Mixing of Rubber, Classic Rapra Reprints
Introducing the new 'Classic Rapra Reprint' Series. Mixing of Rubber is the first book in a series of Classic Rapra Reprints. We have searched our previously published and successful reference books, and found some real gems! The content is sure to be of interest to those in the Rubber Mixing Industry, both new to the industry and those more experience, all will benefit...
Since the discovery of vulcanisation in the nineteenth century, rubber has been a major industrial product. From its inception, the use of vulcanising agents, reinforcing fillers and other additives has been a major feature of the rubber industry. Innumerable articles and texts attest to the chemist's skill in balancing the chemical and physical properties of the manufactured products.
Mixing as a general operation may be considered as three basic processes occurring simultaneously. Simple mixing ensures that the mixture has a uniform composition throughout its bulk, at least when viewed on a scale large compared to the size of the individual particles. In the case of solids blending (Chapter 11), the particle size need not change, but the distribution of particles throughout the mixture approaches a random distribution. If the shear forces are sufficiently large, particles may fracture, as in dispersive mixing, and the polymer may flow, as in laminar mixing (Chapter 111). In both of these processes, the size of the original particles or fluid elements changes because of the mixing process. Then the properties of the mixture depending upon the size of the basic structures reached during mixing.
In the case of laminar mixing, the size may be the striation thickness of a hypothetical fluid element, which is inversely related to the total shear strain. If relatively strong particles, or aggregates of particles, are present, these must be reduced in size by the action of forces generated by flow in the mixer. Then the size is the actual additive particle size.
The relative balance between the importance of these three processes in determining the efficiency of mixing and the product quality depends upon the attraction between additive particles, the rubber flow properties, the geometry of the mixer and the operating conditions such as temperature, mixing time and rotor speed.
The interaction of operating conditions, raw material properties and the quality of mixing can be a formidable phenomenon to analyse. However, in many cases, a number of simplifying assumptions about the operation can be made.
Since the discovery of vulcanisation in the nineteenth century, rubber has been a major industrial product. From its inception, the use of vulcanising agents, reinforcing fillers and other additives has been a major feature of the rubber industry. Innumerable articles and texts attest to the chemist's skill in balancing the chemical and physical properties of the manufactured products.
Mixing as a general operation may be considered as three basic processes occurring simultaneously. Simple mixing ensures that the mixture has a uniform composition throughout its bulk, at least when viewed on a scale large compared to the size of the individual particles. In the case of solids blending (Chapter 11), the particle size need not change, but the distribution of particles throughout the mixture approaches a random distribution. If the shear forces are sufficiently large, particles may fracture, as in dispersive mixing, and the polymer may flow, as in laminar mixing (Chapter 111). In both of these processes, the size of the original particles or fluid elements changes because of the mixing process. Then the properties of the mixture depending upon the size of the basic structures reached during mixing.
In the case of laminar mixing, the size may be the striation thickness of a hypothetical fluid element, which is inversely related to the total shear strain. If relatively strong particles, or aggregates of particles, are present, these must be reduced in size by the action of forces generated by flow in the mixer. Then the size is the actual additive particle size.
The relative balance between the importance of these three processes in determining the efficiency of mixing and the product quality depends upon the attraction between additive particles, the rubber flow properties, the geometry of the mixer and the operating conditions such as temperature, mixing time and rotor speed.
The interaction of operating conditions, raw material properties and the quality of mixing can be a formidable phenomenon to analyse. However, in many cases, a number of simplifying assumptions about the operation can be made.
1. Introduction
2. Blending of Particles
3. Laminar and Dispersive Mixing (Sample Chapter - click on link above)
4. The Milling of Rubbers
5. Internal Mixers
6. Continuous Mixers
7. Powdered Rubbers
2. Blending of Particles
3. Laminar and Dispersive Mixing (Sample Chapter - click on link above)
4. The Milling of Rubbers
5. Internal Mixers
6. Continuous Mixers
7. Powdered Rubbers
Related Products
Addcon World 2000
$177.00
{"id":11242235652,"title":"Addcon World 2000","handle":"978-1-85957-242-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-242-9 \u003cbr\u003e\u003cbr\u003ePublished: 2000\u003cbr\u003ePages 168\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 6th successful Addcon World conference discussed the threats, opportunities, and trends in the additives business today. New products and processes were also revealed along with a discussion of legislation and its impact on the additives business. Addcon World conferences are specifically targeted to the plastics additives industry and have been successfully run by Rapra Technology Limited for the past 5 years. \u003cbr\u003e\u003cbr\u003eThe papers presented at this year’s conference will appeal to suppliers of additives, compounders and end-users along with people who want to learn how to use additives\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eFlexible Vinyl Medical Products: Discussion about the Extraction Characteristics of Various Plasticizers\u003cbr\u003eRichard C. Adams, BP Amoco Chemicals, USA \u003cbr\u003eBenzoate Plasticizer for Reducing Plastisol Viscosity and Fusion Temperature\u003cbr\u003eTom Bohnert, B. Stanhope, K. Gruszecki, S. Pitman, V. Elsworth, Velsicol Chemical Corporation, USA, and Velsicol Chemical Limited, UK \u003cbr\u003e\u003cbr\u003eDetermination of Phenolic Antioxidant Stabilizers in PP and HDPE by Means of an Oxidative Model Reaction\u003cbr\u003eE. B. Zeinalov 1 , Hartmut F. Schroeder 2* and H. Bahr 2 , 1 Academy of Sciences of Azerbaijan, Institute of Petrochemical Processes (IPCPAcS), Baku, 2 Federal Institute for Materials Research and Testing (BAM), Germany \u003cbr\u003e\u003cbr\u003eAchieving More Value From Additives Via New Physical Forms\u003cbr\u003eCorrado Callierotti 1 , Luciano Pallini 1 , Giovanni Sandre 1 , Robert Lee 2 , Ming Wu 2 , Klaus Keck-Antoine 3 \u0026amp; Brian Johnson 3 , 1 Great Lakes Manufacturing Italia, Italy, 2 Great Lakes Chemical Corporation, USA, 3 Great Lakes Technology Belgium, Belgium \u003cbr\u003e\u003cbr\u003eStabilizer Package Development - Importance of the Test Criteria Selection\u003cbr\u003eJán Malík and Isolde Bachert, Technical Service Polymer Additives, Clariant Huningue SA, France \u003cbr\u003eThe Impact of Environmental Issues on the Growth of Plastics Additives\u003cbr\u003eThomas Galvanek, Fred Gastrock and Louis N. Kattas, BRG Townsend Inc., USA \u003cbr\u003eEvaluation of Stabilizer Performance in Polymers Using Chemiluminescence\u003cbr\u003eNorman C. Billingham, 1 Peter Fearon, 1 David J. Whiteman, Niall Marshall 2 and Stephen P. Bigger 3 , 1 School of Chemistry, Physics and Environmental Science, University of Sussex, UK, 2 Polifin Limited, South Africa, 3 School of Life Sciences and Technology, Victoria University, Australia \u003cbr\u003e\u003cbr\u003ePolymer Additives Based on Renewable Materials; Opportunities and Trends\u003cbr\u003eJ. van Haveren, Agrotechnological Research Institute, The Netherlands\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eCriteria and Examples of Optimal Choice of Flame Retardants\u003cbr\u003eAchim Litzenburger, Eurobrom BV, Netherlands \u003cbr\u003eNew Metal Hydroxides with Improved Performance for Flame Retardancy in Plastics\u003cbr\u003eRené Herbiet, alusuisse martinswerk gmbh, Germany \u003cbr\u003eProductivity Gains in BOPP Film Production Through Stabilization with Lactone Technology\u003cbr\u003eDoris Eisermann, Ciba Specialty Chemicals Limited, Switzerland\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eThe Role of Market Research in the Additives Business\u003cbr\u003eRichard Beswick, bms AG, Switzerland\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:30-04:00","created_at":"2017-06-22T21:14:30-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","additives","air monitoring","book","electronics","environment","health","p-structural","plastic","plastics","polymer","rubber","safety","stabilizers"],"price":17700,"price_min":17700,"price_max":17700,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378419716,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Addcon World 2000","public_title":null,"options":["Default Title"],"price":17700,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-242-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-242-9.jpg?v=1498183879"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-242-9.jpg?v=1498183879","options":["Title"],"media":[{"alt":null,"id":350137614429,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-242-9.jpg?v=1498183879"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-242-9.jpg?v=1498183879","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-242-9 \u003cbr\u003e\u003cbr\u003ePublished: 2000\u003cbr\u003ePages 168\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 6th successful Addcon World conference discussed the threats, opportunities, and trends in the additives business today. New products and processes were also revealed along with a discussion of legislation and its impact on the additives business. Addcon World conferences are specifically targeted to the plastics additives industry and have been successfully run by Rapra Technology Limited for the past 5 years. \u003cbr\u003e\u003cbr\u003eThe papers presented at this year’s conference will appeal to suppliers of additives, compounders and end-users along with people who want to learn how to use additives\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eFlexible Vinyl Medical Products: Discussion about the Extraction Characteristics of Various Plasticizers\u003cbr\u003eRichard C. Adams, BP Amoco Chemicals, USA \u003cbr\u003eBenzoate Plasticizer for Reducing Plastisol Viscosity and Fusion Temperature\u003cbr\u003eTom Bohnert, B. Stanhope, K. Gruszecki, S. Pitman, V. Elsworth, Velsicol Chemical Corporation, USA, and Velsicol Chemical Limited, UK \u003cbr\u003e\u003cbr\u003eDetermination of Phenolic Antioxidant Stabilizers in PP and HDPE by Means of an Oxidative Model Reaction\u003cbr\u003eE. B. Zeinalov 1 , Hartmut F. Schroeder 2* and H. Bahr 2 , 1 Academy of Sciences of Azerbaijan, Institute of Petrochemical Processes (IPCPAcS), Baku, 2 Federal Institute for Materials Research and Testing (BAM), Germany \u003cbr\u003e\u003cbr\u003eAchieving More Value From Additives Via New Physical Forms\u003cbr\u003eCorrado Callierotti 1 , Luciano Pallini 1 , Giovanni Sandre 1 , Robert Lee 2 , Ming Wu 2 , Klaus Keck-Antoine 3 \u0026amp; Brian Johnson 3 , 1 Great Lakes Manufacturing Italia, Italy, 2 Great Lakes Chemical Corporation, USA, 3 Great Lakes Technology Belgium, Belgium \u003cbr\u003e\u003cbr\u003eStabilizer Package Development - Importance of the Test Criteria Selection\u003cbr\u003eJán Malík and Isolde Bachert, Technical Service Polymer Additives, Clariant Huningue SA, France \u003cbr\u003eThe Impact of Environmental Issues on the Growth of Plastics Additives\u003cbr\u003eThomas Galvanek, Fred Gastrock and Louis N. Kattas, BRG Townsend Inc., USA \u003cbr\u003eEvaluation of Stabilizer Performance in Polymers Using Chemiluminescence\u003cbr\u003eNorman C. Billingham, 1 Peter Fearon, 1 David J. Whiteman, Niall Marshall 2 and Stephen P. Bigger 3 , 1 School of Chemistry, Physics and Environmental Science, University of Sussex, UK, 2 Polifin Limited, South Africa, 3 School of Life Sciences and Technology, Victoria University, Australia \u003cbr\u003e\u003cbr\u003ePolymer Additives Based on Renewable Materials; Opportunities and Trends\u003cbr\u003eJ. van Haveren, Agrotechnological Research Institute, The Netherlands\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eCriteria and Examples of Optimal Choice of Flame Retardants\u003cbr\u003eAchim Litzenburger, Eurobrom BV, Netherlands \u003cbr\u003eNew Metal Hydroxides with Improved Performance for Flame Retardancy in Plastics\u003cbr\u003eRené Herbiet, alusuisse martinswerk gmbh, Germany \u003cbr\u003eProductivity Gains in BOPP Film Production Through Stabilization with Lactone Technology\u003cbr\u003eDoris Eisermann, Ciba Specialty Chemicals Limited, Switzerland\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eThe Role of Market Research in the Additives Business\u003cbr\u003eRichard Beswick, bms AG, Switzerland\u003cbr\u003e\u003cbr\u003e"}
Additives in Polymers:...
$550.00
{"id":11242200772,"title":"Additives in Polymers: Industrial Analysis and Applications","handle":"978-0-470-85062-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jan C. J. Bart \u003cbr\u003eISBN 978-0-470-85062-6 \u003cbr\u003e\u003cbr\u003epages 836 Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis industrially relevant resource covers all established and emerging analytical methods for the deformulation of polymeric materials, with emphasis on the non-polymeric components. \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eEach technique is evaluated on its technical and industrial merits.\u003c\/li\u003e\n\u003cli\u003eEmphasis is on understanding (principles and characteristics) and industrial applicability.\u003c\/li\u003e\n\u003cli\u003eExtensively illustrated throughout with over 200 figures, 400 tables, and 3,000 references.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003eForeword. \u003cbr\u003ePreface. \u003cbr\u003eAbout the Author. \u003cbr\u003eAcknowledgements. \u003cbr\u003eChapter 1: Introduction. \u003cbr\u003e1.1 Additives. \u003cbr\u003e1.2 Plastics formulations . \u003cbr\u003e1.3 Economic impact of polymer additives. \u003cbr\u003e1.4 Analysis of plastics. \u003cbr\u003e1.5 Bibliography. \u003cbr\u003e1.6 References. \u003cbr\u003eChapter 2: Deformulation Principles. \u003cbr\u003e2.1 Polymer identification. \u003cbr\u003e2.2 Additive analysis of rubbers: ‘Best Practice’. \u003cbr\u003e2.3 Polymer extract analysis. \u003cbr\u003e2.4 In situ polymer\/additive analysis. \u003cbr\u003e2.5 Class-specific polymer\/additive analysis. \u003cbr\u003e2.6 Bibliography. \u003cbr\u003e2.7 References. \u003cbr\u003eChapter 3: Sample Preparation Perspectives. \u003cbr\u003e3.1 Solvents. \u003cbr\u003e3.2 Extraction strategy. \u003cbr\u003e3.3 Conventional extraction technologies. \u003cbr\u003e3.4 High-pressure solvent extraction methods. \u003cbr\u003e3.5 Sorbent extraction. \u003cbr\u003e3.6 Methodological comparison of extraction methods. \u003cbr\u003e3.7 Polymer\/additive dissolution methods. \u003cbr\u003e3.8 Hydrolysis. \u003cbr\u003e3.9 Bibliography. \u003cbr\u003e3.10 References. \u003cbr\u003eChapter 4: Separation Techniques. \u003cbr\u003e4.1 Analytical detectors. \u003cbr\u003e4.2 Gas chromatography. \u003cbr\u003e4.3 Supercritical fluid chromatography. \u003cbr\u003e4.4 Liquid chromatography techniques. \u003cbr\u003e4.5 Capillary electrophoretic techniques. \u003cbr\u003e4.6 Bibliography. \u003cbr\u003e4.7 References. \u003cbr\u003eChapter 5: Polymer\/Additive Analysis: The Spectroscopic Alternative. \u003cbr\u003e5.1 Ultraviolet\/visible spectrophotometry. \u003cbr\u003e5.2 Infrared spectroscopy. \u003cbr\u003e5.3 Luminescence spectroscopy. \u003cbr\u003e5.4 High-resolution nuclear magnetic resonance spectroscopy. \u003cbr\u003e5.5 Bibliography. \u003cbr\u003e5.6 References. \u003cbr\u003eChapter 6: Organic Mass-Spectrometric Methods. \u003cbr\u003e6.1 Basic instrumentation. \u003cbr\u003e6.2 Ion sources. \u003cbr\u003e6.3 Mass analysers. \u003cbr\u003e6.4 Direct mass-spectrometric polymer compound analysis. \u003cbr\u003e6.5 Ion mobility spectrometry. \u003cbr\u003e6.6 Bibliography. \u003cbr\u003e6.7 References. \u003cbr\u003eChapter 7: Multihyphenation and Multidimensionality in Polymer\/Additive Analysis. \u003cbr\u003e7.1 Precolumn hyphenation. \u003cbr\u003e7.2 Coupled sample preparation – spectroscopy\/spectrometry. \u003cbr\u003e7.3 Postcolumn hyphenation. \u003cbr\u003e7.4 Multidimensional chromatography. \u003cbr\u003e7.5 Multidimensional spectroscopy. \u003cbr\u003e7.6 Bibliography. \u003cbr\u003e7.7 References. \u003cbr\u003eChapter 8: Inorganic and Element Analytical Methods. \u003cbr\u003e8.1 Element analytical protocols. \u003cbr\u003e8.2 Sample destruction for classical elemental analysis. \u003cbr\u003e8.3 Analytical atomic spectrometry. \u003cbr\u003e8.4 X-ray spectrometry. \u003cbr\u003e8.5 Inorganic mass spectrometry. \u003cbr\u003e8.6 Radioanalytical and nuclear analytical methods. \u003cbr\u003e8.7 Electroanalytical techniques. \u003cbr\u003e8.8 Solid-state speciation analysis. \u003cbr\u003e8.9 Bibliography. \u003cbr\u003e8.10 References. \u003cbr\u003eChapter 9: Direct Methods of Deformulation of Polymer\/Additive Dissolutions. \u003cbr\u003e9.1 Chromatographic methods. \u003cbr\u003e9.2 Spectroscopic techniques. \u003cbr\u003e9.3 Mass-spectrometric methods. \u003cbr\u003e9.4 References. \u003cbr\u003eChapter 10: A Vision for the Future. \u003cbr\u003e10.1 Trends in polymer technology. \u003cbr\u003e10.2 Trends in additive technology. \u003cbr\u003e10.3 Environmental, legislative and regulatory constraints. \u003cbr\u003e10.4 Analytical consequences. \u003cbr\u003e10.5 Epilogue. \u003cbr\u003e10.6 Bibliography. \u003cbr\u003e10.7 References. \u003cbr\u003eAppendix I: List of Symbols. \u003cbr\u003eAppendix II: Functionality of Common Additives Used in Commercial Thermoplastics, Rubbers, and Thermosetting Resins. \u003cbr\u003eAppendix III: Specimen Polymer Additives Product Sheets. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eJan C.J. Bart\u003c\/b\u003e (Ph.D. Structural Chemistry, University of Amsterdam) is a senior scientist with a broad interest in materials characterisation, heterogeneous catalysis and product development who spent an industrial career in R\u0026amp;D with Monsanto, Montedison and DSM Research in various countries. The author has held several teaching assignments and researched extensively in both academic and industrial areas; he authored over 250 scientific papers, including chapters in books. Dr. Bart has acted as a Ramsay Memorial Fellow at the Universities of Leeds (Colour Chemistry) and Oxford (Material Science), a visiting scientist at Institut de Recherches sur la Catalyse (CNRS, Villeurbanne), and a Meyerhoff Visiting Professor at WIS (Rehovoth), and held an Invited Professorship at USTC (Hefei). He is currently a Full Professor of Industrial Chemistry at the University of Messina. He is also a member of the Royal Society of Chemistry, Royal Dutch Chemical Society, Society of Plastic Engineers and The Institute of Materials.","published_at":"2017-06-22T21:12:39-04:00","created_at":"2017-06-22T21:12:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","additives","book","extraction","fillers","Gas chromatography. supercritical fluid chromatography","hydrolisis","liquid chromatography","p-chemical","plastic","plastics","polymer","rubber","solvents","spectroscopy. radioanalytical"],"price":55000,"price_min":55000,"price_max":55000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378306308,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Additives in Polymers: Industrial Analysis and Applications","public_title":null,"options":["Default Title"],"price":55000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-85062-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85062-6.jpg?v=1499914044"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85062-6.jpg?v=1499914044","options":["Title"],"media":[{"alt":null,"id":350139580509,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85062-6.jpg?v=1499914044"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85062-6.jpg?v=1499914044","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jan C. J. Bart \u003cbr\u003eISBN 978-0-470-85062-6 \u003cbr\u003e\u003cbr\u003epages 836 Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis industrially relevant resource covers all established and emerging analytical methods for the deformulation of polymeric materials, with emphasis on the non-polymeric components. \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eEach technique is evaluated on its technical and industrial merits.\u003c\/li\u003e\n\u003cli\u003eEmphasis is on understanding (principles and characteristics) and industrial applicability.\u003c\/li\u003e\n\u003cli\u003eExtensively illustrated throughout with over 200 figures, 400 tables, and 3,000 references.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003eForeword. \u003cbr\u003ePreface. \u003cbr\u003eAbout the Author. \u003cbr\u003eAcknowledgements. \u003cbr\u003eChapter 1: Introduction. \u003cbr\u003e1.1 Additives. \u003cbr\u003e1.2 Plastics formulations . \u003cbr\u003e1.3 Economic impact of polymer additives. \u003cbr\u003e1.4 Analysis of plastics. \u003cbr\u003e1.5 Bibliography. \u003cbr\u003e1.6 References. \u003cbr\u003eChapter 2: Deformulation Principles. \u003cbr\u003e2.1 Polymer identification. \u003cbr\u003e2.2 Additive analysis of rubbers: ‘Best Practice’. \u003cbr\u003e2.3 Polymer extract analysis. \u003cbr\u003e2.4 In situ polymer\/additive analysis. \u003cbr\u003e2.5 Class-specific polymer\/additive analysis. \u003cbr\u003e2.6 Bibliography. \u003cbr\u003e2.7 References. \u003cbr\u003eChapter 3: Sample Preparation Perspectives. \u003cbr\u003e3.1 Solvents. \u003cbr\u003e3.2 Extraction strategy. \u003cbr\u003e3.3 Conventional extraction technologies. \u003cbr\u003e3.4 High-pressure solvent extraction methods. \u003cbr\u003e3.5 Sorbent extraction. \u003cbr\u003e3.6 Methodological comparison of extraction methods. \u003cbr\u003e3.7 Polymer\/additive dissolution methods. \u003cbr\u003e3.8 Hydrolysis. \u003cbr\u003e3.9 Bibliography. \u003cbr\u003e3.10 References. \u003cbr\u003eChapter 4: Separation Techniques. \u003cbr\u003e4.1 Analytical detectors. \u003cbr\u003e4.2 Gas chromatography. \u003cbr\u003e4.3 Supercritical fluid chromatography. \u003cbr\u003e4.4 Liquid chromatography techniques. \u003cbr\u003e4.5 Capillary electrophoretic techniques. \u003cbr\u003e4.6 Bibliography. \u003cbr\u003e4.7 References. \u003cbr\u003eChapter 5: Polymer\/Additive Analysis: The Spectroscopic Alternative. \u003cbr\u003e5.1 Ultraviolet\/visible spectrophotometry. \u003cbr\u003e5.2 Infrared spectroscopy. \u003cbr\u003e5.3 Luminescence spectroscopy. \u003cbr\u003e5.4 High-resolution nuclear magnetic resonance spectroscopy. \u003cbr\u003e5.5 Bibliography. \u003cbr\u003e5.6 References. \u003cbr\u003eChapter 6: Organic Mass-Spectrometric Methods. \u003cbr\u003e6.1 Basic instrumentation. \u003cbr\u003e6.2 Ion sources. \u003cbr\u003e6.3 Mass analysers. \u003cbr\u003e6.4 Direct mass-spectrometric polymer compound analysis. \u003cbr\u003e6.5 Ion mobility spectrometry. \u003cbr\u003e6.6 Bibliography. \u003cbr\u003e6.7 References. \u003cbr\u003eChapter 7: Multihyphenation and Multidimensionality in Polymer\/Additive Analysis. \u003cbr\u003e7.1 Precolumn hyphenation. \u003cbr\u003e7.2 Coupled sample preparation – spectroscopy\/spectrometry. \u003cbr\u003e7.3 Postcolumn hyphenation. \u003cbr\u003e7.4 Multidimensional chromatography. \u003cbr\u003e7.5 Multidimensional spectroscopy. \u003cbr\u003e7.6 Bibliography. \u003cbr\u003e7.7 References. \u003cbr\u003eChapter 8: Inorganic and Element Analytical Methods. \u003cbr\u003e8.1 Element analytical protocols. \u003cbr\u003e8.2 Sample destruction for classical elemental analysis. \u003cbr\u003e8.3 Analytical atomic spectrometry. \u003cbr\u003e8.4 X-ray spectrometry. \u003cbr\u003e8.5 Inorganic mass spectrometry. \u003cbr\u003e8.6 Radioanalytical and nuclear analytical methods. \u003cbr\u003e8.7 Electroanalytical techniques. \u003cbr\u003e8.8 Solid-state speciation analysis. \u003cbr\u003e8.9 Bibliography. \u003cbr\u003e8.10 References. \u003cbr\u003eChapter 9: Direct Methods of Deformulation of Polymer\/Additive Dissolutions. \u003cbr\u003e9.1 Chromatographic methods. \u003cbr\u003e9.2 Spectroscopic techniques. \u003cbr\u003e9.3 Mass-spectrometric methods. \u003cbr\u003e9.4 References. \u003cbr\u003eChapter 10: A Vision for the Future. \u003cbr\u003e10.1 Trends in polymer technology. \u003cbr\u003e10.2 Trends in additive technology. \u003cbr\u003e10.3 Environmental, legislative and regulatory constraints. \u003cbr\u003e10.4 Analytical consequences. \u003cbr\u003e10.5 Epilogue. \u003cbr\u003e10.6 Bibliography. \u003cbr\u003e10.7 References. \u003cbr\u003eAppendix I: List of Symbols. \u003cbr\u003eAppendix II: Functionality of Common Additives Used in Commercial Thermoplastics, Rubbers, and Thermosetting Resins. \u003cbr\u003eAppendix III: Specimen Polymer Additives Product Sheets. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eJan C.J. Bart\u003c\/b\u003e (Ph.D. Structural Chemistry, University of Amsterdam) is a senior scientist with a broad interest in materials characterisation, heterogeneous catalysis and product development who spent an industrial career in R\u0026amp;D with Monsanto, Montedison and DSM Research in various countries. The author has held several teaching assignments and researched extensively in both academic and industrial areas; he authored over 250 scientific papers, including chapters in books. Dr. Bart has acted as a Ramsay Memorial Fellow at the Universities of Leeds (Colour Chemistry) and Oxford (Material Science), a visiting scientist at Institut de Recherches sur la Catalyse (CNRS, Villeurbanne), and a Meyerhoff Visiting Professor at WIS (Rehovoth), and held an Invited Professorship at USTC (Hefei). He is currently a Full Professor of Industrial Chemistry at the University of Messina. He is also a member of the Royal Society of Chemistry, Royal Dutch Chemical Society, Society of Plastic Engineers and The Institute of Materials."}
Ageing of Rubber - Acc...
$210.00
{"id":11242241668,"title":"Ageing of Rubber - Accelerated Heat Ageing Test Results","handle":"978-1-85957-274-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown, T. Butler, and S.W. Hawley \u003cbr\u003eISBN 978-1-85957-274-0 \u003cbr\u003e\u003cbr\u003ePages: 208, Figures 169, Tables: 41\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report is an output from the Weathering of Elastomers and Sealants project, which forms part of the UK government's Department of Trade and Industry's Degradation of Materials in Aggressive Environments Program. \u003cbr\u003eA long-term natural ageing program was started in 1958 when 19 rubber compounds were exposed at 3 locations. The final sets of test pieces were withdrawn in 1998 giving a total of 40 years of natural ageing. The results of the physical tests carried out at intervals over the period were published in 2000 by Rapra in 'Natural Ageing of Rubber-Changes in Physical Properties over 40 Years'. \u003cbr\u003eThis report details the results of accelerated heat ageing studies undertaken on re-mixed samples of those materials studied for the natural ageing study and on the 20 new compounds chosen to represent polymers not available in 1958 and to reflect changes in compounding practice. \u003cbr\u003eIn addition to those properties studied for the artificial weathering exposures, compression set and dynamic properties were also measured. \u003cbr\u003eThe results of all these tests are again presented graphically and tabulated, allowing the rate of deterioration of properties to be followed. As the number of graphs are too voluminous to be reproduced in total, those for hardness, tensile strength, elongation at break and 100% modulus are given. \u003cbr\u003eExtrapolation of the accelerated results to longer times at lower temperatures was attempted by two approaches - the Arrhenius relation and the WLF equation - and compression set results analyzed using a dose rate equation. Predictions are made for change at 23°C and 40°C to equate to long-term natural ageing under temperate and hot dry conditions.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Materials \u003cbr\u003e2.1 Original Materials \u003cbr\u003e2.2 New Materials \u003cbr\u003e3. Preparation of Test Pieces \u003cbr\u003e4. Physical Tests \u003cbr\u003e5. Exposure of Test Pieces \u003cbr\u003e6. Results \u003cbr\u003e6.1 Presentation \u003cbr\u003e6.2 Uncertainty \u003cbr\u003e6.3 Prediction of Natural Ageing \u003cbr\u003e7. Discussion \u003cbr\u003e7.1 Change with Time \u003cbr\u003e7.1.1 General \u003cbr\u003e7.1.2 Hardness \u003cbr\u003e7.1.3 Modulus \u003cbr\u003e7.1.4 Tensile Strength \u003cbr\u003e7.1.5 Elongation at Break \u003cbr\u003e7.1.6 DMTA \u003cbr\u003e7.1.7 Compression Set \u003cbr\u003e7.2 Predictions \u003cbr\u003e7.2.1 General \u003cbr\u003e7.2.2 Hardness \u003cbr\u003e7.2.3 Modulus \u003cbr\u003e7.2.4 Tensile Strength \u003cbr\u003e7.2.5 Elongation at Break \u003cbr\u003e7.2.6 DMTA \u003cbr\u003e7.2.7 Compression Set \u003cbr\u003e7.2.8 Choice of Analysis Method \u003cbr\u003e7.2.9 Effectiveness of the Predictions \u003cbr\u003e8. Conclusions \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:49-04:00","created_at":"2017-06-22T21:14:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","ageing","elongation","hardness","heat","physical tests","r-properties","rubber","sealants","tensile strength","weathering"],"price":21000,"price_min":21000,"price_max":21000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378441668,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Ageing of Rubber - Accelerated Heat Ageing Test Results","public_title":null,"options":["Default Title"],"price":21000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-274-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-274-0.jpg?v=1498186978"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-274-0.jpg?v=1498186978","options":["Title"],"media":[{"alt":null,"id":350147608669,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-274-0.jpg?v=1498186978"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-274-0.jpg?v=1498186978","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown, T. Butler, and S.W. Hawley \u003cbr\u003eISBN 978-1-85957-274-0 \u003cbr\u003e\u003cbr\u003ePages: 208, Figures 169, Tables: 41\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report is an output from the Weathering of Elastomers and Sealants project, which forms part of the UK government's Department of Trade and Industry's Degradation of Materials in Aggressive Environments Program. \u003cbr\u003eA long-term natural ageing program was started in 1958 when 19 rubber compounds were exposed at 3 locations. The final sets of test pieces were withdrawn in 1998 giving a total of 40 years of natural ageing. The results of the physical tests carried out at intervals over the period were published in 2000 by Rapra in 'Natural Ageing of Rubber-Changes in Physical Properties over 40 Years'. \u003cbr\u003eThis report details the results of accelerated heat ageing studies undertaken on re-mixed samples of those materials studied for the natural ageing study and on the 20 new compounds chosen to represent polymers not available in 1958 and to reflect changes in compounding practice. \u003cbr\u003eIn addition to those properties studied for the artificial weathering exposures, compression set and dynamic properties were also measured. \u003cbr\u003eThe results of all these tests are again presented graphically and tabulated, allowing the rate of deterioration of properties to be followed. As the number of graphs are too voluminous to be reproduced in total, those for hardness, tensile strength, elongation at break and 100% modulus are given. \u003cbr\u003eExtrapolation of the accelerated results to longer times at lower temperatures was attempted by two approaches - the Arrhenius relation and the WLF equation - and compression set results analyzed using a dose rate equation. Predictions are made for change at 23°C and 40°C to equate to long-term natural ageing under temperate and hot dry conditions.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Materials \u003cbr\u003e2.1 Original Materials \u003cbr\u003e2.2 New Materials \u003cbr\u003e3. Preparation of Test Pieces \u003cbr\u003e4. Physical Tests \u003cbr\u003e5. Exposure of Test Pieces \u003cbr\u003e6. Results \u003cbr\u003e6.1 Presentation \u003cbr\u003e6.2 Uncertainty \u003cbr\u003e6.3 Prediction of Natural Ageing \u003cbr\u003e7. Discussion \u003cbr\u003e7.1 Change with Time \u003cbr\u003e7.1.1 General \u003cbr\u003e7.1.2 Hardness \u003cbr\u003e7.1.3 Modulus \u003cbr\u003e7.1.4 Tensile Strength \u003cbr\u003e7.1.5 Elongation at Break \u003cbr\u003e7.1.6 DMTA \u003cbr\u003e7.1.7 Compression Set \u003cbr\u003e7.2 Predictions \u003cbr\u003e7.2.1 General \u003cbr\u003e7.2.2 Hardness \u003cbr\u003e7.2.3 Modulus \u003cbr\u003e7.2.4 Tensile Strength \u003cbr\u003e7.2.5 Elongation at Break \u003cbr\u003e7.2.6 DMTA \u003cbr\u003e7.2.7 Compression Set \u003cbr\u003e7.2.8 Choice of Analysis Method \u003cbr\u003e7.2.9 Effectiveness of the Predictions \u003cbr\u003e8. Conclusions \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e"}