Handbook of Fillers

Handbook of Fillers

Author: George Wypych
ISBN 978-1-895198-41-6 

Figures: 578
Tables: 190
Pages: 774
Third Edition

$285.00
This handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.
Over 3,000 research papers, mostly published from 1994 to 2009 (over 1500 new papers in this edition), technical data from over 160 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. 
  The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous edition, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers. 
  Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. 
  The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. 
  One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by 154 SEM TEM, AFM micrographs.
  The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.
  The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. 
  This book is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace. The previous edition was very popular among environmental engineers, patent and litigation lawyers, and employees of various governmental agencies. 
  To summarize, major features of this handbook are:
• Comprehensive review of literature
• The most current information
• Information required by scientists, engineers, marketing, sales, and students given in one source
• All aspects of filler properties, effects, and application thoroughly reviewed
• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels 

1 INTRODUCTION 

1.1 Expectations from fillers
1.2 Typical filler properties
1.3 Definitions
1.4 Classification
1.5 Markets and trends
References


2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY 

2.1 Particulate Fillers 
2.1.1 Aluminum flakes and powders
2.1.2 Aluminum borate whiskers
2.1.3 Aluminum oxide 
2.1.4 Aluminum trihydroxide
2.1.5 Anthracite
2.1.6 Antimonate of sodium
2.1.7 Antimony pentoxide
2.1.8 Antimony trioxide
2.1.9 Ammonium octamolybdate
2.1.10 Apatite
2.1.11 Ash, fly
2.1.12 Attapulgite
2.1.13 Barium metaborate
2.1.14 Barium sulfate
2.1.15 Barium & strontium sulfates
2.1.16 Barium titanate
2.1.17 Bentonite
2.1.18 Beryllium oxide
2.1.19 Boron nitride
2.1.20 Calcium carbonate
2.1.21 Calcium hydroxide
2.1.22 Calcium sulfate
2.1.23 Carbon black 
2.1.24 Ceramic beads
2.1.25 Clay
2.1.26 Copper
2.1.27 Cobalt powder
2.1.28 Cristobalite
2.1.29 Diatomaceous earth
2.1.30 Dolomite
2.1.31 Ferrites
2.1.32 Feldspar
2.1.33 Glass beads
2.1.34 Gold
2.1.35 Graphite
2.1.36 Hydrous calcium silicate
2.1.37 Iron oxide 
2.1.38 Kaolin 
2.1.39 Lithopone 
2.1.40 Magnesium oxide 
2.1.41 Magnesium hydroxide 
2.1.42 Metal-containing conductive materials
2.1.43 Mica
2.1.44 Molybdenum
2.1.45 Molybdenum disulfide
2.1.46 Molybdic oxide
2.1.47 Nanofillers
2.1.48 Nickel
2.1.49 Nickel oxide
2.1.50 Nickel zinc ferrite
2.1.51 Perlite
2.1.52 Polymeric fillers
2.1.53 Potassium hexatitanate whiskers
2.1.54 Pumice
2.1.55 Pyrophyllite
2.1.56 Rubber particles
2.1.57 Sepiolite
2.1.58 Silica 
2.1.58.1 Fumed silica
2.1.58.2 Fused silica 
2.1.58.3 Precipitated silica
2.1.58.4 Nanosilica
2.1.58.5 Quartz (Tripoli) 
2.1.58.6 Sand 
2.1.58.7 Silica gel
2.1.59 Silicon carbide
2.1.60 Silicon nitride
2.1.61 Silver powder and flakes
2.1.62 Slate flour 
2.1.63 Talc 
2.1.64 Titanium dioxide
2.1.65 Tungsten 
2.1.66 Vermiculite 
2.1.67 Wollastonite 
2.1.68 Wood flour and similar materials
2.1.69 Zeolites 
2.1.70 Zinc borate 
2.1.71 Zinc oxide 
2.1.72 Zinc stannate 
2.1.73 Zinc sulfide 
2.2 Fibers 
2.2.1 Aramid fibers
2.2.2 Carbon fibers 
2.2.3 Cellulose fibers 
2.2.4 Glass fibers 
2.2.5 Other fibers 
References 


3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING 

3.1 Filler packaging
3.2 External transportation
3.3 Filler receiving 
3.4 Storage 
3.5 In-plant conveying 
3.6 Semi-bulk unloading systems
3.7 Bag handling equipment 
3.8 Blending 
3.9 Feeding 
3.10 Drying 
3.11 Dispersion 
References


4 QUALITY CONTROL OF FILLERS 

4.1 Absorption coefficient
4.2 Acidity or alkalinity of water extract
4.3 Ash content 
4.4 Brightness 
4.5 Coarse particles
4.6 Color 
4.7 CTAB surface area
4.8 Density 
4.9 Electrical properties
4.10 Extractables 
4.11 Fines content 
4.12 Heating loss 
4.13 Heat stability 
4.14 Hegman fineness 
4.15 Hiding power 
4.16 Iodine absorption number 
4.17 Lightening power of white pigments
4.18 Loss on ignition 
4.19 Mechanical and related properties
4.20 Oil absorption 
4.21 Particle size 
4.22 Pellet strength 
4.23 pH 
4.24 Resistance to light
4.25 Resistivity of aqueous extract 
4.26 Sieve residue
4.27 Soluble matter 
4.28 Specific surface area
4.29 Sulfur content 
4.30 Tamped volume 
4.31 Tinting strength 
4.32 Volatile matter 
4.33 Water content 
4.34 Water-soluble sulfates, chlorides and nitrates
References 


5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS 

5.1 Density
5.2 Particle size
5.3 Particle size distribution
5.4 Particle shape 
5.5 Particle surface morphology and roughness
5.6 Specific surface area 
5.7 Porosity 
5.8 Particle-particle interaction and spacing
5.9 Agglomerates 
5.10 Aggregates and structure
5.11 Flocculation and sedimentation
5.12 Aspect ratio 
5.13 Packing volume 
5.14 pH
5.15 Zeta-potential
5.16 Surface energy
5.17 Moisture 
5.18 Absorption of liquids and swelling
5.19 Permeability and barrier properties 
5.20 Oil absorption 
5.21 Hydrophilic/hydrophobic properties
5.22 Optical properties 
5.23 Refractive index 
5.24 Friction properties 
5.25 Hardness 
5.26 Intumescent properties
5.27 Thermal conductivity 
5.28 Thermal expansion coefficient
5.29 Melting temperature 
5.30 Electrical properties 
5.31 Magnetic properties 
References 


6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS 

6.1 Reactivity
6.2 Chemical groups on the filler surface
6.3 Filler surface modification 
6.4 Filler modification and material properties
6.5 Resistance to various chemicals 
6.6 Cure in fillers presence 
6.7 Polymerization in fillers presence
6.8 Grafting 
6.9 Crosslink density 
6.10 Reaction kinetics 
6.11 Molecular mobility 
References 


7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS 

7.1 Particle distribution in matrix
7.2 Orientation of filler particles in a matrix
7.3 Voids 
7.4 Matrix-filler interaction
7.5 Chemical interactions 
7.6 Other interactions 
7.7 Interphase organization
7.8 Interfacial adhesion 
7.9 Interphase thickness 
7.10 Filler-chain links 
7.11 Chain dynamics 
7.12 Bound rubber 
7.13 Debonding 
7.14 Mechanisms of reinforcement 
7.15 Benefits of organization on molecular level
References 


8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS 

8.1 Tensile strength and elongation
8.2 Tensile yield stress 
8.3 Elastic modulus 
8.4 Flexural strength and modulus 
8.5 Impact resistance 
8.6 Hardness 
8.7 Tear strength
8.8 Compressive strength
8.9 Fracture resistance 
8.10 Wear 
8.11 Friction 
8.12 Abrasion 
8.13 Scratch resistance
8.14 Fatigue 
8.15 Failure 
8.16 Adhesion 
8.17 Thermal deformation
8.18 Shrinkage 
8.19 Warpage 
8.20 Compression set
8.21 Load transfer 
8.22 Residual stress 
8.23 Creep 
References 


9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS 

9.1 Viscosity
9.2 Flow 
9.3 Flow induced filler particle orientation
9.4 Torque 
9.5 Viscoelasticity
9.6 Dynamic mechanical behavior
9.7 Complex viscosity 
9.8 Shear viscosity 
9.9 Elongational viscosity
9.10 Melt rheology 
9.11 Yield value 
References 


10 MORPHOLOGY OF FILLED SYSTEMS 

10.1 Crystallinity
10.2 Crystallization behavior
10.3 Nucleation 
10.4 Crystal size 
10.5 Spherulites 
10.6 Transcrystallinity
10.7 Orientation 
References 


11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS 

11.1 Irradiation
11.2 UV radiation 
11.3 Temperature 
11.4 Liquids and vapors
11.5 Stabilization 
11.6 Degradable materials
References 


12 FLAMMABILITY OF FILLED MATERIALS 

12.1 Definitions
12.2 Limiting oxygen index
12.3 Ignition and flame spread rate
12.4 Heat transmission rate 
12.5 Decomposition and combustion
12.6 Emission of gaseous components
12.7 Smoke 
12.8 Char 
12.9 Recycling
References 


13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA 

13.1 Adhesion promoters
13.2 Antistatics 
13.3 Blowing agents 
13.4 Catalysts 
13.5 Compatibilizers
13.6 Coupling agents 
13.7 Dispersing agents and surface active agents
13.8 Flame retardants 
13.9 Impact modifiers 
13.10 UV stabilizers 
13.11 Other additives 
References 


14 TESTING METHODS IN FILLED SYSTEMS 

14.1 Physical methods
14.1.1 Atomic force microscopy 
14.1.2 Autoignition test 
14.1.3 Bound rubber 
14.1.4 Char formation 
14.1.5 Cone calorimetry 
14.1.6 Contact angle 
14.1.7 Dispersing agent requirement
14.1.8 Dispersion tests 
14.1.9 Dripping test 
14.1.10 Dynamic mechanical analysis
14.1.11 Electric constants determination
14.1.12 Electron microscopy 
14.1.13 Fiber orientation 
14.1.14 Flame propagation test
14.1.15 Glow wire test 
14.1.16 Image analysis 
14.1.17 Limiting oxygen index
14.1.18 Magnetic properties 
14.1.19 Optical microscopy 
14.1.20 Particle size analysis 
14.1.21 Radiant panel test 
14.1.22 Rate of combustion 
14.1.23 Scanning acoustic microscopy
14.1.24 Smoke chamber 
14.1.25 Sonic methods 
14.1.26 Specific surface area
14.1.27 Thermal analysis 
14.2 Chemical and instrumental analysis
14.2.1 Electron spin resonance 
14.2.2 Electron spectroscopy for chemical analysis
14.2.3 Inverse gas chromatography 
14.2.4 Gas chromatography 
14.2.5 Gel content 
14.2.6 Infrared and Raman spectroscopy
14.2.7 Nuclear magnetic resonance spectroscopy
14.2.8 UV and visible spectophotometry 
14.2.9 X-ray analysis 
References 


15 FILLERS IN COMMERCIAL POLYMERS 

15.1 Acrylics
15.2 Acrylonitrile-butadiene-styrene copolymer
15.3 Acrylonitrile-styrene-acrylate 
15.4 Aliphatic polyketone 
15.5 Alkyd resins 
15.6 Elastomers 
15.7 Epoxy resins 
15.8 Ethylene vinyl acetate copolymers 
15.9 Ethylene-ethyl acetate copolymer 
15.10 Ethylene-propylene copolymers 
15.11 Ionomers 
15.12 Liquid crystalline polymers
15.13 Perfluoroalkoxy resin 
15.14 Phenolic resins 
15.15 Poly(acrylic acid) 
15.16 Polyamides 
15.17 Polyamideimide 
15.18 Polyamines 
15.19 Polyaniline 
15.20 Polyaryletherketone
15.21 Poly(butylene terephthalate) 
15.22 Polycarbonate 
15.23 Polyetheretherketone
15.24 Polyetherimide 
15.25 Polyether sulfone 
15.26 Polyethylene 
15.27 Polyethylene, chlorinated 
15.28 Polyethylene, chlorosulfonated 
15.29 Poly(ethylene oxide) 
15.30 Poly(ethylene terephthalate)
15.31 Polyimide 
15.32 Polymethylmethacrylate
15.33 Polyoxymethylene 
15.34 Poly(phenylene ether)
15.35 Poly(phenylene sulfide) 
15.36 Polypropylene 
15.37 Polypyrrole 
15.38 Polystyrene & high impact 
15.39 Polysulfides 
15.40 Polysulfone 
15.41 Polytetrafluoroethylene
15.42 Polyurethanes 
15.43 Poly(vinyl acetate)
15.44 Poly(vinyl alcohol)
15.45 Poly(vinyl butyral) 
15.46 Poly(vinyl chloride) 
15.47 Rubbers 
15.47.1 Natural rubber
15.47.2 Nitrile rubber 
15.47.3 Polybutadiene rubber 
15.47.4 Polybutyl rubber 
15.47.5 Polychloroprene 
15.47.6 Polyisobutylene 
15.47.7 Polyisoprene 
15.47.8 Styrene-butadiene rubber
15.48 Silicones 
15.49 Styrene-acrylonitrile copolymer
15.50 Tetrafluoroethylene-perfluoropropylene
15.51 Unsaturated polyesters 
15.52 Vinylidene-fluoride terpolymers 
References 


16 FILLER IN MATERIALS COMBINATIONS 

16.1 Blends, alloys and interpenetrating networks
16.2 Composites 
16.3 Nanocomposites 
16.4 Laminates 
References 

17 FORMULATION WITH FILLERS 
References 

18 FILLERS IN DIFFERENT PROCESSING METHODS 
18.1 Blow molding
18.2 Calendering and hot-melt coating
18.3 Compression molding 
18.4 Dip coating 
18.5 Dispersion 
18.6 Extrusion 
18.7 Foaming 
18.8 Injection molding
18.9 Knife coating 
18.10 Mixing 
18.11 Pultrusion 
18.12 Reaction injection molding
18.13 Rotational molding 
18.14 Sheet molding 
18.15 Thermoforming 
18.16 Welding and machining 
References 


19 FILLERS IN DIFFERENT PRODUCTS 

19.1 Adhesives 
19.2 Agriculture 
19.3 Aerospace
19.4 Appliances 
19.5 Automotive materials 
19.6 Bottles and containers 
19.7 Building components 
19.8 Business machines 
19.9 Cable and wire 
19.10 Coated fabrics 
19.11 Coatings and paints
19.12 Cosmetics and pharmaceutical products
19.13 Dental restorative composites 
19.14 Electrical and electronic materials 
19.15 Electromagnetic interference shielding 
19.16 Fibers 
19.17 Film 
19.18 Foam 
19.19 Food and feed
19.20 Friction materials
19.21 Geosynthetics 
19.22 Hoses and pipes 
19.23 Magnetic devices 
19.24 Medical applications 
19.25 Membranes 
19.26 Noise damping 
19.27 Optical devices 
19.28 Paper 
19.29 Radiation shields
19.30 Railway transportation 
19.31 Roofing 
19.32 Telecommunication
19.33 Tires 
19.34 Sealants 
19.35 Siding 
19.36 Sports equipment 
19.37 Waterproofing 
19.38 Windows 
References 


20 HAZARDS IN FILLER USE 
References 




George Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research & development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley & Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation & Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.