.30. Sealants\u003cbr\u003e\u003cbr\u003e8.31. Sensors and switches\u003cbr\u003e\u003cbr\u003e8.32. Sheets\u003cbr\u003e\u003cbr\u003e8.33. Siding\u003cbr\u003e\u003cbr\u003e8.34. Solar cells and solar energy applications\u003cbr\u003e\u003cbr\u003e8.35. Sporting equipment\u003cbr\u003e\u003cbr\u003e8.36. Tapes\u003cbr\u003e\u003cbr\u003e8.37. Textiles\u003cbr\u003e\u003cbr\u003e8.38. Windshield\u003cbr\u003e\u003cbr\u003e8.39. Wire and cable\u003cbr\u003e\u003cbr\u003e8.40. Wood\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9 Focus on technology - Sunscreen \u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eChristine Mendrok-Edinger, DSM Nutritional Products Ltd., Switzerland\u003cbr\u003e\u003cbr\u003e9.1 Introduction and history of sunscreens\u003cbr\u003e\u003cbr\u003e9.2 Photoreactions of UV absorbers in cosmetic sunscreens\u003cbr\u003e\u003cbr\u003e9.3 Ways of photostabilization in sunscreen products\u003cbr\u003e\u003cbr\u003e9.4 Formulating for photostability\u003cbr\u003e\u003cbr\u003e9.5 Summary\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 UV stabilizers and other components of formulation \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Analytical methods in UV degradation and stabilization studies\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e11.1 Quality control of UV stabilizers\u003cbr\u003e\u003cbr\u003e11.2 Lifetime prediction\u003cbr\u003e\u003cbr\u003e11.3 Molecular weight\u003cbr\u003e\u003cbr\u003e11.4 Color change\u003cbr\u003e\u003cbr\u003e11.5 Mechanical properties\u003cbr\u003e\u003cbr\u003e11.6 Microscopy\u003cbr\u003e\u003cbr\u003e11.7 Impedance measurement\u003cbr\u003e\u003cbr\u003e11.8 Surface roughness\u003cbr\u003e\u003cbr\u003e11.9 Imaging techniques\u003cbr\u003e\u003cbr\u003e11.10 Chromatography\u003cbr\u003e\u003cbr\u003e11.11 Spectroscopy\u003cbr\u003e\u003cbr\u003e11.11.1 ESR\u003cbr\u003e\u003cbr\u003e11.11.2 DART-MS\u003cbr\u003e\u003cbr\u003e11.11.3 FTIR\u003cbr\u003e\u003cbr\u003e11.11.4 NMR\u003cbr\u003e\u003cbr\u003e11.11.5 UV\u003cbr\u003e\u003cbr\u003e11.12 Hydroperoxide determination\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 UV stabilizers - health \u0026amp; safety\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e12.1 Toxic substance control\u003cbr\u003e\u003cbr\u003e12.2 Carcinogenic effect\u003cbr\u003e\u003cbr\u003e12.3 Workplace exposure limits\u003cbr\u003e\u003cbr\u003e12.4 Food regulatory acts\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 16 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization, Handbook of UV Degradation and Stabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:42-04:00","created_at":"2017-06-22T21:13:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","mechanisms of UV degradation","mechanisms of UV stabilization","p-properties","photophysics and photochemistry","poly","polymer","PVC degradation","sustainability of polymers materials","thermal stabilizing performance","uv degradation","UV stabilizers","UV stabilizers health and safety","weathering"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371908,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of UV Degradation and Stabilization","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-46-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-46-1.jpg?v=1503341840"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-46-1.jpg?v=1503341840","options":["Title"],"media":[{"alt":null,"id":407359193181,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-46-1.jpg?v=1503341840"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-46-1.jpg?v=1503341840","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-895198-46-1 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eFirst Edition\u003cbr\u003ePages: 354\u003cbr\u003eChapters: 12\u003cbr\u003eFigures: 94\u003cbr\u003eTables: 232\u003c\/p\u003e\n\u003cp\u003eHardcover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book, the first monograph fully devoted to UV degradation and stabilization ever published in the English language, has 12 chapters, each discussing different aspect of UV related phenomena. In the introduction, the existing literature has been reviewed to find out how plants, animals, and humans protect themselves against UV radiation, and which lessons were already applied to the protection of man-made materials and final products, and which mechanisms work in living things but are not in the use of technical products.\n\u003cp\u003e\u003cbr\u003ePhotophysics is discussed in the second chapter to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process but these effects are also combined with photochemical properties of stabilizers and their mechanisms of stabilization, and this subject is discussed in Chapter 3.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a set of data prepared according to a systematic outline as listed in the Table of Contents. Stability of UV stabilizers, important for predicting the lifetime of their protection is discussed in Chapter 5. Different reasons of instability are included in the evaluation.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. 50 polymers and rubbers are discussed in different sections of Chapter 7 and 40 groups of final products which use a majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential in further understanding of UV degradation and stabilization.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and public using the products (Chapter 12).\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003cbr\u003e\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e2. Photophysics and photochemistry\u003cbr\u003e\u003cbr\u003e3. Mechanisms of UV stabilization\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e3.1. Absorption, reflection, and refraction\u003cbr\u003e\u003cbr\u003e3.2. Energy dissipation\u003cbr\u003e\u003cbr\u003e3.3. Radical deactivation and retarding propagation of reaction chain\u003cbr\u003e\u003cbr\u003e3.4. Singlet oxygen quenching\u003cbr\u003e\u003cbr\u003e3.5. Degree of hindrance\u003cbr\u003e\u003cbr\u003e3.6. Antioxidation\u003cbr\u003e\u003cbr\u003e3.7. Peroxide and hydroperoxide decomposition\u003cbr\u003e\u003cbr\u003e3.8. Acid neutralization\u003cbr\u003e\u003cbr\u003e3.9. Repairing defects caused by degradation\u003cbr\u003e\u003cbr\u003e3.10. Synergism\u003cbr\u003e\u003cbr\u003e3.11. Antagonism\u003cbr\u003e\u003cbr\u003e3.12. Effect of physical properties\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. UV stabilizers \u003c\/strong\u003e(chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e\u003cbr\u003e4.1. Organic UV absorbers\u003cbr\u003e\u003cbr\u003e4.2. Inorganic materials\u003cbr\u003e\u003cbr\u003e4.3. Particulate UV screeners\u003cbr\u003e\u003cbr\u003e4.4. Fiber\u003cbr\u003e\u003cbr\u003e4.5. Hindered amine stabilizers\u003cbr\u003e\u003cbr\u003e4.6. Phenolic antioxidants\u003cbr\u003e\u003cbr\u003e4.7. Phosphites \u0026amp; phosphonites\u003cbr\u003e\u003cbr\u003e4.8. Thiosynergists\u003cbr\u003e\u003cbr\u003e4.9. Amines\u003cbr\u003e\u003cbr\u003e4.10. Quencher\u003cbr\u003e\u003cbr\u003e4.11. Optical brighteners\u003cbr\u003e\u003cbr\u003e4.12. Synergistic mixtures of stabilizers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Stability of UV stabilizers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e5.1. UV degradation\u003cbr\u003e\u003cbr\u003e5.2. Electronic structure\u003cbr\u003e\u003cbr\u003e5.3. Chemical reactivity\u003cbr\u003e\u003cbr\u003e5.4. Volatility\u003cbr\u003e\u003cbr\u003e5.5. Effect of temperature\u003cbr\u003e\u003cbr\u003e5.6. Oxygen partial pressure\u003cbr\u003e\u003cbr\u003e5.7. Pollutants\u003cbr\u003e\u003cbr\u003e5.8. Acid neutralization\u003cbr\u003e\u003cbr\u003e5.9. Radical attack\u003cbr\u003e\u003cbr\u003e5.10. Diffusion and migration\u003cbr\u003e\u003cbr\u003e5.11. Grafting\u003cbr\u003e\u003cbr\u003e5.12. Polymerization and copolymerization\u003cbr\u003e\u003cbr\u003e5.13. Effect of pesticides\u003cbr\u003e\u003cbr\u003e5.14. Complexation and ligand formation\u003cbr\u003e\u003cbr\u003e5.15. Excited state interactions\u003cbr\u003e\u003cbr\u003e5.16. Sol-gel protective coatings\u003cbr\u003e\u003cbr\u003e5.17. Interaction with pigments\u003cbr\u003e\u003cbr\u003e5.18. Gas fading\u003cbr\u003e\u003cbr\u003e5.19. Effect of stress\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Principles of stabilizer selection\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e6.1. Polarity\u003cbr\u003e\u003cbr\u003e6.2. Acid\/base\u003cbr\u003e\u003cbr\u003e6.3. Hydrogen bonding\u003cbr\u003e\u003cbr\u003e6.4. Process temperature\u003cbr\u003e\u003cbr\u003e6.5. Color\u003cbr\u003e\u003cbr\u003e6.6. Part thickness\u003cbr\u003e\u003cbr\u003e6.7. Volatility, diffusion, migration, and extraction\u003cbr\u003e\u003cbr\u003e6.8. Food contact\u003cbr\u003e\u003cbr\u003e6.9. Thermal stabilizing performance\u003cbr\u003e\u003cbr\u003e6.10. State\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1. Polymers\u003cbr\u003e\u003cbr\u003e7.1.1. Acrylonitrile-styrene-acrylate\u003cbr\u003e\u003cbr\u003e7.1.2. Acrylonitrile-butadiene-styrene\u003cbr\u003e\u003cbr\u003e7.1.3. Acrylic resins\u003cbr\u003e\u003cbr\u003e7.1.4. Alkyd resins\u003cbr\u003e\u003cbr\u003e7.1.5. Cellulose-based polymers\u003cbr\u003e\u003cbr\u003e7.1.6. Chlorosulfonated polyethylene\u003cbr\u003e\u003cbr\u003e7.1.7. Copolymers\u003cbr\u003e\u003cbr\u003e7.1.8. Epoxy resin\u003cbr\u003e\u003cbr\u003e7.1.9. Ethylene-propylene copolymer\u003cbr\u003e\u003cbr\u003e7.1.10. Ethylene-propylene diene monomer\u003cbr\u003e\u003cbr\u003e7.1.11. Ethylene-tetrafluoroethylene copolymer\u003cbr\u003e\u003cbr\u003e7.1.12. Ethylene-vinyl acetate copolymer\u003cbr\u003e\u003cbr\u003e7.1.13. Fluorinated ethyl-propylene\u003cbr\u003e\u003cbr\u003e7.1.14. Polyacrylamide\u003cbr\u003e\u003cbr\u003e7.1.15. Polyacrylonitrile\u003cbr\u003e\u003cbr\u003e7.1.16. Polyalkylfluorene\u003cbr\u003e\u003cbr\u003e7.1.17. Polyamide\u003cbr\u003e\u003cbr\u003e7.1.18. Polyaniline\u003cbr\u003e\u003cbr\u003e7.1.19. Polyarylate\u003cbr\u003e\u003cbr\u003e7.1.20. Polybutylthiophene\u003cbr\u003e\u003cbr\u003e7.1.21. Polycarbonate\u003cbr\u003e\u003cbr\u003e7.1.22. Polyesters\u003cbr\u003e\u003cbr\u003e7.1.23. Polyetherimide\u003cbr\u003e\u003cbr\u003e7.1.24. Polyethylene\u003cbr\u003e\u003cbr\u003e7.1.25. Polyfluorenes\u003cbr\u003e\u003cbr\u003e7.1.26. Polyimide\u003cbr\u003e\u003cbr\u003e7.1.27. Poly(L-lactic acid)\u003cbr\u003e\u003cbr\u003e7.1.28. Polymethylmethacrylate\u003cbr\u003e\u003cbr\u003e7.1.29. Polymethylpentene\u003cbr\u003e\u003cbr\u003e7.1.30. Polyoxymethylene\u003cbr\u003e\u003cbr\u003e7.1.31. Polyphthalamide\u003cbr\u003e\u003cbr\u003e7.1.32. Poly(phenylene oxide)\u003cbr\u003e\u003cbr\u003e7.1.33. Poly(p-phenylene sulfide)\u003cbr\u003e\u003cbr\u003e7.1.34. Polypropylene\u003cbr\u003e\u003cbr\u003e7.1.35. Polypyrrole\u003cbr\u003e\u003cbr\u003e7.1.36. Polystyrene\u003cbr\u003e\u003cbr\u003e7.1.37. Polytetrafluoroethylene\u003cbr\u003e\u003cbr\u003e7.1.38. Polyurethane\u003cbr\u003e\u003cbr\u003e7.1.39. Poly(vinyl chloride)\u003cbr\u003e\u003cbr\u003e7.1.40. Poly(vinyl fluoride)\u003cbr\u003e\u003cbr\u003e7.1.41. Poly(vinylidene fluoride)\u003cbr\u003e\u003cbr\u003e7.1.42. Silicone\u003cbr\u003e\u003cbr\u003e7.1.43. Styrene-acrylonitrile\u003cbr\u003e\u003cbr\u003e7.1.44. Vinyl ester resin\u003cbr\u003e\u003cbr\u003e7.2. Rubber\u003cbr\u003e\u003cbr\u003e7.2.1. Polybutadiene\u003cbr\u003e\u003cbr\u003e7.2.2. Polychloroprene\u003cbr\u003e\u003cbr\u003e7.2.3. Polyisoprene\u003cbr\u003e\u003cbr\u003e7.2.4. Polyisobutylene\u003cbr\u003e\u003cbr\u003e7.2.5. Styrene-butadiene rubber\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003e8.1. Adhesives\u003cbr\u003e\u003cbr\u003e8.2. Aerospace\u003cbr\u003e\u003cbr\u003e8.3. Agriculture\u003cbr\u003e\u003cbr\u003e8.4. Automotive\u003cbr\u003e\u003cbr\u003e8.5. Biology\u003cbr\u003e\u003cbr\u003e8.6. Coated fabrics\u003cbr\u003e\u003cbr\u003e8.7. Coatings and paints\u003cbr\u003e\u003cbr\u003e8.8. Coil-coated materials\u003cbr\u003e\u003cbr\u003e8.9. Cosmetics\u003cbr\u003e\u003cbr\u003e8.10. Dental\u003cbr\u003e\u003cbr\u003e8.11. Door and window profiles\u003cbr\u003e\u003cbr\u003e8.12. Electrical and electronic applications\u003cbr\u003e\u003cbr\u003e8.13. Fibers and yarns\u003cbr\u003e\u003cbr\u003e8.14. Films\u003cbr\u003e\u003cbr\u003e8.15. Fishing net\u003cbr\u003e\u003cbr\u003e8.16. Foams\u003cbr\u003e\u003cbr\u003e8.17. Food\u003cbr\u003e\u003cbr\u003e8.18. Furniture\u003cbr\u003e\u003cbr\u003e8.19. Geosynthetics\u003cbr\u003e\u003cbr\u003e8.20. Glazing\u003cbr\u003e\u003cbr\u003e8.21. Medical supplies\u003cbr\u003e\u003cbr\u003e8.22. Optical fibers\u003cbr\u003e\u003cbr\u003e8.23. Packaging\u003cbr\u003e\u003cbr\u003e8.24. Pharmaceutical\u003cbr\u003e\u003cbr\u003e8.25. Pipes\u003cbr\u003e\u003cbr\u003e8.26. Pulp and paper\u003cbr\u003e\u003cbr\u003e8.27. Railway materials\u003cbr\u003e\u003cbr\u003e8.28. Rotational molded products\u003cbr\u003e\u003cbr\u003e8.29. Roofing materials\u003cbr\u003e\u003cbr\u003e8.30. Sealants\u003cbr\u003e\u003cbr\u003e8.31. Sensors and switches\u003cbr\u003e\u003cbr\u003e8.32. Sheets\u003cbr\u003e\u003cbr\u003e8.33. Siding\u003cbr\u003e\u003cbr\u003e8.34. Solar cells and solar energy applications\u003cbr\u003e\u003cbr\u003e8.35. Sporting equipment\u003cbr\u003e\u003cbr\u003e8.36. Tapes\u003cbr\u003e\u003cbr\u003e8.37. Textiles\u003cbr\u003e\u003cbr\u003e8.38. Windshield\u003cbr\u003e\u003cbr\u003e8.39. Wire and cable\u003cbr\u003e\u003cbr\u003e8.40. Wood\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9 Focus on technology - Sunscreen \u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eChristine Mendrok-Edinger, DSM Nutritional Products Ltd., Switzerland\u003cbr\u003e\u003cbr\u003e9.1 Introduction and history of sunscreens\u003cbr\u003e\u003cbr\u003e9.2 Photoreactions of UV absorbers in cosmetic sunscreens\u003cbr\u003e\u003cbr\u003e9.3 Ways of photostabilization in sunscreen products\u003cbr\u003e\u003cbr\u003e9.4 Formulating for photostability\u003cbr\u003e\u003cbr\u003e9.5 Summary\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 UV stabilizers and other components of formulation \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Analytical methods in UV degradation and stabilization studies\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e11.1 Quality control of UV stabilizers\u003cbr\u003e\u003cbr\u003e11.2 Lifetime prediction\u003cbr\u003e\u003cbr\u003e11.3 Molecular weight\u003cbr\u003e\u003cbr\u003e11.4 Color change\u003cbr\u003e\u003cbr\u003e11.5 Mechanical properties\u003cbr\u003e\u003cbr\u003e11.6 Microscopy\u003cbr\u003e\u003cbr\u003e11.7 Impedance measurement\u003cbr\u003e\u003cbr\u003e11.8 Surface roughness\u003cbr\u003e\u003cbr\u003e11.9 Imaging techniques\u003cbr\u003e\u003cbr\u003e11.10 Chromatography\u003cbr\u003e\u003cbr\u003e11.11 Spectroscopy\u003cbr\u003e\u003cbr\u003e11.11.1 ESR\u003cbr\u003e\u003cbr\u003e11.11.2 DART-MS\u003cbr\u003e\u003cbr\u003e11.11.3 FTIR\u003cbr\u003e\u003cbr\u003e11.11.4 NMR\u003cbr\u003e\u003cbr\u003e11.11.5 UV\u003cbr\u003e\u003cbr\u003e11.12 Hydroperoxide determination\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 UV stabilizers - health \u0026amp; safety\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e12.1 Toxic substance control\u003cbr\u003e\u003cbr\u003e12.2 Carcinogenic effect\u003cbr\u003e\u003cbr\u003e12.3 Workplace exposure limits\u003cbr\u003e\u003cbr\u003e12.4 Food regulatory acts\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 16 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization, Handbook of UV Degradation and Stabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
PVC Degradation and St...
$285.00
{"id":11242220292,"title":"PVC Degradation and Stabilization, 3rd Edition","handle":"978-1-895198-85-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-85-0 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 488\u003c\/div\u003e\n\u003cdiv\u003eFigures: 283\u003c\/div\u003e\n\u003cdiv\u003eTables: 67\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPVC stabilization, the most important aspect of formulation and performance of this polymer, is discussed in details. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying of degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains the analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by ?-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:42-04:00","created_at":"2017-06-22T21:13:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","book","chemical structure of PVC","health and safety","morphology","p-chemistry","polymer","PVC UV degradation","PVC additives","PVC chemical degradation","PVC compounding","PVC formulation","PVC mechanodegradation","PVC stabilization","PVC thermal degradation","stability of PVC"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371716,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization, 3rd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-85-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309","options":["Title"],"media":[{"alt":null,"id":358727221341,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-85-0 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 488\u003c\/div\u003e\n\u003cdiv\u003eFigures: 283\u003c\/div\u003e\n\u003cdiv\u003eTables: 67\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPVC stabilization, the most important aspect of formulation and performance of this polymer, is discussed in details. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying of degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains the analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by ?-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
PVC Degradation and St...
$275.00
{"id":11242219972,"title":"PVC Degradation and Stabilization","handle":"978-1-895198-39-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-39-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003eSecond edition\u003cbr\u003ePages: 442\u003cbr\u003eFigures: 275 \u003cbr\u003eTables: 66\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the global renewal of interest in PVC, this book is well timed, considering that PVC stabilization is the most important aspect of its formulation and performance.\n\u003cp\u003eOnly four books have been published on PVC degradation and stabilization (the last one in the 1980s), and two of them are by the author of this book.\u003c\/p\u003e\n\u003cp\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, and UV, gamma, and other forms of radiation, mechanodegradation, chemical degradation, analytic methods used in studying of degradative and stabilization processes, stabilization, and effect of PVC and its additives on health, safety and environment.\u003c\/p\u003e\n\u003cp\u003eThis book contains an analysis of all essential papers published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found.\u003c\/p\u003e\n\u003cp\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003ePVC has a long history of development which began nearly 100 years ago with the patenting of the concepts of emulsion and suspension polymerization, the development of the industrial process of vinyl chloride synthesis, and patents on its plasticization, followed by the development of stabilization about 75 years ago. PVC has known rapid growth to utmost prominence and dramatic downfall almost to elimination, and it finally has regained a deserved, second position among commercial polymers.\u003cbr\u003ePVC owes both its prominence and its downfall to research: meticulous, cutting-edge studies and unscrupulous bad science which stops progress and derails achievements.\u003cbr\u003ePVC degradation during processing and use was always one of the essential elements of PVC science and technology. Many approaches to stabilization changed and some groups of stabilizers are not used in new production. This book was written to show new trends and directions. It also contains clearly indicated information about past stabilizers, which is needed in order to understand the principles of stabilization and effective recycling.\u003cbr\u003eFor me, it has been an interesting experience to actively participate in the growth of this branch of science and summarize its achievements and the directions which it faces now, here and in my two previous books, written 25 years ago. I hope the clarity and completeness of the description of research findings as we know them today will help in further research and, most importantly, lead to successful and responsible practical applications of additives in PVC processing and applications.\u003cbr\u003e\u003cbr\u003eGeorge Wypych\u003cbr\u003eToronto, May 8, 2008\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cbr\u003e1 Chemical Structure of PVC\u003c\/strong\u003e\u003cbr\u003e1.1 Repeat structures and their basic organic chemistry \u003cbr\u003e1.1.1 Bronsted acid source with controllable emission \u003cbr\u003e1.2 Molecular weight and its distribution \u003cbr\u003e1.2.1 Kuhn-Mark-Houwink-Sakurada \u003cbr\u003e1.2.2 Fikentscher K number \u003cbr\u003e1.2.3 Chain length \u003cbr\u003e1.3 Prediction of formation of irregular segments \u003cbr\u003e1.3.1 Ab initio \u003cbr\u003e1.3.2 Monte Carlo \u003cbr\u003e1.4 Irregular segments \u003cbr\u003e1.4.1 Branches \u003cbr\u003e1.4.2 Tertiary chlorine \u003cbr\u003e1.4.3 Unsaturations \u003cbr\u003e1.4.4 Oxygen containing groups \u003cbr\u003e1.4.4.1 Ketochloroallyl groups \u003cbr\u003e1.4.4.2 a- and b-carbonyl groups \u003cbr\u003e1.4.5 Head-to-head structures \u003cbr\u003e1.4.5 Initiator rests \u003cbr\u003e1.4.6 Transfer agent rests \u003cbr\u003e1.4.8 Defects introduced during processing \u003cbr\u003e1.4.9 PVC having increased stability \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PVC Manufacture Technology \u003c\/strong\u003e\u003cbr\u003e2.1 Monomer \u003cbr\u003e2.2 Basic Steps of Radical Polymerization \u003cbr\u003e2.2.1 Initiation \u003cbr\u003e2.2.2 Propagation \u003cbr\u003e2.2.3 Termination \u003cbr\u003e2.2.4 Chain transfer to monomer \u003cbr\u003e2.3 Polymerization technology \u003cbr\u003e2.3.1 Suspension \u003cbr\u003e2.3.2 Paste resin manufacturing processes \u003cbr\u003e2.3.3 Bulk \u003cbr\u003e2.3.4 Solution \u003cbr\u003e2.4 Polymerization conditions and PVC properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 PVC Morphology\u003c\/strong\u003e\u003cbr\u003e3.1. Molecular weight of polymer (chain length) \u003cbr\u003e3.2. Configuration and conformation \u003cbr\u003e3.3. Chain folds \u003cbr\u003e3.4. Chain thickness \u003cbr\u003e3.5 Entanglements \u003cbr\u003e3.6 Crystalline structure \u003cbr\u003e3.7 Grain morphology \u003cbr\u003e3.7.1 Stages of morphology development during manufacture \u003cbr\u003e3.7.1.1 Suspension polymerization \u003cbr\u003e3.7.1.2 Paste grades manufacture \u003cbr\u003e3.7.1.3 Bulk polymerization \u003cbr\u003e3.7.2 Effect of morphology on degradation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Principles of Thermal Degradation\u003c\/strong\u003e\u003cbr\u003e4.1 The reasons for polymer instability \u003cbr\u003e4.1.1 Structural defects \u003cbr\u003e4.1.1.1 Branches \u003cbr\u003e4.1.1.2 Tertiary chlorine \u003cbr\u003e4.1.1.3 Unstaturations \u003cbr\u003e4.1.1.4 Oxygen containing groups \u003cbr\u003e4.1.1.5 Head-to-head structures \u003cbr\u003e4.1.1.6 Morphology \u003cbr\u003e4.1.2 Polymerization residue \u003cbr\u003e4.1.2.1 Initiator rests \u003cbr\u003e4.1.2.2 Transfer agent rests \u003cbr\u003e4.1.2.3 Polymerization additives \u003cbr\u003e4.1.3 Metal derivatives \u003cbr\u003e4.1.3.1 Metal chlorides \u003cbr\u003e4.1.3.2 Copper and its oxide \u003cbr\u003e4.1.4 Hydrogen chloride 14 \u003cbr\u003e4.1.5 Impurities \u003cbr\u003e4.1.6 Shear \u003cbr\u003e4.1.7 Temperature \u003cbr\u003e4.1.8 Surrounding atmosphere \u003cbr\u003e4.1.9 Additives \u003cbr\u003e4.2 Mechanisms of thermal degradation \u003cbr\u003e4.2.1 Molecular mechanism \u003cbr\u003e4.2.2 Amer-Shapiro mechanism \u003cbr\u003e4.2.3 Six-center concerted mechanism \u003cbr\u003e4.2.4 Activation enthalpy \u003cbr\u003e4.2.5 Radical-chain theory \u003cbr\u003e4.2.6 Ionic \u003cbr\u003e4.2.7 Polaron \u003cbr\u003e4.2.8 Degenerated branching \u003cbr\u003e4.2.9 Transition state theory \u003cbr\u003e4.2.10 Recapitulation \u003cbr\u003e4.3 Kinetics \u003cbr\u003e4.3.1 Initiation \u003cbr\u003e4.3.2 Propagation \u003cbr\u003e4.3.3 Termination \u003cbr\u003e4.4 Results of thermal degradation \u003cbr\u003e4.4.1 Volatiles \u003cbr\u003e4.4.2 Weight loss \u003cbr\u003e4.4.3 Char formation \u003cbr\u003e4.4.4 Ash content \u003cbr\u003e4.4.5 Thermal lifetime \u003cbr\u003e4.4.6 Optical properties \u003cbr\u003e4.4.6.1 Color change \u003cbr\u003e4.4.6.2 Extinction coefficient \u003cbr\u003e4.4.6.3 Absorbance \u003cbr\u003e4.4.7 Molecular weight \u003cbr\u003e4.4.8 Mechanical properties \u003cbr\u003e4.4.9 Electric properties \u003cbr\u003e4.5 Effect of additives \u003cbr\u003e4.5.1 Blend polymers \u003cbr\u003e4.5.1.1 ABS \u003cbr\u003e4.5.1.2 Chlorinated polyethylene, CPE \u003cbr\u003e4.5.1.3 Epoxidized butadiene\/styrene block copolymer \u003cbr\u003e4.5.1.4 Epoxidized natural rubber \u003cbr\u003e4.5.1.5 Ethylene vinyl acetate, EVA \u003cbr\u003e4.5.1.6 High impact polystyrene, HIPS \u003cbr\u003e4.5.1.7 Methylmethacrylate-butadiene-styrene \u003cbr\u003e4.5.1.8 Nitrile rubber, NBR \u003cbr\u003e4.5.1.9 Oxidized polyethylene, OPE \u003cbr\u003e4.5.1.10 Polyacrylate \u003cbr\u003e4.5.1.11 Polyacrylonitrile \u003cbr\u003e4.5.1.12 Polyamide \u003cbr\u003e4.5.1.13 Polyaniline, PANI \u003cbr\u003e4.5.1.13 Polycarbonate, PC \u003cbr\u003e4.5.1.14 Polyethylene, PE \u003cbr\u003e4.5.1.15 Poly(methyl methacrylate), PMMA \u003cbr\u003e4.5.1.16 Poly(N-vinyl-2-pyrrolidone), PVP \u003cbr\u003e4.5.1.17 Polysiloxane \u003cbr\u003e4.5.1.18 Polystyrene, PS \u003cbr\u003e4.5.1.19 Polythiophene \u003cbr\u003e4.5.1.20 Polyurethane \u003cbr\u003e4.5.1.21 Poly(vinyl acetate), PVAc \u003cbr\u003e4.5.1.22 Poly(vinyl alcohol), PVA \u003cbr\u003e4.5.1.23 Poly(vinyl butyral), PVB \u003cbr\u003e4.5.1.24 SAN \u003cbr\u003e4.5.2 Antiblocking \u003cbr\u003e4.5.3 Antistatics agents \u003cbr\u003e4.5.4 Biocides and fungicides \u003cbr\u003e4.5.5 Blowing agents \u003cbr\u003e4.5.6 Fillers \u003cbr\u003e4.5.7 Flame retardants \u003cbr\u003e4.5.8 Impact modifiers \u003cbr\u003e4.5.9 Lubricants \u003cbr\u003e4.5.10 Pigments \u003cbr\u003e4.5.11 Plasticizers \u003cbr\u003e4.5.12 Process aids \u003cbr\u003e4.5.13 Solvents \u003cbr\u003e4.5.14 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Principles of UV Degradation\u003c\/strong\u003e\u003cbr\u003e5.1 Reasons for polymer instability \u003cbr\u003e5.1.1 Radiative energy \u003cbr\u003e5.1.2 Radiation intensity \u003cbr\u003e5.1.3 Radiation incidence \u003cbr\u003e5.1.4 Absorption of radiation by materials \u003cbr\u003e5.1.5 Bond structure \u003cbr\u003e5.1.6 Thermal history \u003cbr\u003e5.1.7 Photosensitizers \u003cbr\u003e5.1.8 Wavelength sensitivity \u003cbr\u003e5.1.9 Thermal variability \u003cbr\u003e5.1.10 Pollutants \u003cbr\u003e5.1.11 Laboratory degradation conditions \u003cbr\u003e5.2 Mechanisms of degradation \u003cbr\u003e5.2.1 Radical mechanism \u003cbr\u003e5.2.1.1 Photooxidation mechanism \u003cbr\u003e5.2.1.2 Mechanistic scheme \u003cbr\u003e5.2.1.3 Conformational mechanism \u003cbr\u003e5.2.1.4 Electronic-to-vibrational energy transfer \u003cbr\u003e5.2.1.5 Other contributions to the mechanism of photodegradation \u003cbr\u003e5.3 Kinetics \u003cbr\u003e5.3.1 Initiation \u003cbr\u003e5.3.2 Propagation \u003cbr\u003e5.3.3 Termination \u003cbr\u003e5.4 Results of UV degradation \u003cbr\u003e5.4.1 Photodiscoloration \u003cbr\u003e5.4.2 Mechanical properties \u003cbr\u003e5.4.3 Other properties \u003cbr\u003e5.5 Effect of additives \u003cbr\u003e5.5.1 Biocides and fungicides \u003cbr\u003e5.5.2 Fillers \u003cbr\u003e5.5.3 Flame retardants \u003cbr\u003e5.5.4 Impact modifiers \u003cbr\u003e5.5.5 Lubricants \u003cbr\u003e5.5.6 Pigments and colorants \u003cbr\u003e5.5.6.1 Titanium dioxide \u003cbr\u003e5.5.6.2 Zinc oxide \u003cbr\u003e5.5.6.3 Iron-containing pigments \u003cbr\u003e5.5.7 Plasticizers \u003cbr\u003e5.5.8 Polymer blends \u003cbr\u003e5.5.9 Solvents \u003cbr\u003e5.5.10 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Principles of Degradation by γ-Radiation\u003c\/strong\u003e\u003cbr\u003e6.1 The reasons for polymer instability \u003cbr\u003e6.2 Mechanisms \u003cbr\u003e6.3 Kinetics \u003cbr\u003e6.4 Results \u003cbr\u003e6.5 Effect of additives \u003cbr\u003e6.5.1 Plasticizers \u003cbr\u003e6.5.2 Fillers \u003cbr\u003e6.5.3 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Degradation by Other Forms of Radiation\u003c\/strong\u003e\u003cbr\u003e7.1 Argon plasma \u003cbr\u003e7.2 b-radiation (electron beam) \u003cbr\u003e7.3 Corona discharge \u003cbr\u003e7.4 Ion (proton) beam \u003cbr\u003e7.5 Laser \u003cbr\u003e7.6 Metallization \u003cbr\u003e7.7 Microwave \u003cbr\u003e7.8 Neutron irradiation \u003cbr\u003e7.9 Oxygen plasma \u003cbr\u003e7.10 X-rays \u003cbr\u003e7.11 Ultrasonic \u003cbr\u003eReferences \u003cbr\u003e8 Mechanodegradation \u003cbr\u003eReferences \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e9 Chemical Degradation\u003c\/strong\u003e\u003cbr\u003e9.1 methods of chemical dehydrochlorination \u003cbr\u003e9.2. Kinetics and mechanisms of reaction \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Analytical Methods\u003c\/strong\u003e\u003cbr\u003e10.1 Heat stability test \u003cbr\u003e10.1.1 Sample preparation \u003cbr\u003e10.1.2 Kinetic studies of dehydrochlorination \u003cbr\u003e10.1.3 Dehydrochlorination rate and optical changes \u003cbr\u003e10.1.4 Degradation in solution \u003cbr\u003e10.2 Thermogravimetric analysis \u003cbr\u003e10.2.1 Differential scanning calorimetry, DSC \u003cbr\u003e10.2.2 Mass loss \u003cbr\u003e10.3 Combustion \u003cbr\u003e10.4 Optical properties \u003cbr\u003e10.5 Spectroscopic methods \u003cbr\u003e10.5.1 Atomic absorption, AAS \u003cbr\u003e10.5.2 Auger \u003cbr\u003e10.5.3 Electron spin resonance, ESR \u003cbr\u003e10.5.4 Fourier transform infrared, FTIR \u003cbr\u003e10.5.5 Laser photopyroelectric effect spectrometry \u003cbr\u003e10.5.6 Mass, MS \u003cbr\u003e10.5.7 Mossbauer \u003cbr\u003e10.5.8 Near-infrared, NIR \u003cbr\u003e10.5.9 Nuclear magnetic resonance, NMR \u003cbr\u003e10.5.10 Positron annihilation lifetime spectroscopy, PAS \u003cbr\u003e10.5.11 Raman \u003cbr\u003e10.5.12 Time-of-flight secondary ion mass spectrometry, ToF-SIMS \u003cbr\u003e10.5.13 X-ray analysis \u003cbr\u003e10.5.13.1 Small angle light scattering, SAXS \u003cbr\u003e10.5.13.2 Wide angle light scattering, WAXS or WAXD \u003cbr\u003e10.5.14 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e10.5.15 UV-visible \u003cbr\u003e10.6 Chromatographic methods \u003cbr\u003e10.1 Gas chromatography \u003cbr\u003e10.6.2 Liquid chromatography \u003cbr\u003e10.7 Mechanical properties \u003cbr\u003e10.8 Other essential methods of testing \u003cbr\u003e10.8.1 Action spectrum \u003cbr\u003e10.8.2 Coulter counter \u003cbr\u003e10.8.3 Gel content \u003cbr\u003e10.8.4 Ozonolysis \u003cbr\u003e10.8.5 Peroxide titration \u003cbr\u003e10.8.6 Rheological studies \u003cbr\u003e10.9 International standards \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 Principles of Stabilization \u003c\/strong\u003e\u003cbr\u003e11.1 Functions of PVC stabilizers\u003cbr\u003e11.1.1 Hydrogen chloride binding\u003cbr\u003e11.1.2 Removal of reactive chlorine\u003cbr\u003e11.1.3 Reactions with metal chlorides\u003cbr\u003e11.1.4 Reactions with isolated unsaturations\u003cbr\u003e11.1.5 Reaction with conjugated unsaturations\u003cbr\u003e11.1.6 Decomposition of hydroperoxides\u003cbr\u003e11.1.7 Removal of reactive radicals (chain breaking function)\u003cbr\u003e11.1.8 UV screening\u003cbr\u003e11.2 Theories\u003cbr\u003e11.2.1 Frye and Horst\u003cbr\u003e11.2.2 Application of the Debye-Hückel theory\u003cbr\u003e11.2.3 Kinetic model of PVC stabilization\u003cbr\u003e11.3 Stabilizer groups\u003cbr\u003e11.3.1 Metal soaps\u003cbr\u003e(The groups of stabilizers below are discussed according to the following breakdown: Properties and applications of commercial stabilizers Mechanisms of action Costabilizers Research findings)\u003cbr\u003e11.3.1.1 Barium\/zinc\u003cbr\u003e11.3.1.2 Calcium\/zinc\u003cbr\u003e11.3.1.3 Magnesium\/zinc\u003cbr\u003e11.3.1.4 Potassium\/zinc\u003cbr\u003e11.3.1.5 Barium\/cadmium\u003cbr\u003e11.3.1.6 Barium\/cadmium\/zinc\u003cbr\u003e11.3.2 Lead stabilizers\u003cbr\u003e11.3.3 Organotin stabilizers\u003cbr\u003e11.3.4 Organic stabilizers\u003cbr\u003e11.3.4.1 Epoxidized compounds\u003cbr\u003e11.3.4.3 Phenolic antioxidants\u003cbr\u003e11.3.4.4 Multiketones\u003cbr\u003e11.3.4.5 Other costabilizers\u003cbr\u003e11.3.5 UV stabilizers\u003cbr\u003e11.3.5.1 Organic UV absorbers\u003cbr\u003e11.3.5.2 Inorganic UV absorbers\u003cbr\u003e11.3.5.3 Hindered amine light stabilizers, HALS\u003cbr\u003e11.3.6 Lubricants \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 Health and safety and environmental impact\u003c\/strong\u003e\u003cbr\u003e12.1 Toxic substance control \u003cbr\u003e12.2. Carcinogenic effect \u003cbr\u003e12.3 Teratogenic and mutagenic effect \u003cbr\u003e12.4 Workplace exposure limits \u003cbr\u003e12.5 Exposure from consumer products \u003cbr\u003e12.6 Drinking water \u003cbr\u003e12.7 Food regulatory acts \u003cbr\u003e12.8 Toxicity of stabilizers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:41-04:00","created_at":"2017-06-22T21:13:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","chemical structure of PVC","mechanical properties","morphology","p-chemistry","polymer","PVC UV degradation","PVC additives","PVC chemical degradation","PVC compounding","PVC formulation","PVC mechanodegradation","PVC stabilization","PVC thermal degradation","stability of PVC"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-39-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619","options":["Title"],"media":[{"alt":null,"id":358726893661,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-39-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003eSecond edition\u003cbr\u003ePages: 442\u003cbr\u003eFigures: 275 \u003cbr\u003eTables: 66\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the global renewal of interest in PVC, this book is well timed, considering that PVC stabilization is the most important aspect of its formulation and performance.\n\u003cp\u003eOnly four books have been published on PVC degradation and stabilization (the last one in the 1980s), and two of them are by the author of this book.\u003c\/p\u003e\n\u003cp\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, and UV, gamma, and other forms of radiation, mechanodegradation, chemical degradation, analytic methods used in studying of degradative and stabilization processes, stabilization, and effect of PVC and its additives on health, safety and environment.\u003c\/p\u003e\n\u003cp\u003eThis book contains an analysis of all essential papers published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found.\u003c\/p\u003e\n\u003cp\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003ePVC has a long history of development which began nearly 100 years ago with the patenting of the concepts of emulsion and suspension polymerization, the development of the industrial process of vinyl chloride synthesis, and patents on its plasticization, followed by the development of stabilization about 75 years ago. PVC has known rapid growth to utmost prominence and dramatic downfall almost to elimination, and it finally has regained a deserved, second position among commercial polymers.\u003cbr\u003ePVC owes both its prominence and its downfall to research: meticulous, cutting-edge studies and unscrupulous bad science which stops progress and derails achievements.\u003cbr\u003ePVC degradation during processing and use was always one of the essential elements of PVC science and technology. Many approaches to stabilization changed and some groups of stabilizers are not used in new production. This book was written to show new trends and directions. It also contains clearly indicated information about past stabilizers, which is needed in order to understand the principles of stabilization and effective recycling.\u003cbr\u003eFor me, it has been an interesting experience to actively participate in the growth of this branch of science and summarize its achievements and the directions which it faces now, here and in my two previous books, written 25 years ago. I hope the clarity and completeness of the description of research findings as we know them today will help in further research and, most importantly, lead to successful and responsible practical applications of additives in PVC processing and applications.\u003cbr\u003e\u003cbr\u003eGeorge Wypych\u003cbr\u003eToronto, May 8, 2008\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cbr\u003e1 Chemical Structure of PVC\u003c\/strong\u003e\u003cbr\u003e1.1 Repeat structures and their basic organic chemistry \u003cbr\u003e1.1.1 Bronsted acid source with controllable emission \u003cbr\u003e1.2 Molecular weight and its distribution \u003cbr\u003e1.2.1 Kuhn-Mark-Houwink-Sakurada \u003cbr\u003e1.2.2 Fikentscher K number \u003cbr\u003e1.2.3 Chain length \u003cbr\u003e1.3 Prediction of formation of irregular segments \u003cbr\u003e1.3.1 Ab initio \u003cbr\u003e1.3.2 Monte Carlo \u003cbr\u003e1.4 Irregular segments \u003cbr\u003e1.4.1 Branches \u003cbr\u003e1.4.2 Tertiary chlorine \u003cbr\u003e1.4.3 Unsaturations \u003cbr\u003e1.4.4 Oxygen containing groups \u003cbr\u003e1.4.4.1 Ketochloroallyl groups \u003cbr\u003e1.4.4.2 a- and b-carbonyl groups \u003cbr\u003e1.4.5 Head-to-head structures \u003cbr\u003e1.4.5 Initiator rests \u003cbr\u003e1.4.6 Transfer agent rests \u003cbr\u003e1.4.8 Defects introduced during processing \u003cbr\u003e1.4.9 PVC having increased stability \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PVC Manufacture Technology \u003c\/strong\u003e\u003cbr\u003e2.1 Monomer \u003cbr\u003e2.2 Basic Steps of Radical Polymerization \u003cbr\u003e2.2.1 Initiation \u003cbr\u003e2.2.2 Propagation \u003cbr\u003e2.2.3 Termination \u003cbr\u003e2.2.4 Chain transfer to monomer \u003cbr\u003e2.3 Polymerization technology \u003cbr\u003e2.3.1 Suspension \u003cbr\u003e2.3.2 Paste resin manufacturing processes \u003cbr\u003e2.3.3 Bulk \u003cbr\u003e2.3.4 Solution \u003cbr\u003e2.4 Polymerization conditions and PVC properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 PVC Morphology\u003c\/strong\u003e\u003cbr\u003e3.1. Molecular weight of polymer (chain length) \u003cbr\u003e3.2. Configuration and conformation \u003cbr\u003e3.3. Chain folds \u003cbr\u003e3.4. Chain thickness \u003cbr\u003e3.5 Entanglements \u003cbr\u003e3.6 Crystalline structure \u003cbr\u003e3.7 Grain morphology \u003cbr\u003e3.7.1 Stages of morphology development during manufacture \u003cbr\u003e3.7.1.1 Suspension polymerization \u003cbr\u003e3.7.1.2 Paste grades manufacture \u003cbr\u003e3.7.1.3 Bulk polymerization \u003cbr\u003e3.7.2 Effect of morphology on degradation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Principles of Thermal Degradation\u003c\/strong\u003e\u003cbr\u003e4.1 The reasons for polymer instability \u003cbr\u003e4.1.1 Structural defects \u003cbr\u003e4.1.1.1 Branches \u003cbr\u003e4.1.1.2 Tertiary chlorine \u003cbr\u003e4.1.1.3 Unstaturations \u003cbr\u003e4.1.1.4 Oxygen containing groups \u003cbr\u003e4.1.1.5 Head-to-head structures \u003cbr\u003e4.1.1.6 Morphology \u003cbr\u003e4.1.2 Polymerization residue \u003cbr\u003e4.1.2.1 Initiator rests \u003cbr\u003e4.1.2.2 Transfer agent rests \u003cbr\u003e4.1.2.3 Polymerization additives \u003cbr\u003e4.1.3 Metal derivatives \u003cbr\u003e4.1.3.1 Metal chlorides \u003cbr\u003e4.1.3.2 Copper and its oxide \u003cbr\u003e4.1.4 Hydrogen chloride 14 \u003cbr\u003e4.1.5 Impurities \u003cbr\u003e4.1.6 Shear \u003cbr\u003e4.1.7 Temperature \u003cbr\u003e4.1.8 Surrounding atmosphere \u003cbr\u003e4.1.9 Additives \u003cbr\u003e4.2 Mechanisms of thermal degradation \u003cbr\u003e4.2.1 Molecular mechanism \u003cbr\u003e4.2.2 Amer-Shapiro mechanism \u003cbr\u003e4.2.3 Six-center concerted mechanism \u003cbr\u003e4.2.4 Activation enthalpy \u003cbr\u003e4.2.5 Radical-chain theory \u003cbr\u003e4.2.6 Ionic \u003cbr\u003e4.2.7 Polaron \u003cbr\u003e4.2.8 Degenerated branching \u003cbr\u003e4.2.9 Transition state theory \u003cbr\u003e4.2.10 Recapitulation \u003cbr\u003e4.3 Kinetics \u003cbr\u003e4.3.1 Initiation \u003cbr\u003e4.3.2 Propagation \u003cbr\u003e4.3.3 Termination \u003cbr\u003e4.4 Results of thermal degradation \u003cbr\u003e4.4.1 Volatiles \u003cbr\u003e4.4.2 Weight loss \u003cbr\u003e4.4.3 Char formation \u003cbr\u003e4.4.4 Ash content \u003cbr\u003e4.4.5 Thermal lifetime \u003cbr\u003e4.4.6 Optical properties \u003cbr\u003e4.4.6.1 Color change \u003cbr\u003e4.4.6.2 Extinction coefficient \u003cbr\u003e4.4.6.3 Absorbance \u003cbr\u003e4.4.7 Molecular weight \u003cbr\u003e4.4.8 Mechanical properties \u003cbr\u003e4.4.9 Electric properties \u003cbr\u003e4.5 Effect of additives \u003cbr\u003e4.5.1 Blend polymers \u003cbr\u003e4.5.1.1 ABS \u003cbr\u003e4.5.1.2 Chlorinated polyethylene, CPE \u003cbr\u003e4.5.1.3 Epoxidized butadiene\/styrene block copolymer \u003cbr\u003e4.5.1.4 Epoxidized natural rubber \u003cbr\u003e4.5.1.5 Ethylene vinyl acetate, EVA \u003cbr\u003e4.5.1.6 High impact polystyrene, HIPS \u003cbr\u003e4.5.1.7 Methylmethacrylate-butadiene-styrene \u003cbr\u003e4.5.1.8 Nitrile rubber, NBR \u003cbr\u003e4.5.1.9 Oxidized polyethylene, OPE \u003cbr\u003e4.5.1.10 Polyacrylate \u003cbr\u003e4.5.1.11 Polyacrylonitrile \u003cbr\u003e4.5.1.12 Polyamide \u003cbr\u003e4.5.1.13 Polyaniline, PANI \u003cbr\u003e4.5.1.13 Polycarbonate, PC \u003cbr\u003e4.5.1.14 Polyethylene, PE \u003cbr\u003e4.5.1.15 Poly(methyl methacrylate), PMMA \u003cbr\u003e4.5.1.16 Poly(N-vinyl-2-pyrrolidone), PVP \u003cbr\u003e4.5.1.17 Polysiloxane \u003cbr\u003e4.5.1.18 Polystyrene, PS \u003cbr\u003e4.5.1.19 Polythiophene \u003cbr\u003e4.5.1.20 Polyurethane \u003cbr\u003e4.5.1.21 Poly(vinyl acetate), PVAc \u003cbr\u003e4.5.1.22 Poly(vinyl alcohol), PVA \u003cbr\u003e4.5.1.23 Poly(vinyl butyral), PVB \u003cbr\u003e4.5.1.24 SAN \u003cbr\u003e4.5.2 Antiblocking \u003cbr\u003e4.5.3 Antistatics agents \u003cbr\u003e4.5.4 Biocides and fungicides \u003cbr\u003e4.5.5 Blowing agents \u003cbr\u003e4.5.6 Fillers \u003cbr\u003e4.5.7 Flame retardants \u003cbr\u003e4.5.8 Impact modifiers \u003cbr\u003e4.5.9 Lubricants \u003cbr\u003e4.5.10 Pigments \u003cbr\u003e4.5.11 Plasticizers \u003cbr\u003e4.5.12 Process aids \u003cbr\u003e4.5.13 Solvents \u003cbr\u003e4.5.14 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Principles of UV Degradation\u003c\/strong\u003e\u003cbr\u003e5.1 Reasons for polymer instability \u003cbr\u003e5.1.1 Radiative energy \u003cbr\u003e5.1.2 Radiation intensity \u003cbr\u003e5.1.3 Radiation incidence \u003cbr\u003e5.1.4 Absorption of radiation by materials \u003cbr\u003e5.1.5 Bond structure \u003cbr\u003e5.1.6 Thermal history \u003cbr\u003e5.1.7 Photosensitizers \u003cbr\u003e5.1.8 Wavelength sensitivity \u003cbr\u003e5.1.9 Thermal variability \u003cbr\u003e5.1.10 Pollutants \u003cbr\u003e5.1.11 Laboratory degradation conditions \u003cbr\u003e5.2 Mechanisms of degradation \u003cbr\u003e5.2.1 Radical mechanism \u003cbr\u003e5.2.1.1 Photooxidation mechanism \u003cbr\u003e5.2.1.2 Mechanistic scheme \u003cbr\u003e5.2.1.3 Conformational mechanism \u003cbr\u003e5.2.1.4 Electronic-to-vibrational energy transfer \u003cbr\u003e5.2.1.5 Other contributions to the mechanism of photodegradation \u003cbr\u003e5.3 Kinetics \u003cbr\u003e5.3.1 Initiation \u003cbr\u003e5.3.2 Propagation \u003cbr\u003e5.3.3 Termination \u003cbr\u003e5.4 Results of UV degradation \u003cbr\u003e5.4.1 Photodiscoloration \u003cbr\u003e5.4.2 Mechanical properties \u003cbr\u003e5.4.3 Other properties \u003cbr\u003e5.5 Effect of additives \u003cbr\u003e5.5.1 Biocides and fungicides \u003cbr\u003e5.5.2 Fillers \u003cbr\u003e5.5.3 Flame retardants \u003cbr\u003e5.5.4 Impact modifiers \u003cbr\u003e5.5.5 Lubricants \u003cbr\u003e5.5.6 Pigments and colorants \u003cbr\u003e5.5.6.1 Titanium dioxide \u003cbr\u003e5.5.6.2 Zinc oxide \u003cbr\u003e5.5.6.3 Iron-containing pigments \u003cbr\u003e5.5.7 Plasticizers \u003cbr\u003e5.5.8 Polymer blends \u003cbr\u003e5.5.9 Solvents \u003cbr\u003e5.5.10 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Principles of Degradation by γ-Radiation\u003c\/strong\u003e\u003cbr\u003e6.1 The reasons for polymer instability \u003cbr\u003e6.2 Mechanisms \u003cbr\u003e6.3 Kinetics \u003cbr\u003e6.4 Results \u003cbr\u003e6.5 Effect of additives \u003cbr\u003e6.5.1 Plasticizers \u003cbr\u003e6.5.2 Fillers \u003cbr\u003e6.5.3 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Degradation by Other Forms of Radiation\u003c\/strong\u003e\u003cbr\u003e7.1 Argon plasma \u003cbr\u003e7.2 b-radiation (electron beam) \u003cbr\u003e7.3 Corona discharge \u003cbr\u003e7.4 Ion (proton) beam \u003cbr\u003e7.5 Laser \u003cbr\u003e7.6 Metallization \u003cbr\u003e7.7 Microwave \u003cbr\u003e7.8 Neutron irradiation \u003cbr\u003e7.9 Oxygen plasma \u003cbr\u003e7.10 X-rays \u003cbr\u003e7.11 Ultrasonic \u003cbr\u003eReferences \u003cbr\u003e8 Mechanodegradation \u003cbr\u003eReferences \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e9 Chemical Degradation\u003c\/strong\u003e\u003cbr\u003e9.1 methods of chemical dehydrochlorination \u003cbr\u003e9.2. Kinetics and mechanisms of reaction \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Analytical Methods\u003c\/strong\u003e\u003cbr\u003e10.1 Heat stability test \u003cbr\u003e10.1.1 Sample preparation \u003cbr\u003e10.1.2 Kinetic studies of dehydrochlorination \u003cbr\u003e10.1.3 Dehydrochlorination rate and optical changes \u003cbr\u003e10.1.4 Degradation in solution \u003cbr\u003e10.2 Thermogravimetric analysis \u003cbr\u003e10.2.1 Differential scanning calorimetry, DSC \u003cbr\u003e10.2.2 Mass loss \u003cbr\u003e10.3 Combustion \u003cbr\u003e10.4 Optical properties \u003cbr\u003e10.5 Spectroscopic methods \u003cbr\u003e10.5.1 Atomic absorption, AAS \u003cbr\u003e10.5.2 Auger \u003cbr\u003e10.5.3 Electron spin resonance, ESR \u003cbr\u003e10.5.4 Fourier transform infrared, FTIR \u003cbr\u003e10.5.5 Laser photopyroelectric effect spectrometry \u003cbr\u003e10.5.6 Mass, MS \u003cbr\u003e10.5.7 Mossbauer \u003cbr\u003e10.5.8 Near-infrared, NIR \u003cbr\u003e10.5.9 Nuclear magnetic resonance, NMR \u003cbr\u003e10.5.10 Positron annihilation lifetime spectroscopy, PAS \u003cbr\u003e10.5.11 Raman \u003cbr\u003e10.5.12 Time-of-flight secondary ion mass spectrometry, ToF-SIMS \u003cbr\u003e10.5.13 X-ray analysis \u003cbr\u003e10.5.13.1 Small angle light scattering, SAXS \u003cbr\u003e10.5.13.2 Wide angle light scattering, WAXS or WAXD \u003cbr\u003e10.5.14 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e10.5.15 UV-visible \u003cbr\u003e10.6 Chromatographic methods \u003cbr\u003e10.1 Gas chromatography \u003cbr\u003e10.6.2 Liquid chromatography \u003cbr\u003e10.7 Mechanical properties \u003cbr\u003e10.8 Other essential methods of testing \u003cbr\u003e10.8.1 Action spectrum \u003cbr\u003e10.8.2 Coulter counter \u003cbr\u003e10.8.3 Gel content \u003cbr\u003e10.8.4 Ozonolysis \u003cbr\u003e10.8.5 Peroxide titration \u003cbr\u003e10.8.6 Rheological studies \u003cbr\u003e10.9 International standards \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 Principles of Stabilization \u003c\/strong\u003e\u003cbr\u003e11.1 Functions of PVC stabilizers\u003cbr\u003e11.1.1 Hydrogen chloride binding\u003cbr\u003e11.1.2 Removal of reactive chlorine\u003cbr\u003e11.1.3 Reactions with metal chlorides\u003cbr\u003e11.1.4 Reactions with isolated unsaturations\u003cbr\u003e11.1.5 Reaction with conjugated unsaturations\u003cbr\u003e11.1.6 Decomposition of hydroperoxides\u003cbr\u003e11.1.7 Removal of reactive radicals (chain breaking function)\u003cbr\u003e11.1.8 UV screening\u003cbr\u003e11.2 Theories\u003cbr\u003e11.2.1 Frye and Horst\u003cbr\u003e11.2.2 Application of the Debye-Hückel theory\u003cbr\u003e11.2.3 Kinetic model of PVC stabilization\u003cbr\u003e11.3 Stabilizer groups\u003cbr\u003e11.3.1 Metal soaps\u003cbr\u003e(The groups of stabilizers below are discussed according to the following breakdown: Properties and applications of commercial stabilizers Mechanisms of action Costabilizers Research findings)\u003cbr\u003e11.3.1.1 Barium\/zinc\u003cbr\u003e11.3.1.2 Calcium\/zinc\u003cbr\u003e11.3.1.3 Magnesium\/zinc\u003cbr\u003e11.3.1.4 Potassium\/zinc\u003cbr\u003e11.3.1.5 Barium\/cadmium\u003cbr\u003e11.3.1.6 Barium\/cadmium\/zinc\u003cbr\u003e11.3.2 Lead stabilizers\u003cbr\u003e11.3.3 Organotin stabilizers\u003cbr\u003e11.3.4 Organic stabilizers\u003cbr\u003e11.3.4.1 Epoxidized compounds\u003cbr\u003e11.3.4.3 Phenolic antioxidants\u003cbr\u003e11.3.4.4 Multiketones\u003cbr\u003e11.3.4.5 Other costabilizers\u003cbr\u003e11.3.5 UV stabilizers\u003cbr\u003e11.3.5.1 Organic UV absorbers\u003cbr\u003e11.3.5.2 Inorganic UV absorbers\u003cbr\u003e11.3.5.3 Hindered amine light stabilizers, HALS\u003cbr\u003e11.3.6 Lubricants \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 Health and safety and environmental impact\u003c\/strong\u003e\u003cbr\u003e12.1 Toxic substance control \u003cbr\u003e12.2. Carcinogenic effect \u003cbr\u003e12.3 Teratogenic and mutagenic effect \u003cbr\u003e12.4 Workplace exposure limits \u003cbr\u003e12.5 Exposure from consumer products \u003cbr\u003e12.6 Drinking water \u003cbr\u003e12.7 Food regulatory acts \u003cbr\u003e12.8 Toxicity of stabilizers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Material W...
$300.00
{"id":11242219780,"title":"Handbook of Material Weathering, 5th Edition","handle":"978-1-895198-62-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-62-1 \u003cbr\u003e\u003cbr\u003e5th Edition\u003cbr\u003ePages: 826\u003cbr\u003eFigures: 795\u003cbr\u003eTables: 64\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 5th edition of Handbook of Material Weathering contains systematic updates of knowledge generated in more than last 25 years when the 1st edition was prepared. \u003cbr\u003e\u003cbr\u003eThe information required for professional use has been growing so rapidly that additional books had to be written to accommodate essential knowledge for implementation in technological processes used to manufacture products, which deteriorate on exposure to weathering stress factors.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThis edition contains 20 chapters, which can be divided into the following groups:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Theory (photophysics and photochemistry)\u003cbr\u003e\u003cbr\u003e• Stress factors (parameters of exposure, measurements in assessment of weathering conditions, and climatic conditions)\u003cbr\u003e\u003cbr\u003e• Methods of weathering (laboratory degradation studies, weathering cycles, sample preparation, weathering data interpretation, lifetime prediction, and artificial weathering versus natural exposure)\u003cbr\u003e\u003cbr\u003e• Methods of testing of weathered samples (effect of weathering on material properties and testing methods of weathered specimens)\u003cbr\u003e\u003cbr\u003e• Weathering of polymers (data on 52 most important polymers, including mechanisms of degradation, effect of thermal history, characteristic changes in properties with graphical illustrations, and tables with numerical data)\u003cbr\u003e\u003cbr\u003e• Weathering of products (data on 42 groups of industrial products, including their required durability, lifetime expectation, relevant degradation mechanisms, and characteristic changes with graphical illustrations)\u003cbr\u003e\u003cbr\u003e• Effect of additives on weathering (12 groups of additives are discussed)\u003cbr\u003e\u003cbr\u003e• Effect of environmental stress cracking (parameters controlling ESC, mechanisms, methods of testing, and effect on materials)\u003cbr\u003e\u003cbr\u003e• Specific topics (suitability of weathered materials for recycling, interrelation between corrosion and weathering, and methods of study and prevention of deterioration of historical monuments made out of stone)\u003cbr\u003e\u003cbr\u003eThe above information is based on the thorough review of published papers, patents, and other relevant sources updated to the most recent data and information.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eIn addition to this book, 3 additional volumes contain supplementary information:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by Falkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThe first two books contain information relevant for protection of materials against biological and environmental stress factors. The Atlas of Material Damage has focus on structure and morphology of commercial materials and methods of damage prevention by tailoring morphology.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis set of monographic sources was prepared for research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products, and students who want to apply their knowledge to real materials. The books are invaluable for regulating agencies and patent and litigating attorneys. \u003cbr\u003e\u003cbr\u003eHandbook of Material Weathering is now used in about 100 countries, although frequently old editions (as seen from citations) are still in use, which do not contain up-to-date information. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe first edition of this book was published by ChemTec Publishing in 1990. The book had 18 chapters and 518 pages filled with the most up-to-date information on the subject of material weathering available in 1990.\u003cbr\u003e\u003cbr\u003eConsidering the size of the book and typesetting, the present edition is at least 3 times larger, in spite of the fact that two chapters were omitted from the fourth edition: Chapter 17. Stabilization and Stabilizers and Chapter 18. Biodegradation. Even without these two chapters the present 5th edition is larger than the previous edition. The reason is quite obvious − the field is systematically growing with new data, methods, and discoveries happening every day.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe reasons for eliminating the two chapters are as follows:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• If these two chapters would still be included in the book, the book would need to have two volumes which makes a book more difficult to use (separate table of contents and indices).\u003cbr\u003e\u003cbr\u003e• In anticipation of the need for specialized monographic sources, the two chapters mentioned above were not updated in the previous edition, so information was already lacking novelty.\u003cbr\u003e\u003cbr\u003e• Short chapters can only present brief review of the subject, whereas in applications detailed information is needed\u003cbr\u003e\u003cbr\u003e• Two handbooks were published by ChemTec Publishing on the subjects of the omitted chapters:\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by \u003cbr\u003e\u003cbr\u003eFalkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eThese two books give much broader and comprehensive information, such as it is required today, especially considering rapid changes which occurred recently because of health and safety concerns (biostabilization) and new discoveries (UV stabilization).\u003cbr\u003e\u003cbr\u003eIn addition, to present volume and the above two books, there is also a new book:\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThis book was written to emphasize importance of the material structure in photodegradation and photostabilization and also to account for the morphological changes which occur when materials degrade. This addition makes narrative of material degradation more comprehensive, showing new ways to deal with unstable materials.\u003cbr\u003e\u003cbr\u003eI hope that the information provided in these four books will help readers to advance their studies on particular subjects of their research and that the results of these studies will be implemented in the future editions of these books, since we try to report current developments to foster future discoveries. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Photophysics \u003cbr\u003e1.1 Nature of radiation \u003cbr\u003e1.1.1 Radiative energy \u003cbr\u003e1.1.2 Radiation intensity \u003cbr\u003e1.1.3 Radiation incidence \u003cbr\u003e1.2 Absorption of radiation by materials \u003cbr\u003e1.2.1 General principles \u003cbr\u003e1.3 Fate and utilization of absorbed energy \u003cbr\u003e1.3.1 Deactivation \u003cbr\u003e1.3.2 Intramolecular energy transfer \u003cbr\u003e1.3.3 Intermolecular energy transfer \u003cbr\u003e1.3.4 Luminescence \u003cbr\u003e1.4 Radiative processes involving dimers \u003cbr\u003e1.5 Modeling and photophysical data \u003cbr\u003eReferences \u003cbr\u003e2 Photochemistry \u003cbr\u003e2.1 Typical routes of photochemical reactions \u003cbr\u003e2.1.1 Photodissociation \u003cbr\u003e2.1.2 Photooxidation \u003cbr\u003e2.1.3 Peroxide and hydroperoxide conversions \u003cbr\u003e2.1.4 Norrish type I and II reactions \u003cbr\u003e2.1.5 Photo-Fries rearrangement \u003cbr\u003e2.1.6 Photo-Fenton \u003cbr\u003e2.1.7 Photosubstitution \u003cbr\u003e2.1.8 Photoaddition \u003cbr\u003e2.1.9 Photoelimination \u003cbr\u003e2.1.10 Photodimerization \u003cbr\u003e2.1.11 Photocondensation \u003cbr\u003e2.1.12 Photoisomerization \u003cbr\u003e2.2 Photochemical reactivity and quantum yield \u003cbr\u003e2.3 Excitation of excited state \u003cbr\u003e2.4 Parameters of photochemical reactions \u003cbr\u003e2.6 Quenchers and photosensitizers \u003cbr\u003eReferences \u003cbr\u003e3 Parameters of Exposure \u003cbr\u003e3.1 Radiation \u003cbr\u003e3.1.1 The source \u003cbr\u003e3.1.2 Solar radiative emission \u003cbr\u003e3.1.3 Effect of orbital variations on energy supply \u003cbr\u003e3.1.4 Interplanetary and near Earth space \u003cbr\u003e3.1.5 Stratosphere \u003cbr\u003e3.1.6 Troposphere \u003cbr\u003e3.2 Temperature \u003cbr\u003e3.3 Water \u003cbr\u003e3.4 Atmosphere composition \u003cbr\u003e3.5 Pollutants \u003cbr\u003e3.5.1 Nitrogen compounds \u003cbr\u003e3.5.2 Oxygen species \u003cbr\u003e3.5.3 Hydrogen species \u003cbr\u003e3.5.4 Carbon oxides \u003cbr\u003e3.5.5 Sulfur-containing components \u003cbr\u003e3.5.6 Chlorine-containing components \u003cbr\u003e3.5.7 Particulate materials \u003cbr\u003e3.6 Biological substances \u003cbr\u003e3.7 Water pollutants \u003cbr\u003e3.8 Stress \u003cbr\u003e3.7 Cooperative action of different parameters \u003cbr\u003eReferences \u003cbr\u003e4 Measurements in Assessment of Weathering Conditions \u003cbr\u003e4.1 Radiation \u003cbr\u003e4.1.1 Measuring equipment and methods of measurement \u003cbr\u003e4.1.2 Standards \u003cbr\u003e4.2 Sunshine duration \u003cbr\u003e4.3 Temperature \u003cbr\u003e4.4 Relative humidity \u003cbr\u003e4.5 Time of wetness \u003cbr\u003e4.5 Rain \u003cbr\u003e4.6 Pollutants \u003cbr\u003e4.6.1 Carbon dioxide \u003cbr\u003e4.6.2 Particulate matter \u003cbr\u003e4.6.3 Sulfur dioxide \u003cbr\u003e4.6.4 Nitrogen oxides \u003cbr\u003e4.6.5 Carbon monoxide \u003cbr\u003e4.6.6 Ozone \u003cbr\u003eReferences \u003cbr\u003e5 Climatic Conditions \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Radiation \u003cbr\u003e5.3 Sunshine duration \u003cbr\u003e5.4 Temperature \u003cbr\u003e5.5 Precipitation \u003cbr\u003e5.6 Relative humidity \u003cbr\u003e5.7 Wetness time \u003cbr\u003e5.8 Pollutants \u003cbr\u003e5.9 Surface soiling \u003cbr\u003eReferences \u003cbr\u003e6 Methods of Outdoor Exposure \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Climatic conditions and degradation rate \u003cbr\u003e6.3 Variability of weather conditions and its impact on the strategy in outdoor \u003cbr\u003eexposures \u003cbr\u003e6.4 Influence of specimen properties \u003cbr\u003e6.5 Typical methods of outdoor exposure \u003cbr\u003e6.5.1 Exposure sites \u003cbr\u003e6.5.2 Exposure racks \u003cbr\u003e6.5.3 Exposure of products and components \u003cbr\u003e6.6 Other parameters of exposure \u003cbr\u003e6.7 Relevant standards \u003cbr\u003eReferences \u003cbr\u003e7 Laboratory Degradation Studies \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Light sources \u003cbr\u003e7.3 Filters \u003cbr\u003e7.4 Radiation: delivery, monitoring and control \u003cbr\u003e7.5 Temperature control \u003cbr\u003e7.6 Humidity control \u003cbr\u003e7.7 Specimen spraying \u003cbr\u003e7.8 Specimen racks and holders \u003cbr\u003e7.9 Weathering equipment \u003cbr\u003e7.10 Correlation between different devices \u003cbr\u003e7.11 Pollutants \u003cbr\u003e7.12 Precision of studies \u003cbr\u003eReferences \u003cbr\u003e8 Weathering Cycles \u003cbr\u003eReferences \u003cbr\u003e9 Sample Preparation \u003cbr\u003eReferences \u003cbr\u003e10 Weathering Data Interpretation. Lifetime Prediction \u003cbr\u003eReferences \u003cbr\u003e11 Artificial Weathering Versus Natural Exposure \u003cbr\u003eReferences \u003cbr\u003e12 Effect of Weathering on Material Properties \u003cbr\u003e12.1 Mass loss \u003cbr\u003e12.2 Depth of degradation \u003cbr\u003e12.3 Mechanical properties \u003cbr\u003e12.4 Changes of color and optical properties \u003cbr\u003e12.5 Surface changes \u003cbr\u003e12.6 Molecular weight \u003cbr\u003e12.7 Chemical composition of surface and bulk \u003cbr\u003e12.8 Morphology and structure of surface layers \u003cbr\u003e12.9 Glass transition temperature \u003cbr\u003e12.10 Self-healing \u003cbr\u003eReferences \u003cbr\u003e13 Testing Methods of Weathered Specimen \u003cbr\u003e13.1 Visual evaluation \u003cbr\u003e13.2 Microscopy \u003cbr\u003e13.3 Imaging techniques \u003cbr\u003e13.4 Gloss \u003cbr\u003e13.5 Color changes \u003cbr\u003e13.6 Visible spectrophotometry \u003cbr\u003e13.7 UV spectrophotometry \u003cbr\u003e13.8 Infrared spectrophotometry \u003cbr\u003e13.9 Near infrared spectroscopy \u003cbr\u003e13.10 Raman spectroscopy \u003cbr\u003e13.11 Nuclear magnetic resonance \u003cbr\u003e13.12 Electron spin resonance \u003cbr\u003e13.13 Mass spectrometry \u003cbr\u003e13.14 Positron annihilation lifetime spectroscopy \u003cbr\u003e13.15 Chemiluminescence, fluorescence, and phosphorescence \u003cbr\u003e13.16 Atomic absorption spectroscopy \u003cbr\u003e13.17 WAXS and SAXS \u003cbr\u003e13.18 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e13.19 X-ray microtomography \u003cbr\u003e13.20 Mass change \u003cbr\u003e13.21 Density \u003cbr\u003e13.22 Contact angle \u003cbr\u003e13.23 Diffusion of gases and water transport in polymer \u003cbr\u003e13.24 Electrical properties \u003cbr\u003e13.25 Ultrasonic measurements \u003cbr\u003e13.26 Thermal analysis \u003cbr\u003e13.27 Rheological properties of materials \u003cbr\u003e13.28 Other physical parameters \u003cbr\u003e13.29 Tensile strength \u003cbr\u003e13.30 Elongation \u003cbr\u003e13.31 Flexural strength \u003cbr\u003e13.32 Impact strength \u003cbr\u003e13.33 Creep and constant strain tests \u003cbr\u003e13.34 Residual stress \u003cbr\u003e13.35 Scratch and mar resistance \u003cbr\u003e13.36 Other mechanical properties \u003cbr\u003e13.37 Surface roughness \u003cbr\u003e13.38 Molecular weight \u003cbr\u003e13.39 Gas and liquid chromatography \u003cbr\u003e13.40 Titrimetry \u003cbr\u003e13.41 Dehydrochlorination rate \u003cbr\u003e13.42 Gel fraction \u003cbr\u003e13.43 Oxygen uptake \u003cbr\u003e13.44 Water absorption, porosity \u003cbr\u003e13.45 Microorganism growth test \u003cbr\u003e13.46 Environmental stress cracking resistance \u003cbr\u003eReferences \u003cbr\u003e14 Data on Specific Polymers \u003cbr\u003e14.1 Acrylonitrile butadiene styrene, ABS \u003cbr\u003e14.2 Acrylonitrile styrene acrylate, ASA \u003cbr\u003e14.3 Alkyd resins \u003cbr\u003e14.4 Acrylic resins \u003cbr\u003e14.5 Cellulose \u003cbr\u003e14.6 Chitosan \u003cbr\u003e14.7 Epoxy resins \u003cbr\u003e14.8 Ethylene propylene rubber, EPR \u003cbr\u003e14.9 Ethylene vinyl acetate copolymer, EVAc \u003cbr\u003e14.10 Ethylene propylene diene monomer, EPDM \u003cbr\u003e14.11 Fluoropolymers \u003cbr\u003e14.12 Melamine resins \u003cbr\u003e14.13 Phenoxy resins \u003cbr\u003e14.14 Polyacrylamide \u003cbr\u003e14.15 Polyacrylonitrile \u003cbr\u003e14.16 Polyamides \u003cbr\u003e14.17 Polyaniline \u003cbr\u003e14.18 Polycarbonates \u003cbr\u003e14.19 Polyesters \u003cbr\u003e14.20 Polyethylene \u003cbr\u003e14.21 Polyethylene, chlorinated \u003cbr\u003e14.22 Poly(ethylene glycol) \u003cbr\u003e14.23 Polyfluorene \u003cbr\u003e14.24 Polyimides \u003cbr\u003e14.25 Poly(lactic acid) \u003cbr\u003e14.26 Polymethylmethacrylate \u003cbr\u003e14.27 Polyoxyethylene \u003cbr\u003e14.28 Polyoxymethylene \u003cbr\u003e14.29 Poly(phenylene oxide) \u003cbr\u003e14.30 Poly(phenylene sulfide) \u003cbr\u003e14.31 Poly(p-phenylene terephthalamide) \u003cbr\u003e14.32 Poly(p-phenylene vinylene) \u003cbr\u003e14.33 Polypropylene \u003cbr\u003e14.34 Polystyrenes \u003cbr\u003e14.35 Polysulfones \u003cbr\u003e14.36 Polytetrafluoroethylene \u003cbr\u003e14.37 Polythiophene \u003cbr\u003e14.38 Polyurethanes \u003cbr\u003e14.39 Polyvinylalcohol \u003cbr\u003e14.40 Polyvinylchloride \u003cbr\u003e14.41 Poly(vinylidene fluoride \u003cbr\u003e14.42 Poly(vinyl methyl ether) \u003cbr\u003e14.43 Styrene acrylonitrile copolymer \u003cbr\u003e14.44 Silicones \u003cbr\u003e14.45 Polymer blends \u003cbr\u003e14.46 Rubbers \u003cbr\u003e14.46.1 Natural rubber \u003cbr\u003e14.46.1 Polybutadiene \u003cbr\u003e14.46.2 Polychloroprene \u003cbr\u003e14.46.3 Polyisoprene \u003cbr\u003e14.46.4 Polyisobutylene \u003cbr\u003e14.46.5 Styrene butadiene rubber \u003cbr\u003e14.46.6 Styrene butadiene styrene rubber \u003cbr\u003eReferences \u003cbr\u003e15 Effect of Additives on Weathering \u003cbr\u003e15.1 Fillers and reinforcing fibers \u003cbr\u003e15.2 Pigments \u003cbr\u003e15.3 Plasticizers \u003cbr\u003e15.4 Solvents and diluents \u003cbr\u003e15.5 Flame retardants \u003cbr\u003e15.6 Impact modifiers \u003cbr\u003e15.7 Thermal stabilizers \u003cbr\u003e15.8 Antioxidants \u003cbr\u003e15.9 Antimicrobial additives \u003cbr\u003e15.10 Curatives, crosslinkers, initiators \u003cbr\u003e15.11 Catalysts \u003cbr\u003e15.12 Compatibilizer \u003cbr\u003e15.12 Impurities \u003cbr\u003e15.13 Summary \u003cbr\u003eReferences \u003cbr\u003e16 Weathering of Compounded Products \u003cbr\u003e16.1 Adhesives \u003cbr\u003e16.2 Aerospace \u003cbr\u003e16.3 Agriculture \u003cbr\u003e16.4 Appliances \u003cbr\u003e16.5 Automotive parts \u003cbr\u003e16.6 Automotive coatings \u003cbr\u003e16.7 Coated fabrics \u003cbr\u003e16.8 Coil coated materials \u003cbr\u003e16.9 Composites \u003cbr\u003e16.10 Concrete \u003cbr\u003e16.11 Conservation \u003cbr\u003e16.12 Construction materials \u003cbr\u003e16.13 Cosmetics \u003cbr\u003e16.14 Dental materials \u003cbr\u003e16.15 Electronics and electrical materials \u003cbr\u003e16.16 Environmental pollutants \u003cbr\u003e16.17 Foams \u003cbr\u003e16.18 Food \u003cbr\u003e16.19 Gel coats \u003cbr\u003e16.20 Geosynthetics \u003cbr\u003e16.21 Glass and glazing materials \u003cbr\u003e16.22 Greenhouse film \u003cbr\u003e16.23 Hair \u003cbr\u003e16.24 Laminates \u003cbr\u003e16.25 Medical equipment and supplies \u003cbr\u003e16.26 Military applications \u003cbr\u003e16.27 Molded materials \u003cbr\u003e16.28 Packaging materials \u003cbr\u003e16.28.1 Bottles \u003cbr\u003e16.28.2 Containers \u003cbr\u003e16.28.3 Crates and trays \u003cbr\u003e16.28.4 Films \u003cbr\u003e16.29 Paints and coatings \u003cbr\u003e16.30 Pavements \u003cbr\u003e16.31 Pharmaceutical products \u003cbr\u003e16.32 Pipes and tubing \u003cbr\u003e16.33 Pulp and paper \u003cbr\u003e16.34 Roofing materials \u003cbr\u003e16.35 Sealants \u003cbr\u003e16.36 Sheet \u003cbr\u003e16.37 Siding \u003cbr\u003e16.38 Solar cells and collectors \u003cbr\u003e16.39 Textiles \u003cbr\u003e16.40 Windows \u003cbr\u003e16.41 Wire and cable \u003cbr\u003e16.42 Wood \u003cbr\u003eReferences \u003cbr\u003e17 Recycling \u003cbr\u003e17.1 Effect of degradation on recycling \u003cbr\u003e17.2 Re-stabilization of material for recycling \u003cbr\u003e17.3 Multilayer materials \u003cbr\u003e17.4 Removable paint \u003cbr\u003e17.5 Chemical recycling \u003cbr\u003eReferences \u003cbr\u003e18 Environmental Stress Cracking \u003cbr\u003e18.1 Definitions \u003cbr\u003e18.2 Parameters controlling ESC \u003cbr\u003e18.2.1 Material composition \u003cbr\u003e18.2.2 Morphology and dimensions \u003cbr\u003e18.2.3 Processing and performance conditions \u003cbr\u003e18.2.4 Solubility parameters of solvents and polymers \u003cbr\u003e18.2.5 Diffusion \u003cbr\u003e18.2.6 Load and internal stress \u003cbr\u003e18.2.7 Time \u003cbr\u003e18.2.8 Temperature \u003cbr\u003e18.3 Mechanisms of environmental stress cracking \u003cbr\u003e18.4 Kinetics of environmental stress cracking \u003cbr\u003e18.5 Effect of ESC on material durability \u003cbr\u003e18.6 Methods of testing \u003cbr\u003eReferences \u003cbr\u003e19 Interrelation Between Corrosion and Weathering \u003cbr\u003eReferences \u003cbr\u003e20 Weathering of Stones \u003cbr\u003eReferences \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:40-04:00","created_at":"2017-06-22T21:13:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","degradation","degradation depth","environment","laboratory exposures","lifetime prediction","material","methods of measurement","methods of weathering","outdoor exposures","p-testing","polymer degradation","PVC degradation","sustainability of polymers materials","weathering","weathering cycles"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371204,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Material Weathering, 5th Edition","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-62-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009","options":["Title"],"media":[{"alt":null,"id":355727147101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-62-1 \u003cbr\u003e\u003cbr\u003e5th Edition\u003cbr\u003ePages: 826\u003cbr\u003eFigures: 795\u003cbr\u003eTables: 64\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 5th edition of Handbook of Material Weathering contains systematic updates of knowledge generated in more than last 25 years when the 1st edition was prepared. \u003cbr\u003e\u003cbr\u003eThe information required for professional use has been growing so rapidly that additional books had to be written to accommodate essential knowledge for implementation in technological processes used to manufacture products, which deteriorate on exposure to weathering stress factors.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThis edition contains 20 chapters, which can be divided into the following groups:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Theory (photophysics and photochemistry)\u003cbr\u003e\u003cbr\u003e• Stress factors (parameters of exposure, measurements in assessment of weathering conditions, and climatic conditions)\u003cbr\u003e\u003cbr\u003e• Methods of weathering (laboratory degradation studies, weathering cycles, sample preparation, weathering data interpretation, lifetime prediction, and artificial weathering versus natural exposure)\u003cbr\u003e\u003cbr\u003e• Methods of testing of weathered samples (effect of weathering on material properties and testing methods of weathered specimens)\u003cbr\u003e\u003cbr\u003e• Weathering of polymers (data on 52 most important polymers, including mechanisms of degradation, effect of thermal history, characteristic changes in properties with graphical illustrations, and tables with numerical data)\u003cbr\u003e\u003cbr\u003e• Weathering of products (data on 42 groups of industrial products, including their required durability, lifetime expectation, relevant degradation mechanisms, and characteristic changes with graphical illustrations)\u003cbr\u003e\u003cbr\u003e• Effect of additives on weathering (12 groups of additives are discussed)\u003cbr\u003e\u003cbr\u003e• Effect of environmental stress cracking (parameters controlling ESC, mechanisms, methods of testing, and effect on materials)\u003cbr\u003e\u003cbr\u003e• Specific topics (suitability of weathered materials for recycling, interrelation between corrosion and weathering, and methods of study and prevention of deterioration of historical monuments made out of stone)\u003cbr\u003e\u003cbr\u003eThe above information is based on the thorough review of published papers, patents, and other relevant sources updated to the most recent data and information.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eIn addition to this book, 3 additional volumes contain supplementary information:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by Falkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThe first two books contain information relevant for protection of materials against biological and environmental stress factors. The Atlas of Material Damage has focus on structure and morphology of commercial materials and methods of damage prevention by tailoring morphology.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis set of monographic sources was prepared for research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products, and students who want to apply their knowledge to real materials. The books are invaluable for regulating agencies and patent and litigating attorneys. \u003cbr\u003e\u003cbr\u003eHandbook of Material Weathering is now used in about 100 countries, although frequently old editions (as seen from citations) are still in use, which do not contain up-to-date information. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe first edition of this book was published by ChemTec Publishing in 1990. The book had 18 chapters and 518 pages filled with the most up-to-date information on the subject of material weathering available in 1990.\u003cbr\u003e\u003cbr\u003eConsidering the size of the book and typesetting, the present edition is at least 3 times larger, in spite of the fact that two chapters were omitted from the fourth edition: Chapter 17. Stabilization and Stabilizers and Chapter 18. Biodegradation. Even without these two chapters the present 5th edition is larger than the previous edition. The reason is quite obvious − the field is systematically growing with new data, methods, and discoveries happening every day.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe reasons for eliminating the two chapters are as follows:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• If these two chapters would still be included in the book, the book would need to have two volumes which makes a book more difficult to use (separate table of contents and indices).\u003cbr\u003e\u003cbr\u003e• In anticipation of the need for specialized monographic sources, the two chapters mentioned above were not updated in the previous edition, so information was already lacking novelty.\u003cbr\u003e\u003cbr\u003e• Short chapters can only present brief review of the subject, whereas in applications detailed information is needed\u003cbr\u003e\u003cbr\u003e• Two handbooks were published by ChemTec Publishing on the subjects of the omitted chapters:\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by \u003cbr\u003e\u003cbr\u003eFalkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eThese two books give much broader and comprehensive information, such as it is required today, especially considering rapid changes which occurred recently because of health and safety concerns (biostabilization) and new discoveries (UV stabilization).\u003cbr\u003e\u003cbr\u003eIn addition, to present volume and the above two books, there is also a new book:\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThis book was written to emphasize importance of the material structure in photodegradation and photostabilization and also to account for the morphological changes which occur when materials degrade. This addition makes narrative of material degradation more comprehensive, showing new ways to deal with unstable materials.\u003cbr\u003e\u003cbr\u003eI hope that the information provided in these four books will help readers to advance their studies on particular subjects of their research and that the results of these studies will be implemented in the future editions of these books, since we try to report current developments to foster future discoveries. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Photophysics \u003cbr\u003e1.1 Nature of radiation \u003cbr\u003e1.1.1 Radiative energy \u003cbr\u003e1.1.2 Radiation intensity \u003cbr\u003e1.1.3 Radiation incidence \u003cbr\u003e1.2 Absorption of radiation by materials \u003cbr\u003e1.2.1 General principles \u003cbr\u003e1.3 Fate and utilization of absorbed energy \u003cbr\u003e1.3.1 Deactivation \u003cbr\u003e1.3.2 Intramolecular energy transfer \u003cbr\u003e1.3.3 Intermolecular energy transfer \u003cbr\u003e1.3.4 Luminescence \u003cbr\u003e1.4 Radiative processes involving dimers \u003cbr\u003e1.5 Modeling and photophysical data \u003cbr\u003eReferences \u003cbr\u003e2 Photochemistry \u003cbr\u003e2.1 Typical routes of photochemical reactions \u003cbr\u003e2.1.1 Photodissociation \u003cbr\u003e2.1.2 Photooxidation \u003cbr\u003e2.1.3 Peroxide and hydroperoxide conversions \u003cbr\u003e2.1.4 Norrish type I and II reactions \u003cbr\u003e2.1.5 Photo-Fries rearrangement \u003cbr\u003e2.1.6 Photo-Fenton \u003cbr\u003e2.1.7 Photosubstitution \u003cbr\u003e2.1.8 Photoaddition \u003cbr\u003e2.1.9 Photoelimination \u003cbr\u003e2.1.10 Photodimerization \u003cbr\u003e2.1.11 Photocondensation \u003cbr\u003e2.1.12 Photoisomerization \u003cbr\u003e2.2 Photochemical reactivity and quantum yield \u003cbr\u003e2.3 Excitation of excited state \u003cbr\u003e2.4 Parameters of photochemical reactions \u003cbr\u003e2.6 Quenchers and photosensitizers \u003cbr\u003eReferences \u003cbr\u003e3 Parameters of Exposure \u003cbr\u003e3.1 Radiation \u003cbr\u003e3.1.1 The source \u003cbr\u003e3.1.2 Solar radiative emission \u003cbr\u003e3.1.3 Effect of orbital variations on energy supply \u003cbr\u003e3.1.4 Interplanetary and near Earth space \u003cbr\u003e3.1.5 Stratosphere \u003cbr\u003e3.1.6 Troposphere \u003cbr\u003e3.2 Temperature \u003cbr\u003e3.3 Water \u003cbr\u003e3.4 Atmosphere composition \u003cbr\u003e3.5 Pollutants \u003cbr\u003e3.5.1 Nitrogen compounds \u003cbr\u003e3.5.2 Oxygen species \u003cbr\u003e3.5.3 Hydrogen species \u003cbr\u003e3.5.4 Carbon oxides \u003cbr\u003e3.5.5 Sulfur-containing components \u003cbr\u003e3.5.6 Chlorine-containing components \u003cbr\u003e3.5.7 Particulate materials \u003cbr\u003e3.6 Biological substances \u003cbr\u003e3.7 Water pollutants \u003cbr\u003e3.8 Stress \u003cbr\u003e3.7 Cooperative action of different parameters \u003cbr\u003eReferences \u003cbr\u003e4 Measurements in Assessment of Weathering Conditions \u003cbr\u003e4.1 Radiation \u003cbr\u003e4.1.1 Measuring equipment and methods of measurement \u003cbr\u003e4.1.2 Standards \u003cbr\u003e4.2 Sunshine duration \u003cbr\u003e4.3 Temperature \u003cbr\u003e4.4 Relative humidity \u003cbr\u003e4.5 Time of wetness \u003cbr\u003e4.5 Rain \u003cbr\u003e4.6 Pollutants \u003cbr\u003e4.6.1 Carbon dioxide \u003cbr\u003e4.6.2 Particulate matter \u003cbr\u003e4.6.3 Sulfur dioxide \u003cbr\u003e4.6.4 Nitrogen oxides \u003cbr\u003e4.6.5 Carbon monoxide \u003cbr\u003e4.6.6 Ozone \u003cbr\u003eReferences \u003cbr\u003e5 Climatic Conditions \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Radiation \u003cbr\u003e5.3 Sunshine duration \u003cbr\u003e5.4 Temperature \u003cbr\u003e5.5 Precipitation \u003cbr\u003e5.6 Relative humidity \u003cbr\u003e5.7 Wetness time \u003cbr\u003e5.8 Pollutants \u003cbr\u003e5.9 Surface soiling \u003cbr\u003eReferences \u003cbr\u003e6 Methods of Outdoor Exposure \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Climatic conditions and degradation rate \u003cbr\u003e6.3 Variability of weather conditions and its impact on the strategy in outdoor \u003cbr\u003eexposures \u003cbr\u003e6.4 Influence of specimen properties \u003cbr\u003e6.5 Typical methods of outdoor exposure \u003cbr\u003e6.5.1 Exposure sites \u003cbr\u003e6.5.2 Exposure racks \u003cbr\u003e6.5.3 Exposure of products and components \u003cbr\u003e6.6 Other parameters of exposure \u003cbr\u003e6.7 Relevant standards \u003cbr\u003eReferences \u003cbr\u003e7 Laboratory Degradation Studies \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Light sources \u003cbr\u003e7.3 Filters \u003cbr\u003e7.4 Radiation: delivery, monitoring and control \u003cbr\u003e7.5 Temperature control \u003cbr\u003e7.6 Humidity control \u003cbr\u003e7.7 Specimen spraying \u003cbr\u003e7.8 Specimen racks and holders \u003cbr\u003e7.9 Weathering equipment \u003cbr\u003e7.10 Correlation between different devices \u003cbr\u003e7.11 Pollutants \u003cbr\u003e7.12 Precision of studies \u003cbr\u003eReferences \u003cbr\u003e8 Weathering Cycles \u003cbr\u003eReferences \u003cbr\u003e9 Sample Preparation \u003cbr\u003eReferences \u003cbr\u003e10 Weathering Data Interpretation. Lifetime Prediction \u003cbr\u003eReferences \u003cbr\u003e11 Artificial Weathering Versus Natural Exposure \u003cbr\u003eReferences \u003cbr\u003e12 Effect of Weathering on Material Properties \u003cbr\u003e12.1 Mass loss \u003cbr\u003e12.2 Depth of degradation \u003cbr\u003e12.3 Mechanical properties \u003cbr\u003e12.4 Changes of color and optical properties \u003cbr\u003e12.5 Surface changes \u003cbr\u003e12.6 Molecular weight \u003cbr\u003e12.7 Chemical composition of surface and bulk \u003cbr\u003e12.8 Morphology and structure of surface layers \u003cbr\u003e12.9 Glass transition temperature \u003cbr\u003e12.10 Self-healing \u003cbr\u003eReferences \u003cbr\u003e13 Testing Methods of Weathered Specimen \u003cbr\u003e13.1 Visual evaluation \u003cbr\u003e13.2 Microscopy \u003cbr\u003e13.3 Imaging techniques \u003cbr\u003e13.4 Gloss \u003cbr\u003e13.5 Color changes \u003cbr\u003e13.6 Visible spectrophotometry \u003cbr\u003e13.7 UV spectrophotometry \u003cbr\u003e13.8 Infrared spectrophotometry \u003cbr\u003e13.9 Near infrared spectroscopy \u003cbr\u003e13.10 Raman spectroscopy \u003cbr\u003e13.11 Nuclear magnetic resonance \u003cbr\u003e13.12 Electron spin resonance \u003cbr\u003e13.13 Mass spectrometry \u003cbr\u003e13.14 Positron annihilation lifetime spectroscopy \u003cbr\u003e13.15 Chemiluminescence, fluorescence, and phosphorescence \u003cbr\u003e13.16 Atomic absorption spectroscopy \u003cbr\u003e13.17 WAXS and SAXS \u003cbr\u003e13.18 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e13.19 X-ray microtomography \u003cbr\u003e13.20 Mass change \u003cbr\u003e13.21 Density \u003cbr\u003e13.22 Contact angle \u003cbr\u003e13.23 Diffusion of gases and water transport in polymer \u003cbr\u003e13.24 Electrical properties \u003cbr\u003e13.25 Ultrasonic measurements \u003cbr\u003e13.26 Thermal analysis \u003cbr\u003e13.27 Rheological properties of materials \u003cbr\u003e13.28 Other physical parameters \u003cbr\u003e13.29 Tensile strength \u003cbr\u003e13.30 Elongation \u003cbr\u003e13.31 Flexural strength \u003cbr\u003e13.32 Impact strength \u003cbr\u003e13.33 Creep and constant strain tests \u003cbr\u003e13.34 Residual stress \u003cbr\u003e13.35 Scratch and mar resistance \u003cbr\u003e13.36 Other mechanical properties \u003cbr\u003e13.37 Surface roughness \u003cbr\u003e13.38 Molecular weight \u003cbr\u003e13.39 Gas and liquid chromatography \u003cbr\u003e13.40 Titrimetry \u003cbr\u003e13.41 Dehydrochlorination rate \u003cbr\u003e13.42 Gel fraction \u003cbr\u003e13.43 Oxygen uptake \u003cbr\u003e13.44 Water absorption, porosity \u003cbr\u003e13.45 Microorganism growth test \u003cbr\u003e13.46 Environmental stress cracking resistance \u003cbr\u003eReferences \u003cbr\u003e14 Data on Specific Polymers \u003cbr\u003e14.1 Acrylonitrile butadiene styrene, ABS \u003cbr\u003e14.2 Acrylonitrile styrene acrylate, ASA \u003cbr\u003e14.3 Alkyd resins \u003cbr\u003e14.4 Acrylic resins \u003cbr\u003e14.5 Cellulose \u003cbr\u003e14.6 Chitosan \u003cbr\u003e14.7 Epoxy resins \u003cbr\u003e14.8 Ethylene propylene rubber, EPR \u003cbr\u003e14.9 Ethylene vinyl acetate copolymer, EVAc \u003cbr\u003e14.10 Ethylene propylene diene monomer, EPDM \u003cbr\u003e14.11 Fluoropolymers \u003cbr\u003e14.12 Melamine resins \u003cbr\u003e14.13 Phenoxy resins \u003cbr\u003e14.14 Polyacrylamide \u003cbr\u003e14.15 Polyacrylonitrile \u003cbr\u003e14.16 Polyamides \u003cbr\u003e14.17 Polyaniline \u003cbr\u003e14.18 Polycarbonates \u003cbr\u003e14.19 Polyesters \u003cbr\u003e14.20 Polyethylene \u003cbr\u003e14.21 Polyethylene, chlorinated \u003cbr\u003e14.22 Poly(ethylene glycol) \u003cbr\u003e14.23 Polyfluorene \u003cbr\u003e14.24 Polyimides \u003cbr\u003e14.25 Poly(lactic acid) \u003cbr\u003e14.26 Polymethylmethacrylate \u003cbr\u003e14.27 Polyoxyethylene \u003cbr\u003e14.28 Polyoxymethylene \u003cbr\u003e14.29 Poly(phenylene oxide) \u003cbr\u003e14.30 Poly(phenylene sulfide) \u003cbr\u003e14.31 Poly(p-phenylene terephthalamide) \u003cbr\u003e14.32 Poly(p-phenylene vinylene) \u003cbr\u003e14.33 Polypropylene \u003cbr\u003e14.34 Polystyrenes \u003cbr\u003e14.35 Polysulfones \u003cbr\u003e14.36 Polytetrafluoroethylene \u003cbr\u003e14.37 Polythiophene \u003cbr\u003e14.38 Polyurethanes \u003cbr\u003e14.39 Polyvinylalcohol \u003cbr\u003e14.40 Polyvinylchloride \u003cbr\u003e14.41 Poly(vinylidene fluoride \u003cbr\u003e14.42 Poly(vinyl methyl ether) \u003cbr\u003e14.43 Styrene acrylonitrile copolymer \u003cbr\u003e14.44 Silicones \u003cbr\u003e14.45 Polymer blends \u003cbr\u003e14.46 Rubbers \u003cbr\u003e14.46.1 Natural rubber \u003cbr\u003e14.46.1 Polybutadiene \u003cbr\u003e14.46.2 Polychloroprene \u003cbr\u003e14.46.3 Polyisoprene \u003cbr\u003e14.46.4 Polyisobutylene \u003cbr\u003e14.46.5 Styrene butadiene rubber \u003cbr\u003e14.46.6 Styrene butadiene styrene rubber \u003cbr\u003eReferences \u003cbr\u003e15 Effect of Additives on Weathering \u003cbr\u003e15.1 Fillers and reinforcing fibers \u003cbr\u003e15.2 Pigments \u003cbr\u003e15.3 Plasticizers \u003cbr\u003e15.4 Solvents and diluents \u003cbr\u003e15.5 Flame retardants \u003cbr\u003e15.6 Impact modifiers \u003cbr\u003e15.7 Thermal stabilizers \u003cbr\u003e15.8 Antioxidants \u003cbr\u003e15.9 Antimicrobial additives \u003cbr\u003e15.10 Curatives, crosslinkers, initiators \u003cbr\u003e15.11 Catalysts \u003cbr\u003e15.12 Compatibilizer \u003cbr\u003e15.12 Impurities \u003cbr\u003e15.13 Summary \u003cbr\u003eReferences \u003cbr\u003e16 Weathering of Compounded Products \u003cbr\u003e16.1 Adhesives \u003cbr\u003e16.2 Aerospace \u003cbr\u003e16.3 Agriculture \u003cbr\u003e16.4 Appliances \u003cbr\u003e16.5 Automotive parts \u003cbr\u003e16.6 Automotive coatings \u003cbr\u003e16.7 Coated fabrics \u003cbr\u003e16.8 Coil coated materials \u003cbr\u003e16.9 Composites \u003cbr\u003e16.10 Concrete \u003cbr\u003e16.11 Conservation \u003cbr\u003e16.12 Construction materials \u003cbr\u003e16.13 Cosmetics \u003cbr\u003e16.14 Dental materials \u003cbr\u003e16.15 Electronics and electrical materials \u003cbr\u003e16.16 Environmental pollutants \u003cbr\u003e16.17 Foams \u003cbr\u003e16.18 Food \u003cbr\u003e16.19 Gel coats \u003cbr\u003e16.20 Geosynthetics \u003cbr\u003e16.21 Glass and glazing materials \u003cbr\u003e16.22 Greenhouse film \u003cbr\u003e16.23 Hair \u003cbr\u003e16.24 Laminates \u003cbr\u003e16.25 Medical equipment and supplies \u003cbr\u003e16.26 Military applications \u003cbr\u003e16.27 Molded materials \u003cbr\u003e16.28 Packaging materials \u003cbr\u003e16.28.1 Bottles \u003cbr\u003e16.28.2 Containers \u003cbr\u003e16.28.3 Crates and trays \u003cbr\u003e16.28.4 Films \u003cbr\u003e16.29 Paints and coatings \u003cbr\u003e16.30 Pavements \u003cbr\u003e16.31 Pharmaceutical products \u003cbr\u003e16.32 Pipes and tubing \u003cbr\u003e16.33 Pulp and paper \u003cbr\u003e16.34 Roofing materials \u003cbr\u003e16.35 Sealants \u003cbr\u003e16.36 Sheet \u003cbr\u003e16.37 Siding \u003cbr\u003e16.38 Solar cells and collectors \u003cbr\u003e16.39 Textiles \u003cbr\u003e16.40 Windows \u003cbr\u003e16.41 Wire and cable \u003cbr\u003e16.42 Wood \u003cbr\u003eReferences \u003cbr\u003e17 Recycling \u003cbr\u003e17.1 Effect of degradation on recycling \u003cbr\u003e17.2 Re-stabilization of material for recycling \u003cbr\u003e17.3 Multilayer materials \u003cbr\u003e17.4 Removable paint \u003cbr\u003e17.5 Chemical recycling \u003cbr\u003eReferences \u003cbr\u003e18 Environmental Stress Cracking \u003cbr\u003e18.1 Definitions \u003cbr\u003e18.2 Parameters controlling ESC \u003cbr\u003e18.2.1 Material composition \u003cbr\u003e18.2.2 Morphology and dimensions \u003cbr\u003e18.2.3 Processing and performance conditions \u003cbr\u003e18.2.4 Solubility parameters of solvents and polymers \u003cbr\u003e18.2.5 Diffusion \u003cbr\u003e18.2.6 Load and internal stress \u003cbr\u003e18.2.7 Time \u003cbr\u003e18.2.8 Temperature \u003cbr\u003e18.3 Mechanisms of environmental stress cracking \u003cbr\u003e18.4 Kinetics of environmental stress cracking \u003cbr\u003e18.5 Effect of ESC on material durability \u003cbr\u003e18.6 Methods of testing \u003cbr\u003eReferences \u003cbr\u003e19 Interrelation Between Corrosion and Weathering \u003cbr\u003eReferences \u003cbr\u003e20 Weathering of Stones \u003cbr\u003eReferences \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Plastics Additives
$500.00
{"id":11242219460,"title":"Plastics Additives","handle":"978-1-85957-499-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Geoffrey Pritchard \u003cbr\u003eISBN 978-1-85957-499-7 \u003cbr\u003e\u003cbr\u003ePages 200, Market Report\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe plastics industry has seen restructuring and mergers, and new manufacturing processes and specifications have altered customers requirements for additives. Plastics Additives, a new market report from Rapra, offers a fresh account of the additives market. \u003cbr\u003e\u003cbr\u003ePlastics Additives begins with an executive summary of the important points arising from the report, followed by an overview of the significant trends in the four largest plastics market sectors: packaging, construction, automotive and electrical and electronics. The report focuses on the important issues within Europe, with a comment on the relevant trends in North America and Asia. \u003cbr\u003e\u003cbr\u003eThe additive families are considered with an outline of the technical issues and the trends driving the markets. The report provides specific product examples and technology developments. Product types covered include antiblocking agents, biocides, antioxidants, antistatic agents, blowing agents, clarifying and nucleating agents, compatibilisers, fillers (including nanofillers), flame retardants, heat stabilisers, impact modifiers, lubricants and process oils, plasticisers and light stabilisers. \u003cbr\u003e\u003cbr\u003eNew products may be promoted amongst other reasons on grounds of reducing costs, minimising handling and storage problems, improving process efficiency, reducing product defects, or improving product performance. The main marketplaces for each additive type are discussed in this report and the developments in specific properties or trends outlined. \u003cbr\u003e\u003cbr\u003eDemand for additives is obviously strongly dependent on demand for plastics, however, other drivers are important: evolving food distribution with demand for improved packaging, changes in fire regulations, use of materials at higher temperatures in for example the automotive and electronic component industries, recycling issues. This report provides a discussion of the trends in material consumption and specific additive groups. It also includes brief company news and information for some of the leading additive suppliers. \u003cbr\u003e\u003cbr\u003eHealth and safety considerations and regulatory pressures have had a major impact on certain classes of additives, especially heat stabilisers, flame retardants, and plasticisers. A section of this report is dedicated to these developments with topics covered including REACH, end-of-life disposal, chemicals of specific concern, biocides, flame retardants and food contact applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeoffrey Pritchard is an independent consultant and plastics industry analyst. He has been an editor or principal co-author of nine books on polymer technology and has organised the technical programmes for Rapra's annual Addcon conferences on additives and modifiers since 1996.","published_at":"2017-06-22T21:13:40-04:00","created_at":"2017-06-22T21:13:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","antiblocking agents","antioxidants","antistatic agents","biocides","blowing agents","book","clarifying","compatibilisers","fillers","flame retardants","heat stabilisers","impact modifiers","lubricants and process oils","nanofillers","nucleating agents","plasticisers and light stabilisers","report"],"price":50000,"price_min":50000,"price_max":50000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378370820,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics Additives","public_title":null,"options":["Default Title"],"price":50000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-499-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-499-7.jpg?v=1499952371"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-499-7.jpg?v=1499952371","options":["Title"],"media":[{"alt":null,"id":358533496925,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-499-7.jpg?v=1499952371"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-499-7.jpg?v=1499952371","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Geoffrey Pritchard \u003cbr\u003eISBN 978-1-85957-499-7 \u003cbr\u003e\u003cbr\u003ePages 200, Market Report\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe plastics industry has seen restructuring and mergers, and new manufacturing processes and specifications have altered customers requirements for additives. Plastics Additives, a new market report from Rapra, offers a fresh account of the additives market. \u003cbr\u003e\u003cbr\u003ePlastics Additives begins with an executive summary of the important points arising from the report, followed by an overview of the significant trends in the four largest plastics market sectors: packaging, construction, automotive and electrical and electronics. The report focuses on the important issues within Europe, with a comment on the relevant trends in North America and Asia. \u003cbr\u003e\u003cbr\u003eThe additive families are considered with an outline of the technical issues and the trends driving the markets. The report provides specific product examples and technology developments. Product types covered include antiblocking agents, biocides, antioxidants, antistatic agents, blowing agents, clarifying and nucleating agents, compatibilisers, fillers (including nanofillers), flame retardants, heat stabilisers, impact modifiers, lubricants and process oils, plasticisers and light stabilisers. \u003cbr\u003e\u003cbr\u003eNew products may be promoted amongst other reasons on grounds of reducing costs, minimising handling and storage problems, improving process efficiency, reducing product defects, or improving product performance. The main marketplaces for each additive type are discussed in this report and the developments in specific properties or trends outlined. \u003cbr\u003e\u003cbr\u003eDemand for additives is obviously strongly dependent on demand for plastics, however, other drivers are important: evolving food distribution with demand for improved packaging, changes in fire regulations, use of materials at higher temperatures in for example the automotive and electronic component industries, recycling issues. This report provides a discussion of the trends in material consumption and specific additive groups. It also includes brief company news and information for some of the leading additive suppliers. \u003cbr\u003e\u003cbr\u003eHealth and safety considerations and regulatory pressures have had a major impact on certain classes of additives, especially heat stabilisers, flame retardants, and plasticisers. A section of this report is dedicated to these developments with topics covered including REACH, end-of-life disposal, chemicals of specific concern, biocides, flame retardants and food contact applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeoffrey Pritchard is an independent consultant and plastics industry analyst. He has been an editor or principal co-author of nine books on polymer technology and has organised the technical programmes for Rapra's annual Addcon conferences on additives and modifiers since 1996."}
Plastic Films - Situat...
$520.00
{"id":11242219204,"title":"Plastic Films - Situation and Outlook","handle":"978-1-85957-480-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Francoise Pardos \u003cbr\u003eISBN 978-1-85957-480-5 \u003cbr\u003e\u003cbr\u003epages 182\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFlexible films are defined as being planar forms of plastics, which may be thick enough to be self-supporting but thin enough to be flexed, folded and\/or creased without cracking. Films comprise around 25% of all plastics used worldwide, around 40 million tons, and are thus a massive market sector. Commodity plastics dominate, with polyethylene and polypropylene together accounting for around 34 million tons. This is an expanding area with increased demand each year particularly in the developing regions of the world and with a move from rigid to flexible packaging. \u003cbr\u003e\u003cbr\u003eThere are many material types used in films from single layer polymers to multilayer structures with tie layers and copolymers. Multilayers permit custom adaptation of material properties from barrier to strength. Technology, such as the orientation of polypropylene, has produced better properties and more valuable materials. High performance plastics are also being used in applications such as telectronics. The different materials in use in films are reviewed in this market report. There are details of the main suppliers including mergers and capacity. \u003cbr\u003e\u003cbr\u003eFilms can be made via a number of converting processes: extrusion, coextrusion, casting, extrusion coating, extrusion laminating and metallising. Blown extrusion was the first process used to make films of polyethylene. These processes have advantages and disadvantages depending on the material type in use, the width and thickness of film required. \u003cbr\u003e\u003cbr\u003eFilms are mainly used in packaging for foodstuffs, but there are also substantial market segments for medical, electronic, automotive and construction applications. Specific applications include decorative wrap, form-fill-seal, blood bags, flexible printed circuits, bed sheeting, diapers, and in-mould decorating of car parts (to replace painting and provide a more durable surface coating). Carrier bags and garbage bags are big markets, with imports to Europe; there are environmental concerns about the use of plastic bags and these are discussed in the report. In construction, films are used in glazing, damp proofing, tarpaulins, geomembranes and similar applications. \u003cbr\u003e\u003cbr\u003ePE and PP are the main materials used in packaging films. PET is primarily used in magnetics, optics, and telectronics. PVC is found in consumer goods and medical applications, while PVB is mainly used in automotive and construction applications as glazing protection. Multimaterial films account for around 7 million tons of the films produced, with around 95% of this going into packaging applications. These are just some of the examples listed in this market report. \u003cbr\u003e\u003cbr\u003eEurope and North America each account for about 30% of the total world consumption of plastic films. The plastic films supply structure and individual company information are summarised in the second half of this market report on Plastic Films in Europe and the Rest of the World.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Geographical Focus\u003cbr\u003e1.2 Flexible Materials Under Study\u003cbr\u003e1.3 Methodology\u003cbr\u003e1.4 Authorship \u003cbr\u003e\u003cbr\u003e2 Executive Summary\u003cbr\u003e2.1 Main Study Findings \u003cbr\u003e\u003cbr\u003e3 Types of Films and Materials\u003cbr\u003e3.1 Main Film Materials Characteristics\u003cbr\u003e3.2 Polyethylene (PE)\u003cbr\u003eTypes of Polyethylene\u003cbr\u003ePE Films Industry Structure\u003cbr\u003eConsumption of PE Films\u003cbr\u003e3.3 Polypropylene (PP)\u003cbr\u003eTypes of Polypropylene\u003cbr\u003eOriented PP Films\u003cbr\u003eOPP Films Industry Structure\u003cbr\u003eConsumption of OPP Films\u003cbr\u003eMain Uses of OPP Films\u003cbr\u003eCast PP Films\u003cbr\u003e3.4 Polyvinyl Chloride (PVC)\u003cbr\u003ePVC Films Industry Structure\u003cbr\u003ePVC Film Consumption\u003cbr\u003e3.5 Polystyrene (PS) and Derivatives\u003cbr\u003e3.6 Polyethylene Terephthalate (PET)\u003cbr\u003ePET Film Capacity and Comments\u003cbr\u003ePET Film Consumption\u003cbr\u003e3.7 Polyethylene Terephthalate Glycol (PETG)\u003cbr\u003e3.8 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.9 Polyamide (PA, Nylon)\u003cbr\u003eNylon Films Industry Structure\u003cbr\u003eConsumption of Nylon Films\u003cbr\u003e3.10 Polycarbonate (PC)\u003cbr\u003e3.11 Cellophane (Cello)\u003cbr\u003e3.12 Disposable and Edible Films\u003cbr\u003e3.13 Film Substrates for Multilayer Films\u003cbr\u003e3.14 Ethylene Copolymers\u003cbr\u003e3.15 Ethylene Vinyl Acetate (EVA)\u003cbr\u003e3.16 Ionomers\u003cbr\u003e3.17 Cyclo-Olefin Copolymers (COC)\u003cbr\u003e3.18 Polyvinyl Butyral (PVB)\u003cbr\u003e3.19 Barrier Materials\u003cbr\u003eSummary of the Barrier Story\u003cbr\u003e3.20 Ethylene Vinyl Alcohol (EVOH)\u003cbr\u003eExamples of EVOH Film Constructions\u003cbr\u003e3.21 Polyvinyl Alcohol (PVOH)\u003cbr\u003e3.22 Polyvinylidene Chloride (PVDC)\u003cbr\u003ePVDC Industry Structure\u003cbr\u003ePVDC Consumption\u003cbr\u003e3.23 Oxide-Coated Films\u003cbr\u003e3.24 Liquid Crystal Polymers (LCP)\u003cbr\u003e3.25 Polyarylamide MXD6 (PA MXD6)\u003cbr\u003e3.26 Nano-Barriers\u003cbr\u003e3.27 Polyimides (PI)\u003cbr\u003e3.28 Fluoropolymers\u003cbr\u003e3.29 Adhesives\u003cbr\u003e3.30 Multilayer Films\u003cbr\u003e3.31 Aluminium Foil\u003cbr\u003e3.32 Paper and Board Products \u003cbr\u003e\u003cbr\u003e4 Processes for Films\u003cbr\u003e4.1 Film Extrusion\u003cbr\u003eBlown Extrusion\u003cbr\u003eFlat Die Extrusion\u003cbr\u003e4.2 Stretching\u003cbr\u003e4.3 Pre-treatment\u003cbr\u003e4.4 Processes for Multilayer Barrier Films\u003cbr\u003e4.5 Coextrusion\u003cbr\u003eFlat Die Cast Coextrusion\u003cbr\u003eBlown Film Coextrusion\u003cbr\u003eThe Choice Between the Two Techniques\u003cbr\u003eCoextrusion of Commodity Plastic Films\u003cbr\u003eCoextrusion of Specialty and Barrier Plastic Films\u003cbr\u003e4.6 Lamination and Adhesive Lamination\u003cbr\u003e4.7 Coating\u003cbr\u003e4.8 Metallisation\u003cbr\u003eStructure of the Metallising Films Industry\u003cbr\u003eMetallised Flexible Material Consumption and Growth\u003cbr\u003eReplacement of Aluminium Foil\u003cbr\u003eMetallised Paper\u003cbr\u003e4.9 Form-Fill-Seal (FFS)\u003cbr\u003e4.10 Thermoforming\u003cbr\u003e4.11 Printing\u003cbr\u003e4.12 New Technical Developments in Films\u003cbr\u003e4.13 Alphabetical List of Machine Manufacturers for Films \u003cbr\u003e\u003cbr\u003e5 Applications of Films\u003cbr\u003e5.1 Packaging - General Introduction\u003cbr\u003e5.2 Stretch and Shrink Films\u003cbr\u003eShrink Film\u003cbr\u003eStretch Film\u003cbr\u003eStructure of the Shrink\/Stretch Films Industry\u003cbr\u003eConsumption of Stretch and Shrink Films\u003cbr\u003e5.3 Bags and Sacks\u003cbr\u003eTypes of Plastic Bags and Sacks\u003cbr\u003eBag Markets and Applications\u003cbr\u003eBag producers in Europe and Elsewhere\u003cbr\u003eNational Laws and Actions Against Shopping Bags\u003cbr\u003e5.4 Heavy-Duty Sacks and Big Bags\u003cbr\u003eHeavy-Duty Sacks\u003cbr\u003eBig Bags\u003cbr\u003e5.5 Free-Standing Bags and Similar Products\u003cbr\u003eFree-Standing Bags or Stand-Up Pouches\u003cbr\u003ePouches and Sachets\u003cbr\u003eBag in Box\u003cbr\u003e5.6 Automatic Packaging Films\u003cbr\u003e5.7 Multilayer Films\u003cbr\u003e5.8 Labels, Sleeves and Display Films\u003cbr\u003eTraditional and Changing Labels\u003cbr\u003ePlastic Labels\u003cbr\u003eFilm Labels, New-Look Labels, and Plastic Sleeves\u003cbr\u003eSleeves\u003cbr\u003eDisplay Films\u003cbr\u003e5.9 Other Packaging Applications\u003cbr\u003eLidding\u003cbr\u003eStrapping\u003cbr\u003eBubble Films and Wrap\u003cbr\u003eTear Tapes\u003cbr\u003eTwistwrap\u003cbr\u003eAdhesive Tapes\u003cbr\u003eWeaving Tapes\u003cbr\u003e5.10 Building Construction\u003cbr\u003e5.11 Agriculture\u003cbr\u003e5.12 Consumer Goods\u003cbr\u003eGarbage Bags\u003cbr\u003eHousehold Films\u003cbr\u003eDisposable Diapers and Related Products\u003cbr\u003eCredit Cards\u003cbr\u003eTarpaulins\u003cbr\u003e5.13 Medical Applications\u003cbr\u003e5.14 Automobile Industry\u003cbr\u003e5.15 Electrical\/Electronics Industries\u003cbr\u003e5.16 Synthetic Paper\u003cbr\u003e5.17 All Other End-Uses \u003cbr\u003e\u003cbr\u003e6 Film Consumption Summary\u003cbr\u003e6.1 Total World Plastic Film Consumption\u003cbr\u003e6.2 Geographic\/Economic Consumption Split\u003cbr\u003e6.3 Main Film End-Uses \u003cbr\u003e\u003cbr\u003e7 Film Supply Structure, Concentration, and Strategies\u003cbr\u003e7.1 Raw Film Production\u003cbr\u003e7.2 Converted Film Production\u003cbr\u003e7.3 Recent Developments \u003cbr\u003e\u003cbr\u003e8 Main Film Groups, Mergers and Acquisitions \u003cbr\u003e\u003cbr\u003e9 Profiles of Selected Film Producers and Converters\u003cbr\u003e9.1 Alphabetical Listing\u003cbr\u003eACX Technologies [USA]\u003cbr\u003eAEP Industries [USA, Europe]\u003cbr\u003eAET, Applied Extrusion Technologies [USA]\u003cbr\u003eAlcan [Canada]\u003cbr\u003eAlcan Flexible Packaging [USA]\u003cbr\u003eAlcoa [USA]\u003cbr\u003eAlkor Draka [Belgium]\u003cbr\u003eAllflex [Germany]\u003cbr\u003eAlpha Packaging Films [UK]\u003cbr\u003eAluflexpack, AFP [Croatia]\u003cbr\u003eAmcor Flexibles Europe, AFE [Europe]\u003cbr\u003eAPI Foils [UK]\u003cbr\u003eAquafilm [USA] and Aquafilm Ltd [UK]\u003cbr\u003eArmando Álvarez Group [Spain]\u003cbr\u003eAutobar Flexible [UK]\u003cbr\u003eBalcan Plastics [Canada]\u003cbr\u003eBarbier Group [France]\u003cbr\u003eBemis [USA, Europe]\u003cbr\u003eBischof \u0026amp; Klein [Germany]\u003cbr\u003eBolloré [France]\u003cbr\u003eBP Films [UK]\u003cbr\u003eBritish Polythene Industries, BPI [UK]\u003cbr\u003eBuergofol [Germany]\u003cbr\u003eBunzl [UK, USA]\u003cbr\u003eCaffaro Flexible Packaging, CFP [Italy]\u003cbr\u003eCEISA [France]\u003cbr\u003eCeplastik [Spain]\u003cbr\u003eChamberlain Plastics [UK]\u003cbr\u003eCharpentier [France]\u003cbr\u003eChemosvit [Slovakia]\u003cbr\u003eClondalkin [Ireland]\u003cbr\u003eClopay Plastic Products [USA]\u003cbr\u003eCoburn [USA]\u003cbr\u003eCoexpan [Spain]\u003cbr\u003eCofira [France]\u003cbr\u003eColines [Italy]\u003cbr\u003eColoplast [Denmark]\u003cbr\u003eConvenience Food Systems, CFS [the Netherlands]\u003cbr\u003eCrest Packaging [UK]\u003cbr\u003eDanapak Flexibles [Denmark]\u003cbr\u003eDeltalene Adelpro [France]\u003cbr\u003eDubai Poly Film [UAE]\u003cbr\u003eEiffel [Italy]\u003cbr\u003eEtimex [Germany]\u003cbr\u003eEVC Films [Europe]\u003cbr\u003eExbanor [France]\u003cbr\u003eExxonMobil Films [USA, world]\u003cbr\u003eFlexico Minigrip [France]\u003cbr\u003eFrantschach [Austria]\u003cbr\u003eGarware Polyester [India]\u003cbr\u003eGatex [Germany]\u003cbr\u003eGellis [Israel]\u003cbr\u003eGlenroy [USA]\u003cbr\u003eGlory Polyfilms [India]\u003cbr\u003eGoglio [Italy]\u003cbr\u003eGualapack, Safta [Italy]\u003cbr\u003eHueck Folien [Germany]\u003cbr\u003eHuhtamaki [Finland]\u003cbr\u003eImprisac [France]\u003cbr\u003eJason Plastics [UK]\u003cbr\u003eJindal Poly Films, JPFL [India]\u003cbr\u003eKangaroo Plastics [UAE]\u003cbr\u003eKlöckner Pentaplast [Germany]\u003cbr\u003eKohler Plastics [South Africa]\u003cbr\u003eKrehalon [Japan, Europe]\u003cbr\u003eLatinplast [Venezuela]\u003cbr\u003eLawson Mardon [UK]\u003cbr\u003eLinpac [UK]\u003cbr\u003eLofo High Tech Film [Germany]\u003cbr\u003eManuli Packaging [Italy]\u003cbr\u003eMapal Plastics Products [Israel]\u003cbr\u003eMegaplast [Greece]\u003cbr\u003eMF Folien [Germany]\u003cbr\u003eMianyang Longhua Chemical Co. [China]\u003cbr\u003eMM Behrens Packaging [Germany]\u003cbr\u003eMO.CEL [Italy]\u003cbr\u003eNeoGraf [Italy]\u003cbr\u003eNordenia [Germany]\u003cbr\u003eNuova Pansac [Italy]\u003cbr\u003eNuroll, M\u0026amp;G Polymers [Italy]\u003cbr\u003eOrbita [Germany]\u003cbr\u003ePactiv [USA]\u003cbr\u003eParkside Flexibles [UK]\u003cbr\u003ePéchiney Soplaril Flexible Europe, PSFE [France]\u003cbr\u003ePhoenix Packaging [USA]\u003cbr\u003ePlasto-Sac [Israel]\u003cbr\u003ePliant [USA]\u003cbr\u003ePoligal [Spain]\u003cbr\u003ePolinas [Turkey]\u003cbr\u003ePoly Products [Nigeria]\u003cbr\u003ePoly Towers [Malaysia]\u003cbr\u003ePolyclear [UK]\u003cbr\u003ePositive Packaging Industries [India]\u003cbr\u003ePowerpack [Belgium]\u003cbr\u003ePP Payne [UK]\u003cbr\u003ePrepac [Thailand]\u003cbr\u003ePrintpack [USA]\u003cbr\u003eRadici [Italy]\u003cbr\u003eReef Industries [USA]\u003cbr\u003eRenolit RKW [Germany]\u003cbr\u003eRoland Emballages [France]\u003cbr\u003eRomar Packaging [UK]\u003cbr\u003eRotoflex [Lebanon]\u003cbr\u003eRubafilm [France]\u003cbr\u003eSealed Air [US, Europe]\u003cbr\u003eSopal PKL [France, Germany]\u003cbr\u003eStar Polybag [Cyprus]\u003cbr\u003eSüdpack [Germany]\u003cbr\u003eSyfan [Israel]\u003cbr\u003eTekni-Plex [USA]\u003cbr\u003eTredegar Films [USA]\u003cbr\u003eTreofan [Germany]\u003cbr\u003eTrioplast [Sweden]\u003cbr\u003eTyco Plastics [USA]\u003cbr\u003eUCB Films [Belgium]\u003cbr\u003eUnited Flexible Packaging [Dubai]\u003cbr\u003eUnited Flexibles [Germany]\u003cbr\u003eUnterland [Austria]\u003cbr\u003eValeron Strength Films [USA]\u003cbr\u003eVifan Vibac [Europe, Canada]\u003cbr\u003eWihuri, Wipak, Winpak [Finland]\u003cbr\u003eWipf [Switzerland]\u003cbr\u003e9.2 Other Film Companies and Countries - Not Detailed \u003cbr\u003e\u003cbr\u003e10 Sources\u003cbr\u003e10.1 Packaging Federations\u003cbr\u003eEurope\u003cbr\u003eCountries\u003cbr\u003e10.2 Publications, Literature and Databases\u003cbr\u003eTrade Magazines\u003cbr\u003eDatabases and Similar Sources\u003cbr\u003eBooks \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nFrançoise Pardos was trained as an economist, with an MA from Berkeley, University of California, and a doctorate (\"docteur ès-Sciences Economiques\") from Paris. After five years as market research analyst at Kaiser Aluminum, in California, and two years at SEMA, an industrial consultant in Paris, she created Pardos Marketing, an industrial market research consultancy specializing in plastics and plastics applications. \u003cbr\u003e\u003cbr\u003eOver 200 studies have been completed in the last fifteen years. The main topics of recent studies cover new developments in plastics packaging, barrier materials, plastics applications in automotive, electrical, building and medical industries, high performance plastics, potential developments of new materials, with emphasis on European, African and Indian markets.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:38-04:00","created_at":"2017-06-22T21:13:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","applications","automobile","book","Cello","cellophane","COC","copolymers","cyclo-olefin","electrical","electronics","ethylene vinyl acetate","EVA","films","flexible","glycol","ionomers","medical","naphthalate","Nylon","PA","packaging","paper","PC","PE","PEN","pet","PETG","plastics","polyamide","polycarbonate","polyethylene","polypropylene","polyvinyl butyral","PP","PVB","pvc","report","terephthalate"],"price":52000,"price_min":52000,"price_max":52000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378370564,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastic Films - Situation and Outlook","public_title":null,"options":["Default Title"],"price":52000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-480-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-480-5.jpg?v=1499952218"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-480-5.jpg?v=1499952218","options":["Title"],"media":[{"alt":null,"id":358532153437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-480-5.jpg?v=1499952218"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-480-5.jpg?v=1499952218","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Francoise Pardos \u003cbr\u003eISBN 978-1-85957-480-5 \u003cbr\u003e\u003cbr\u003epages 182\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFlexible films are defined as being planar forms of plastics, which may be thick enough to be self-supporting but thin enough to be flexed, folded and\/or creased without cracking. Films comprise around 25% of all plastics used worldwide, around 40 million tons, and are thus a massive market sector. Commodity plastics dominate, with polyethylene and polypropylene together accounting for around 34 million tons. This is an expanding area with increased demand each year particularly in the developing regions of the world and with a move from rigid to flexible packaging. \u003cbr\u003e\u003cbr\u003eThere are many material types used in films from single layer polymers to multilayer structures with tie layers and copolymers. Multilayers permit custom adaptation of material properties from barrier to strength. Technology, such as the orientation of polypropylene, has produced better properties and more valuable materials. High performance plastics are also being used in applications such as telectronics. The different materials in use in films are reviewed in this market report. There are details of the main suppliers including mergers and capacity. \u003cbr\u003e\u003cbr\u003eFilms can be made via a number of converting processes: extrusion, coextrusion, casting, extrusion coating, extrusion laminating and metallising. Blown extrusion was the first process used to make films of polyethylene. These processes have advantages and disadvantages depending on the material type in use, the width and thickness of film required. \u003cbr\u003e\u003cbr\u003eFilms are mainly used in packaging for foodstuffs, but there are also substantial market segments for medical, electronic, automotive and construction applications. Specific applications include decorative wrap, form-fill-seal, blood bags, flexible printed circuits, bed sheeting, diapers, and in-mould decorating of car parts (to replace painting and provide a more durable surface coating). Carrier bags and garbage bags are big markets, with imports to Europe; there are environmental concerns about the use of plastic bags and these are discussed in the report. In construction, films are used in glazing, damp proofing, tarpaulins, geomembranes and similar applications. \u003cbr\u003e\u003cbr\u003ePE and PP are the main materials used in packaging films. PET is primarily used in magnetics, optics, and telectronics. PVC is found in consumer goods and medical applications, while PVB is mainly used in automotive and construction applications as glazing protection. Multimaterial films account for around 7 million tons of the films produced, with around 95% of this going into packaging applications. These are just some of the examples listed in this market report. \u003cbr\u003e\u003cbr\u003eEurope and North America each account for about 30% of the total world consumption of plastic films. The plastic films supply structure and individual company information are summarised in the second half of this market report on Plastic Films in Europe and the Rest of the World.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Geographical Focus\u003cbr\u003e1.2 Flexible Materials Under Study\u003cbr\u003e1.3 Methodology\u003cbr\u003e1.4 Authorship \u003cbr\u003e\u003cbr\u003e2 Executive Summary\u003cbr\u003e2.1 Main Study Findings \u003cbr\u003e\u003cbr\u003e3 Types of Films and Materials\u003cbr\u003e3.1 Main Film Materials Characteristics\u003cbr\u003e3.2 Polyethylene (PE)\u003cbr\u003eTypes of Polyethylene\u003cbr\u003ePE Films Industry Structure\u003cbr\u003eConsumption of PE Films\u003cbr\u003e3.3 Polypropylene (PP)\u003cbr\u003eTypes of Polypropylene\u003cbr\u003eOriented PP Films\u003cbr\u003eOPP Films Industry Structure\u003cbr\u003eConsumption of OPP Films\u003cbr\u003eMain Uses of OPP Films\u003cbr\u003eCast PP Films\u003cbr\u003e3.4 Polyvinyl Chloride (PVC)\u003cbr\u003ePVC Films Industry Structure\u003cbr\u003ePVC Film Consumption\u003cbr\u003e3.5 Polystyrene (PS) and Derivatives\u003cbr\u003e3.6 Polyethylene Terephthalate (PET)\u003cbr\u003ePET Film Capacity and Comments\u003cbr\u003ePET Film Consumption\u003cbr\u003e3.7 Polyethylene Terephthalate Glycol (PETG)\u003cbr\u003e3.8 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.9 Polyamide (PA, Nylon)\u003cbr\u003eNylon Films Industry Structure\u003cbr\u003eConsumption of Nylon Films\u003cbr\u003e3.10 Polycarbonate (PC)\u003cbr\u003e3.11 Cellophane (Cello)\u003cbr\u003e3.12 Disposable and Edible Films\u003cbr\u003e3.13 Film Substrates for Multilayer Films\u003cbr\u003e3.14 Ethylene Copolymers\u003cbr\u003e3.15 Ethylene Vinyl Acetate (EVA)\u003cbr\u003e3.16 Ionomers\u003cbr\u003e3.17 Cyclo-Olefin Copolymers (COC)\u003cbr\u003e3.18 Polyvinyl Butyral (PVB)\u003cbr\u003e3.19 Barrier Materials\u003cbr\u003eSummary of the Barrier Story\u003cbr\u003e3.20 Ethylene Vinyl Alcohol (EVOH)\u003cbr\u003eExamples of EVOH Film Constructions\u003cbr\u003e3.21 Polyvinyl Alcohol (PVOH)\u003cbr\u003e3.22 Polyvinylidene Chloride (PVDC)\u003cbr\u003ePVDC Industry Structure\u003cbr\u003ePVDC Consumption\u003cbr\u003e3.23 Oxide-Coated Films\u003cbr\u003e3.24 Liquid Crystal Polymers (LCP)\u003cbr\u003e3.25 Polyarylamide MXD6 (PA MXD6)\u003cbr\u003e3.26 Nano-Barriers\u003cbr\u003e3.27 Polyimides (PI)\u003cbr\u003e3.28 Fluoropolymers\u003cbr\u003e3.29 Adhesives\u003cbr\u003e3.30 Multilayer Films\u003cbr\u003e3.31 Aluminium Foil\u003cbr\u003e3.32 Paper and Board Products \u003cbr\u003e\u003cbr\u003e4 Processes for Films\u003cbr\u003e4.1 Film Extrusion\u003cbr\u003eBlown Extrusion\u003cbr\u003eFlat Die Extrusion\u003cbr\u003e4.2 Stretching\u003cbr\u003e4.3 Pre-treatment\u003cbr\u003e4.4 Processes for Multilayer Barrier Films\u003cbr\u003e4.5 Coextrusion\u003cbr\u003eFlat Die Cast Coextrusion\u003cbr\u003eBlown Film Coextrusion\u003cbr\u003eThe Choice Between the Two Techniques\u003cbr\u003eCoextrusion of Commodity Plastic Films\u003cbr\u003eCoextrusion of Specialty and Barrier Plastic Films\u003cbr\u003e4.6 Lamination and Adhesive Lamination\u003cbr\u003e4.7 Coating\u003cbr\u003e4.8 Metallisation\u003cbr\u003eStructure of the Metallising Films Industry\u003cbr\u003eMetallised Flexible Material Consumption and Growth\u003cbr\u003eReplacement of Aluminium Foil\u003cbr\u003eMetallised Paper\u003cbr\u003e4.9 Form-Fill-Seal (FFS)\u003cbr\u003e4.10 Thermoforming\u003cbr\u003e4.11 Printing\u003cbr\u003e4.12 New Technical Developments in Films\u003cbr\u003e4.13 Alphabetical List of Machine Manufacturers for Films \u003cbr\u003e\u003cbr\u003e5 Applications of Films\u003cbr\u003e5.1 Packaging - General Introduction\u003cbr\u003e5.2 Stretch and Shrink Films\u003cbr\u003eShrink Film\u003cbr\u003eStretch Film\u003cbr\u003eStructure of the Shrink\/Stretch Films Industry\u003cbr\u003eConsumption of Stretch and Shrink Films\u003cbr\u003e5.3 Bags and Sacks\u003cbr\u003eTypes of Plastic Bags and Sacks\u003cbr\u003eBag Markets and Applications\u003cbr\u003eBag producers in Europe and Elsewhere\u003cbr\u003eNational Laws and Actions Against Shopping Bags\u003cbr\u003e5.4 Heavy-Duty Sacks and Big Bags\u003cbr\u003eHeavy-Duty Sacks\u003cbr\u003eBig Bags\u003cbr\u003e5.5 Free-Standing Bags and Similar Products\u003cbr\u003eFree-Standing Bags or Stand-Up Pouches\u003cbr\u003ePouches and Sachets\u003cbr\u003eBag in Box\u003cbr\u003e5.6 Automatic Packaging Films\u003cbr\u003e5.7 Multilayer Films\u003cbr\u003e5.8 Labels, Sleeves and Display Films\u003cbr\u003eTraditional and Changing Labels\u003cbr\u003ePlastic Labels\u003cbr\u003eFilm Labels, New-Look Labels, and Plastic Sleeves\u003cbr\u003eSleeves\u003cbr\u003eDisplay Films\u003cbr\u003e5.9 Other Packaging Applications\u003cbr\u003eLidding\u003cbr\u003eStrapping\u003cbr\u003eBubble Films and Wrap\u003cbr\u003eTear Tapes\u003cbr\u003eTwistwrap\u003cbr\u003eAdhesive Tapes\u003cbr\u003eWeaving Tapes\u003cbr\u003e5.10 Building Construction\u003cbr\u003e5.11 Agriculture\u003cbr\u003e5.12 Consumer Goods\u003cbr\u003eGarbage Bags\u003cbr\u003eHousehold Films\u003cbr\u003eDisposable Diapers and Related Products\u003cbr\u003eCredit Cards\u003cbr\u003eTarpaulins\u003cbr\u003e5.13 Medical Applications\u003cbr\u003e5.14 Automobile Industry\u003cbr\u003e5.15 Electrical\/Electronics Industries\u003cbr\u003e5.16 Synthetic Paper\u003cbr\u003e5.17 All Other End-Uses \u003cbr\u003e\u003cbr\u003e6 Film Consumption Summary\u003cbr\u003e6.1 Total World Plastic Film Consumption\u003cbr\u003e6.2 Geographic\/Economic Consumption Split\u003cbr\u003e6.3 Main Film End-Uses \u003cbr\u003e\u003cbr\u003e7 Film Supply Structure, Concentration, and Strategies\u003cbr\u003e7.1 Raw Film Production\u003cbr\u003e7.2 Converted Film Production\u003cbr\u003e7.3 Recent Developments \u003cbr\u003e\u003cbr\u003e8 Main Film Groups, Mergers and Acquisitions \u003cbr\u003e\u003cbr\u003e9 Profiles of Selected Film Producers and Converters\u003cbr\u003e9.1 Alphabetical Listing\u003cbr\u003eACX Technologies [USA]\u003cbr\u003eAEP Industries [USA, Europe]\u003cbr\u003eAET, Applied Extrusion Technologies [USA]\u003cbr\u003eAlcan [Canada]\u003cbr\u003eAlcan Flexible Packaging [USA]\u003cbr\u003eAlcoa [USA]\u003cbr\u003eAlkor Draka [Belgium]\u003cbr\u003eAllflex [Germany]\u003cbr\u003eAlpha Packaging Films [UK]\u003cbr\u003eAluflexpack, AFP [Croatia]\u003cbr\u003eAmcor Flexibles Europe, AFE [Europe]\u003cbr\u003eAPI Foils [UK]\u003cbr\u003eAquafilm [USA] and Aquafilm Ltd [UK]\u003cbr\u003eArmando Álvarez Group [Spain]\u003cbr\u003eAutobar Flexible [UK]\u003cbr\u003eBalcan Plastics [Canada]\u003cbr\u003eBarbier Group [France]\u003cbr\u003eBemis [USA, Europe]\u003cbr\u003eBischof \u0026amp; Klein [Germany]\u003cbr\u003eBolloré [France]\u003cbr\u003eBP Films [UK]\u003cbr\u003eBritish Polythene Industries, BPI [UK]\u003cbr\u003eBuergofol [Germany]\u003cbr\u003eBunzl [UK, USA]\u003cbr\u003eCaffaro Flexible Packaging, CFP [Italy]\u003cbr\u003eCEISA [France]\u003cbr\u003eCeplastik [Spain]\u003cbr\u003eChamberlain Plastics [UK]\u003cbr\u003eCharpentier [France]\u003cbr\u003eChemosvit [Slovakia]\u003cbr\u003eClondalkin [Ireland]\u003cbr\u003eClopay Plastic Products [USA]\u003cbr\u003eCoburn [USA]\u003cbr\u003eCoexpan [Spain]\u003cbr\u003eCofira [France]\u003cbr\u003eColines [Italy]\u003cbr\u003eColoplast [Denmark]\u003cbr\u003eConvenience Food Systems, CFS [the Netherlands]\u003cbr\u003eCrest Packaging [UK]\u003cbr\u003eDanapak Flexibles [Denmark]\u003cbr\u003eDeltalene Adelpro [France]\u003cbr\u003eDubai Poly Film [UAE]\u003cbr\u003eEiffel [Italy]\u003cbr\u003eEtimex [Germany]\u003cbr\u003eEVC Films [Europe]\u003cbr\u003eExbanor [France]\u003cbr\u003eExxonMobil Films [USA, world]\u003cbr\u003eFlexico Minigrip [France]\u003cbr\u003eFrantschach [Austria]\u003cbr\u003eGarware Polyester [India]\u003cbr\u003eGatex [Germany]\u003cbr\u003eGellis [Israel]\u003cbr\u003eGlenroy [USA]\u003cbr\u003eGlory Polyfilms [India]\u003cbr\u003eGoglio [Italy]\u003cbr\u003eGualapack, Safta [Italy]\u003cbr\u003eHueck Folien [Germany]\u003cbr\u003eHuhtamaki [Finland]\u003cbr\u003eImprisac [France]\u003cbr\u003eJason Plastics [UK]\u003cbr\u003eJindal Poly Films, JPFL [India]\u003cbr\u003eKangaroo Plastics [UAE]\u003cbr\u003eKlöckner Pentaplast [Germany]\u003cbr\u003eKohler Plastics [South Africa]\u003cbr\u003eKrehalon [Japan, Europe]\u003cbr\u003eLatinplast [Venezuela]\u003cbr\u003eLawson Mardon [UK]\u003cbr\u003eLinpac [UK]\u003cbr\u003eLofo High Tech Film [Germany]\u003cbr\u003eManuli Packaging [Italy]\u003cbr\u003eMapal Plastics Products [Israel]\u003cbr\u003eMegaplast [Greece]\u003cbr\u003eMF Folien [Germany]\u003cbr\u003eMianyang Longhua Chemical Co. [China]\u003cbr\u003eMM Behrens Packaging [Germany]\u003cbr\u003eMO.CEL [Italy]\u003cbr\u003eNeoGraf [Italy]\u003cbr\u003eNordenia [Germany]\u003cbr\u003eNuova Pansac [Italy]\u003cbr\u003eNuroll, M\u0026amp;G Polymers [Italy]\u003cbr\u003eOrbita [Germany]\u003cbr\u003ePactiv [USA]\u003cbr\u003eParkside Flexibles [UK]\u003cbr\u003ePéchiney Soplaril Flexible Europe, PSFE [France]\u003cbr\u003ePhoenix Packaging [USA]\u003cbr\u003ePlasto-Sac [Israel]\u003cbr\u003ePliant [USA]\u003cbr\u003ePoligal [Spain]\u003cbr\u003ePolinas [Turkey]\u003cbr\u003ePoly Products [Nigeria]\u003cbr\u003ePoly Towers [Malaysia]\u003cbr\u003ePolyclear [UK]\u003cbr\u003ePositive Packaging Industries [India]\u003cbr\u003ePowerpack [Belgium]\u003cbr\u003ePP Payne [UK]\u003cbr\u003ePrepac [Thailand]\u003cbr\u003ePrintpack [USA]\u003cbr\u003eRadici [Italy]\u003cbr\u003eReef Industries [USA]\u003cbr\u003eRenolit RKW [Germany]\u003cbr\u003eRoland Emballages [France]\u003cbr\u003eRomar Packaging [UK]\u003cbr\u003eRotoflex [Lebanon]\u003cbr\u003eRubafilm [France]\u003cbr\u003eSealed Air [US, Europe]\u003cbr\u003eSopal PKL [France, Germany]\u003cbr\u003eStar Polybag [Cyprus]\u003cbr\u003eSüdpack [Germany]\u003cbr\u003eSyfan [Israel]\u003cbr\u003eTekni-Plex [USA]\u003cbr\u003eTredegar Films [USA]\u003cbr\u003eTreofan [Germany]\u003cbr\u003eTrioplast [Sweden]\u003cbr\u003eTyco Plastics [USA]\u003cbr\u003eUCB Films [Belgium]\u003cbr\u003eUnited Flexible Packaging [Dubai]\u003cbr\u003eUnited Flexibles [Germany]\u003cbr\u003eUnterland [Austria]\u003cbr\u003eValeron Strength Films [USA]\u003cbr\u003eVifan Vibac [Europe, Canada]\u003cbr\u003eWihuri, Wipak, Winpak [Finland]\u003cbr\u003eWipf [Switzerland]\u003cbr\u003e9.2 Other Film Companies and Countries - Not Detailed \u003cbr\u003e\u003cbr\u003e10 Sources\u003cbr\u003e10.1 Packaging Federations\u003cbr\u003eEurope\u003cbr\u003eCountries\u003cbr\u003e10.2 Publications, Literature and Databases\u003cbr\u003eTrade Magazines\u003cbr\u003eDatabases and Similar Sources\u003cbr\u003eBooks \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nFrançoise Pardos was trained as an economist, with an MA from Berkeley, University of California, and a doctorate (\"docteur ès-Sciences Economiques\") from Paris. After five years as market research analyst at Kaiser Aluminum, in California, and two years at SEMA, an industrial consultant in Paris, she created Pardos Marketing, an industrial market research consultancy specializing in plastics and plastics applications. \u003cbr\u003e\u003cbr\u003eOver 200 studies have been completed in the last fifteen years. The main topics of recent studies cover new developments in plastics packaging, barrier materials, plastics applications in automotive, electrical, building and medical industries, high performance plastics, potential developments of new materials, with emphasis on European, African and Indian markets.\u003cbr\u003e\u003cbr\u003e"}