Fire Retardancy of Polymers
The use of polymers is restricted by their flammability- they may indeed initiate or propagate fire. Fire Retardancy of Polymers focuses on mineral additives from either micro- or nano-composites for application in fire retardants. With the use of fire retardant additives containing halogen or phosphorus compounds in decline, the need for other systems is evident.
The major materials that are used as fire retardant fillers for polymers are alumina trihydrate or magnesium hydroxide, which account for more than 50% by weight of the worldwide sales of fire retardants. Recent works have shown that such halogen-free compounds may give enhanced fire retardancy to polymeric materials when used in low levels, alone, or in the synergistic mixture and that the corresponding fire performances depend on the dispersion of the mineral filler, micrometer-scale dispersion leading to the best performances.
Specialists discuss these new applications of mineral fillers with particular emphasis on action mechanisms, new materials including textiles, toxicology, and hazards. With extensive references, this book provides a comprehensive and up-to-date view of these applications and will appeal to professionals, materials scientists, and engineers looking for novel ways to eliminate fire hazards and improve flame retardancy of materials, with a special interest in sustainable development.
The major materials that are used as fire retardant fillers for polymers are alumina trihydrate or magnesium hydroxide, which account for more than 50% by weight of the worldwide sales of fire retardants. Recent works have shown that such halogen-free compounds may give enhanced fire retardancy to polymeric materials when used in low levels, alone, or in the synergistic mixture and that the corresponding fire performances depend on the dispersion of the mineral filler, micrometer-scale dispersion leading to the best performances.
Specialists discuss these new applications of mineral fillers with particular emphasis on action mechanisms, new materials including textiles, toxicology, and hazards. With extensive references, this book provides a comprehensive and up-to-date view of these applications and will appeal to professionals, materials scientists, and engineers looking for novel ways to eliminate fire hazards and improve flame retardancy of materials, with a special interest in sustainable development.
Related Products
Application of Textile...
$180.00
{"id":11242213892,"title":"Application of Textiles in Rubber (The)","handle":"978-1-85957-277-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.B. Wootton \u003cbr\u003eISBN 978-1-85957-277-1 \u003cbr\u003e\u003cbr\u003epages 248\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is written in a very readable style. It starts by describing the history of the use of textiles in rubber composites and progresses through the technology of yarn production to the details of fabric construction. The five core fabric materials used in rubber reinforcement are covered, i.e., cotton, rayon, polyester, nylon, and aramid. Adhesion of fabrics to the rubber matrix is discussed and tests for measuring adhesion are described. \u003cbr\u003e\u003cbr\u003eIn the second half of the book, specific applications of fabrics in rubber are described in detail: conveyor belting, hose, power transmission belting and coated fabrics in structural applications. There are also short sections on applications such as hovercraft skirts, air brake chamber diaphragms, and snowmobile tracks.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHistorical Background \u003cbr\u003eProduction and Properties of Textile Yarns \u003cbr\u003eYarn and Cord Processes \u003cbr\u003eFabric Formation and Design of Fabrics \u003cbr\u003eHeat-Setting and Adhesive Treatments \u003cbr\u003eBasic Rubber Compounding and Composite Assembly \u003cbr\u003eAssessment of Adhesion \u003cbr\u003eConveyor Belting \u003cbr\u003eHose \u003cbr\u003ePower Transmission Belts \u003cbr\u003eApplications of Coated Fabrics \u003cbr\u003eMiscellaneous Applications of Textiles in Rubber \u003cbr\u003eAbbreviations \u0026amp; Acronyms \u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Wootton has many years of experience as a technical expert working for the rubber industry and subsequently the textile industry. In his most recent post, he worked as Technical Services Manager for Milliken Industrials Limited, producing industrial fabrics for polymer reinforcement. He has written and lectured on the topics of textile reinforcement and adhesion. This book is a revised version of the well-known 'Textile Reinforcement of Elastomers' published over twenty years ago and edited by David Wootton and W.C. Wake.","published_at":"2017-06-22T21:13:20-04:00","created_at":"2017-06-22T21:13:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","adhesion","book","coated fabrics","compounding","cord","r-formulation","rubber","rubber reinforcement","textiles","yarns"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350916,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Application of Textiles in Rubber (The)","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-277-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355","options":["Title"],"media":[{"alt":null,"id":350148722781,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.B. Wootton \u003cbr\u003eISBN 978-1-85957-277-1 \u003cbr\u003e\u003cbr\u003epages 248\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is written in a very readable style. It starts by describing the history of the use of textiles in rubber composites and progresses through the technology of yarn production to the details of fabric construction. The five core fabric materials used in rubber reinforcement are covered, i.e., cotton, rayon, polyester, nylon, and aramid. Adhesion of fabrics to the rubber matrix is discussed and tests for measuring adhesion are described. \u003cbr\u003e\u003cbr\u003eIn the second half of the book, specific applications of fabrics in rubber are described in detail: conveyor belting, hose, power transmission belting and coated fabrics in structural applications. There are also short sections on applications such as hovercraft skirts, air brake chamber diaphragms, and snowmobile tracks.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHistorical Background \u003cbr\u003eProduction and Properties of Textile Yarns \u003cbr\u003eYarn and Cord Processes \u003cbr\u003eFabric Formation and Design of Fabrics \u003cbr\u003eHeat-Setting and Adhesive Treatments \u003cbr\u003eBasic Rubber Compounding and Composite Assembly \u003cbr\u003eAssessment of Adhesion \u003cbr\u003eConveyor Belting \u003cbr\u003eHose \u003cbr\u003ePower Transmission Belts \u003cbr\u003eApplications of Coated Fabrics \u003cbr\u003eMiscellaneous Applications of Textiles in Rubber \u003cbr\u003eAbbreviations \u0026amp; Acronyms \u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Wootton has many years of experience as a technical expert working for the rubber industry and subsequently the textile industry. In his most recent post, he worked as Technical Services Manager for Milliken Industrials Limited, producing industrial fabrics for polymer reinforcement. He has written and lectured on the topics of textile reinforcement and adhesion. This book is a revised version of the well-known 'Textile Reinforcement of Elastomers' published over twenty years ago and edited by David Wootton and W.C. Wake."}
Handbook of Recycling,...
$140.00
{"id":11242247044,"title":"Handbook of Recycling, 1st Edition","handle":"9780123964595","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Worrell and Reuter \u003cbr\u003eISBN 9780123964595 \u003cbr\u003e\u003cbr\u003eState-of-the-art for practitioners, analysts, and scientists\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Portrays recent and emerging technologies in metal recycling, by-product utilization, and management of post-consumer waste\u003cbr\u003e\u003cbr\u003e- Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes\u003cbr\u003e\u003cbr\u003e- Uses examples from current professional and industrial practice, with policy implications and economics, to present a real-world portrait useful to engineers and professionals as well as academics\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn concept, this book is an Encyclopedia-style authoritative description of the various aspects of material reuse and recycling (including technology, policy, economics) by leading authors from around the globe.\u003cbr\u003e\u003cbr\u003eThis book resolves the problem of there currently (nor published in the past decade) being no single book that provides an authoritative review of the state-of-the-art in recycling. This book should resolve that, by providing a state-of-the-art review of all aspects of recycling.\u003cbr\u003e\u003cbr\u003eThe author's intention in writing this book was to provide the market with a basic textbook on recycling that could be used by students, scholars, and decision makers, as well as stakeholders in the recycling industry, for the next few years.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors\u003cbr\u003ePart I: Recycling in Context\u003cbr\u003eChapter 1. Recycling: A Key Factor for Resource Efficiency\u003cbr\u003eAbstract\u003cbr\u003eReferences\u003cbr\u003eChapter 2. Definitions and Terminology\u003cbr\u003eAbstract\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Defining Recycling\u003cbr\u003e2.3 Materials and Products\u003cbr\u003e2.4 Applying the Product-Centric Approach—Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 3. Recycling in Context\u003cbr\u003eAbstract\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Metal Recycling Considerations and Technologies\u003cbr\u003e3.3 Defining Recycling Statistics\u003cbr\u003e3.4 Process Efficiencies and Recycling Rate Constraints\u003cbr\u003e3.5 Perspectives on Current Recycling Statistics\u003cbr\u003e3.6 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 4. Recycling Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Indium\u003cbr\u003e4.3 Other Examples of Rare Metals\u003cbr\u003e4.4 The Distant Future: Georgescu's Last Laugh?\u003cbr\u003eReferences\u003cbr\u003eChapter 5. Theory and Tools of Physical Separation\/Recycling\u003cbr\u003eAbstract\u003cbr\u003e5.1 Recycling Process\u003cbr\u003e5.2 Particle Size\u003cbr\u003e5.3 Pulp Rheology\u003cbr\u003e5.4 Properties and Property Spaces\u003cbr\u003e5.5 Sampling\u003cbr\u003e5.6 Mass Balances and Process Dynamics\u003cbr\u003e5.7 Material Balancing\u003cbr\u003e5.8 Liberation\u003cbr\u003e5.9 Grade-Recovery Curves\u003cbr\u003eReferences\u003cbr\u003ePart II: Recycling - Application \u0026amp; Technology\u003cbr\u003eChapter 6. Recycling of Steel\u003cbr\u003eAbstract\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Scrap Processing and Material Streams from Scrap Processing\u003cbr\u003e6.3 The Processes Used for Smelting Steel Scrap\u003cbr\u003e6.4 Trends in Quality of the Scrap Available for Steel Production\u003cbr\u003e6.5 Hindrances for Recycling—Tramp Elements\u003cbr\u003e6.6 Purification of Scrap\u003cbr\u003e6.7 To Live with Impurities\u003cbr\u003e6.8 Measures to Secure Sustainable Recycling of Steel\u003cbr\u003eReferences\u003cbr\u003eChapter 7. Copper Recycling\u003cbr\u003eAbstract\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Raw Material for Copper Recycling\u003cbr\u003e7.3 Processes for Recycling\u003cbr\u003e7.4 Challenges in Copper Recycling\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 8. Lead Recycling\u003cbr\u003eAbstract\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 The Lead-Acid Battery\u003cbr\u003e8.3 Battery Preprocessing\u003cbr\u003e8.4 Smelting\u003cbr\u003e8.5 Alternative Approaches\u003cbr\u003e8.6 Refining\u003cbr\u003e8.7 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eChapter 9. Zinc and Residue Recycling\u003cbr\u003eAbstract\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Zinc Oxide Production from Drosses\u003cbr\u003e9.3 Electric Arc Furnace Dust and Other Pb, Zn, Cu-containing Residues\u003cbr\u003e9.4 Zinc Recycling from Copper Industry Dusts\u003cbr\u003e9.5 Fuming of Slags from Lead Metallurgy\u003cbr\u003eReferences\u003cbr\u003eChapter 10. Recycling of Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e10.1 Precious Metals\u003cbr\u003e10.2 Rare Earth Metals\u003cbr\u003e10.3 Electronic Metals\u003cbr\u003e10.4 Refractory Metals (Ferro-alloys Metals, Specialty Metals)\u003cbr\u003e10.5 Other Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 11. Recycling of Lumber\u003cbr\u003eAbstract\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Background\u003cbr\u003e11.3 Key Issues in Post-use Management of Wood\u003cbr\u003e11.4 Case Study Scenarios\u003cbr\u003e11.5 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 12. Paper Recycling\u003cbr\u003eAbstract\u003cbr\u003e12.1 Important Facts about Paper Recycling\u003cbr\u003e12.2 Stock Preparation for Paper Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 13. Plastic Recycling\u003cbr\u003eAbstract\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Use of Plastics\u003cbr\u003e13.3 Plastic Recycling\u003cbr\u003e13.4 Mechanical Recycling\u003cbr\u003e13.5 Impact of Recycling\u003cbr\u003e13.6 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 14. Glass Recycling\u003cbr\u003eAbstract\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Types of Glass\u003cbr\u003e14.3 Glass Manufacture\u003cbr\u003e14.4 Glass Recovery for Reuse and Recycling\u003cbr\u003e14.5 Reuse of Glass\u003cbr\u003e14.6 Closed-Loop Recycling of Glass\u003cbr\u003e14.7 Environmental Benefits of Closed-Loop Recycling of Glass\u003cbr\u003e14.8 The Growth of Glass Recycling\u003cbr\u003e14.9 Open-Loop Glass Recycling\u003cbr\u003e14.10 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 15. Textile Recycling\u003cbr\u003eAbstract\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 The Recycling Effort\u003cbr\u003e15.3 Export of Secondhand Clothing\u003cbr\u003e15.4 Conversion to New Products\u003cbr\u003e15.5 Conversion of Mattresses\u003cbr\u003e15.6 Conversion of Carpet\u003cbr\u003e15.7 Wipers\u003cbr\u003e15.8 Landfill and Incineration\u003cbr\u003e15.9 Diamonds\u003cbr\u003e15.10 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 16. Cementitious Binders Incorporating Residues\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e16.1 Introduction\u003cbr\u003e16.2 Clinker Production: Process Flow, Alternative Fuels and Alternative Raw Materials\u003cbr\u003e16.3 From Clinker to Cement: Residues in Blended Cements\u003cbr\u003e16.4 Alternative Cements for the Future: Reducing the CO2 Footprint while Incorporating Residues\u003cbr\u003e16.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 17. Industrial By-products\u003cbr\u003eAbstract\u003cbr\u003e17.1 What is a By-product?\u003cbr\u003e17.2 Major By-products and Their Generic Properties\u003cbr\u003e17.3 Where and How to Use By-products\u003cbr\u003e17.4 Technical and Environmental Requirements\u003cbr\u003e17.5 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eChapter 18. Recovery of Metals from Different Secondary Resources (Waste)\u003cbr\u003eAbstract\u003cbr\u003e18.1 Introduction\u003cbr\u003e18.2 Production of Ferroalloys from Waste\u003cbr\u003e18.3 Recycling Concepts for Rare Earth Containing Magnets\u003cbr\u003eReferences\u003cbr\u003eChapter 19. Recycling of Carbon Fibers\u003cbr\u003eAbstract\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Carbon Fiber Recycling Processes\u003cbr\u003e19.3 Composites Remanufacturing\u003cbr\u003e19.4 Applications for Recycled Carbon Fibers and Composites\u003cbr\u003e19.5 Life-Cycle Analysis of Carbon Fiber Reinforced Polymers\u003cbr\u003e19.6 Further Challenges\u003cbr\u003e19.7 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 20. Recycling of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e20.1 Introduction\u003cbr\u003e20.2 The Existing Low-Cost Housing Technologies\u003cbr\u003e20.3 Earth\/Mud Building\u003cbr\u003e20.4 Prefabrication Method\u003cbr\u003e20.5 Lightweight Foamed or Cellular Concrete Technology\u003cbr\u003e20.6 Stabilized Earth Brick Technology\u003cbr\u003e20.7 Case Study\u003cbr\u003e20.8 Cost-Effectiveness of Using Low-Cost Housing Technologies\u003cbr\u003e20.9 Recycling Technologies and Practice\u003cbr\u003e20.10 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 21. Recycling of Packaging\u003cbr\u003eAbstract\u003cbr\u003e21.1 Introduction\u003cbr\u003e21.2 Packaging Waste\u003cbr\u003e21.3 Composition\u003cbr\u003e21.4 Recovery and Recycling\u003cbr\u003e21.5 Recovery and Collection Schemes\u003cbr\u003e21.6 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 22. Material-Centric (Aluminum and Copper) and Product-Centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) Recycling and DfR Rules\u003cbr\u003eAbstract\u003cbr\u003e22.1 Introduction\u003cbr\u003e22.2 Material-Centric Recycling: Aluminum and Copper\u003cbr\u003e22.3 Product-Centric Recycling: Complex Sustainability Enabling and Consumer Products\u003cbr\u003e22.4 Recycling Complex Multimaterial Consumer Goods: A Product-Centric Approach\u003cbr\u003e22.5 Automotive Recycling\/Recycling of ELVs Including Automotive Battery Recycling\u003cbr\u003e22.6 Recycling of Waste Electrical and Electronic Equipment\u003cbr\u003e22.7 Recycling of Lighting\u003cbr\u003e22.8 Technology for Recycling of Batteries and Catalysts\u003cbr\u003e22.9 Design for Recycling and Resource Efficiency\u003cbr\u003eReferences\u003cbr\u003eChapter 23. Separation of Large Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e23.1 Introduction\u003cbr\u003e23.2 The Circular Process for Large Municipal Solid Waste\u003cbr\u003e23.3 The Preconditions for Sorting Large Municipal Solid Waste\u003cbr\u003e23.4 Collection System of Large Municipal Solid Waste\u003cbr\u003e23.5 Sorting of Large Municipal Solid Waste\u003cbr\u003e23.6 Sorting Installation\u003cbr\u003e23.7 Sorting Process\u003cbr\u003e23.8 Recycling Efficiency\u003cbr\u003e23.9 The Future\u003cbr\u003eReference\u003cbr\u003eChapter 24. Recovery of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e24.1 Introduction\u003cbr\u003e24.2 Existing Recycled Aggregate Concrete Applications\u003cbr\u003e24.3 Existing Concrete Recycling Methods\u003cbr\u003e24.4 Cost and Benefit Analysis\u003cbr\u003e24.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 25. Waste Electrical and Electronic Equipment Management\u003cbr\u003eAbstract\u003cbr\u003e25.1 Introduction\u003cbr\u003e25.2 Objectives of WEEE Management\u003cbr\u003e25.3 WEEE Take-Back Schemes\u003cbr\u003e25.4 Long-term Trends\u003cbr\u003eReferences\u003cbr\u003eChapter 26. Developments in Collection of Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e26.1 Introduction\u003cbr\u003e26.2 Definition of Municipal Solid Waste\u003cbr\u003e26.3 Quantities of Municipal Solid Waste\u003cbr\u003e26.4 Quality of Municipal Solid Waste\u003cbr\u003e26.5 Management of Municipal Solid Waste\u003cbr\u003eReferences\u003cbr\u003ePart III: Strategy and Policy\u003cbr\u003eChapter 27. From Recycling to Eco-design\u003cbr\u003eAbstract\u003cbr\u003e27.1 Introduction\u003cbr\u003e27.2 Principle of Material Design for Recycling\u003cbr\u003e27.3 Eco-design Strategies for Recycling\u003cbr\u003e27.4 Is Recycling Really Less Impactful on the Environment?\u003cbr\u003e27.5 Current Limits for Eco-design for Recycling Strategies\u003cbr\u003e27.6 Market Demand\u003cbr\u003e27.7 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 28. Recycling and Labeling\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e28.1 Introduction\u003cbr\u003e28.2 Functional Needs Analysis\u003cbr\u003e28.3 Bibliographical Research on the Polymer Labeling Processes\u003cbr\u003e28.4 First Results of Detection Tests with Polypropylene Samples\u003cbr\u003e28.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 29. Informal Waste Recycling in Developing Countries\u003cbr\u003eAbstract\u003cbr\u003e29.1 Introduction\u003cbr\u003e29.2 Defining the Informal Sector\u003cbr\u003e29.3 Informal Solid Waste Management\u003cbr\u003e29.4 Informal e-Waste Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 30. Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e30.1 Is a Circular Economy Possible or Desirable?\u003cbr\u003e30.2 Hierarchies of Material Conservation\u003cbr\u003e30.3 When is Recycling Not the Answer?\u003cbr\u003e30.4 Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 31. The Economics of Recycling\u003cbr\u003eAbstract\u003cbr\u003e31.1 Introduction\u003cbr\u003e31.2 Economic Trends and Drivers\u003cbr\u003e31.3 Environmental and Social Costs and Benefits\u003cbr\u003e31.4 Economic Instruments\u003cbr\u003e31.5 Conclusions and Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 32. Geopolitics of Resources and Recycling\u003cbr\u003eAbstract\u003cbr\u003e32.1 Introduction\u003cbr\u003e32.2 Resources, Scarcity and Geopolitics\u003cbr\u003e32.3 Recycling in the Geopolitical Context\u003cbr\u003eReferences\u003cbr\u003eChapter 33. Recycling in Waste Management Policy\u003cbr\u003eAbstract\u003cbr\u003e33.1 Introduction\u003cbr\u003e33.2 A Brief History of Waste Management\u003cbr\u003e33.3 Integrating Recycling in Waste Management Policy Design\u003cbr\u003eReferences\u003cbr\u003eChapter 34. Voluntary and Negotiated Agreements\u003cbr\u003eAbstract\u003cbr\u003e34.1 Introduction\u003cbr\u003e34.2 Experiences in Recycling Policy\u003cbr\u003e34.3 Lessons Learned\u003cbr\u003eReferences\u003cbr\u003eChapter 35. Economic Instruments\u003cbr\u003eAbstract\u003cbr\u003e35.1 Introduction\u003cbr\u003e35.2 Criteria to Compare Policy Instruments\u003cbr\u003e35.3 Basic Environmental Policy Instruments Aimed at Stimulating Recycling\u003cbr\u003e35.4 Incentives for Upstream Green Product Design\u003cbr\u003e35.5 Multiproduct and Mixed Waste Streams\u003cbr\u003e35.6 EPR and Recycling Certificates\u003cbr\u003e35.7 Durable Goods\u003cbr\u003e35.8 Imperfect Competition in Product and Recycling Markets\u003cbr\u003e35.9 Policy Instruments in an International Market for Waste and Materials\u003cbr\u003e35.10 Recycling and Nonrenewable Resources in a Macro Economic Perspective\u003cbr\u003e35.11 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 36. Information Instruments\u003cbr\u003eAbstract\u003cbr\u003e36.1 Introduction\u003cbr\u003e36.2 Target Groups\/Audience\u003cbr\u003e36.3 Communication Tools\u003cbr\u003e36.4 Messaging: Information and Communication\u003cbr\u003e36.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 37. Regulatory Instruments: Sustainable Materials Management, Recycling, and the Law\u003cbr\u003eAbstract\u003cbr\u003e37.1 Introduction\u003cbr\u003e37.2 Resource Efficiency and Waste Strategy—The Blurb\u003cbr\u003e37.3 The EU Framework Directive on Waste, and Its View on Recovery and Recycling\u003cbr\u003eAppendix 1. Physical Separation 101\u003cbr\u003eA1.1 Breakage\u003cbr\u003eA1.2 Size Classification\u003cbr\u003eA1.3 Screens\u003cbr\u003eA1.4 Dynamic Separators\u003cbr\u003eA1.5 Gravity Separations\u003cbr\u003eA1.6 Water Media Separations\u003cbr\u003eA1.7 Dense Media Separations\u003cbr\u003eA1.8 Flotation\u003cbr\u003eA1.9 Magnetic Separations\u003cbr\u003eA1.10 Eddy Current Separation\u003cbr\u003eA1.11 Electrostatic Separations\u003cbr\u003eA1.12 Sorting\u003cbr\u003eReference\u003cbr\u003eAppendix 2. Thermodynamics 101\u003cbr\u003eA2.1 On the Consumption and Availability of Metals\u003cbr\u003eA2.2 Recycling and Extractive Metallurgy: An Energy Issue\u003cbr\u003eA2.3 The Second Law of Thermodynamics Devil: An Entropy Issue\u003cbr\u003eA2.4 Chemical Thermodynamics and Reaction Equilibrium\u003cbr\u003eA2.5 On the Stability of Oxides and Other Metal-Containing Minerals\u003cbr\u003eA2.6 The Carbon Tragedy\u003cbr\u003eA2.7 H2 is an Alternative Reductor\u003cbr\u003eA2.8 Very Stable Oxides\u003cbr\u003eA2.9 About Solutions and Desired Purity Levels\u003cbr\u003eA2.10 Some Conclusions\u003cbr\u003eReference\u003cbr\u003eAppendix 3. Life-Cycle Assessment\u003cbr\u003eA3.1 Life-Cycle Assessment\u003cbr\u003eA3.2 Life-Cycle Assessment in the Mining and Metallurgy\u003cbr\u003eA3.3 LCA and Multimetal Output\u003cbr\u003eA3.4 End-of-Life Treatment in the LCA Context\u003cbr\u003eA3.5 Case Studies on LCA Results for Multimetal Outputs\u003cbr\u003eA3.6 Summary and Outlook\u003cbr\u003eReference\u003cbr\u003eIndex","published_at":"2017-06-22T21:15:05-04:00","created_at":"2017-06-22T21:15:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","automotive recycling","batteries","book","composite recycling","metal recycling","plastics recycling","recycling","textiles"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378460548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Recycling, 1st Edition","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780123964595","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882","options":["Title"],"media":[{"alt":null,"id":356338073693,"position":1,"preview_image":{"aspect_ratio":0.671,"height":499,"width":335,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882"},"aspect_ratio":0.671,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882","width":335}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Worrell and Reuter \u003cbr\u003eISBN 9780123964595 \u003cbr\u003e\u003cbr\u003eState-of-the-art for practitioners, analysts, and scientists\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Portrays recent and emerging technologies in metal recycling, by-product utilization, and management of post-consumer waste\u003cbr\u003e\u003cbr\u003e- Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes\u003cbr\u003e\u003cbr\u003e- Uses examples from current professional and industrial practice, with policy implications and economics, to present a real-world portrait useful to engineers and professionals as well as academics\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn concept, this book is an Encyclopedia-style authoritative description of the various aspects of material reuse and recycling (including technology, policy, economics) by leading authors from around the globe.\u003cbr\u003e\u003cbr\u003eThis book resolves the problem of there currently (nor published in the past decade) being no single book that provides an authoritative review of the state-of-the-art in recycling. This book should resolve that, by providing a state-of-the-art review of all aspects of recycling.\u003cbr\u003e\u003cbr\u003eThe author's intention in writing this book was to provide the market with a basic textbook on recycling that could be used by students, scholars, and decision makers, as well as stakeholders in the recycling industry, for the next few years.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors\u003cbr\u003ePart I: Recycling in Context\u003cbr\u003eChapter 1. Recycling: A Key Factor for Resource Efficiency\u003cbr\u003eAbstract\u003cbr\u003eReferences\u003cbr\u003eChapter 2. Definitions and Terminology\u003cbr\u003eAbstract\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Defining Recycling\u003cbr\u003e2.3 Materials and Products\u003cbr\u003e2.4 Applying the Product-Centric Approach—Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 3. Recycling in Context\u003cbr\u003eAbstract\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Metal Recycling Considerations and Technologies\u003cbr\u003e3.3 Defining Recycling Statistics\u003cbr\u003e3.4 Process Efficiencies and Recycling Rate Constraints\u003cbr\u003e3.5 Perspectives on Current Recycling Statistics\u003cbr\u003e3.6 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 4. Recycling Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Indium\u003cbr\u003e4.3 Other Examples of Rare Metals\u003cbr\u003e4.4 The Distant Future: Georgescu's Last Laugh?\u003cbr\u003eReferences\u003cbr\u003eChapter 5. Theory and Tools of Physical Separation\/Recycling\u003cbr\u003eAbstract\u003cbr\u003e5.1 Recycling Process\u003cbr\u003e5.2 Particle Size\u003cbr\u003e5.3 Pulp Rheology\u003cbr\u003e5.4 Properties and Property Spaces\u003cbr\u003e5.5 Sampling\u003cbr\u003e5.6 Mass Balances and Process Dynamics\u003cbr\u003e5.7 Material Balancing\u003cbr\u003e5.8 Liberation\u003cbr\u003e5.9 Grade-Recovery Curves\u003cbr\u003eReferences\u003cbr\u003ePart II: Recycling - Application \u0026amp; Technology\u003cbr\u003eChapter 6. Recycling of Steel\u003cbr\u003eAbstract\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Scrap Processing and Material Streams from Scrap Processing\u003cbr\u003e6.3 The Processes Used for Smelting Steel Scrap\u003cbr\u003e6.4 Trends in Quality of the Scrap Available for Steel Production\u003cbr\u003e6.5 Hindrances for Recycling—Tramp Elements\u003cbr\u003e6.6 Purification of Scrap\u003cbr\u003e6.7 To Live with Impurities\u003cbr\u003e6.8 Measures to Secure Sustainable Recycling of Steel\u003cbr\u003eReferences\u003cbr\u003eChapter 7. Copper Recycling\u003cbr\u003eAbstract\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Raw Material for Copper Recycling\u003cbr\u003e7.3 Processes for Recycling\u003cbr\u003e7.4 Challenges in Copper Recycling\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 8. Lead Recycling\u003cbr\u003eAbstract\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 The Lead-Acid Battery\u003cbr\u003e8.3 Battery Preprocessing\u003cbr\u003e8.4 Smelting\u003cbr\u003e8.5 Alternative Approaches\u003cbr\u003e8.6 Refining\u003cbr\u003e8.7 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eChapter 9. Zinc and Residue Recycling\u003cbr\u003eAbstract\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Zinc Oxide Production from Drosses\u003cbr\u003e9.3 Electric Arc Furnace Dust and Other Pb, Zn, Cu-containing Residues\u003cbr\u003e9.4 Zinc Recycling from Copper Industry Dusts\u003cbr\u003e9.5 Fuming of Slags from Lead Metallurgy\u003cbr\u003eReferences\u003cbr\u003eChapter 10. Recycling of Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e10.1 Precious Metals\u003cbr\u003e10.2 Rare Earth Metals\u003cbr\u003e10.3 Electronic Metals\u003cbr\u003e10.4 Refractory Metals (Ferro-alloys Metals, Specialty Metals)\u003cbr\u003e10.5 Other Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 11. Recycling of Lumber\u003cbr\u003eAbstract\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Background\u003cbr\u003e11.3 Key Issues in Post-use Management of Wood\u003cbr\u003e11.4 Case Study Scenarios\u003cbr\u003e11.5 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 12. Paper Recycling\u003cbr\u003eAbstract\u003cbr\u003e12.1 Important Facts about Paper Recycling\u003cbr\u003e12.2 Stock Preparation for Paper Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 13. Plastic Recycling\u003cbr\u003eAbstract\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Use of Plastics\u003cbr\u003e13.3 Plastic Recycling\u003cbr\u003e13.4 Mechanical Recycling\u003cbr\u003e13.5 Impact of Recycling\u003cbr\u003e13.6 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 14. Glass Recycling\u003cbr\u003eAbstract\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Types of Glass\u003cbr\u003e14.3 Glass Manufacture\u003cbr\u003e14.4 Glass Recovery for Reuse and Recycling\u003cbr\u003e14.5 Reuse of Glass\u003cbr\u003e14.6 Closed-Loop Recycling of Glass\u003cbr\u003e14.7 Environmental Benefits of Closed-Loop Recycling of Glass\u003cbr\u003e14.8 The Growth of Glass Recycling\u003cbr\u003e14.9 Open-Loop Glass Recycling\u003cbr\u003e14.10 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 15. Textile Recycling\u003cbr\u003eAbstract\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 The Recycling Effort\u003cbr\u003e15.3 Export of Secondhand Clothing\u003cbr\u003e15.4 Conversion to New Products\u003cbr\u003e15.5 Conversion of Mattresses\u003cbr\u003e15.6 Conversion of Carpet\u003cbr\u003e15.7 Wipers\u003cbr\u003e15.8 Landfill and Incineration\u003cbr\u003e15.9 Diamonds\u003cbr\u003e15.10 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 16. Cementitious Binders Incorporating Residues\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e16.1 Introduction\u003cbr\u003e16.2 Clinker Production: Process Flow, Alternative Fuels and Alternative Raw Materials\u003cbr\u003e16.3 From Clinker to Cement: Residues in Blended Cements\u003cbr\u003e16.4 Alternative Cements for the Future: Reducing the CO2 Footprint while Incorporating Residues\u003cbr\u003e16.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 17. Industrial By-products\u003cbr\u003eAbstract\u003cbr\u003e17.1 What is a By-product?\u003cbr\u003e17.2 Major By-products and Their Generic Properties\u003cbr\u003e17.3 Where and How to Use By-products\u003cbr\u003e17.4 Technical and Environmental Requirements\u003cbr\u003e17.5 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eChapter 18. Recovery of Metals from Different Secondary Resources (Waste)\u003cbr\u003eAbstract\u003cbr\u003e18.1 Introduction\u003cbr\u003e18.2 Production of Ferroalloys from Waste\u003cbr\u003e18.3 Recycling Concepts for Rare Earth Containing Magnets\u003cbr\u003eReferences\u003cbr\u003eChapter 19. Recycling of Carbon Fibers\u003cbr\u003eAbstract\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Carbon Fiber Recycling Processes\u003cbr\u003e19.3 Composites Remanufacturing\u003cbr\u003e19.4 Applications for Recycled Carbon Fibers and Composites\u003cbr\u003e19.5 Life-Cycle Analysis of Carbon Fiber Reinforced Polymers\u003cbr\u003e19.6 Further Challenges\u003cbr\u003e19.7 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 20. Recycling of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e20.1 Introduction\u003cbr\u003e20.2 The Existing Low-Cost Housing Technologies\u003cbr\u003e20.3 Earth\/Mud Building\u003cbr\u003e20.4 Prefabrication Method\u003cbr\u003e20.5 Lightweight Foamed or Cellular Concrete Technology\u003cbr\u003e20.6 Stabilized Earth Brick Technology\u003cbr\u003e20.7 Case Study\u003cbr\u003e20.8 Cost-Effectiveness of Using Low-Cost Housing Technologies\u003cbr\u003e20.9 Recycling Technologies and Practice\u003cbr\u003e20.10 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 21. Recycling of Packaging\u003cbr\u003eAbstract\u003cbr\u003e21.1 Introduction\u003cbr\u003e21.2 Packaging Waste\u003cbr\u003e21.3 Composition\u003cbr\u003e21.4 Recovery and Recycling\u003cbr\u003e21.5 Recovery and Collection Schemes\u003cbr\u003e21.6 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 22. Material-Centric (Aluminum and Copper) and Product-Centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) Recycling and DfR Rules\u003cbr\u003eAbstract\u003cbr\u003e22.1 Introduction\u003cbr\u003e22.2 Material-Centric Recycling: Aluminum and Copper\u003cbr\u003e22.3 Product-Centric Recycling: Complex Sustainability Enabling and Consumer Products\u003cbr\u003e22.4 Recycling Complex Multimaterial Consumer Goods: A Product-Centric Approach\u003cbr\u003e22.5 Automotive Recycling\/Recycling of ELVs Including Automotive Battery Recycling\u003cbr\u003e22.6 Recycling of Waste Electrical and Electronic Equipment\u003cbr\u003e22.7 Recycling of Lighting\u003cbr\u003e22.8 Technology for Recycling of Batteries and Catalysts\u003cbr\u003e22.9 Design for Recycling and Resource Efficiency\u003cbr\u003eReferences\u003cbr\u003eChapter 23. Separation of Large Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e23.1 Introduction\u003cbr\u003e23.2 The Circular Process for Large Municipal Solid Waste\u003cbr\u003e23.3 The Preconditions for Sorting Large Municipal Solid Waste\u003cbr\u003e23.4 Collection System of Large Municipal Solid Waste\u003cbr\u003e23.5 Sorting of Large Municipal Solid Waste\u003cbr\u003e23.6 Sorting Installation\u003cbr\u003e23.7 Sorting Process\u003cbr\u003e23.8 Recycling Efficiency\u003cbr\u003e23.9 The Future\u003cbr\u003eReference\u003cbr\u003eChapter 24. Recovery of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e24.1 Introduction\u003cbr\u003e24.2 Existing Recycled Aggregate Concrete Applications\u003cbr\u003e24.3 Existing Concrete Recycling Methods\u003cbr\u003e24.4 Cost and Benefit Analysis\u003cbr\u003e24.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 25. Waste Electrical and Electronic Equipment Management\u003cbr\u003eAbstract\u003cbr\u003e25.1 Introduction\u003cbr\u003e25.2 Objectives of WEEE Management\u003cbr\u003e25.3 WEEE Take-Back Schemes\u003cbr\u003e25.4 Long-term Trends\u003cbr\u003eReferences\u003cbr\u003eChapter 26. Developments in Collection of Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e26.1 Introduction\u003cbr\u003e26.2 Definition of Municipal Solid Waste\u003cbr\u003e26.3 Quantities of Municipal Solid Waste\u003cbr\u003e26.4 Quality of Municipal Solid Waste\u003cbr\u003e26.5 Management of Municipal Solid Waste\u003cbr\u003eReferences\u003cbr\u003ePart III: Strategy and Policy\u003cbr\u003eChapter 27. From Recycling to Eco-design\u003cbr\u003eAbstract\u003cbr\u003e27.1 Introduction\u003cbr\u003e27.2 Principle of Material Design for Recycling\u003cbr\u003e27.3 Eco-design Strategies for Recycling\u003cbr\u003e27.4 Is Recycling Really Less Impactful on the Environment?\u003cbr\u003e27.5 Current Limits for Eco-design for Recycling Strategies\u003cbr\u003e27.6 Market Demand\u003cbr\u003e27.7 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 28. Recycling and Labeling\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e28.1 Introduction\u003cbr\u003e28.2 Functional Needs Analysis\u003cbr\u003e28.3 Bibliographical Research on the Polymer Labeling Processes\u003cbr\u003e28.4 First Results of Detection Tests with Polypropylene Samples\u003cbr\u003e28.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 29. Informal Waste Recycling in Developing Countries\u003cbr\u003eAbstract\u003cbr\u003e29.1 Introduction\u003cbr\u003e29.2 Defining the Informal Sector\u003cbr\u003e29.3 Informal Solid Waste Management\u003cbr\u003e29.4 Informal e-Waste Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 30. Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e30.1 Is a Circular Economy Possible or Desirable?\u003cbr\u003e30.2 Hierarchies of Material Conservation\u003cbr\u003e30.3 When is Recycling Not the Answer?\u003cbr\u003e30.4 Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 31. The Economics of Recycling\u003cbr\u003eAbstract\u003cbr\u003e31.1 Introduction\u003cbr\u003e31.2 Economic Trends and Drivers\u003cbr\u003e31.3 Environmental and Social Costs and Benefits\u003cbr\u003e31.4 Economic Instruments\u003cbr\u003e31.5 Conclusions and Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 32. Geopolitics of Resources and Recycling\u003cbr\u003eAbstract\u003cbr\u003e32.1 Introduction\u003cbr\u003e32.2 Resources, Scarcity and Geopolitics\u003cbr\u003e32.3 Recycling in the Geopolitical Context\u003cbr\u003eReferences\u003cbr\u003eChapter 33. Recycling in Waste Management Policy\u003cbr\u003eAbstract\u003cbr\u003e33.1 Introduction\u003cbr\u003e33.2 A Brief History of Waste Management\u003cbr\u003e33.3 Integrating Recycling in Waste Management Policy Design\u003cbr\u003eReferences\u003cbr\u003eChapter 34. Voluntary and Negotiated Agreements\u003cbr\u003eAbstract\u003cbr\u003e34.1 Introduction\u003cbr\u003e34.2 Experiences in Recycling Policy\u003cbr\u003e34.3 Lessons Learned\u003cbr\u003eReferences\u003cbr\u003eChapter 35. Economic Instruments\u003cbr\u003eAbstract\u003cbr\u003e35.1 Introduction\u003cbr\u003e35.2 Criteria to Compare Policy Instruments\u003cbr\u003e35.3 Basic Environmental Policy Instruments Aimed at Stimulating Recycling\u003cbr\u003e35.4 Incentives for Upstream Green Product Design\u003cbr\u003e35.5 Multiproduct and Mixed Waste Streams\u003cbr\u003e35.6 EPR and Recycling Certificates\u003cbr\u003e35.7 Durable Goods\u003cbr\u003e35.8 Imperfect Competition in Product and Recycling Markets\u003cbr\u003e35.9 Policy Instruments in an International Market for Waste and Materials\u003cbr\u003e35.10 Recycling and Nonrenewable Resources in a Macro Economic Perspective\u003cbr\u003e35.11 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 36. Information Instruments\u003cbr\u003eAbstract\u003cbr\u003e36.1 Introduction\u003cbr\u003e36.2 Target Groups\/Audience\u003cbr\u003e36.3 Communication Tools\u003cbr\u003e36.4 Messaging: Information and Communication\u003cbr\u003e36.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 37. Regulatory Instruments: Sustainable Materials Management, Recycling, and the Law\u003cbr\u003eAbstract\u003cbr\u003e37.1 Introduction\u003cbr\u003e37.2 Resource Efficiency and Waste Strategy—The Blurb\u003cbr\u003e37.3 The EU Framework Directive on Waste, and Its View on Recovery and Recycling\u003cbr\u003eAppendix 1. Physical Separation 101\u003cbr\u003eA1.1 Breakage\u003cbr\u003eA1.2 Size Classification\u003cbr\u003eA1.3 Screens\u003cbr\u003eA1.4 Dynamic Separators\u003cbr\u003eA1.5 Gravity Separations\u003cbr\u003eA1.6 Water Media Separations\u003cbr\u003eA1.7 Dense Media Separations\u003cbr\u003eA1.8 Flotation\u003cbr\u003eA1.9 Magnetic Separations\u003cbr\u003eA1.10 Eddy Current Separation\u003cbr\u003eA1.11 Electrostatic Separations\u003cbr\u003eA1.12 Sorting\u003cbr\u003eReference\u003cbr\u003eAppendix 2. Thermodynamics 101\u003cbr\u003eA2.1 On the Consumption and Availability of Metals\u003cbr\u003eA2.2 Recycling and Extractive Metallurgy: An Energy Issue\u003cbr\u003eA2.3 The Second Law of Thermodynamics Devil: An Entropy Issue\u003cbr\u003eA2.4 Chemical Thermodynamics and Reaction Equilibrium\u003cbr\u003eA2.5 On the Stability of Oxides and Other Metal-Containing Minerals\u003cbr\u003eA2.6 The Carbon Tragedy\u003cbr\u003eA2.7 H2 is an Alternative Reductor\u003cbr\u003eA2.8 Very Stable Oxides\u003cbr\u003eA2.9 About Solutions and Desired Purity Levels\u003cbr\u003eA2.10 Some Conclusions\u003cbr\u003eReference\u003cbr\u003eAppendix 3. Life-Cycle Assessment\u003cbr\u003eA3.1 Life-Cycle Assessment\u003cbr\u003eA3.2 Life-Cycle Assessment in the Mining and Metallurgy\u003cbr\u003eA3.3 LCA and Multimetal Output\u003cbr\u003eA3.4 End-of-Life Treatment in the LCA Context\u003cbr\u003eA3.5 Case Studies on LCA Results for Multimetal Outputs\u003cbr\u003eA3.6 Summary and Outlook\u003cbr\u003eReference\u003cbr\u003eIndex"}
Smart Polymer Systems ...
$135.00
{"id":11242250500,"title":"Smart Polymer Systems 2010","handle":"978-1-84735-494-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-494-5 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2010 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSmart Polymer Systems 2010 was iSmithers’ inaugural international conference on stimuli-responsive polymers. These material systems repeatedly dramatically react to small changes in their external environment in a predictable manner.\u003cbr\u003e\u003cbr\u003eWith an immensely wide range of potential applications; biomembranes, intelligent textiles, tissue engineering and smart coatings to name a few – the same thing that makes these materials so exciting, is also the barrier to their commercialisation. \u003cbr\u003e\u003cbr\u003eThe conference highlighted the most recent advances and developments in this rapidly evolving field and provided attendees with a broad and comprehensive outlook on the emerging trends, perspectives, and limitations of the technological applications of various classes of stimuli-responsive polymer materials.\u003cbr\u003e\u003cbr\u003eThese proceedings cover presentations from an impressive panel of speakers from industry and academia including Unilever, Procter \u0026amp; Gamble, DSM, MIT, Duke, Stanford and Clarkson Universities who showcased the scope of these \"smart\" materials, their potential applications and how you might capitalise on this emerging technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: RESPONSIVE COATINGS\u003cbr\u003ePaper 1 \u003cbr\u003eStimuli-responsive polyelectrolyte multilayers: from pH and temperature-sensitive\u003cbr\u003enanotube surface arrays to living cells with functional synthetic backpacks\u003cbr\u003eDr. Michael Rubner, Department of Materials Science \u0026amp; Engineering, Massachusetts Institute\u003cbr\u003eof Technology, US (Paper unavailable at the time of print)\u003cbr\u003e\u003cbr\u003ePaper 2 \u003cbr\u003eSelf-repairing polymeric films\u003cbr\u003eDr. Marek W Urban, School of Polymers \u0026amp; High Performance Materials, University of\u003cbr\u003eSouthern Mississippi, US (Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 3 \u003cbr\u003eInteractive polymer substrates via polymer grafting\u003cbr\u003eDr. Igor Luzinov, School of Materials Science \u0026amp; Engineering, Clemson University, US\u003cbr\u003ePaper 4 Hybrid materials for application in anti-reflective coatings\u003cbr\u003eDr. Pascal Buskens, N Arfsten, R Habets, H Langermans, A Overbeek, B Plum, R de Rijk \u0026amp; J\u003cbr\u003eScheerder, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003eSESSION 2: SMART TEXTILES\u003cbr\u003ePaper 5 \u003cbr\u003ePreparation and application of responsive coatings prepared on textile fibers\u003cbr\u003eProf Jan Genzer \u0026amp; Kiran K Goli, North Carolina State University, US\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 6 \u003cbr\u003eResponsive coating design on substrates\/ particles\u003cbr\u003eDr Maxim Orlov, D Salloum, R Sheparovych, V Gartstein \u0026amp; F Sherman, The Procter \u0026amp;\u003cbr\u003eGamble Company, US \u0026amp; S Minko, M Motornov \u0026amp; R Lupitskyy, Clarkson University, US\u003cbr\u003ePaper unavailable at time of print\u003cbr\u003e\u003cbr\u003eSESSION 3: RESPONSIVE COMPOSITES\u003cbr\u003ePaper 7 \u003cbr\u003eNew microfluidic elastomer composites with switchable shape, stiffness, and color\u003cbr\u003eProf. Orlin D Velev, Department of Chemical \u0026amp; Biomolecular Engineering, North Carolina\u003cbr\u003eState University, US\u003cbr\u003e\u003cbr\u003ePaper 8 \u003cbr\u003eNew smart plastic with reversible and tunable transparent to opaque transition\u003cbr\u003eDr. Chris DeArmitt, Phantom Plastics, US\u003cbr\u003e\u003cbr\u003eSESSION 4: BIOINTERFACES, CAPSULES, SENSORS AND SEPARATION DEVICES\u003cbr\u003ePaper 9 \u003cbr\u003e“Smart” (bio) polymeric surfaces: fabrication and characterization\u003cbr\u003eProf Stefan Zauscher, Department of Mechanical Engineering \u0026amp; Materials Science, Duke\u003cbr\u003eUniversity, US\u003cbr\u003e\u003cbr\u003ePaper 10 \u003cbr\u003eEmulsions-templated assembly of stimulus-responsive particles: smart colloidosomes\u003cbr\u003ewith tunable permeability and dissolution trigger\u003cbr\u003eDr. Sven Holger Behrens, School of Chemical \u0026amp; Biomolecular Engineering, Georgia Institute\u003cbr\u003eof Technology, US\u003cbr\u003e\u003cbr\u003ePaper 11 \u003cbr\u003eMultifunctional layer-by-layer tailored capsules: delivery nanosystems with externally\u003cbr\u003etriggered properties\u003cbr\u003eProf Gleb B Sukhorukov, Centre for Materials Research, Queen Mary University of London,\u003cbr\u003eUK\u003cbr\u003e\u003cbr\u003ePaper 12 \u003cbr\u003eStimuli-responsive thin hydrogel films and membranes\u003cbr\u003eDr. Sergiy Minko, Department of Chemistry \u0026amp; Biomolecular Science, Clarkson University, US\u003cbr\u003e\u003cbr\u003eSESSION 5: SMART COLLOIDS AND HYDROGELS\u003cbr\u003ePaper 13 \u003cbr\u003eBiopolymer-based colloidal delivery systems\u003cbr\u003eDr. Ashok Patel, Unilever R\u0026amp;D Vlaardingen, The Netherlands\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 14 \u003cbr\u003eAutonomic self-healing in hydrogel thin films\u003cbr\u003eProf Andrew Lyon \u0026amp; Antoinette B South, Georgia Institute of Technology, US\u003cbr\u003e\u003cbr\u003ePaper 15 \u003cbr\u003eDevelopments in “smart” temperature-responsive chromatographic resins\u003cbr\u003eDr. Brad Woonton, K De Silva, P Maharjan, CSIRO, Australia \u0026amp; M Hearn \u0026amp; W Jackson, ARC\u003cbr\u003eSpecial Research Centre for Green Chemistry, Australia\u003cbr\u003e\u003cbr\u003eSESSION 6: CELL INTERACTIONS WITH RESPONSIVE BIOMATERIALS\u003cbr\u003ePaper 16 \u003cbr\u003eCell-responsive biomaterials for regenerative medicine applications\u003cbr\u003eProf Sarah Heilshorn, Stanford University, US\u003cbr\u003e\u003cbr\u003ePaper 17 \u003cbr\u003eMicropatterned poly (NIPAM) for engineering cell sheets with defined structural\u003cbr\u003eorganization\u003cbr\u003eProf Joyce Y Wong, BC Isenberg, C Williams, Y Tsuda, T Shimizu, M Yamato \u0026amp; T Okano,\u003cbr\u003eDepartment of Biomedical Engineering, Boston University College of Engineering, US\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003eSESSION 7: GENETICALLY ENGINEERED “SMART” POLYPEPTIDES\u003cbr\u003ePaper 18 \u003cbr\u003eBioengineering of elastin-mimetic smart materials\u003cbr\u003eProf Vincent P Conticello, M Patterson, S Payne, W Kim, A McMillan \u0026amp; E Wright, Department\u003cbr\u003eof Chemistry, Emory University, US\u003cbr\u003e\u003cbr\u003ePaper 19 \u003cbr\u003eRecombinamers and derived functional systems: from nano-objects to macro gels\u003cbr\u003eProf J Carlos Rodriguez-Cabello, GIR BIOFORGE, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 20\u003cbr\u003eThermally targeted delivery of therapeutic peptides\u003cbr\u003eProf Drazen Raucher \u0026amp; Gene L Bidwell III, Department of Biochemistry, University of\u003cbr\u003eMississippi Medical Center, US\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:16-04:00","created_at":"2017-06-22T21:15:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","biointerfaces","book","coatings","colloids","composites","elastomer","general","hydrogels","peptides","plastic","polymeric fims","polymers","textiles"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378471812,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Smart Polymer Systems 2010","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-494-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-494-5.jpg?v=1499955744"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-494-5.jpg?v=1499955744","options":["Title"],"media":[{"alt":null,"id":358755237981,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-494-5.jpg?v=1499955744"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-494-5.jpg?v=1499955744","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-494-5 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2010 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSmart Polymer Systems 2010 was iSmithers’ inaugural international conference on stimuli-responsive polymers. These material systems repeatedly dramatically react to small changes in their external environment in a predictable manner.\u003cbr\u003e\u003cbr\u003eWith an immensely wide range of potential applications; biomembranes, intelligent textiles, tissue engineering and smart coatings to name a few – the same thing that makes these materials so exciting, is also the barrier to their commercialisation. \u003cbr\u003e\u003cbr\u003eThe conference highlighted the most recent advances and developments in this rapidly evolving field and provided attendees with a broad and comprehensive outlook on the emerging trends, perspectives, and limitations of the technological applications of various classes of stimuli-responsive polymer materials.\u003cbr\u003e\u003cbr\u003eThese proceedings cover presentations from an impressive panel of speakers from industry and academia including Unilever, Procter \u0026amp; Gamble, DSM, MIT, Duke, Stanford and Clarkson Universities who showcased the scope of these \"smart\" materials, their potential applications and how you might capitalise on this emerging technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: RESPONSIVE COATINGS\u003cbr\u003ePaper 1 \u003cbr\u003eStimuli-responsive polyelectrolyte multilayers: from pH and temperature-sensitive\u003cbr\u003enanotube surface arrays to living cells with functional synthetic backpacks\u003cbr\u003eDr. Michael Rubner, Department of Materials Science \u0026amp; Engineering, Massachusetts Institute\u003cbr\u003eof Technology, US (Paper unavailable at the time of print)\u003cbr\u003e\u003cbr\u003ePaper 2 \u003cbr\u003eSelf-repairing polymeric films\u003cbr\u003eDr. Marek W Urban, School of Polymers \u0026amp; High Performance Materials, University of\u003cbr\u003eSouthern Mississippi, US (Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 3 \u003cbr\u003eInteractive polymer substrates via polymer grafting\u003cbr\u003eDr. Igor Luzinov, School of Materials Science \u0026amp; Engineering, Clemson University, US\u003cbr\u003ePaper 4 Hybrid materials for application in anti-reflective coatings\u003cbr\u003eDr. Pascal Buskens, N Arfsten, R Habets, H Langermans, A Overbeek, B Plum, R de Rijk \u0026amp; J\u003cbr\u003eScheerder, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003eSESSION 2: SMART TEXTILES\u003cbr\u003ePaper 5 \u003cbr\u003ePreparation and application of responsive coatings prepared on textile fibers\u003cbr\u003eProf Jan Genzer \u0026amp; Kiran K Goli, North Carolina State University, US\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 6 \u003cbr\u003eResponsive coating design on substrates\/ particles\u003cbr\u003eDr Maxim Orlov, D Salloum, R Sheparovych, V Gartstein \u0026amp; F Sherman, The Procter \u0026amp;\u003cbr\u003eGamble Company, US \u0026amp; S Minko, M Motornov \u0026amp; R Lupitskyy, Clarkson University, US\u003cbr\u003ePaper unavailable at time of print\u003cbr\u003e\u003cbr\u003eSESSION 3: RESPONSIVE COMPOSITES\u003cbr\u003ePaper 7 \u003cbr\u003eNew microfluidic elastomer composites with switchable shape, stiffness, and color\u003cbr\u003eProf. Orlin D Velev, Department of Chemical \u0026amp; Biomolecular Engineering, North Carolina\u003cbr\u003eState University, US\u003cbr\u003e\u003cbr\u003ePaper 8 \u003cbr\u003eNew smart plastic with reversible and tunable transparent to opaque transition\u003cbr\u003eDr. Chris DeArmitt, Phantom Plastics, US\u003cbr\u003e\u003cbr\u003eSESSION 4: BIOINTERFACES, CAPSULES, SENSORS AND SEPARATION DEVICES\u003cbr\u003ePaper 9 \u003cbr\u003e“Smart” (bio) polymeric surfaces: fabrication and characterization\u003cbr\u003eProf Stefan Zauscher, Department of Mechanical Engineering \u0026amp; Materials Science, Duke\u003cbr\u003eUniversity, US\u003cbr\u003e\u003cbr\u003ePaper 10 \u003cbr\u003eEmulsions-templated assembly of stimulus-responsive particles: smart colloidosomes\u003cbr\u003ewith tunable permeability and dissolution trigger\u003cbr\u003eDr. Sven Holger Behrens, School of Chemical \u0026amp; Biomolecular Engineering, Georgia Institute\u003cbr\u003eof Technology, US\u003cbr\u003e\u003cbr\u003ePaper 11 \u003cbr\u003eMultifunctional layer-by-layer tailored capsules: delivery nanosystems with externally\u003cbr\u003etriggered properties\u003cbr\u003eProf Gleb B Sukhorukov, Centre for Materials Research, Queen Mary University of London,\u003cbr\u003eUK\u003cbr\u003e\u003cbr\u003ePaper 12 \u003cbr\u003eStimuli-responsive thin hydrogel films and membranes\u003cbr\u003eDr. Sergiy Minko, Department of Chemistry \u0026amp; Biomolecular Science, Clarkson University, US\u003cbr\u003e\u003cbr\u003eSESSION 5: SMART COLLOIDS AND HYDROGELS\u003cbr\u003ePaper 13 \u003cbr\u003eBiopolymer-based colloidal delivery systems\u003cbr\u003eDr. Ashok Patel, Unilever R\u0026amp;D Vlaardingen, The Netherlands\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 14 \u003cbr\u003eAutonomic self-healing in hydrogel thin films\u003cbr\u003eProf Andrew Lyon \u0026amp; Antoinette B South, Georgia Institute of Technology, US\u003cbr\u003e\u003cbr\u003ePaper 15 \u003cbr\u003eDevelopments in “smart” temperature-responsive chromatographic resins\u003cbr\u003eDr. Brad Woonton, K De Silva, P Maharjan, CSIRO, Australia \u0026amp; M Hearn \u0026amp; W Jackson, ARC\u003cbr\u003eSpecial Research Centre for Green Chemistry, Australia\u003cbr\u003e\u003cbr\u003eSESSION 6: CELL INTERACTIONS WITH RESPONSIVE BIOMATERIALS\u003cbr\u003ePaper 16 \u003cbr\u003eCell-responsive biomaterials for regenerative medicine applications\u003cbr\u003eProf Sarah Heilshorn, Stanford University, US\u003cbr\u003e\u003cbr\u003ePaper 17 \u003cbr\u003eMicropatterned poly (NIPAM) for engineering cell sheets with defined structural\u003cbr\u003eorganization\u003cbr\u003eProf Joyce Y Wong, BC Isenberg, C Williams, Y Tsuda, T Shimizu, M Yamato \u0026amp; T Okano,\u003cbr\u003eDepartment of Biomedical Engineering, Boston University College of Engineering, US\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003eSESSION 7: GENETICALLY ENGINEERED “SMART” POLYPEPTIDES\u003cbr\u003ePaper 18 \u003cbr\u003eBioengineering of elastin-mimetic smart materials\u003cbr\u003eProf Vincent P Conticello, M Patterson, S Payne, W Kim, A McMillan \u0026amp; E Wright, Department\u003cbr\u003eof Chemistry, Emory University, US\u003cbr\u003e\u003cbr\u003ePaper 19 \u003cbr\u003eRecombinamers and derived functional systems: from nano-objects to macro gels\u003cbr\u003eProf J Carlos Rodriguez-Cabello, GIR BIOFORGE, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 20\u003cbr\u003eThermally targeted delivery of therapeutic peptides\u003cbr\u003eProf Drazen Raucher \u0026amp; Gene L Bidwell III, Department of Biochemistry, University of\u003cbr\u003eMississippi Medical Center, US\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}