- Grid List
Filter
REACH for the Polymer ...
$125.00
{"id":11242240836,"title":"REACH for the Polymer Industry - A Practical Guide","handle":"9781847356208","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Polymer REACH Consortium \u003cbr\u003eISBN 9781847356208 \u003cbr\u003e\u003cbr\u003ePublished: 2012\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book has been produced by the EU Leonardo Project called Polymer REACH. The overall objective of Polymer REACH was to develop an e-learning platform and training materials for the European polymer industry to learn and understand how to manage their obligations under the European legislation - Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). \u003cbr\u003e\u003cbr\u003eThis book forms part of the training materials which will complement the industry-specific e-learning platform to enable the polymer industry to learn how to manage their obligations under REACH. The overall impact will be an increase in the knowledge base of the polymer industry on REACH, which will in turn help to increase competitiveness and sustainability of the sector.\u003cbr\u003e\u003cbr\u003eThis book will be useful to anyone who works with polymers or the chemicals that are used to make polymers, whether they are end-users or suppliers. REACH is affecting everyone concerned with the polymer industry and this book will help them to prepare for the impact and consequences of the REACH legislation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Mechanical Properties of Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Tensile Strength\u003cbr\u003e1.2.1 Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3 Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1 Torsion Test\u003cbr\u003e1.3.2 Hand Test\u003cbr\u003e1.4 Elongation at Break\u003cbr\u003e1.4.1 Basic Creep Data\u003cbr\u003e1.5 Strain at Yield\u003cbr\u003e1.5.1 Isochronous Stress-strain Curves\u003cbr\u003e1.5.2 Stress-time Curves\u003cbr\u003e1.5.3 Stress-temperature Curves\u003cbr\u003e1.5.4 Extrapolation Techniques\u003cbr\u003e1.5.5 Basic Parameters\u003cbr\u003e1.5.6 Recovery in Stress Phenomena\u003cbr\u003e1.5.7 Stress Relaxation\u003cbr\u003e1.5.8 Rupture Data\u003cbr\u003e1.5.9 Long-term Strain-time Data\u003cbr\u003e1.6 Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1 Notched Izod Impact Strength\u003cbr\u003e1.6.2 Falling Weight Impact Test\u003cbr\u003e1.6.3 Notch Sensitivity\u003cbr\u003e1.6.4 Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5 Effect of Molecular Parameters\u003cbr\u003e1.7 Shear Strength\u003cbr\u003e1.8 Elongation in Tension\u003cbr\u003e1.9 Deformation Under Load\u003cbr\u003e1.10 Compressive Set (Permanent Deformation)\u003cbr\u003e1.11 Mould Shrinkage\u003cbr\u003e1.12 Coefficient of Friction\u003cbr\u003e1.13 Fatigue Index\u003cbr\u003e1.14 Toughness\u003cbr\u003e1.15 Abrasion Resistance or Wear\u003cbr\u003e1.16 Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1 Glass Fibres\u003cbr\u003e1.16.1.1 Poly Tetrafluoroethylene\u003cbr\u003e1.16.2 Polyethylene Terephthalate\u003cbr\u003e1.16.2.1 Polyether Ether Ketone\u003cbr\u003e1.16.2.2 Polyimide\u003cbr\u003e1.16.2.3 Polyamide Imide\u003cbr\u003e1.16.3 Calcium Carbonate\u003cbr\u003e1.16.4 Modified Clays\u003cbr\u003e1.16.5 Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6 Carbon Fibres\u003cbr\u003e1.16.7 Carbon Nanotubes\u003cbr\u003e1.16.8 Miscellaneous Fillers\/Reinforcing Agents.\u003cbr\u003e1.16.9 Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17 Application of Dynamic Mechanical Analysis.\u003cbr\u003e1.17.1 Theory\u003cbr\u003e1.17.2 Instrumentation (Appendix 1)\u003cbr\u003e1.17.3 Fixed Frequency Mode\u003cbr\u003e1.17.3.1 Resonant Frequency Mode\u003cbr\u003e1.17.3.2 Stress Relaxation Mode\u003cbr\u003e1.17.3.3 Creep Mode\u003cbr\u003e1.17.3.4 Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5 Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6 Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7 Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8 Storage Modulus\u003cbr\u003e1.17.3.9 Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10 Elastomer Low-Temperature Properties\u003cbr\u003e1.17.3.11 Tensile Modulus\u003cbr\u003e1.17.3.12 Stress-strain Relationships\u003cbr\u003e1.17.3.13 Viscosity\u003cbr\u003e1.17.3.14 Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18 Rheology and Viscoelasticity\u003cbr\u003e1.19 Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1 Measurement of Rheological Properties\u003cbr\u003e1.19.2 Viscosity and Elasticity\u003cbr\u003e1.19.3 Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4 Flexing Test\u003cbr\u003e1.19.5 Deformation\u003cbr\u003e1.19.6 Tensile Properties\u003cbr\u003e1.19.7 Mechanical Stability of Natural and Synthetic Lattices\u003cbr\u003e1.19.8 Abrasion Test\u003cbr\u003e1.19.9 Peel Adhesion Test\u003cbr\u003e1.19.10 Ozone Resistance Test\u003cbr\u003e1.20 Physical Testing of Polymer Powders\u003cbr\u003e1.20.1 Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2 Artificial Weathering\u003cbr\u003e1.20.3 Natural Weathering\u003cbr\u003e1.20.4 Reactivity\u003cbr\u003e1.20.5 Melt Viscosity\u003cbr\u003e1.20.6 Loss on Stoving\u003cbr\u003e1.20.7 True Density\u003cbr\u003e1.20.8 Bulk Density\u003cbr\u003e1.20.9 Powder Flow\u003cbr\u003e1.20.10 Test for Cure\u003cbr\u003e1.20.11 Electrical Properties\u003cbr\u003e1.20.12 Thermal Analysis\u003cbr\u003e1.20.13 Particle-size Distribution\u003cbr\u003e1.20.13.1 Methods Based on Electrical Sensing Zone (Coulter Principle)\u003cbr\u003e1.20.13.2 Laser Particle Size Analysers\u003cbr\u003e1.20.13.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4 Sedimentation.\u003cbr\u003e1.20.13.5 Acoustic Spectroscopy\u003cbr\u003e1.20.13.6 Capillary Hydrodynamic Fractionation\u003cbr\u003e1.20.13.7 Small-angle Light Scattering\u003cbr\u003e1.21 Plastic Pipe Materials\u003cbr\u003e1.22 Plastic Film\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Thermal Properties of Polymers\u003cbr\u003e2.1 Linear Co-efficient of Expansion\u003cbr\u003e2.2 Mould Shrinkage\u003cbr\u003e2.3 Distortion Temperature\u003cbr\u003e2.3.1 Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2 Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4 Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5 Melting Temperature\u003cbr\u003e2.6 Maximum Operating Temperature\u003cbr\u003e2.7 Melt Flow Index\u003cbr\u003e2.8 VICAT Softening Point\u003cbr\u003e2.9 Thermal Conductivity\u003cbr\u003e2.10 Specific Heat\u003cbr\u003e2.10.1 Hot-wire Techniques\u003cbr\u003e2.10.2 Transient Plane Source Technique\u003cbr\u003e2.10.3 Laser Flash Technique\u003cbr\u003e2.10.4 Thermal Diffusivity\u003cbr\u003e2.11 Maximum Filming Temperature\u003cbr\u003e2.12 Heat at Volatilisation\u003cbr\u003e2.13 Glass Transition Temperature\u003cbr\u003e2.13.1 Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1 Theory\u003cbr\u003e2.14 Thermomechanical Analysis\u003cbr\u003e2.14.1 Theory\u003cbr\u003e2.15 Dynamic Mechanical Analysis\u003cbr\u003e2.16 Differential Thermal Analysis and \u003cbr\u003eThermogravimetric Analysis\u003cbr\u003e2.17 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18 Dielectric Thermal Analysis\u003cbr\u003e2.19 Inverse Gas Chromatography\u003cbr\u003e2.20 Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1 Differential Thermal Analysis\u003cbr\u003e2.20.2 Dynamic Mechanical Analysis\u003cbr\u003e2.20.3 Dielectric Thermal Analysis\u003cbr\u003e2.20.4 Thermomechanical Analysis\u003cbr\u003e2.20.5 Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Electrical Properties\u003cbr\u003e3.1 Volume Resistivity\u003cbr\u003e3.2 Dielectric Strength\u003cbr\u003e3.3 Dielectric Constant\u003cbr\u003e3.4 Dissipation Factor\u003cbr\u003e3.5 Surface Arc Resistance\u003cbr\u003e3.6 Tracking Resistance\u003cbr\u003e3.7 Electrical Resistance and Resistivity\u003cbr\u003e3.8 Electrical Conductivity\u003cbr\u003e3.9 Electronically Conducting Polymers\u003cbr\u003e3.10 Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Other Physical Properties\u003cbr\u003e4.1 Surface Hardness\u003cbr\u003e4.2 Specific Gravity and Bulk Density\u003cbr\u003e4.3 Gas Barrier Properties\u003cbr\u003e4.4 Optical Properties\u003cbr\u003e4.4.1 Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2 Light Scattering\u003cbr\u003e4.4.3 Optical Properties\u003cbr\u003e4.4.4 Electro-optical Effect\u003cbr\u003e4.4.5 Infrared Optical Properties\u003cbr\u003e4.5 Monitoring of Resin Cure\u003cbr\u003e4.5.1 Thermally Cured Resins\u003cbr\u003e4.5.1.1 Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2 Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3 Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4 Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5 Thermal Conductivity\u003cbr\u003e4.5.2 Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1 Differential Photo-calorimetry\u003cbr\u003e4.5.2.2 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3 Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4 Gas Chromatography-based Methods\u003cbr\u003e4.6 Adhesion Studies\u003cbr\u003e4.7 Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1 Dynamic Mechanical Analysis\u003cbr\u003e4.7.2 Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Thermal Stability\u003cbr\u003e5.1 Thermogravimetric Analysis\u003cbr\u003e5.2 Differential Thermal Analysis\u003cbr\u003e5.3 Differential Scanning Calorimetry\u003cbr\u003e5.4 Thermal Volatilisation Analysis\u003cbr\u003e5.5 Evolved Gas Analysis\u003cbr\u003e5.6 Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7 Mass Spectroscopy\u003cbr\u003e5.8 Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9 Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Thermo-oxidative Stability\u003cbr\u003e6.1 Thermogravimetric Analysis\u003cbr\u003e6.2 Differential Scanning Calorimetry\u003cbr\u003e6.3 Evolved Gas Analysis\u003cbr\u003e6.4 Infrared Spectroscopy\u003cbr\u003e6.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6 Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7 Imaging Chemiluminescence\u003cbr\u003e6.8 Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Assessment of Polymer Stability\u003cbr\u003e7.1 Light Stability\u003cbr\u003e7.1.1 Ultraviolet Light Weathering\u003cbr\u003e7.1.2 Natural Weathering Tests\u003cbr\u003e7.2 Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1 Effect of Pigments\u003cbr\u003e7.2.2 Effect of Carbon Black\u003cbr\u003e7.2.3 Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4 Effect of Thickness\u003cbr\u003e7.2.5 Effect of Stress during Exposure\u003cbr\u003e7.3 Gamma Radiation\u003cbr\u003e7.4 Electron Irradiation\u003cbr\u003e7.5 Irradiation by Carbon Ion Beam\u003cbr\u003e7.6 Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7 Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8 Water Absorption\u003cbr\u003e7.9 Chemical Resistance\u003cbr\u003e7.9.1 Detergent Resistance\u003cbr\u003e7.10 Hydrolytic Stability\u003cbr\u003e7.11 Resistance to Gases\u003cbr\u003e7.12 Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Selecting a Suitable Polymer\u003cbr\u003e8.1 Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2 Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3 Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers\u003cbr\u003eAppendix 2 – Mechanical properties of polymers\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:45-04:00","created_at":"2017-06-22T21:14:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","adhesion","book","electrical properties","elongation","mechanical propertis","p-properties","polymer REACH","polymer stability","properties of polymer","REACH legislation","thermal properties","thermal stability","thermo-oxidative stability"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378435140,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"REACH for the Polymer Industry - A Practical Guide","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356208","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847356208.jpg?v=1499644947"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847356208.jpg?v=1499644947","options":["Title"],"media":[{"alt":null,"id":358729023581,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847356208.jpg?v=1499644947"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847356208.jpg?v=1499644947","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Polymer REACH Consortium \u003cbr\u003eISBN 9781847356208 \u003cbr\u003e\u003cbr\u003ePublished: 2012\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book has been produced by the EU Leonardo Project called Polymer REACH. The overall objective of Polymer REACH was to develop an e-learning platform and training materials for the European polymer industry to learn and understand how to manage their obligations under the European legislation - Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). \u003cbr\u003e\u003cbr\u003eThis book forms part of the training materials which will complement the industry-specific e-learning platform to enable the polymer industry to learn how to manage their obligations under REACH. The overall impact will be an increase in the knowledge base of the polymer industry on REACH, which will in turn help to increase competitiveness and sustainability of the sector.\u003cbr\u003e\u003cbr\u003eThis book will be useful to anyone who works with polymers or the chemicals that are used to make polymers, whether they are end-users or suppliers. REACH is affecting everyone concerned with the polymer industry and this book will help them to prepare for the impact and consequences of the REACH legislation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Mechanical Properties of Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Tensile Strength\u003cbr\u003e1.2.1 Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3 Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1 Torsion Test\u003cbr\u003e1.3.2 Hand Test\u003cbr\u003e1.4 Elongation at Break\u003cbr\u003e1.4.1 Basic Creep Data\u003cbr\u003e1.5 Strain at Yield\u003cbr\u003e1.5.1 Isochronous Stress-strain Curves\u003cbr\u003e1.5.2 Stress-time Curves\u003cbr\u003e1.5.3 Stress-temperature Curves\u003cbr\u003e1.5.4 Extrapolation Techniques\u003cbr\u003e1.5.5 Basic Parameters\u003cbr\u003e1.5.6 Recovery in Stress Phenomena\u003cbr\u003e1.5.7 Stress Relaxation\u003cbr\u003e1.5.8 Rupture Data\u003cbr\u003e1.5.9 Long-term Strain-time Data\u003cbr\u003e1.6 Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1 Notched Izod Impact Strength\u003cbr\u003e1.6.2 Falling Weight Impact Test\u003cbr\u003e1.6.3 Notch Sensitivity\u003cbr\u003e1.6.4 Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5 Effect of Molecular Parameters\u003cbr\u003e1.7 Shear Strength\u003cbr\u003e1.8 Elongation in Tension\u003cbr\u003e1.9 Deformation Under Load\u003cbr\u003e1.10 Compressive Set (Permanent Deformation)\u003cbr\u003e1.11 Mould Shrinkage\u003cbr\u003e1.12 Coefficient of Friction\u003cbr\u003e1.13 Fatigue Index\u003cbr\u003e1.14 Toughness\u003cbr\u003e1.15 Abrasion Resistance or Wear\u003cbr\u003e1.16 Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1 Glass Fibres\u003cbr\u003e1.16.1.1 Poly Tetrafluoroethylene\u003cbr\u003e1.16.2 Polyethylene Terephthalate\u003cbr\u003e1.16.2.1 Polyether Ether Ketone\u003cbr\u003e1.16.2.2 Polyimide\u003cbr\u003e1.16.2.3 Polyamide Imide\u003cbr\u003e1.16.3 Calcium Carbonate\u003cbr\u003e1.16.4 Modified Clays\u003cbr\u003e1.16.5 Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6 Carbon Fibres\u003cbr\u003e1.16.7 Carbon Nanotubes\u003cbr\u003e1.16.8 Miscellaneous Fillers\/Reinforcing Agents.\u003cbr\u003e1.16.9 Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17 Application of Dynamic Mechanical Analysis.\u003cbr\u003e1.17.1 Theory\u003cbr\u003e1.17.2 Instrumentation (Appendix 1)\u003cbr\u003e1.17.3 Fixed Frequency Mode\u003cbr\u003e1.17.3.1 Resonant Frequency Mode\u003cbr\u003e1.17.3.2 Stress Relaxation Mode\u003cbr\u003e1.17.3.3 Creep Mode\u003cbr\u003e1.17.3.4 Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5 Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6 Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7 Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8 Storage Modulus\u003cbr\u003e1.17.3.9 Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10 Elastomer Low-Temperature Properties\u003cbr\u003e1.17.3.11 Tensile Modulus\u003cbr\u003e1.17.3.12 Stress-strain Relationships\u003cbr\u003e1.17.3.13 Viscosity\u003cbr\u003e1.17.3.14 Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18 Rheology and Viscoelasticity\u003cbr\u003e1.19 Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1 Measurement of Rheological Properties\u003cbr\u003e1.19.2 Viscosity and Elasticity\u003cbr\u003e1.19.3 Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4 Flexing Test\u003cbr\u003e1.19.5 Deformation\u003cbr\u003e1.19.6 Tensile Properties\u003cbr\u003e1.19.7 Mechanical Stability of Natural and Synthetic Lattices\u003cbr\u003e1.19.8 Abrasion Test\u003cbr\u003e1.19.9 Peel Adhesion Test\u003cbr\u003e1.19.10 Ozone Resistance Test\u003cbr\u003e1.20 Physical Testing of Polymer Powders\u003cbr\u003e1.20.1 Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2 Artificial Weathering\u003cbr\u003e1.20.3 Natural Weathering\u003cbr\u003e1.20.4 Reactivity\u003cbr\u003e1.20.5 Melt Viscosity\u003cbr\u003e1.20.6 Loss on Stoving\u003cbr\u003e1.20.7 True Density\u003cbr\u003e1.20.8 Bulk Density\u003cbr\u003e1.20.9 Powder Flow\u003cbr\u003e1.20.10 Test for Cure\u003cbr\u003e1.20.11 Electrical Properties\u003cbr\u003e1.20.12 Thermal Analysis\u003cbr\u003e1.20.13 Particle-size Distribution\u003cbr\u003e1.20.13.1 Methods Based on Electrical Sensing Zone (Coulter Principle)\u003cbr\u003e1.20.13.2 Laser Particle Size Analysers\u003cbr\u003e1.20.13.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4 Sedimentation.\u003cbr\u003e1.20.13.5 Acoustic Spectroscopy\u003cbr\u003e1.20.13.6 Capillary Hydrodynamic Fractionation\u003cbr\u003e1.20.13.7 Small-angle Light Scattering\u003cbr\u003e1.21 Plastic Pipe Materials\u003cbr\u003e1.22 Plastic Film\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Thermal Properties of Polymers\u003cbr\u003e2.1 Linear Co-efficient of Expansion\u003cbr\u003e2.2 Mould Shrinkage\u003cbr\u003e2.3 Distortion Temperature\u003cbr\u003e2.3.1 Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2 Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4 Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5 Melting Temperature\u003cbr\u003e2.6 Maximum Operating Temperature\u003cbr\u003e2.7 Melt Flow Index\u003cbr\u003e2.8 VICAT Softening Point\u003cbr\u003e2.9 Thermal Conductivity\u003cbr\u003e2.10 Specific Heat\u003cbr\u003e2.10.1 Hot-wire Techniques\u003cbr\u003e2.10.2 Transient Plane Source Technique\u003cbr\u003e2.10.3 Laser Flash Technique\u003cbr\u003e2.10.4 Thermal Diffusivity\u003cbr\u003e2.11 Maximum Filming Temperature\u003cbr\u003e2.12 Heat at Volatilisation\u003cbr\u003e2.13 Glass Transition Temperature\u003cbr\u003e2.13.1 Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1 Theory\u003cbr\u003e2.14 Thermomechanical Analysis\u003cbr\u003e2.14.1 Theory\u003cbr\u003e2.15 Dynamic Mechanical Analysis\u003cbr\u003e2.16 Differential Thermal Analysis and \u003cbr\u003eThermogravimetric Analysis\u003cbr\u003e2.17 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18 Dielectric Thermal Analysis\u003cbr\u003e2.19 Inverse Gas Chromatography\u003cbr\u003e2.20 Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1 Differential Thermal Analysis\u003cbr\u003e2.20.2 Dynamic Mechanical Analysis\u003cbr\u003e2.20.3 Dielectric Thermal Analysis\u003cbr\u003e2.20.4 Thermomechanical Analysis\u003cbr\u003e2.20.5 Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Electrical Properties\u003cbr\u003e3.1 Volume Resistivity\u003cbr\u003e3.2 Dielectric Strength\u003cbr\u003e3.3 Dielectric Constant\u003cbr\u003e3.4 Dissipation Factor\u003cbr\u003e3.5 Surface Arc Resistance\u003cbr\u003e3.6 Tracking Resistance\u003cbr\u003e3.7 Electrical Resistance and Resistivity\u003cbr\u003e3.8 Electrical Conductivity\u003cbr\u003e3.9 Electronically Conducting Polymers\u003cbr\u003e3.10 Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Other Physical Properties\u003cbr\u003e4.1 Surface Hardness\u003cbr\u003e4.2 Specific Gravity and Bulk Density\u003cbr\u003e4.3 Gas Barrier Properties\u003cbr\u003e4.4 Optical Properties\u003cbr\u003e4.4.1 Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2 Light Scattering\u003cbr\u003e4.4.3 Optical Properties\u003cbr\u003e4.4.4 Electro-optical Effect\u003cbr\u003e4.4.5 Infrared Optical Properties\u003cbr\u003e4.5 Monitoring of Resin Cure\u003cbr\u003e4.5.1 Thermally Cured Resins\u003cbr\u003e4.5.1.1 Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2 Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3 Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4 Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5 Thermal Conductivity\u003cbr\u003e4.5.2 Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1 Differential Photo-calorimetry\u003cbr\u003e4.5.2.2 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3 Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4 Gas Chromatography-based Methods\u003cbr\u003e4.6 Adhesion Studies\u003cbr\u003e4.7 Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1 Dynamic Mechanical Analysis\u003cbr\u003e4.7.2 Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Thermal Stability\u003cbr\u003e5.1 Thermogravimetric Analysis\u003cbr\u003e5.2 Differential Thermal Analysis\u003cbr\u003e5.3 Differential Scanning Calorimetry\u003cbr\u003e5.4 Thermal Volatilisation Analysis\u003cbr\u003e5.5 Evolved Gas Analysis\u003cbr\u003e5.6 Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7 Mass Spectroscopy\u003cbr\u003e5.8 Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9 Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Thermo-oxidative Stability\u003cbr\u003e6.1 Thermogravimetric Analysis\u003cbr\u003e6.2 Differential Scanning Calorimetry\u003cbr\u003e6.3 Evolved Gas Analysis\u003cbr\u003e6.4 Infrared Spectroscopy\u003cbr\u003e6.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6 Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7 Imaging Chemiluminescence\u003cbr\u003e6.8 Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Assessment of Polymer Stability\u003cbr\u003e7.1 Light Stability\u003cbr\u003e7.1.1 Ultraviolet Light Weathering\u003cbr\u003e7.1.2 Natural Weathering Tests\u003cbr\u003e7.2 Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1 Effect of Pigments\u003cbr\u003e7.2.2 Effect of Carbon Black\u003cbr\u003e7.2.3 Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4 Effect of Thickness\u003cbr\u003e7.2.5 Effect of Stress during Exposure\u003cbr\u003e7.3 Gamma Radiation\u003cbr\u003e7.4 Electron Irradiation\u003cbr\u003e7.5 Irradiation by Carbon Ion Beam\u003cbr\u003e7.6 Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7 Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8 Water Absorption\u003cbr\u003e7.9 Chemical Resistance\u003cbr\u003e7.9.1 Detergent Resistance\u003cbr\u003e7.10 Hydrolytic Stability\u003cbr\u003e7.11 Resistance to Gases\u003cbr\u003e7.12 Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Selecting a Suitable Polymer\u003cbr\u003e8.1 Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2 Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3 Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers\u003cbr\u003eAppendix 2 – Mechanical properties of polymers\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
REACH USA 2011
$165.00
{"id":11242231812,"title":"REACH USA 2011","handle":"978-1-84735-629-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-629-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e9th International Conference on the Registration, Evaluation, and Authorisation of Chemicals and its Impact on US Trade\n\u003ch5\u003eSummary\u003c\/h5\u003e\n30 November 2010 marked the deadline for chemical producers and importers to register all high volume and potentially toxic substances. Chemicals that have not been registered with the requisite safety information by this date are to be withdrawn from the market under the \"no data, no market\" ruling, giving the potential to cause untold chaos in chemical supply chains. Indeed, successes and failures from this first set of REACH registrations in 2010 are expected to impact the use of products on the EU market and beyond, as well as influence chemical legislation initiatives across the globe. In particular, industry and regulators will become engaged with Evaluation during 2011, where data submitted in registration dossiers are reviewed and potentially challenged.\u003cbr\u003e\u003cbr\u003eIn 2011 customers in the EU will begin facing the knock-on requirements of registrations from 2010, changes in classification under the EU implementation of the Globally Harmonised System (GHS), conditions imposed by Exposure Scenarios and even 'uses advised against'. Not only are there widespread concerns over the EU's implementation of the GHS for the classification, labelling, and packaging of substances (CLP), but 2011 also brings new obligations, such as the need to notify substances of very high concern (SVHC) to the European Chemicals Agency (ECHA). In the US plans to introduce the GHS will undoubtedly cause similar fears.\u003cbr\u003e\u003cbr\u003eAt the same time, the next registration deadline is only 2 ½ years away. This second phase of Registration presents additional management hurdles, as it involves a large number of substances that may be relatively 'data poor' compared with substances registered in 2010. Companies must already begin planning, in particular with regards to budgeting for this next step in REACH.\u003cbr\u003e\u003cbr\u003e2011, therefore, presents industry and regulators with a critical year for gaining experience with how REACH actually works in practice. In turn, changes in official guidance and a legislative review in 2012 offer the possibility of improvements to the workability of REACH.\u003cbr\u003e\u003cbr\u003eWhether you're a cosmetics company, an aerospace manufacturer or a raw material supplier, REACH applies to you. These proceedings cover all the presentations from the conference which enveloped some of the vital lessons that have been learned, how the next deadlines in 2013 will affect the way you do business and what damage limitation controls can be put in place for 2011 when many fail to meet their obligations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 1: REACH – Experiences \u0026amp; Updates \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 1 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eKeynote Presentation REACH update and progress on registration \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 2 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eManaging dossiers – deadlines and updates \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Steffen Erler, Smithers Viscient, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 3 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eLessons learned from REACH implementation and thoughts for going forward to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eThomas G Grumbles, Cardno ENTRIX, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 2: Technical Complexities \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 4 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eNavigating REACH from a small business perspective \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eApril A Cesaretti, The HallStar Company, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 5 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eUse of science in REACH regulatory affairs \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Robbie Waites, SABIC Innovative Plastics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 6 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eConsortium Management – How will best practice evolve in the period to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaul Ashford, Caleb Management Services Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 3: Tools \u0026amp; Methods \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 7 Legal interpretations and challenges Ruxandra Cana, Field Fisher Waterhouse LLP, Belgium PAPER UNAVAILABLE \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 8 Sens-it-iv: in vitro methods for sensitisation Erwin Roggen, Novozymes AS, Denmark \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 9 Exposure in the supply chain: from development to implementation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eTine Vandenbrouck \u0026amp; Elke Van Asbroeck, Apeiron-Team NV, Belgium \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 10 The extended safety datasheet – challenges and opportunities \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Mark Pemberton, Lucite International UK Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 4: Safe Use, Restriction, and Authorisation \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 11 From use descriptors to safe use - one more step in the REACH journey \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Clayton, Reichhold Inc, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 12 SVHC duties as we move towards notification and authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 13 SIN list, restriction \u0026amp; authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJerker Ligthart \u0026amp;, Nardono Nimpuno International Chemical Secretariat, Sweden \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 5: Managing SVHCs \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 14 SVHCs in articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDave Bender, Tyco Electronics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 15 Managing substances of very high concern in the retail sector \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 16 Impact of REACH and CLP for manufacturers of articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Podd, Kimberly-Clark Europe, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 6: Chemicals Policy \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 17 EU chemicals policy – beyond REACH \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eMamta Patel, Chemical Watch, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 18 TSCA reform: Learning hard lessons from REACH experience \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Herb Estreicher, Keller \u0026amp; Heckman LLP, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 19 REACH and the interplay of state and federal chemicals policy in the US: Lessons Learned \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eProf Joel A Tickner, University of Massachusetts Lowell, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 7: GHS and CLP \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 20 CLP: The harmonisation process and the C\u0026amp;L inventory \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 21 US OSHA implementation of the GHS \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJennifer Silk, Retired from OSHA, currently Consultant \u0026amp; UNITAR Training Advisor on GHS, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 22 Managing CLP compliance: the essentials for business \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:18-04:00","created_at":"2017-06-22T21:14:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","chemical policy","legal interpretations","OSHA","p-properties","packaging","polymer","raw materials","REACH implementation","safety","safety datasheet"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378411268,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"REACH USA 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-629-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-629-1.jpg?v=1499954018"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-629-1.jpg?v=1499954018","options":["Title"],"media":[{"alt":null,"id":358730596445,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-629-1.jpg?v=1499954018"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-629-1.jpg?v=1499954018","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-629-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e9th International Conference on the Registration, Evaluation, and Authorisation of Chemicals and its Impact on US Trade\n\u003ch5\u003eSummary\u003c\/h5\u003e\n30 November 2010 marked the deadline for chemical producers and importers to register all high volume and potentially toxic substances. Chemicals that have not been registered with the requisite safety information by this date are to be withdrawn from the market under the \"no data, no market\" ruling, giving the potential to cause untold chaos in chemical supply chains. Indeed, successes and failures from this first set of REACH registrations in 2010 are expected to impact the use of products on the EU market and beyond, as well as influence chemical legislation initiatives across the globe. In particular, industry and regulators will become engaged with Evaluation during 2011, where data submitted in registration dossiers are reviewed and potentially challenged.\u003cbr\u003e\u003cbr\u003eIn 2011 customers in the EU will begin facing the knock-on requirements of registrations from 2010, changes in classification under the EU implementation of the Globally Harmonised System (GHS), conditions imposed by Exposure Scenarios and even 'uses advised against'. Not only are there widespread concerns over the EU's implementation of the GHS for the classification, labelling, and packaging of substances (CLP), but 2011 also brings new obligations, such as the need to notify substances of very high concern (SVHC) to the European Chemicals Agency (ECHA). In the US plans to introduce the GHS will undoubtedly cause similar fears.\u003cbr\u003e\u003cbr\u003eAt the same time, the next registration deadline is only 2 ½ years away. This second phase of Registration presents additional management hurdles, as it involves a large number of substances that may be relatively 'data poor' compared with substances registered in 2010. Companies must already begin planning, in particular with regards to budgeting for this next step in REACH.\u003cbr\u003e\u003cbr\u003e2011, therefore, presents industry and regulators with a critical year for gaining experience with how REACH actually works in practice. In turn, changes in official guidance and a legislative review in 2012 offer the possibility of improvements to the workability of REACH.\u003cbr\u003e\u003cbr\u003eWhether you're a cosmetics company, an aerospace manufacturer or a raw material supplier, REACH applies to you. These proceedings cover all the presentations from the conference which enveloped some of the vital lessons that have been learned, how the next deadlines in 2013 will affect the way you do business and what damage limitation controls can be put in place for 2011 when many fail to meet their obligations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 1: REACH – Experiences \u0026amp; Updates \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 1 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eKeynote Presentation REACH update and progress on registration \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 2 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eManaging dossiers – deadlines and updates \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Steffen Erler, Smithers Viscient, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 3 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eLessons learned from REACH implementation and thoughts for going forward to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eThomas G Grumbles, Cardno ENTRIX, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 2: Technical Complexities \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 4 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eNavigating REACH from a small business perspective \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eApril A Cesaretti, The HallStar Company, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 5 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eUse of science in REACH regulatory affairs \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Robbie Waites, SABIC Innovative Plastics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 6 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eConsortium Management – How will best practice evolve in the period to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaul Ashford, Caleb Management Services Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 3: Tools \u0026amp; Methods \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 7 Legal interpretations and challenges Ruxandra Cana, Field Fisher Waterhouse LLP, Belgium PAPER UNAVAILABLE \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 8 Sens-it-iv: in vitro methods for sensitisation Erwin Roggen, Novozymes AS, Denmark \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 9 Exposure in the supply chain: from development to implementation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eTine Vandenbrouck \u0026amp; Elke Van Asbroeck, Apeiron-Team NV, Belgium \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 10 The extended safety datasheet – challenges and opportunities \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Mark Pemberton, Lucite International UK Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 4: Safe Use, Restriction, and Authorisation \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 11 From use descriptors to safe use - one more step in the REACH journey \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Clayton, Reichhold Inc, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 12 SVHC duties as we move towards notification and authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 13 SIN list, restriction \u0026amp; authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJerker Ligthart \u0026amp;, Nardono Nimpuno International Chemical Secretariat, Sweden \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 5: Managing SVHCs \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 14 SVHCs in articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDave Bender, Tyco Electronics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 15 Managing substances of very high concern in the retail sector \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 16 Impact of REACH and CLP for manufacturers of articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Podd, Kimberly-Clark Europe, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 6: Chemicals Policy \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 17 EU chemicals policy – beyond REACH \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eMamta Patel, Chemical Watch, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 18 TSCA reform: Learning hard lessons from REACH experience \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Herb Estreicher, Keller \u0026amp; Heckman LLP, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 19 REACH and the interplay of state and federal chemicals policy in the US: Lessons Learned \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eProf Joel A Tickner, University of Massachusetts Lowell, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 7: GHS and CLP \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 20 CLP: The harmonisation process and the C\u0026amp;L inventory \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 21 US OSHA implementation of the GHS \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJennifer Silk, Retired from OSHA, currently Consultant \u0026amp; UNITAR Training Advisor on GHS, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 22 Managing CLP compliance: the essentials for business \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Rheology and its Role ...
$72.00
{"id":11242256708,"title":"Rheology and its Role in Plastics Processing","handle":"978-1-85957-053-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Prentice \u003cbr\u003eISBN 978-1-85957-053-1 \u003cbr\u003e\u003cbr\u003eThe Nottingham Trent University\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003e94 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review encompases fundamental principles and rheological equations of state, polymer melt rheology (shear and extensional flow, viscoelasticity, die swell and melt fracture) and rheological measurement techniques. It describes the main plastics processing techniques and explains the influence of polymer melt rheology upon their operation. 48 figures and more than 80 equations enhance the review, which is also supported by extensive, indexed bibliography.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eRheological Equations of State\u003c\/li\u003e\n\u003cli\u003eFundamental Principles of Rheology\u003c\/li\u003e\n\u003cli\u003ePolymer Melt Rheology\u003c\/li\u003e\n\u003cli\u003eRheological Techniques\u003c\/li\u003e\n\u003cli\u003ePolymer Processing (extrusion, injection molding, calendering, rotational casting)\u003c\/li\u003e\n\u003cli\u003eThe Effect of Rheology on Polymer Processing\u003c\/li\u003e\n\u003cli\u003eRheology in the Design\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:15:34-04:00","created_at":"2017-06-22T21:15:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","book","calendering","extrusion","injection molding","moulding","p-properties","plastics","polymer","polymers","processing","rheology","rotational casting"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378497860,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology and its Role in Plastics Processing","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-053-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-053-1.jpg?v=1499954183"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-053-1.jpg?v=1499954183","options":["Title"],"media":[{"alt":null,"id":358734987357,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-053-1.jpg?v=1499954183"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-053-1.jpg?v=1499954183","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Prentice \u003cbr\u003eISBN 978-1-85957-053-1 \u003cbr\u003e\u003cbr\u003eThe Nottingham Trent University\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003e94 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review encompases fundamental principles and rheological equations of state, polymer melt rheology (shear and extensional flow, viscoelasticity, die swell and melt fracture) and rheological measurement techniques. It describes the main plastics processing techniques and explains the influence of polymer melt rheology upon their operation. 48 figures and more than 80 equations enhance the review, which is also supported by extensive, indexed bibliography.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eRheological Equations of State\u003c\/li\u003e\n\u003cli\u003eFundamental Principles of Rheology\u003c\/li\u003e\n\u003cli\u003ePolymer Melt Rheology\u003c\/li\u003e\n\u003cli\u003eRheological Techniques\u003c\/li\u003e\n\u003cli\u003ePolymer Processing (extrusion, injection molding, calendering, rotational casting)\u003c\/li\u003e\n\u003cli\u003eThe Effect of Rheology on Polymer Processing\u003c\/li\u003e\n\u003cli\u003eRheology in the Design\u003c\/li\u003e\n\u003c\/ul\u003e"}
Rheology Essentials of...
$150.00
{"id":11242232900,"title":"Rheology Essentials of Cosmetic and Food Emulsions","handle":"978-3-540-25553-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rüdiger Brummer \u003cbr\u003eISBN 978-3-540-25553-6 \u003cbr\u003e\u003cbr\u003eSpringer Laboratory \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 180, 184 illus., 139 in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks, and lotions, as well as sun-block products. Keeping track of them and their properties are not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by expert inflows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests.\u003c\/p\u003e\n\u003cp\u003eBeginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedures: how to characterize cosmetic and food emulsions with different rheological tests such as temperature, time, stress and strain, both static and dynamic. Also the critical topic of how the results correlate with other important product characteristics, for instance, skin sensation, pumping performance, stability etc. is carefully explored. Many pictures, illustrations, graphs, and tables help readers new to the measurement of cosmetic emulsions in their daily work as well as to the more experienced who seek additional special tips and tricks.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 INTRODUCTION (pg. 1) \u003cbr\u003e2 A TRIP BACK IN TIME (pg. 5)\u003cbr\u003e3 SKIN AND ITS CARE (pg. 15)\u003cbr\u003e\u003cb\u003e4 EMULSIONS – SOME THEORETICAL ASPECTS (pg. 17)\u003cbr\u003e\u003c\/b\u003e4.1 Physicochemical Structure of Cosmetic Products (pg.17)\u003cbr\u003e4.2 Modern Emulsifiers (pg. 19)\u003cbr\u003e4.3 Skin Care and Cleansing (pg. 19)\u003cbr\u003e4.4 Microemulsions (pg. 19)\u003cbr\u003e4.5 Emulsifier-Free Products (pg. 20)\u003cbr\u003e4.6 Production of Emulsions (pg.21)\u003cbr\u003e4.7 Processes occurring during Emulsification (pg. 21)\u003cbr\u003e4.8 Serrated Disc Disperser (pg. 22)\u003cbr\u003e\u003cb\u003e5 BASIC PHYSICAL AND MATHEMATICAL PRINCIPLES (pg. 25)\u003cbr\u003e\u003c\/b\u003e5.1 Important Definitions (pg. 25)\u003cbr\u003e5.2 One-Dimensional Parallel PlatesModel (pg. 28)\u003cbr\u003e5.3 Parallel PlateMeasuring System (pg. 30)\u003cbr\u003e5.4 Cone-PlateMeasuring System (pg. 31)\u003cbr\u003e5.5 Coaxial Cylinder Systems (pg. 32)\u003cbr\u003e5.6 Double GapMeasuring System (pg. 35)\u003cbr\u003e5.7 Flow Through Circular Capillary (pg. 36)\u003cbr\u003e5.8 CorrectionMethods (pg. 38)\u003cbr\u003e5.8.1 PPMeasurement System (pg. 39)\u003cbr\u003e5.8.2 Cylinder Measurement Systems (pg. 39)\u003cbr\u003e5.8.3 Circular Capillaries (pg. 39)\u003cbr\u003e5.9 Deformation and Relaxation 40)\u003cbr\u003e5.10 Thixotropy and Rheopexy (pg. 43)\u003cbr\u003e5.11 Vibration orOscillationMeasurements (pg. 44)\u003cbr\u003e5.11.1 Steady andDynamic Stress (pg. 45)\u003cbr\u003e5.11.2 Ideal Elastic Solids (pg. 46)\u003cbr\u003e5.11.3 IdealViscous Fluids (pg. 46)\u003cbr\u003e5.11.4 Real Solids (pg. 47)\u003cbr\u003e5.11.5 Complex Representation (pg. 48)\u003cbr\u003eXVI)\u003cbr\u003e\u003cb\u003e6 MEASURING INSTRUMENTS (pg. 51)\u003cbr\u003e\u003c\/b\u003e6.1 Modern Rheometer (pg. 52)\u003cbr\u003e6.2 High Shear Rheometer (pg. 54)\u003cbr\u003e6.3 StandardViscometer (pg. 55)\u003cbr\u003e6.4 OftenUsedViscometer (pg. 56)\u003cbr\u003e6.5 Automatic Sampler (pg. 57)\u003cbr\u003e6.6 In-process In-\/On-line Viscosity Measurements (pg. 58)\u003cbr\u003e6.7 Future Prospects (pg. 61)\u003cbr\u003e\u003cb\u003e7 MOST IMPORTANT TEST METHODS (pg. 63)\u003cbr\u003e\u003c\/b\u003e7.1 Stress Ramp Test (pg. 65)\u003cbr\u003e7.2 Newtonian Flow Behavior (pg. 67)\u003cbr\u003e7.3 Creep Test and Creep Recovery (pg. 67)\u003cbr\u003e7.4 The Ideal Elastic Behavior (pg. 68)\u003cbr\u003e7.5 The IdealViscous Behavior (pg. 68)\u003cbr\u003e7.6 RealViscoelastic Behavior (pg. 69)\u003cbr\u003e7.7 Steady Flow Curve (pg. 69)\u003cbr\u003e7.8 AmplitudeDependence (pg. 71)\u003cbr\u003e7.9 Structure Breakdown and BuildUp (pg. 73)\u003cbr\u003e7.10 TimeDependence (pg. 74)\u003cbr\u003e7.11 Frequency Test (pg. 75)\u003cbr\u003e7.12 Temperature Dependence (pg. 76)\u003cbr\u003e7.13 Combined Temperature-Time Test (pg. 77)\u003cbr\u003e\u003cb\u003e8 ANALYSIS OF MEASURING RESULTS AND CORRELATIONS)\u003cbr\u003eWITH OTHER TESTS (pg. 81)\u003cbr\u003e\u003c\/b\u003e8.1 Yield Stress (pg. 81)\u003cbr\u003e8.1.1 Correlations of the Yield Stress with the Primary Skin Feel (pg. 82)\u003cbr\u003e8.1.2 Optimization of the Stress Ramp Test (pg. 83)\u003cbr\u003e8.1.3 Residue Emptying (pg. 85)\u003cbr\u003e8.1.4 Energy Input (pg. 87)\u003cbr\u003e8.1.4.1 Measurement of the Energy Input (pg. 88)\u003cbr\u003e8.1.5 Droplet Sizes and their Distribution (pg. 90)\u003cbr\u003e8.1.6 Pumpability of Cosmetic Emulsions (pg. 92)\u003cbr\u003e8.1.6.1 Estimation of the Maximum Shear Rate (pg. 93)\u003cbr\u003e8.1.6.2 Calculation of the Shear Stress (pg. 94)\u003cbr\u003e8.1.7 Stability Studies Using Yield Stress Measurements (pg. 95)\u003cbr\u003e8.1.8 Results Obtained (pg. 96)\u003cbr\u003e8.2 Steady Flow (pg. 97)\u003cbr\u003e8.2.1 Determination of the Measuring Time (pg. 97)\u003cbr\u003e8.2.2 Temperature Dependence of the Dynamic Viscosity (pg. 98)\u003cbr\u003e8.2.3 Secondary Skin Feel (pg. 99)\u003cbr\u003e8.2.3.1 Investigation of the Secondary Skin Feel (pg. 100)\u003cbr\u003e8.3 OscillatoryMeasurements (pg. 101)\u003cbr\u003e8.3.1 Temperature Dependence of the Moduli (pg. 106)\u003cbr\u003e8.3.2 Temperature Stability (pg. 110)\u003cbr\u003e8.3.3 Rheological Swing Test for Temperature Stability (pg. 112)\u003cbr\u003e8.4 Time Temperature Superposition (TTS) (pg. 117)\u003cbr\u003e8.4.1 Softening Point (pg. 118)\u003cbr\u003e8.4.2 Freezing Point (pg. 118)\u003cbr\u003e8.4.3 Determination of the Master Curve at Constant Frequency (pg.118)\u003cbr\u003e8.4.3.1 Determination of the Activation Energy)\u003cbr\u003evia the Temperature (pg.119)\u003cbr\u003e8.4.3.2 Viscosity (pg. 119)\u003cbr\u003e8.4.3.3 Arrhenius Equation (pg. 120)\u003cbr\u003e8.4.3.4 WLF Equation (pg. 122)\u003cbr\u003e8.4.3.5 First Conclusion (pg. 122)\u003cbr\u003e8.4.3.6 Determination of the Master Curve)\u003cbr\u003ewith Variable Frequency (pg. 123)\u003cbr\u003e8.4.3.7 Final Conclusion (pg. 124)\u003cbr\u003e\u003cb\u003e9 INTERPRETATION (pg. 125)\u003cbr\u003e\u003c\/b\u003e9.1 Relationships for Polymers (pg. 125)\u003cbr\u003e9.2 General Statements for Cosmetic Emulsions (pg. 127)\u003cbr\u003e\u003cb\u003e10 CALIBRATION\/VALIDATION (pg. 131)\u003cbr\u003e\u003c\/b\u003e10.1 Basic Principles of Statistical Analysis (pg. 133)\u003cbr\u003e10.1.1 NormalDistribution (GaussianDistribution) (pg. 133)\u003cbr\u003e10.1.2 MeanValue (pg. 134)\u003cbr\u003e10.1.3 True Value (pg. 135)\u003cbr\u003e10.1.4 StandardDeviation andVariance (pg. 135)\u003cbr\u003e10.1.4.1 StandardDeviation (pg. 136)\u003cbr\u003e10.1.4.2 Coefficient ofVariation (pg. 136)\u003cbr\u003e10.1.5 MeasuredValue, Result, RandomVariable (pg. 136)\u003cbr\u003e10.1.6 Population, Series,MeasuredValue (pg. 137)\u003cbr\u003e10.1.7 Errors andDeviations (pg. 137)\u003cbr\u003e10.1.7.1 Error Types (pg. 137)\u003cbr\u003e10.1.8 Precision (pg. 138)\u003cbr\u003e10.1.9 Accuracy (pg. 139)\u003cbr\u003e10.1.10 Trueness (pg. 139)\u003cbr\u003e10.1.11 Repeatability (pg. 139)\u003cbr\u003e10.1.12 Reproducibility (pg. 140)\u003cbr\u003e10.1.13 Outliers (pg. 140)\u003cbr\u003e10.2 Back to the Laboratory (pg. 140)\u003cbr\u003e10.2.1 Calibration Test forOscillatoryMeasurements (pg. 143)\u003cbr\u003e10.2.2 Temperature (pg. 145)\u003cbr\u003e\u003cb\u003e11 TIPS AND TRICKS (pg. 147)\u003cbr\u003e\u003c\/b\u003e11.1 Materials for Geometric Systems (pg. 147)\u003cbr\u003e11.2 Cone-plate (pg. 147)\u003cbr\u003e11.3 Parallel Plate (pg. 148)\u003cbr\u003e11.4 Cylinder Systems (pg. 148)\u003cbr\u003e11.5 Cleaning Measuring Systems (pg. 148)\u003cbr\u003e11.6 Measurement Artifacts (pg. 149)\u003cbr\u003e11.7 Filling of Cone-plate and Parallel Plate Measuring Systems (pg. 150)\u003cbr\u003e11.8 Interpretation (pg. 152)\u003cbr\u003e\u003cb\u003e12 DEFINITION OF COSMETICS (pg. 155)\u003cbr\u003e\u003c\/b\u003e12.1 Cosmetics vs.Drugs (pg. 155)\u003cbr\u003e12.2 Production of Cosmetic Products (pg. 155)\u003cbr\u003e12.3 Naming, Trademark Law, Patents Law (pg. 156)\u003cbr\u003e12.4 Marketing of Cosmetic Products (pg. 156)\u003cbr\u003e12.5 Advertising Cosmetic Products (pg. 157)\u003cbr\u003e12.6 Comments (pg. 160)\u003cbr\u003e\u003cb\u003e13 EXCURSION IN THEWORLD OF FOOD RHEOLOGY (pg. 161)\u003cbr\u003e\u003c\/b\u003e13.1 AShort History of Food Rheology (pg. 161)\u003cbr\u003e13.1.1 TheOrigins of Food Rheology (pg. 163)\u003cbr\u003e13.2 Honey (pg. 163)\u003cbr\u003e13.3 Sandwich Spreads (pg. 164)\u003cbr\u003e13.4 Cheese (pg. 165)\u003cbr\u003e13.5 Ketchup (pg. 165)\u003cbr\u003e13.6 Yoghurt (pg. 166)\u003cbr\u003e13.7 Marzipan (pg. 166)\u003cbr\u003e13.8 Starch (pg. 168)\u003cbr\u003e13.9 Foams (pg. 169)\u003cbr\u003e13.10 Chocolate (pg. 170)\u003cbr\u003e13.11 Psychorheology (pg. 170)\u003cbr\u003e\u003cb\u003e14 LIST OF REFERENCES (pg. 173)\u003cbr\u003e15 SUBJECT INDEX (pg. 177)\u003cbr\u003e\u003c\/b\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:14:22-04:00","created_at":"2017-06-22T21:14:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","analysis","book","cosmetic emulsions","cosmetics","emulsion","food technology","kosmetische emulsionen","p-properties","polymer","reology","rheologie","rheology","test methods","toiletries","toilettenartikel","viscosimetry"],"price":15000,"price_min":15000,"price_max":15000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413188,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology Essentials of Cosmetic and Food Emulsions","public_title":null,"options":["Default Title"],"price":15000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-25553-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-3-540-25553-6.jpg?v=1499954205"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-3-540-25553-6.jpg?v=1499954205","options":["Title"],"media":[{"alt":null,"id":358737739869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-3-540-25553-6.jpg?v=1499954205"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-3-540-25553-6.jpg?v=1499954205","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rüdiger Brummer \u003cbr\u003eISBN 978-3-540-25553-6 \u003cbr\u003e\u003cbr\u003eSpringer Laboratory \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 180, 184 illus., 139 in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks, and lotions, as well as sun-block products. Keeping track of them and their properties are not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by expert inflows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests.\u003c\/p\u003e\n\u003cp\u003eBeginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedures: how to characterize cosmetic and food emulsions with different rheological tests such as temperature, time, stress and strain, both static and dynamic. Also the critical topic of how the results correlate with other important product characteristics, for instance, skin sensation, pumping performance, stability etc. is carefully explored. Many pictures, illustrations, graphs, and tables help readers new to the measurement of cosmetic emulsions in their daily work as well as to the more experienced who seek additional special tips and tricks.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 INTRODUCTION (pg. 1) \u003cbr\u003e2 A TRIP BACK IN TIME (pg. 5)\u003cbr\u003e3 SKIN AND ITS CARE (pg. 15)\u003cbr\u003e\u003cb\u003e4 EMULSIONS – SOME THEORETICAL ASPECTS (pg. 17)\u003cbr\u003e\u003c\/b\u003e4.1 Physicochemical Structure of Cosmetic Products (pg.17)\u003cbr\u003e4.2 Modern Emulsifiers (pg. 19)\u003cbr\u003e4.3 Skin Care and Cleansing (pg. 19)\u003cbr\u003e4.4 Microemulsions (pg. 19)\u003cbr\u003e4.5 Emulsifier-Free Products (pg. 20)\u003cbr\u003e4.6 Production of Emulsions (pg.21)\u003cbr\u003e4.7 Processes occurring during Emulsification (pg. 21)\u003cbr\u003e4.8 Serrated Disc Disperser (pg. 22)\u003cbr\u003e\u003cb\u003e5 BASIC PHYSICAL AND MATHEMATICAL PRINCIPLES (pg. 25)\u003cbr\u003e\u003c\/b\u003e5.1 Important Definitions (pg. 25)\u003cbr\u003e5.2 One-Dimensional Parallel PlatesModel (pg. 28)\u003cbr\u003e5.3 Parallel PlateMeasuring System (pg. 30)\u003cbr\u003e5.4 Cone-PlateMeasuring System (pg. 31)\u003cbr\u003e5.5 Coaxial Cylinder Systems (pg. 32)\u003cbr\u003e5.6 Double GapMeasuring System (pg. 35)\u003cbr\u003e5.7 Flow Through Circular Capillary (pg. 36)\u003cbr\u003e5.8 CorrectionMethods (pg. 38)\u003cbr\u003e5.8.1 PPMeasurement System (pg. 39)\u003cbr\u003e5.8.2 Cylinder Measurement Systems (pg. 39)\u003cbr\u003e5.8.3 Circular Capillaries (pg. 39)\u003cbr\u003e5.9 Deformation and Relaxation 40)\u003cbr\u003e5.10 Thixotropy and Rheopexy (pg. 43)\u003cbr\u003e5.11 Vibration orOscillationMeasurements (pg. 44)\u003cbr\u003e5.11.1 Steady andDynamic Stress (pg. 45)\u003cbr\u003e5.11.2 Ideal Elastic Solids (pg. 46)\u003cbr\u003e5.11.3 IdealViscous Fluids (pg. 46)\u003cbr\u003e5.11.4 Real Solids (pg. 47)\u003cbr\u003e5.11.5 Complex Representation (pg. 48)\u003cbr\u003eXVI)\u003cbr\u003e\u003cb\u003e6 MEASURING INSTRUMENTS (pg. 51)\u003cbr\u003e\u003c\/b\u003e6.1 Modern Rheometer (pg. 52)\u003cbr\u003e6.2 High Shear Rheometer (pg. 54)\u003cbr\u003e6.3 StandardViscometer (pg. 55)\u003cbr\u003e6.4 OftenUsedViscometer (pg. 56)\u003cbr\u003e6.5 Automatic Sampler (pg. 57)\u003cbr\u003e6.6 In-process In-\/On-line Viscosity Measurements (pg. 58)\u003cbr\u003e6.7 Future Prospects (pg. 61)\u003cbr\u003e\u003cb\u003e7 MOST IMPORTANT TEST METHODS (pg. 63)\u003cbr\u003e\u003c\/b\u003e7.1 Stress Ramp Test (pg. 65)\u003cbr\u003e7.2 Newtonian Flow Behavior (pg. 67)\u003cbr\u003e7.3 Creep Test and Creep Recovery (pg. 67)\u003cbr\u003e7.4 The Ideal Elastic Behavior (pg. 68)\u003cbr\u003e7.5 The IdealViscous Behavior (pg. 68)\u003cbr\u003e7.6 RealViscoelastic Behavior (pg. 69)\u003cbr\u003e7.7 Steady Flow Curve (pg. 69)\u003cbr\u003e7.8 AmplitudeDependence (pg. 71)\u003cbr\u003e7.9 Structure Breakdown and BuildUp (pg. 73)\u003cbr\u003e7.10 TimeDependence (pg. 74)\u003cbr\u003e7.11 Frequency Test (pg. 75)\u003cbr\u003e7.12 Temperature Dependence (pg. 76)\u003cbr\u003e7.13 Combined Temperature-Time Test (pg. 77)\u003cbr\u003e\u003cb\u003e8 ANALYSIS OF MEASURING RESULTS AND CORRELATIONS)\u003cbr\u003eWITH OTHER TESTS (pg. 81)\u003cbr\u003e\u003c\/b\u003e8.1 Yield Stress (pg. 81)\u003cbr\u003e8.1.1 Correlations of the Yield Stress with the Primary Skin Feel (pg. 82)\u003cbr\u003e8.1.2 Optimization of the Stress Ramp Test (pg. 83)\u003cbr\u003e8.1.3 Residue Emptying (pg. 85)\u003cbr\u003e8.1.4 Energy Input (pg. 87)\u003cbr\u003e8.1.4.1 Measurement of the Energy Input (pg. 88)\u003cbr\u003e8.1.5 Droplet Sizes and their Distribution (pg. 90)\u003cbr\u003e8.1.6 Pumpability of Cosmetic Emulsions (pg. 92)\u003cbr\u003e8.1.6.1 Estimation of the Maximum Shear Rate (pg. 93)\u003cbr\u003e8.1.6.2 Calculation of the Shear Stress (pg. 94)\u003cbr\u003e8.1.7 Stability Studies Using Yield Stress Measurements (pg. 95)\u003cbr\u003e8.1.8 Results Obtained (pg. 96)\u003cbr\u003e8.2 Steady Flow (pg. 97)\u003cbr\u003e8.2.1 Determination of the Measuring Time (pg. 97)\u003cbr\u003e8.2.2 Temperature Dependence of the Dynamic Viscosity (pg. 98)\u003cbr\u003e8.2.3 Secondary Skin Feel (pg. 99)\u003cbr\u003e8.2.3.1 Investigation of the Secondary Skin Feel (pg. 100)\u003cbr\u003e8.3 OscillatoryMeasurements (pg. 101)\u003cbr\u003e8.3.1 Temperature Dependence of the Moduli (pg. 106)\u003cbr\u003e8.3.2 Temperature Stability (pg. 110)\u003cbr\u003e8.3.3 Rheological Swing Test for Temperature Stability (pg. 112)\u003cbr\u003e8.4 Time Temperature Superposition (TTS) (pg. 117)\u003cbr\u003e8.4.1 Softening Point (pg. 118)\u003cbr\u003e8.4.2 Freezing Point (pg. 118)\u003cbr\u003e8.4.3 Determination of the Master Curve at Constant Frequency (pg.118)\u003cbr\u003e8.4.3.1 Determination of the Activation Energy)\u003cbr\u003evia the Temperature (pg.119)\u003cbr\u003e8.4.3.2 Viscosity (pg. 119)\u003cbr\u003e8.4.3.3 Arrhenius Equation (pg. 120)\u003cbr\u003e8.4.3.4 WLF Equation (pg. 122)\u003cbr\u003e8.4.3.5 First Conclusion (pg. 122)\u003cbr\u003e8.4.3.6 Determination of the Master Curve)\u003cbr\u003ewith Variable Frequency (pg. 123)\u003cbr\u003e8.4.3.7 Final Conclusion (pg. 124)\u003cbr\u003e\u003cb\u003e9 INTERPRETATION (pg. 125)\u003cbr\u003e\u003c\/b\u003e9.1 Relationships for Polymers (pg. 125)\u003cbr\u003e9.2 General Statements for Cosmetic Emulsions (pg. 127)\u003cbr\u003e\u003cb\u003e10 CALIBRATION\/VALIDATION (pg. 131)\u003cbr\u003e\u003c\/b\u003e10.1 Basic Principles of Statistical Analysis (pg. 133)\u003cbr\u003e10.1.1 NormalDistribution (GaussianDistribution) (pg. 133)\u003cbr\u003e10.1.2 MeanValue (pg. 134)\u003cbr\u003e10.1.3 True Value (pg. 135)\u003cbr\u003e10.1.4 StandardDeviation andVariance (pg. 135)\u003cbr\u003e10.1.4.1 StandardDeviation (pg. 136)\u003cbr\u003e10.1.4.2 Coefficient ofVariation (pg. 136)\u003cbr\u003e10.1.5 MeasuredValue, Result, RandomVariable (pg. 136)\u003cbr\u003e10.1.6 Population, Series,MeasuredValue (pg. 137)\u003cbr\u003e10.1.7 Errors andDeviations (pg. 137)\u003cbr\u003e10.1.7.1 Error Types (pg. 137)\u003cbr\u003e10.1.8 Precision (pg. 138)\u003cbr\u003e10.1.9 Accuracy (pg. 139)\u003cbr\u003e10.1.10 Trueness (pg. 139)\u003cbr\u003e10.1.11 Repeatability (pg. 139)\u003cbr\u003e10.1.12 Reproducibility (pg. 140)\u003cbr\u003e10.1.13 Outliers (pg. 140)\u003cbr\u003e10.2 Back to the Laboratory (pg. 140)\u003cbr\u003e10.2.1 Calibration Test forOscillatoryMeasurements (pg. 143)\u003cbr\u003e10.2.2 Temperature (pg. 145)\u003cbr\u003e\u003cb\u003e11 TIPS AND TRICKS (pg. 147)\u003cbr\u003e\u003c\/b\u003e11.1 Materials for Geometric Systems (pg. 147)\u003cbr\u003e11.2 Cone-plate (pg. 147)\u003cbr\u003e11.3 Parallel Plate (pg. 148)\u003cbr\u003e11.4 Cylinder Systems (pg. 148)\u003cbr\u003e11.5 Cleaning Measuring Systems (pg. 148)\u003cbr\u003e11.6 Measurement Artifacts (pg. 149)\u003cbr\u003e11.7 Filling of Cone-plate and Parallel Plate Measuring Systems (pg. 150)\u003cbr\u003e11.8 Interpretation (pg. 152)\u003cbr\u003e\u003cb\u003e12 DEFINITION OF COSMETICS (pg. 155)\u003cbr\u003e\u003c\/b\u003e12.1 Cosmetics vs.Drugs (pg. 155)\u003cbr\u003e12.2 Production of Cosmetic Products (pg. 155)\u003cbr\u003e12.3 Naming, Trademark Law, Patents Law (pg. 156)\u003cbr\u003e12.4 Marketing of Cosmetic Products (pg. 156)\u003cbr\u003e12.5 Advertising Cosmetic Products (pg. 157)\u003cbr\u003e12.6 Comments (pg. 160)\u003cbr\u003e\u003cb\u003e13 EXCURSION IN THEWORLD OF FOOD RHEOLOGY (pg. 161)\u003cbr\u003e\u003c\/b\u003e13.1 AShort History of Food Rheology (pg. 161)\u003cbr\u003e13.1.1 TheOrigins of Food Rheology (pg. 163)\u003cbr\u003e13.2 Honey (pg. 163)\u003cbr\u003e13.3 Sandwich Spreads (pg. 164)\u003cbr\u003e13.4 Cheese (pg. 165)\u003cbr\u003e13.5 Ketchup (pg. 165)\u003cbr\u003e13.6 Yoghurt (pg. 166)\u003cbr\u003e13.7 Marzipan (pg. 166)\u003cbr\u003e13.8 Starch (pg. 168)\u003cbr\u003e13.9 Foams (pg. 169)\u003cbr\u003e13.10 Chocolate (pg. 170)\u003cbr\u003e13.11 Psychorheology (pg. 170)\u003cbr\u003e\u003cb\u003e14 LIST OF REFERENCES (pg. 173)\u003cbr\u003e15 SUBJECT INDEX (pg. 177)\u003cbr\u003e\u003c\/b\u003e\u003c\/p\u003e"}
Rheology. Concepts, Me...
$299.00
{"id":11427417284,"title":"Rheology. Concepts, Methods, and Applications, 3rd Edition","handle":"rheology-concepts-methods-and-applications-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-21-5 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2017\u003cbr\u003ePages 486+xiv\u003cbr\u003eFigures 265\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe third edition of this excellent book brings many new additions, which include new methods and applications based on the most recently published literature. The most notable new sections discuss heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003cbr\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of the rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors are very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intent to pass their knowledge to the next generations. Previous editions of this book are used as a textbook in many universities worldwide.\u003c\/p\u003e\n\u003cp\u003eThis book is very useful in industrial applications but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eIntroduction. Rheology: Subject and Goals\u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/strong\u003e\u003cbr\u003e1.2 Deformations \u003cbr\u003e1.3 Kinematics of deformations \u003cbr\u003e1.4 Heterogeneity on flow \u003cbr\u003e1.5 Summary − continuum mechanics in rheology\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments \u003cbr\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003cbr\u003e2.3 Model interpretations \u003cbr\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003cbr\u003e2.5 Relationships among viscoelastic functions \u003cbr\u003e2.6 Viscoelasticity and molecular models \u003cbr\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 Liquids \u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003cbr\u003e3.2 Non-Newtonian shear flow \u003cbr\u003e3.3 Equations for viscosity and flow curves \u003cbr\u003e3.4 Elasticity in shear flows \u003cbr\u003e3.5 Structure rearrangements induced by shear flow \u003cbr\u003e3.6 Limits of shear flow − instabilities \u003cbr\u003e3.7 Extensional flow \u003cbr\u003e3.8 Conclusions − real liquid is a complex liquid\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions \u003cbr\u003e4.2 Linear elastic (Hookean) materials \u003cbr\u003e4.3 Linear anisotropic solids \u003cbr\u003e4.4 Large deformations in solids and non-linearity \u003cbr\u003e4.5 Limits of elasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry Experimental Methods \u003c\/strong\u003e\u003cbr\u003e5.1 Introduction − Classification of experimental methods \u003cbr\u003e5.2 Capillary viscometry \u003cbr\u003e5.3 Rotational rheometry \u003cbr\u003e5.4 Plastometers \u003cbr\u003e5.5 Method of falling sphere \u003cbr\u003e5.6 Extension \u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003cbr\u003e5.8 Physical methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology \u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Rheological properties of real materials and their characterization \u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003cbr\u003e6.4 Solution of dynamic problems \u003cbr\u003e \u003cstrong\u003eNotation \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eSolutions \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eIndex \u003c\/strong\u003e\u003c\/p\u003e","published_at":"2017-07-13T17:21:03-04:00","created_at":"2017-07-13T17:22:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","boltzmann-volterra stresses","book","capillary viscometry","creep","deformation","elongation","equations","liquid","Newtonian liquids","non-Newtonian liquids","p-properties","plastometers","polymer","rheokinetics","rheological","rheology","rheometry","solids","viscoelasticity"],"price":29900,"price_min":29900,"price_max":29900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45226298884,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications, 3rd Edition","public_title":null,"options":["Default Title"],"price":29900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-927885-21-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-21-5.jpg?v=1504029062"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-21-5.jpg?v=1504029062","options":["Title"],"media":[{"alt":null,"id":412845899869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-21-5.jpg?v=1504029062"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-21-5.jpg?v=1504029062","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-21-5 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2017\u003cbr\u003ePages 486+xiv\u003cbr\u003eFigures 265\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe third edition of this excellent book brings many new additions, which include new methods and applications based on the most recently published literature. The most notable new sections discuss heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003cbr\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of the rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors are very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intent to pass their knowledge to the next generations. Previous editions of this book are used as a textbook in many universities worldwide.\u003c\/p\u003e\n\u003cp\u003eThis book is very useful in industrial applications but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eIntroduction. Rheology: Subject and Goals\u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/strong\u003e\u003cbr\u003e1.2 Deformations \u003cbr\u003e1.3 Kinematics of deformations \u003cbr\u003e1.4 Heterogeneity on flow \u003cbr\u003e1.5 Summary − continuum mechanics in rheology\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments \u003cbr\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003cbr\u003e2.3 Model interpretations \u003cbr\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003cbr\u003e2.5 Relationships among viscoelastic functions \u003cbr\u003e2.6 Viscoelasticity and molecular models \u003cbr\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 Liquids \u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003cbr\u003e3.2 Non-Newtonian shear flow \u003cbr\u003e3.3 Equations for viscosity and flow curves \u003cbr\u003e3.4 Elasticity in shear flows \u003cbr\u003e3.5 Structure rearrangements induced by shear flow \u003cbr\u003e3.6 Limits of shear flow − instabilities \u003cbr\u003e3.7 Extensional flow \u003cbr\u003e3.8 Conclusions − real liquid is a complex liquid\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions \u003cbr\u003e4.2 Linear elastic (Hookean) materials \u003cbr\u003e4.3 Linear anisotropic solids \u003cbr\u003e4.4 Large deformations in solids and non-linearity \u003cbr\u003e4.5 Limits of elasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry Experimental Methods \u003c\/strong\u003e\u003cbr\u003e5.1 Introduction − Classification of experimental methods \u003cbr\u003e5.2 Capillary viscometry \u003cbr\u003e5.3 Rotational rheometry \u003cbr\u003e5.4 Plastometers \u003cbr\u003e5.5 Method of falling sphere \u003cbr\u003e5.6 Extension \u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003cbr\u003e5.8 Physical methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology \u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Rheological properties of real materials and their characterization \u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003cbr\u003e6.4 Solution of dynamic problems \u003cbr\u003e \u003cstrong\u003eNotation \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eSolutions \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eIndex \u003c\/strong\u003e\u003c\/p\u003e"}
Rheology. Concepts, Me...
$325.00
{"id":7289169084573,"title":"Rheology. Concepts, Methods, and Applications, 4th Edition","handle":"copy-of-rheology-concepts-methods-and-applications-4th-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-93-2 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2022\u003cbr\u003ePages 520+xvi\u003cbr\u003eFigures 300\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThe fourth edition of this excellent book, used by many universities and companies for teaching and research purposes, brings significant current information on new methods and applications based on recently published literature. The most notable new sections discuss non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how a particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids, but solid materials are also discussed in one full chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe rheological studies' goal is not to measure some rheological variables but to generate relevant data, which requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in materials studies. This is one powerful aspect of this book, which will help to avert costly confusion - common when data are generated under wrong conditions or data are wrongly used.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMethods of measurement and raw data treatment are included in one large, chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here, giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. The usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe authors are very meticulous in showing the historical sequence of developments, which led to the present advancements in rheology. This aspect is of interest to specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of many scientists' achievements give essential historical background of contributors to rheology as science and solve many practical problems.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them. We are fortunate that they intend to pass their knowledge to the next generations. Previous editions of this book were used as a textbook in many universities worldwide.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book is instrumental in industrial applications, but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIntroduction. Rheology: Subject and Goals\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.2 Deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.3 Kinematics of deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.4 Heterogeneity on flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.5 Summary − continuum mechanics in rheology \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e2 Viscoelasticity \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.1 Basic experiments \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3 Model interpretations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.5 Relationships among viscoelastic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.6 Viscoelasticity and molecular models \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.8 Non-linear effects in viscoelasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e3 Liquids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.2 Non-Newtonian shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.3 Equations for viscosity and flow curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.4 Elasticity in shear flows \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.5 Structure rearrangements induced by shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.6 Limits of shear flow − instabilities \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.7 Extensional flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.8 Conclusions − real liquid is a complex liquid \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e4 Solids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.1 Introduction and definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.2 Linear elastic (Hookean) materials \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.3 Linear anisotropic solids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.4 Large deformations in solids and non-linearity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.5 Limits of elasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e5 Rheometry Experimental Methods \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.1 Introduction − Classification of experimental methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.2 Capillary viscometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.3 Rotational rheometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.4 Plastometers \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.5 Method of falling sphere \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.6 Extension \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.8 Physical methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e6 Applications of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.1 Introduction \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.2 Rheological properties of real materials and their characterization \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.4 Solution of dynamic problems \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eNotation \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eSolutions \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIndex \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2022-02-21T11:26:15-05:00","created_at":"2022-02-21T11:11:16-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","boltzmann-volterra stresses","book","capillary viscometry","creep","deformation","elongation","equations","liquid","new","Newtonian liquids","non-Newtonian liquids","p-properties","plastometers","polymer","rheokinetics","rheological","rheology","rheometry","solids","viscoelasticity"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":41999155921053,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications, 4th Edition","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-927885-93-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885932.png?v=1645460764"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885932.png?v=1645460764","options":["Title"],"media":[{"alt":null,"id":24441167478941,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885932.png?v=1645460764"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885932.png?v=1645460764","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-93-2 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2022\u003cbr\u003ePages 520+xvi\u003cbr\u003eFigures 300\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThe fourth edition of this excellent book, used by many universities and companies for teaching and research purposes, brings significant current information on new methods and applications based on recently published literature. The most notable new sections discuss non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how a particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids, but solid materials are also discussed in one full chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe rheological studies' goal is not to measure some rheological variables but to generate relevant data, which requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in materials studies. This is one powerful aspect of this book, which will help to avert costly confusion - common when data are generated under wrong conditions or data are wrongly used.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMethods of measurement and raw data treatment are included in one large, chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here, giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. The usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe authors are very meticulous in showing the historical sequence of developments, which led to the present advancements in rheology. This aspect is of interest to specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of many scientists' achievements give essential historical background of contributors to rheology as science and solve many practical problems.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them. We are fortunate that they intend to pass their knowledge to the next generations. Previous editions of this book were used as a textbook in many universities worldwide.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book is instrumental in industrial applications, but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIntroduction. Rheology: Subject and Goals\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.2 Deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.3 Kinematics of deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.4 Heterogeneity on flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.5 Summary − continuum mechanics in rheology \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e2 Viscoelasticity \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.1 Basic experiments \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3 Model interpretations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.5 Relationships among viscoelastic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.6 Viscoelasticity and molecular models \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.8 Non-linear effects in viscoelasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e3 Liquids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.2 Non-Newtonian shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.3 Equations for viscosity and flow curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.4 Elasticity in shear flows \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.5 Structure rearrangements induced by shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.6 Limits of shear flow − instabilities \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.7 Extensional flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.8 Conclusions − real liquid is a complex liquid \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e4 Solids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.1 Introduction and definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.2 Linear elastic (Hookean) materials \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.3 Linear anisotropic solids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.4 Large deformations in solids and non-linearity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.5 Limits of elasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e5 Rheometry Experimental Methods \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.1 Introduction − Classification of experimental methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.2 Capillary viscometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.3 Rotational rheometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.4 Plastometers \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.5 Method of falling sphere \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.6 Extension \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.8 Physical methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e6 Applications of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.1 Introduction \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.2 Rheological properties of real materials and their characterization \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.4 Solution of dynamic problems \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eNotation \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eSolutions \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIndex \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e"}
Rheology. Fundamentals
$150.00
{"id":11242225604,"title":"Rheology. Fundamentals","handle":"1-895198-09-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Alexander Ya. Malkin \u003cbr\u003e10-ISBN 1-895198-09-7 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-09-6 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e315 pages, 101 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nMost technological improvements are realized through application of rheology used to modify properties of materials. At the same time, rheology is a complex discipline not fully understood by most researchers and engineers. It is not because rheology is too difficult to understand but mostly because the discipline uses its own language full of terms and models, understood by rheologists but not commonly used by others. ChemTec Publishing introduces a new series entitled Fundamental Topics in Rheology, designed to facilitate the conversion of rheology from a field familiar to a narrow group of specialists to a popularly applied science. The first book in the series was written by Prof. Malkin who is an accomplished researcher in the field. Prof. Malkin wrote one of the first books on polymer rheology together with his mentor and well-known Russian scientist Prof. Vinogradov. This book is still in a popular use in every major library. The present, difficult task to write on fundamental principles of rheology in an easy to understand way without losing its scientific content, Prof. Malkin fulfilled with accomplishment. It is only possible to write this book according to the previously defined prescription, if author can see nature as a complex but homogeneous entirety, divided to disciplines for the clarity of thought or simply to concentrate on one angle of observation at the time but with proper balance always maintained, and this was precisely achieved by the author.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eIntroduction \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSubject and language of rheology \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStress \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eDeformation and rate of deformation \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological equations of state \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological viscous fluids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eElastic solids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eViscoelasticity. \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEach chapter is completed by two sections: examples of practical application of theory and a review of the most important concepts introduced. Both sections of each chapter were designed to assure that the most important goal is achieved -- that the knowledge is absorbed by the reader rather than leaving the image of complexity and impenetrability of the topic. It is no exaggeration to say that this book should be available for anyone who wants to work with materials in any capacity would it be in research or production in any area of science or industry. This book is an invaluable source for students but is also to be found on the desk of rheologists. \u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia","published_at":"2017-06-22T21:13:59-04:00","created_at":"2017-06-22T21:13:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","book","deformation","elastic solids","p-properties","polymer","rheological equations","rheology","stress","viscoelasticity","viscous fluids"],"price":15000,"price_min":15000,"price_max":15000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Fundamentals","public_title":null,"options":["Default Title"],"price":15000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-09-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/1-895198-09-7.jpg?v=1504029577"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/1-895198-09-7.jpg?v=1504029577","options":["Title"],"media":[{"alt":null,"id":412847112285,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/1-895198-09-7.jpg?v=1504029577"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/1-895198-09-7.jpg?v=1504029577","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Alexander Ya. Malkin \u003cbr\u003e10-ISBN 1-895198-09-7 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-09-6 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e315 pages, 101 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nMost technological improvements are realized through application of rheology used to modify properties of materials. At the same time, rheology is a complex discipline not fully understood by most researchers and engineers. It is not because rheology is too difficult to understand but mostly because the discipline uses its own language full of terms and models, understood by rheologists but not commonly used by others. ChemTec Publishing introduces a new series entitled Fundamental Topics in Rheology, designed to facilitate the conversion of rheology from a field familiar to a narrow group of specialists to a popularly applied science. The first book in the series was written by Prof. Malkin who is an accomplished researcher in the field. Prof. Malkin wrote one of the first books on polymer rheology together with his mentor and well-known Russian scientist Prof. Vinogradov. This book is still in a popular use in every major library. The present, difficult task to write on fundamental principles of rheology in an easy to understand way without losing its scientific content, Prof. Malkin fulfilled with accomplishment. It is only possible to write this book according to the previously defined prescription, if author can see nature as a complex but homogeneous entirety, divided to disciplines for the clarity of thought or simply to concentrate on one angle of observation at the time but with proper balance always maintained, and this was precisely achieved by the author.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eIntroduction \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSubject and language of rheology \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStress \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eDeformation and rate of deformation \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological equations of state \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological viscous fluids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eElastic solids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eViscoelasticity. \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEach chapter is completed by two sections: examples of practical application of theory and a review of the most important concepts introduced. Both sections of each chapter were designed to assure that the most important goal is achieved -- that the knowledge is absorbed by the reader rather than leaving the image of complexity and impenetrability of the topic. It is no exaggeration to say that this book should be available for anyone who wants to work with materials in any capacity would it be in research or production in any area of science or industry. This book is an invaluable source for students but is also to be found on the desk of rheologists. \u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"}
The Effect of Temperat...
$330.00
{"id":11242208260,"title":"The Effect of Temperature and Other Factors on Plastics","handle":"978-0-8155-1568-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W. McKeen, Editor \u003cbr\u003eISBN 978-0-8155-1568-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e2nd Edition, 824 pages, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is an update to the first edition compiled and published in 1990 by William Woishnis. A lot has changed in the field since 1990 and a lot has not changed. There are new plastic materials. There has been a huge turnover in ownership of plastics producing companies. There has been a lot of consolidation, which of course means discontinued products. Thus, this update is much more extensive than the usual \"next edition.\"\u003cbr\u003e\u003cbr\u003eIt has been reorganized from a chemistry point of view. Plastics of similar polymer types are grouped into nine chapters. Each of these chapters includes an introduction with a brief explanation of the chemistry of the polymers used in the plastics.\u003cbr\u003e\u003cbr\u003eAn extensive first chapter has been added as an introduction that summarizes the chemistry of making polymers, the formulation of plastics, testing and test methods, and plastic selection.\u003cbr\u003e\u003cbr\u003eMost plastic products and parts are expected to be used in environments other than room temperature and standard humidity conditions. Chapters 2-10 are a databank that serves as an evaluation of plastics as they are exposed to varying operating conditions at different temperatures, humidity, and other factors. Over 900 graphs for more than 45 generic families of plastics are contained in these chapters. \u003cstrong\u003eThe following types of graphs may also be included:\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA. Properties as Functions of Temperature\u003cbr\u003e(1) Flexural modulus\/strength\u003cbr\u003e(2) Tensile modulus\/strength\u003cbr\u003e(3) Shear modulus\/strength\u003cbr\u003e(4) Impact strength\u003cbr\u003e(5) Hardness\u003cbr\u003e(6) Torsional modulus\u003cbr\u003e(7) Coefficient of thermal expansion\u003cbr\u003e(8) Dielectric constant\u003cbr\u003e(9) Dissipation factor\u003cbr\u003e(10) Water absorption\u003cbr\u003e(11) Specific volume\/heat\u003cbr\u003e(12) Pressure-volume-temperature plots\u003cbr\u003e\u003cbr\u003eB: Stress vs. Strain Curves at Various Temperatures\u003cbr\u003e(1) Strain rates\u003cbr\u003e(2) Humidity levels\u003cbr\u003e\u003cbr\u003eC: Mechanical Properties as a Function of...\u003cbr\u003e(1) Strain rate\u003cbr\u003e(2) Humidity level\u003cbr\u003e\u003cbr\u003eD: Electric Properties as a Function of...\u003cbr\u003e(1) Humidity level\u003cbr\u003e(2) Frequency\u003cbr\u003e\u003cbr\u003eE: Also Included\u003cbr\u003e(1) Properties vs. Thickness\u003cbr\u003e(2) Dimensions vs. Moisture\u003cbr\u003e(3) Properties vs. Glass Content and other Formulation Factors\u003cbr\u003e\u003cbr\u003eChapter 11 contains extensive mechanical and electrical data in tabular form. The tables contain data on several thousand plastics. Similarly, Chapter 12 contains thermal data on several thousand plastics. \u003cbr\u003eData from the first edition have only been removed if those products were discontinued, and many products were. Product names and manufacturers have been updated.\u003cbr\u003e\u003cbr\u003e• Detailed introductions of plastics properties, testing procedures, and principles of plastics design. \u003cbr\u003e• The only \"databook\" available on the effects of temperature and humidity conditions on plastics and elastomers. \u003cbr\u003e• More than 1,000 graphs and tables allow for easy comparison between products. \u003cbr\u003e• Covers more than 70 types of plastics, and summarizes the chemistry of each type.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eTEC016020: TECHNOLOGY \/ Industrial Design \/ Product \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction to Plastic Properties\u003c\/strong\u003e\u003cbr\u003e1.1. Plastics and Polymers \u003cbr\u003e1.1.1. Polymerization \u003cbr\u003e1.1.2. Copolymers \u003cbr\u003e1.1.3. Linear, Branched and Crosslinked Polymers \u003cbr\u003e1.1.4. Molecular Weight \u003cbr\u003e1.1.5. Thermosets vs. Thermoplastics \u003cbr\u003e1.1.6. Crystalline vs. Amorphous \u003cbr\u003e1.1.7. Blends \u003cbr\u003e1.1.8. Elastomers \u003cbr\u003e1.1.9. Additives \u003cbr\u003e1.2. Testing of Plastics \u003cbr\u003e1.2.1. Mechanical Property Testing of Plastics \u003cbr\u003e1.2.2. Impact Property Testing of Plastics \u003cbr\u003e1.2.3. Thermal Property Testing of Plastics \u003cbr\u003e1.3. Principles of Plastic Product Design \u003cbr\u003e1.3.1. Rigidity of Plastics Materials \u003cbr\u003e1.3.2. The Assessment of Maximum Service Temperature \u003cbr\u003e1.3.3. Toughness \u003cbr\u003e1.4. Summary \u003cbr\u003e\u003cstrong\u003e2. Styrenics\u003c\/strong\u003e\u003cbr\u003e2.1. Background \u003cbr\u003e2.2. Polystyrene (PS) \u003cbr\u003e2.3. Acrylonitrile Styrene Acrylate (ASA) \u003cbr\u003e2.4. Styrene Acrylonitrile (SAN) \u003cbr\u003e2.5. Acrylonitrile Butadiene Styrene (ABS) \u003cbr\u003e2.6. Styrene Maleic Anhydride (SMA) \u003cbr\u003e2.7. Styrenic Block Copolymers (SBC) \u003cbr\u003e2.8. Blends \u003cbr\u003e\u003cstrong\u003e3. Polyethers\u003c\/strong\u003e\u003cbr\u003e3.1. Background \u003cbr\u003e3.2. Acetals (POM) \u003cbr\u003e3.3. Acetal Copolymers (POM-Co) \u003cbr\u003e3.4. Modified Polyphenylene Ether\/Polyphenylene Oxides (PPE, PPO) \u003cbr\u003e\u003cstrong\u003e4. Polyesters\u003c\/strong\u003e\u003cbr\u003e4.1. Background \u003cbr\u003e4.2. Polycarbonate (PC) \u003cbr\u003e4.3. Polybutylene Terephthalate (PBT) \u003cbr\u003e4.4. Polyethylene Terephthalate (PET) \u003cbr\u003e4.5. Liquid Crystalline Polymers (LCP) \u003cbr\u003e4.6. Polycyclohexylene-dimethylene Terephthalate (PCT) \u003cbr\u003e4.7. Polyester Blends and Alloys \u003cbr\u003e\u003cstrong\u003e5. Polyimides\u003c\/strong\u003e\u003cbr\u003e5.1. Background \u003cbr\u003e5.2. Polyetherimide (PEI) \u003cbr\u003e5.3. Polyamide-imide (PAI) \u003cbr\u003e5.4. Polyimide (PI) \u003cbr\u003e6. Polyamides \u003cbr\u003e6.1. Background \u003cbr\u003e6.2. Nylon 6 \u003cbr\u003e6.3. Nylon 11 \u003cbr\u003e6.4. Nylon 12 \u003cbr\u003e6.5. Nylon 66 \u003cbr\u003e6.6. Nylon 610 \u003cbr\u003e6.7. Nylon 612 \u003cbr\u003e6.8. Nylon 666 \u003cbr\u003e6.9. Nylon Amorphous \u003cbr\u003e6.10. Nylon 46 \u003cbr\u003e6.11. PPA \u003cbr\u003e6.12. PAA \u003cbr\u003e6.13. PA Blends \u003cbr\u003e\u003cstrong\u003e7. Polyolefins and Acrylics\u003c\/strong\u003e\u003cbr\u003e7.1. Background \u003cbr\u003e7.2. Polyethylene (PE) \u003cbr\u003e7.3. Poly Propylene (PP) \u003cbr\u003e7.4. Polytrimethyl Pentene (PTP) \u003cbr\u003e7.5. Ultrahigh Molecular Weight Polyethylene (UHMWPE) \u003cbr\u003e7.6. Rigid Polyvinyl Chloride (PVC) \u003cbr\u003e7.7. Cyclic Olefin Copolymer (COC) \u003cbr\u003e7.8. Polymethyl Methacrylate (PMMA) \u003cbr\u003e\u003cstrong\u003e8. Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e8.1. Background \u003cbr\u003e8.2. Thermoplastic Polyurethane Elastomers (TPU) \u003cbr\u003e8.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE) \u003cbr\u003e8.4. Thermoplastic Polyether Block Amide Elastomers (PEBA) \u003cbr\u003e\u003cstrong\u003e9. Fluoropolymers\u003c\/strong\u003e\u003cbr\u003e9.1. Background \u003cbr\u003e9.2. Polytetrafluoroethylene (PTFE) \u003cbr\u003e9.3. Polyethylene Chlorotrifluoroethylene (ECTFE) \u003cbr\u003e9.4. Polyethylene Tetrafluoroethylene (ETFE) \u003cbr\u003e9.5. Fluorinated Ethylene Propylene (FEP) \u003cbr\u003e9.6. Perfluoro Alkoxy (PFA) \u003cbr\u003e9.7. Polychlorotrifluoroethylene (PCTFE) \u003cbr\u003e9.8. Polyvinylidene Fluoride (PVDF) \u003cbr\u003e\u003cstrong\u003e10. Miscellaneous High Temperature Plastics\u003c\/strong\u003e\u003cbr\u003e10.1. Background \u003cbr\u003e10.2. Polyetheretherketone (PEEK) \u003cbr\u003e10.3. Polyether Sulfone (PES) \u003cbr\u003e10.4. Polyphenylene Sulfide (PPS) \u003cbr\u003e10.5. Polysulfone (PSU) \u003cbr\u003e\u003cstrong\u003e11. Tables of Selected ISO 10350 Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e11.1. Styrenics \u003cbr\u003e11.2. Polyethers \u003cbr\u003e11.3. Polyesters \u003cbr\u003e11.4. Polyimides \u003cbr\u003e11.5. Polyamides \u003cbr\u003e11.6. Polyolefins and Acrylics \u003cbr\u003e11.7. Thermoplastic Elastomers \u003cbr\u003e11.8. Fluoropolymers \u003cbr\u003e11.9. Miscellaneous High Temperature Plastics \u003cbr\u003e\u003cstrong\u003e12. Tables of Selected Thermal Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e12.1. Styrenics \u003cbr\u003e12.2. Polyethers \u003cbr\u003e12.3. Polyesters \u003cbr\u003e12.4. Polyimides \u003cbr\u003e12.5. Polyamides \u003cbr\u003e12.6. Polyolefins and Acrylics \u003cbr\u003e12.7. Thermoplastic Elastomers \u003cbr\u003e12.8. Fluoropolymers \u003cbr\u003e12.9. Miscellaneous High Temperature Plastics \u003cbr\u003eAppendices: \u003cbr\u003eAbbreviations \u003cbr\u003eTradenames \u003cbr\u003eConversion Factors?\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLaurence W. McKeen\u003c\/strong\u003e\u003cbr\u003e\u003ci\u003eDuPont Teflon Finishes Group (former), Delaware, U.S.A.\u003c\/i\u003e\u003cbr\u003eDr. Laurence W. McKeen earned a B.S. in Chemistry from Rensselaer Polytechnic Institute in 1973 and a Ph.D. in 1978 from the University of Wisconsin. He began his career with DuPont in 1978 as a mass spectroscopist but moved into product development in the Teflon® Finishes group in 1980. He has accumulated over 28 years of experience in product development and application working with customers in a wide range of industries which has led to dozens of commercial products.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:02-04:00","created_at":"2017-06-22T21:13:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","book","coefficient thermal expansion","dielectric constant","dissipation factor","flexural modulus\/strength","hardness","impact strength","nylon","p-properties","poly","polyamides","polyesters","polyethers","polyimides","polymer","properties","shear modulus\/strength","styrenics","tensile modulus\/strength","torsional modulus","water absorption"],"price":33000,"price_min":33000,"price_max":33000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327876,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Temperature and Other Factors on Plastics","public_title":null,"options":["Default Title"],"price":33000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1568-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368","options":["Title"],"media":[{"alt":null,"id":358785286237,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W. McKeen, Editor \u003cbr\u003eISBN 978-0-8155-1568-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e2nd Edition, 824 pages, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is an update to the first edition compiled and published in 1990 by William Woishnis. A lot has changed in the field since 1990 and a lot has not changed. There are new plastic materials. There has been a huge turnover in ownership of plastics producing companies. There has been a lot of consolidation, which of course means discontinued products. Thus, this update is much more extensive than the usual \"next edition.\"\u003cbr\u003e\u003cbr\u003eIt has been reorganized from a chemistry point of view. Plastics of similar polymer types are grouped into nine chapters. Each of these chapters includes an introduction with a brief explanation of the chemistry of the polymers used in the plastics.\u003cbr\u003e\u003cbr\u003eAn extensive first chapter has been added as an introduction that summarizes the chemistry of making polymers, the formulation of plastics, testing and test methods, and plastic selection.\u003cbr\u003e\u003cbr\u003eMost plastic products and parts are expected to be used in environments other than room temperature and standard humidity conditions. Chapters 2-10 are a databank that serves as an evaluation of plastics as they are exposed to varying operating conditions at different temperatures, humidity, and other factors. Over 900 graphs for more than 45 generic families of plastics are contained in these chapters. \u003cstrong\u003eThe following types of graphs may also be included:\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA. Properties as Functions of Temperature\u003cbr\u003e(1) Flexural modulus\/strength\u003cbr\u003e(2) Tensile modulus\/strength\u003cbr\u003e(3) Shear modulus\/strength\u003cbr\u003e(4) Impact strength\u003cbr\u003e(5) Hardness\u003cbr\u003e(6) Torsional modulus\u003cbr\u003e(7) Coefficient of thermal expansion\u003cbr\u003e(8) Dielectric constant\u003cbr\u003e(9) Dissipation factor\u003cbr\u003e(10) Water absorption\u003cbr\u003e(11) Specific volume\/heat\u003cbr\u003e(12) Pressure-volume-temperature plots\u003cbr\u003e\u003cbr\u003eB: Stress vs. Strain Curves at Various Temperatures\u003cbr\u003e(1) Strain rates\u003cbr\u003e(2) Humidity levels\u003cbr\u003e\u003cbr\u003eC: Mechanical Properties as a Function of...\u003cbr\u003e(1) Strain rate\u003cbr\u003e(2) Humidity level\u003cbr\u003e\u003cbr\u003eD: Electric Properties as a Function of...\u003cbr\u003e(1) Humidity level\u003cbr\u003e(2) Frequency\u003cbr\u003e\u003cbr\u003eE: Also Included\u003cbr\u003e(1) Properties vs. Thickness\u003cbr\u003e(2) Dimensions vs. Moisture\u003cbr\u003e(3) Properties vs. Glass Content and other Formulation Factors\u003cbr\u003e\u003cbr\u003eChapter 11 contains extensive mechanical and electrical data in tabular form. The tables contain data on several thousand plastics. Similarly, Chapter 12 contains thermal data on several thousand plastics. \u003cbr\u003eData from the first edition have only been removed if those products were discontinued, and many products were. Product names and manufacturers have been updated.\u003cbr\u003e\u003cbr\u003e• Detailed introductions of plastics properties, testing procedures, and principles of plastics design. \u003cbr\u003e• The only \"databook\" available on the effects of temperature and humidity conditions on plastics and elastomers. \u003cbr\u003e• More than 1,000 graphs and tables allow for easy comparison between products. \u003cbr\u003e• Covers more than 70 types of plastics, and summarizes the chemistry of each type.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eTEC016020: TECHNOLOGY \/ Industrial Design \/ Product \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction to Plastic Properties\u003c\/strong\u003e\u003cbr\u003e1.1. Plastics and Polymers \u003cbr\u003e1.1.1. Polymerization \u003cbr\u003e1.1.2. Copolymers \u003cbr\u003e1.1.3. Linear, Branched and Crosslinked Polymers \u003cbr\u003e1.1.4. Molecular Weight \u003cbr\u003e1.1.5. Thermosets vs. Thermoplastics \u003cbr\u003e1.1.6. Crystalline vs. Amorphous \u003cbr\u003e1.1.7. Blends \u003cbr\u003e1.1.8. Elastomers \u003cbr\u003e1.1.9. Additives \u003cbr\u003e1.2. Testing of Plastics \u003cbr\u003e1.2.1. Mechanical Property Testing of Plastics \u003cbr\u003e1.2.2. Impact Property Testing of Plastics \u003cbr\u003e1.2.3. Thermal Property Testing of Plastics \u003cbr\u003e1.3. Principles of Plastic Product Design \u003cbr\u003e1.3.1. Rigidity of Plastics Materials \u003cbr\u003e1.3.2. The Assessment of Maximum Service Temperature \u003cbr\u003e1.3.3. Toughness \u003cbr\u003e1.4. Summary \u003cbr\u003e\u003cstrong\u003e2. Styrenics\u003c\/strong\u003e\u003cbr\u003e2.1. Background \u003cbr\u003e2.2. Polystyrene (PS) \u003cbr\u003e2.3. Acrylonitrile Styrene Acrylate (ASA) \u003cbr\u003e2.4. Styrene Acrylonitrile (SAN) \u003cbr\u003e2.5. Acrylonitrile Butadiene Styrene (ABS) \u003cbr\u003e2.6. Styrene Maleic Anhydride (SMA) \u003cbr\u003e2.7. Styrenic Block Copolymers (SBC) \u003cbr\u003e2.8. Blends \u003cbr\u003e\u003cstrong\u003e3. Polyethers\u003c\/strong\u003e\u003cbr\u003e3.1. Background \u003cbr\u003e3.2. Acetals (POM) \u003cbr\u003e3.3. Acetal Copolymers (POM-Co) \u003cbr\u003e3.4. Modified Polyphenylene Ether\/Polyphenylene Oxides (PPE, PPO) \u003cbr\u003e\u003cstrong\u003e4. Polyesters\u003c\/strong\u003e\u003cbr\u003e4.1. Background \u003cbr\u003e4.2. Polycarbonate (PC) \u003cbr\u003e4.3. Polybutylene Terephthalate (PBT) \u003cbr\u003e4.4. Polyethylene Terephthalate (PET) \u003cbr\u003e4.5. Liquid Crystalline Polymers (LCP) \u003cbr\u003e4.6. Polycyclohexylene-dimethylene Terephthalate (PCT) \u003cbr\u003e4.7. Polyester Blends and Alloys \u003cbr\u003e\u003cstrong\u003e5. Polyimides\u003c\/strong\u003e\u003cbr\u003e5.1. Background \u003cbr\u003e5.2. Polyetherimide (PEI) \u003cbr\u003e5.3. Polyamide-imide (PAI) \u003cbr\u003e5.4. Polyimide (PI) \u003cbr\u003e6. Polyamides \u003cbr\u003e6.1. Background \u003cbr\u003e6.2. Nylon 6 \u003cbr\u003e6.3. Nylon 11 \u003cbr\u003e6.4. Nylon 12 \u003cbr\u003e6.5. Nylon 66 \u003cbr\u003e6.6. Nylon 610 \u003cbr\u003e6.7. Nylon 612 \u003cbr\u003e6.8. Nylon 666 \u003cbr\u003e6.9. Nylon Amorphous \u003cbr\u003e6.10. Nylon 46 \u003cbr\u003e6.11. PPA \u003cbr\u003e6.12. PAA \u003cbr\u003e6.13. PA Blends \u003cbr\u003e\u003cstrong\u003e7. Polyolefins and Acrylics\u003c\/strong\u003e\u003cbr\u003e7.1. Background \u003cbr\u003e7.2. Polyethylene (PE) \u003cbr\u003e7.3. Poly Propylene (PP) \u003cbr\u003e7.4. Polytrimethyl Pentene (PTP) \u003cbr\u003e7.5. Ultrahigh Molecular Weight Polyethylene (UHMWPE) \u003cbr\u003e7.6. Rigid Polyvinyl Chloride (PVC) \u003cbr\u003e7.7. Cyclic Olefin Copolymer (COC) \u003cbr\u003e7.8. Polymethyl Methacrylate (PMMA) \u003cbr\u003e\u003cstrong\u003e8. Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e8.1. Background \u003cbr\u003e8.2. Thermoplastic Polyurethane Elastomers (TPU) \u003cbr\u003e8.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE) \u003cbr\u003e8.4. Thermoplastic Polyether Block Amide Elastomers (PEBA) \u003cbr\u003e\u003cstrong\u003e9. Fluoropolymers\u003c\/strong\u003e\u003cbr\u003e9.1. Background \u003cbr\u003e9.2. Polytetrafluoroethylene (PTFE) \u003cbr\u003e9.3. Polyethylene Chlorotrifluoroethylene (ECTFE) \u003cbr\u003e9.4. Polyethylene Tetrafluoroethylene (ETFE) \u003cbr\u003e9.5. Fluorinated Ethylene Propylene (FEP) \u003cbr\u003e9.6. Perfluoro Alkoxy (PFA) \u003cbr\u003e9.7. Polychlorotrifluoroethylene (PCTFE) \u003cbr\u003e9.8. Polyvinylidene Fluoride (PVDF) \u003cbr\u003e\u003cstrong\u003e10. Miscellaneous High Temperature Plastics\u003c\/strong\u003e\u003cbr\u003e10.1. Background \u003cbr\u003e10.2. Polyetheretherketone (PEEK) \u003cbr\u003e10.3. Polyether Sulfone (PES) \u003cbr\u003e10.4. Polyphenylene Sulfide (PPS) \u003cbr\u003e10.5. Polysulfone (PSU) \u003cbr\u003e\u003cstrong\u003e11. Tables of Selected ISO 10350 Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e11.1. Styrenics \u003cbr\u003e11.2. Polyethers \u003cbr\u003e11.3. Polyesters \u003cbr\u003e11.4. Polyimides \u003cbr\u003e11.5. Polyamides \u003cbr\u003e11.6. Polyolefins and Acrylics \u003cbr\u003e11.7. Thermoplastic Elastomers \u003cbr\u003e11.8. Fluoropolymers \u003cbr\u003e11.9. Miscellaneous High Temperature Plastics \u003cbr\u003e\u003cstrong\u003e12. Tables of Selected Thermal Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e12.1. Styrenics \u003cbr\u003e12.2. Polyethers \u003cbr\u003e12.3. Polyesters \u003cbr\u003e12.4. Polyimides \u003cbr\u003e12.5. Polyamides \u003cbr\u003e12.6. Polyolefins and Acrylics \u003cbr\u003e12.7. Thermoplastic Elastomers \u003cbr\u003e12.8. Fluoropolymers \u003cbr\u003e12.9. Miscellaneous High Temperature Plastics \u003cbr\u003eAppendices: \u003cbr\u003eAbbreviations \u003cbr\u003eTradenames \u003cbr\u003eConversion Factors?\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLaurence W. McKeen\u003c\/strong\u003e\u003cbr\u003e\u003ci\u003eDuPont Teflon Finishes Group (former), Delaware, U.S.A.\u003c\/i\u003e\u003cbr\u003eDr. Laurence W. McKeen earned a B.S. in Chemistry from Rensselaer Polytechnic Institute in 1973 and a Ph.D. in 1978 from the University of Wisconsin. He began his career with DuPont in 1978 as a mass spectroscopist but moved into product development in the Teflon® Finishes group in 1980. He has accumulated over 28 years of experience in product development and application working with customers in a wide range of industries which has led to dozens of commercial products.\u003cbr\u003e\u003cbr\u003e"}
The Effect of UV Light...
$300.00
{"id":11242223556,"title":"The Effect of UV Light and Weather on Plastics and Elastomers, 3 Ed","handle":"978-1-4557-2851-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence McKeen \u003cbr\u003eISBN 978-1-4557-2851-0\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2013 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003eHardbound, 512 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis reference guide brings together a wide range of essential data on the effect of weather and UV light exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data is supported by explanations of how to make use of the data in real-world engineering contexts.\u003cbr\u003e\u003cbr\u003eOutdoor usage, in both normal and extreme environments, has a variety of effects on the different plastics and elastomers suitable for outdoor applications - such as discoloring and brittleness. The data tables in this book enable engineers and scientists to select the right materials for a given product or application, across a wide range of sectors including construction, packaging, signage, consumer (e.g. toys, outdoor furniture), automotive \u0026amp; aerospace, defense, etc.\u003cbr\u003e\u003cbr\u003eThe third edition includes new text chapters that provide the underpinning knowledge required to make the best use of the data.\u003cbr\u003e\u003cbr\u003eLarry McKeen has also added detailed descriptions of the effect of weathering on the most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics, etc. - and explanations of the effect of weather on the polymers being treated - making this book an invaluable design guide as well as an industry standard data source. Data has been updated throughout, with 25% new data. The resulting Handbook is an essential reference for Plastics Engineers, Materials Scientists, and Chemists working in contexts where outdoor use is envisaged.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Plastics and\u003cbr\u003e\u003cbr\u003ePolymers\u003cbr\u003e\u003cbr\u003e2. Introduction to Environmental testing\u003cbr\u003e\u003cbr\u003e3. Production of plastic films and articles\u003cbr\u003e\u003cbr\u003e4. Principles of photochemistry\u003cbr\u003e\u003cbr\u003e5. Markets and Applications for Plastics requiring UV and weathering performance\u003cbr\u003e\u003cbr\u003e6. Styrene-based Plastics\u003cbr\u003e\u003cbr\u003e7. Polyesters\u003cbr\u003e\u003cbr\u003e8. Polyimides\u003cbr\u003e\u003cbr\u003e9. Polyamides (Nylons)\u003cbr\u003e\u003cbr\u003e10. Polyolefins, Polyvinyls \u0026amp; Acrylics\u003cbr\u003e\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e\u003cbr\u003e12. High Temperature\/ High-Performance Polymers\u003cbr\u003e\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e\u003cbr\u003e14. Environmentally friendly polymers (biosource and biodegradable)\u003cbr\u003e\u003cbr\u003eAppendices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence McKeen, Senior Research Associate, DuPont, Wilmington, DE, USA","published_at":"2017-06-22T21:13:53-04:00","created_at":"2017-06-22T21:13:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","elastomers","environmentally friendly polymers","material","p-properties","Photochemistry","plastics","polymers","rubbers","UV exposure","weathering"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378379780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of UV Light and Weather on Plastics and Elastomers, 3 Ed","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2851-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4557-2851-0_a03875be-66e8-43d3-a394-f7ed21fdf79a.jpg?v=1499956459"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4557-2851-0_a03875be-66e8-43d3-a394-f7ed21fdf79a.jpg?v=1499956459","options":["Title"],"media":[{"alt":null,"id":358793740381,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4557-2851-0_a03875be-66e8-43d3-a394-f7ed21fdf79a.jpg?v=1499956459"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4557-2851-0_a03875be-66e8-43d3-a394-f7ed21fdf79a.jpg?v=1499956459","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence McKeen \u003cbr\u003eISBN 978-1-4557-2851-0\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2013 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003eHardbound, 512 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis reference guide brings together a wide range of essential data on the effect of weather and UV light exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data is supported by explanations of how to make use of the data in real-world engineering contexts.\u003cbr\u003e\u003cbr\u003eOutdoor usage, in both normal and extreme environments, has a variety of effects on the different plastics and elastomers suitable for outdoor applications - such as discoloring and brittleness. The data tables in this book enable engineers and scientists to select the right materials for a given product or application, across a wide range of sectors including construction, packaging, signage, consumer (e.g. toys, outdoor furniture), automotive \u0026amp; aerospace, defense, etc.\u003cbr\u003e\u003cbr\u003eThe third edition includes new text chapters that provide the underpinning knowledge required to make the best use of the data.\u003cbr\u003e\u003cbr\u003eLarry McKeen has also added detailed descriptions of the effect of weathering on the most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics, etc. - and explanations of the effect of weather on the polymers being treated - making this book an invaluable design guide as well as an industry standard data source. Data has been updated throughout, with 25% new data. The resulting Handbook is an essential reference for Plastics Engineers, Materials Scientists, and Chemists working in contexts where outdoor use is envisaged.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Plastics and\u003cbr\u003e\u003cbr\u003ePolymers\u003cbr\u003e\u003cbr\u003e2. Introduction to Environmental testing\u003cbr\u003e\u003cbr\u003e3. Production of plastic films and articles\u003cbr\u003e\u003cbr\u003e4. Principles of photochemistry\u003cbr\u003e\u003cbr\u003e5. Markets and Applications for Plastics requiring UV and weathering performance\u003cbr\u003e\u003cbr\u003e6. Styrene-based Plastics\u003cbr\u003e\u003cbr\u003e7. Polyesters\u003cbr\u003e\u003cbr\u003e8. Polyimides\u003cbr\u003e\u003cbr\u003e9. Polyamides (Nylons)\u003cbr\u003e\u003cbr\u003e10. Polyolefins, Polyvinyls \u0026amp; Acrylics\u003cbr\u003e\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e\u003cbr\u003e12. High Temperature\/ High-Performance Polymers\u003cbr\u003e\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e\u003cbr\u003e14. Environmentally friendly polymers (biosource and biodegradable)\u003cbr\u003e\u003cbr\u003eAppendices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence McKeen, Senior Research Associate, DuPont, Wilmington, DE, USA"}
The Rheology Modifier ...
$335.00
{"id":11242205188,"title":"The Rheology Modifier Handbook","handle":"0-8155-1441-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David B. Brown and Meyer R. Rosen \u003cbr\u003e10-ISBN 0-8155-1441-7 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-0-8155-1441-1\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999\u003cbr\u003e\u003c\/span\u003ePages 514\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is the first book on the rheological modifiers. In fact, the lack of such a book has prompted authors to fill this gap after spending their long carriers in R\u0026amp;D departments of large companies. The authors found that dealing with the rheological additives have consumed a substantial amount of their formulation time and decided to make a contribution to shortening the time required for such studies. Each part of the book is written based on their practical experience and for the practical purposes. \u003cbr\u003e\u003cbr\u003eThe book is divided into four major parts. It begins with the introduction to \"Practical Rheology\". The authors make this distinction to underline the fact that their intention is to show how to use rheological measurements for the practical purpose of selecting and testing the performance of rheological additives rather than to emphasize the complexity of the field. This part is designed to provide a reader with an understanding of important principles of rheology and rheological measurements necessary to perform further tasks, discussed in the following chapters, i.e., to select best rheological additives, compare the performance of various additives, and to formulate a product. \u003cbr\u003e\u003cbr\u003eThe next section brings information on 20 chemical groups of rheological additives. This information, based on products of 26 major companies, includes data on more than 1000 rheology modifiers. The selected products are described in a standard manner to be useful for comparison and fast retrieving. The attempt is also made to differentiate products in a given product line. \u003cbr\u003e\u003cbr\u003eThe third part of the book gives the advice on how to select the best rheology modifiers that must perform in different systems. This part identifies the most suitable candidates and methods of their selection for a given application. Four industries (food, pharmaceutical, personal care, and household\/institutional) were selected to give examples of the development stage. For the same industries, authors suggested formulations (in total 227 formulations of different products) which need to use rheological additives. Although, the book contains specific references to these product lines but the methods of additive selection and the type of additives are applicable to other industries using rheological additives such as for example, paints and sealants. The other industries will find this practical and comprehensive handbook very useful in the daily practice of product development and manufacture. \u003cbr\u003e\u003cbr\u003eAuthors claim that their approach to the additive selection and testing shortens research time from weeks and days to hours and as such the book may contribute to increased efficiency of research and troubleshooting in industrial operations. The book is also very valuable for universities since it is the only available source of information on the use of these additives that are not sufficiently covered in the university programs. Many future tasks facing university graduates will require this knowledge.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eAcrylic Polymers\u003cbr\u003eCross-Linked Acrylic Polymers\u003cbr\u003eAlginates\u003cbr\u003eAssociative Thickeners\u003cbr\u003eCarrageenan\u003cbr\u003eMicrocrystalline Cellulose\u003cbr\u003eCarboxymethylcellulose Sodium\u003cbr\u003eHydroxyethylcellulose\u003cbr\u003eHydroxypropylcellulose\u003cbr\u003eHydroxypropylmethylcellulose\u003cbr\u003eMethylcellulose\u003cbr\u003eGuar \u0026amp; Guar Derivatives\u003cbr\u003eLocust Bean Gum\u003cbr\u003eOrganoclay\u003cbr\u003ePolyethylene\u003cbr\u003ePolyethylene Oxide\u003cbr\u003ePolyvinyl Pyrrolidone\u003cbr\u003eSilica\u003cbr\u003eWater-Swellable Clay\u003cbr\u003eXanthan Gum\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eDavid B. Braun is a research and development scientist and an Associate at Interactive Consulting. His professional career encompasses a broad spectrum of technologies including rubber, plastics, pulp and papermaking, mining, ceramics, cosmetics, and pharmaceuticals. He has written numerous technical papers and is the author of two books relating to the pharmaceutical industry: Over-the-Counter Pharmaceutical Formulations and Pharmaceutical Manufacturers: A Global Directory. He has contributed chapters to several other books and has been awarded 11 US and several worldwide patents. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eMeyer R. Rosen is President of Interactive Consulting, Inc., of East Norwich, NY. He is a director of The American Institute of Chemists, a Fellow of the Royal Society of Chemistry (London), Vice President of the Association of Consulting Chemists and Chemical Engineers, and a Fellow of the American College of Forensic Examiners. His firm consults for many Fortune 500 companies. Mr. Rosen has published 40 technical papers and holds 21 US patents. He writes for the Focus Reports Section of Chemical Market Reporter and for Global Cosmetic Industry.\u003c\/span\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:12:53-04:00","created_at":"2017-06-22T21:12:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","acrylic","additives","alginates","book","carboxymethylcellulose Sodium","carrageenan","cellulose","clay","cross-linked","handbook","hydroxyethylcellulose","hydroxypropylcellulose","locust bean gum","methylcellulose","modifiers","organoclay","p-properties","paints","poly","polyethylene","polyvinyl","resins","rheological","rheology","silica","thickeners","xanthan gum"],"price":33500,"price_min":33500,"price_max":33500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378319748,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Rheology Modifier Handbook","public_title":null,"options":["Default Title"],"price":33500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1441-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/0-8155-1441-7_b66cc20a-bcf3-42db-9d86-70f6c4cb4173.jpg?v=1499956538"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/0-8155-1441-7_b66cc20a-bcf3-42db-9d86-70f6c4cb4173.jpg?v=1499956538","options":["Title"],"media":[{"alt":null,"id":358799179869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/0-8155-1441-7_b66cc20a-bcf3-42db-9d86-70f6c4cb4173.jpg?v=1499956538"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/0-8155-1441-7_b66cc20a-bcf3-42db-9d86-70f6c4cb4173.jpg?v=1499956538","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David B. Brown and Meyer R. Rosen \u003cbr\u003e10-ISBN 0-8155-1441-7 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-0-8155-1441-1\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999\u003cbr\u003e\u003c\/span\u003ePages 514\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is the first book on the rheological modifiers. In fact, the lack of such a book has prompted authors to fill this gap after spending their long carriers in R\u0026amp;D departments of large companies. The authors found that dealing with the rheological additives have consumed a substantial amount of their formulation time and decided to make a contribution to shortening the time required for such studies. Each part of the book is written based on their practical experience and for the practical purposes. \u003cbr\u003e\u003cbr\u003eThe book is divided into four major parts. It begins with the introduction to \"Practical Rheology\". The authors make this distinction to underline the fact that their intention is to show how to use rheological measurements for the practical purpose of selecting and testing the performance of rheological additives rather than to emphasize the complexity of the field. This part is designed to provide a reader with an understanding of important principles of rheology and rheological measurements necessary to perform further tasks, discussed in the following chapters, i.e., to select best rheological additives, compare the performance of various additives, and to formulate a product. \u003cbr\u003e\u003cbr\u003eThe next section brings information on 20 chemical groups of rheological additives. This information, based on products of 26 major companies, includes data on more than 1000 rheology modifiers. The selected products are described in a standard manner to be useful for comparison and fast retrieving. The attempt is also made to differentiate products in a given product line. \u003cbr\u003e\u003cbr\u003eThe third part of the book gives the advice on how to select the best rheology modifiers that must perform in different systems. This part identifies the most suitable candidates and methods of their selection for a given application. Four industries (food, pharmaceutical, personal care, and household\/institutional) were selected to give examples of the development stage. For the same industries, authors suggested formulations (in total 227 formulations of different products) which need to use rheological additives. Although, the book contains specific references to these product lines but the methods of additive selection and the type of additives are applicable to other industries using rheological additives such as for example, paints and sealants. The other industries will find this practical and comprehensive handbook very useful in the daily practice of product development and manufacture. \u003cbr\u003e\u003cbr\u003eAuthors claim that their approach to the additive selection and testing shortens research time from weeks and days to hours and as such the book may contribute to increased efficiency of research and troubleshooting in industrial operations. The book is also very valuable for universities since it is the only available source of information on the use of these additives that are not sufficiently covered in the university programs. Many future tasks facing university graduates will require this knowledge.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eAcrylic Polymers\u003cbr\u003eCross-Linked Acrylic Polymers\u003cbr\u003eAlginates\u003cbr\u003eAssociative Thickeners\u003cbr\u003eCarrageenan\u003cbr\u003eMicrocrystalline Cellulose\u003cbr\u003eCarboxymethylcellulose Sodium\u003cbr\u003eHydroxyethylcellulose\u003cbr\u003eHydroxypropylcellulose\u003cbr\u003eHydroxypropylmethylcellulose\u003cbr\u003eMethylcellulose\u003cbr\u003eGuar \u0026amp; Guar Derivatives\u003cbr\u003eLocust Bean Gum\u003cbr\u003eOrganoclay\u003cbr\u003ePolyethylene\u003cbr\u003ePolyethylene Oxide\u003cbr\u003ePolyvinyl Pyrrolidone\u003cbr\u003eSilica\u003cbr\u003eWater-Swellable Clay\u003cbr\u003eXanthan Gum\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eDavid B. Braun is a research and development scientist and an Associate at Interactive Consulting. His professional career encompasses a broad spectrum of technologies including rubber, plastics, pulp and papermaking, mining, ceramics, cosmetics, and pharmaceuticals. He has written numerous technical papers and is the author of two books relating to the pharmaceutical industry: Over-the-Counter Pharmaceutical Formulations and Pharmaceutical Manufacturers: A Global Directory. He has contributed chapters to several other books and has been awarded 11 US and several worldwide patents. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eMeyer R. Rosen is President of Interactive Consulting, Inc., of East Norwich, NY. He is a director of The American Institute of Chemists, a Fellow of the Royal Society of Chemistry (London), Vice President of the Association of Consulting Chemists and Chemical Engineers, and a Fellow of the American College of Forensic Examiners. His firm consults for many Fortune 500 companies. Mr. Rosen has published 40 technical papers and holds 21 US patents. He writes for the Focus Reports Section of Chemical Market Reporter and for Global Cosmetic Industry.\u003c\/span\u003e\u003c\/p\u003e"}
Thermal Degradation of...
$145.00
{"id":11242208196,"title":"Thermal Degradation of Polymeric Materials","handle":"978-1-85957-498-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Pielichowski and J. Njuguna \u003cbr\u003eISBN 978-1-85957-498-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003cbr\u003e\u003c\/span\u003e306 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal degradation of polymeric materials is an important issue from both the academic and the industrial viewpoints. Understanding the thermal degradation of polymers is of paramount importance for developing a rational technology of polymer processing and higher-temperature applications. Controlling degradation requires an understanding of many different phenomena, including chemical mechanisms, the influence of polymer morphology, the complexities of oxidation chemistry, and the effects of stabilisers, fillers and other additives. \u003cbr\u003e\u003cbr\u003eThis work summarises recent developments in the study of the thermal degradation of polymers. The authors present an overview of thermal degradation mechanisms and kinetics as well as describing the use of thermogravimetry and differential scanning calorimetry, in combination with mass spectroscopy and infrared spectrometry, to investigate thermal decomposition. These methods have proved useful for defining suitable processing conditions for polymers as well as useful service guidelines for their application. \u003cbr\u003e\u003cbr\u003eThe authors go on to discuss the thermal degradation of various polymers, copolymers, high-performance plastics, blends, and composites, including polyolefins, styrene polymers, polyvinyl chloride, polyamides, polyurethanes, polyesters, polyacrylates and others. \u003cbr\u003e\u003cbr\u003eThis book offers a wealth of information for polymer researchers and processors requiring an understanding of the implications of thermal degradation on material and product performance.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Thermal Degradation Techniques\u003cbr\u003e1.1.1 Thermogravimetry (TG)\u003cbr\u003e1.1.2 Pyrolysis (Py)\u003cbr\u003e1.1.3 Thermal Volatilisation Analysis (TVA)\u003cbr\u003e1.1.4 Differential Scanning Calorimetry (DSC)\u003cbr\u003e1.1.5 Matrix-Assisted Laser Desorption\/Ionisation Mass Spectrometry (MALDI)\u003cbr\u003e1.1.6 Others\u003cbr\u003e1.2 Ageing and Lifetime Predictions\u003cbr\u003e1.3 Thermal Degradation Pathways \u003cbr\u003e2 Mechanisms of Thermal Degradation of Polymers\u003cbr\u003e2.1 Side-Group Elimination\u003cbr\u003e2.2 Random Scission\u003cbr\u003e2.3 Depolymerisation \u003cbr\u003e3 Thermooxidative Degradation \u003cbr\u003e4 Kinetics of Thermal Degradation\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Kinetic Analysis \u003cbr\u003e5 Polymers, Copolymers, and Blends\u003cbr\u003e5.1 Polyolefins\u003cbr\u003e5.1.1 Polyethylene (PE)\u003cbr\u003e5.1.2 Polypropylene (PP)\u003cbr\u003e5.1.3 Polyisobutylene (PIB)\u003cbr\u003e5.1.4 Cyclic Olefin Copolymers\u003cbr\u003e5.1.5 Diene Polymers\u003cbr\u003e5.2 Styrene Polymers\u003cbr\u003e5.2.1 Polystyrene (PS) and its Chemical Modifications\u003cbr\u003e5.2.2 Styrene Copolymers\u003cbr\u003e5.2.3 Acrylonitrile-Butadiene-Styrene Terpolymer (ABS)\u003cbr\u003e5.2.4 Polystyrene Blends\u003cbr\u003e5.3 Poly(Vinyl Chloride) (PVC)\u003cbr\u003e5.3.1 Poly(Vinyl Chloride) Homopolymer\u003cbr\u003e5.3.2 Poly(Vinyl Chloride) Blends\u003cbr\u003e5.4 Polyamides (PA)\u003cbr\u003e5.4.1 Poly(Ester Amide)s\u003cbr\u003e5.4.2 Liquid-Crystalline Polyamides\u003cbr\u003e5.4.3 Polyamide Blends\u003cbr\u003e5.5 Polyurethanes (PUs)\u003cbr\u003e5.5.1 Thermoplastic Polyurethanes\u003cbr\u003e5.5.2 Polyurethane Foams\u003cbr\u003e5.6 Polyesters\u003cbr\u003e5.6.1 Poly(Ethylene Terephthalate) (PET)\u003cbr\u003e5.6.2 Biodegradable Polyesters\u003cbr\u003e5.7 Acryl Polymers\u003cbr\u003e5.7.1 Poly(Methyl Methacrylate) (PMMA)\u003cbr\u003e5.7.2 Acryl (Co)Polymers\u003cbr\u003e5.7.3 Acrylonitrile-Containing (Co)Polymers\u003cbr\u003e5.8 Others\u003cbr\u003e5.8.1 Poly(Vinyl Acetate) (PVAc)\u003cbr\u003e5.8.2 Poly(Vinyl Alcohol) (PVOH)\u003cbr\u003e5.8.3 Vinylidene Chloride (VDC) Copolymers\u003cbr\u003e5.8.4 Sulfone-Containing Polymers\u003cbr\u003e5.8.5 Sulfide-Containing (Co)Polymers\u003cbr\u003e5.8.6 Poly(Bisphenol-A Carbonate) (PC)\u003cbr\u003e5.8.7 Poly(Butylene Terephthalate) (PBT)\u003cbr\u003e5.8.8 Poly(Ethylene Glycol Allenyl Methyl Ether) (PEGA)\u003cbr\u003e5.8.9 Poly(Ether Ketone)s (PEKs)\u003cbr\u003e5.8.10 Poly(Epichlorohydrin-co-Ethylene Oxide) \u003cbr\u003e6 Natural Polymers\u003cbr\u003e6.1 Starch\u003cbr\u003e6.2 Chitin and Chitosan\u003cbr\u003e6.3 Cellulose\u003cbr\u003e6.4 Lignins\u003cbr\u003e6.5 Poly(Hydroxyalkanoate)s (PHAs)\u003cbr\u003e6.6 Proteins\u003cbr\u003e6.7 Natural Rubber\u003cbr\u003e6.8 Poly(Hydroxy Acid)s\u003cbr\u003e6.8.1 Poly(L-Lactic Acid) (PLLA)\u003cbr\u003e6.8.2 Poly(L-Lactic Acid) Blends\u003cbr\u003e6.9 Poly(p-Dioxanone) (PPDO) \u003cbr\u003e7 Reinforced Polymer Nanocomposites\u003cbr\u003e7.1 Glass-Fibre-Reinforced Composites\u003cbr\u003e7.2 Carbon-Fibre-Reinforced Composites\u003cbr\u003e7.3 Unsaturated Polyester Resins Reinforced with Fibres\u003cbr\u003e7.4 Reinforced Polyurethane Composites\u003cbr\u003e7.5 Polyamides with Natural Fibres\u003cbr\u003e7.6 Other Composites \u003cbr\u003e8 Inorganic Polymers\u003cbr\u003e8.1 Polysiloxanes\u003cbr\u003e8.2 Polyphosphazenes\u003cbr\u003e8.3 Polysilazanes and Polysilanes\u003cbr\u003e8.4 Organic-Inorganic Hybrid Polymers \u003cbr\u003e9 High Temperature-Resistant Polymers\u003cbr\u003e9.1 Aromatic Polyamides\u003cbr\u003e9.2 Aromatic Polycarbonates\u003cbr\u003e9.3 Aromatic Polyethers\u003cbr\u003e9.4 Phenylene-Containing Polymers\u003cbr\u003e9.5 Poly(Ether Ether Ketone) (PEEK)\u003cbr\u003e9.6 Polybenzimidazoles (PBIs)\u003cbr\u003e9.7 Polybismaleimides (BMIs)\u003cbr\u003e9.8 Polybenzoxazines\u003cbr\u003e9.9 Other High-Temperature Polymers\u003cbr\u003e9.9.1 Phenolic Resins\u003cbr\u003e9.9.2 Epoxies\u003cbr\u003e9.9.3 Poly(Ether Imide) (PEI) \u003cbr\u003e10 Recycling of Polymers by Thermal Degradation\u003cbr\u003e10.1 Polyolefins\u003cbr\u003e10.2 Polystyrene\u003cbr\u003e10.2.1 Polystyrene in the Melt\u003cbr\u003e10.2.2 Polystyrene in Solution\u003cbr\u003e10.3 Poly(Vinyl Chloride)\u003cbr\u003e10.4 Polyamides\u003cbr\u003e10.5 Natural Polymers\u003cbr\u003e10.5.1 Poly(L-Lactic Acid)\u003cbr\u003e10.5.2 Lignocellulose\u003cbr\u003e10.6 Other Homopolymers\u003cbr\u003e10.7 Mixtures of Polymer Wastes\u003cbr\u003e10.8 Thermal Degradation of Polymeric Materials – Ecological Issues\u003cbr\u003e10.8.1 Disposal Options and Sources of Information\u003cbr\u003e10.8.2 Sustainable Development \u003cbr\u003e11 Thermal Degradation During Processing of Polymers\u003cbr\u003e11.1 Polyethylene\u003cbr\u003e11.2 Polypropylene and its Blends\u003cbr\u003e11.3 Poly(Vinyl Alcohol)\u003cbr\u003e11.4 Other Polymers \u003cbr\u003e12 Modelling of Thermal Degradation Processes \u003cbr\u003e13 Concluding Remarks \u003cbr\u003e14 References \u003cbr\u003e15 References Available from the Polymer Library\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eKrzysztof Pielichowski\u003c\/strong\u003e is currently an associate professor of polymer science at the Cracow University of Technology. He has written over 80 articles and was awarded the Foundation for Polish Science fellowship in 1996 and the Fulbright fellowship in 2003. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eJames Njuguna\u003c\/strong\u003e is a Ph.D. student at the City University of London. He was a Marie Curie Fellow at the Cracow University of Technology in 2003\/2004, performing research in the area of polymeric nanocomposites.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:02-04:00","created_at":"2017-06-22T21:13:02-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","book","composites","Differential Scanning Calorimetry","fibres","high-performance plastics","mechanisms of degradation","methods of testing","nanocomposites","p-properties","polymer","PVC degradation","recycling","thermal degradation","thermal degradation of composites","thermal degradation of natural rubber","thermal degradation of polymers"],"price":14500,"price_min":14500,"price_max":14500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327748,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Degradation of Polymeric Materials","public_title":null,"options":["Default Title"],"price":14500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-498-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622","options":["Title"],"media":[{"alt":null,"id":358804947037,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Pielichowski and J. Njuguna \u003cbr\u003eISBN 978-1-85957-498-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003cbr\u003e\u003c\/span\u003e306 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal degradation of polymeric materials is an important issue from both the academic and the industrial viewpoints. Understanding the thermal degradation of polymers is of paramount importance for developing a rational technology of polymer processing and higher-temperature applications. Controlling degradation requires an understanding of many different phenomena, including chemical mechanisms, the influence of polymer morphology, the complexities of oxidation chemistry, and the effects of stabilisers, fillers and other additives. \u003cbr\u003e\u003cbr\u003eThis work summarises recent developments in the study of the thermal degradation of polymers. The authors present an overview of thermal degradation mechanisms and kinetics as well as describing the use of thermogravimetry and differential scanning calorimetry, in combination with mass spectroscopy and infrared spectrometry, to investigate thermal decomposition. These methods have proved useful for defining suitable processing conditions for polymers as well as useful service guidelines for their application. \u003cbr\u003e\u003cbr\u003eThe authors go on to discuss the thermal degradation of various polymers, copolymers, high-performance plastics, blends, and composites, including polyolefins, styrene polymers, polyvinyl chloride, polyamides, polyurethanes, polyesters, polyacrylates and others. \u003cbr\u003e\u003cbr\u003eThis book offers a wealth of information for polymer researchers and processors requiring an understanding of the implications of thermal degradation on material and product performance.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Thermal Degradation Techniques\u003cbr\u003e1.1.1 Thermogravimetry (TG)\u003cbr\u003e1.1.2 Pyrolysis (Py)\u003cbr\u003e1.1.3 Thermal Volatilisation Analysis (TVA)\u003cbr\u003e1.1.4 Differential Scanning Calorimetry (DSC)\u003cbr\u003e1.1.5 Matrix-Assisted Laser Desorption\/Ionisation Mass Spectrometry (MALDI)\u003cbr\u003e1.1.6 Others\u003cbr\u003e1.2 Ageing and Lifetime Predictions\u003cbr\u003e1.3 Thermal Degradation Pathways \u003cbr\u003e2 Mechanisms of Thermal Degradation of Polymers\u003cbr\u003e2.1 Side-Group Elimination\u003cbr\u003e2.2 Random Scission\u003cbr\u003e2.3 Depolymerisation \u003cbr\u003e3 Thermooxidative Degradation \u003cbr\u003e4 Kinetics of Thermal Degradation\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Kinetic Analysis \u003cbr\u003e5 Polymers, Copolymers, and Blends\u003cbr\u003e5.1 Polyolefins\u003cbr\u003e5.1.1 Polyethylene (PE)\u003cbr\u003e5.1.2 Polypropylene (PP)\u003cbr\u003e5.1.3 Polyisobutylene (PIB)\u003cbr\u003e5.1.4 Cyclic Olefin Copolymers\u003cbr\u003e5.1.5 Diene Polymers\u003cbr\u003e5.2 Styrene Polymers\u003cbr\u003e5.2.1 Polystyrene (PS) and its Chemical Modifications\u003cbr\u003e5.2.2 Styrene Copolymers\u003cbr\u003e5.2.3 Acrylonitrile-Butadiene-Styrene Terpolymer (ABS)\u003cbr\u003e5.2.4 Polystyrene Blends\u003cbr\u003e5.3 Poly(Vinyl Chloride) (PVC)\u003cbr\u003e5.3.1 Poly(Vinyl Chloride) Homopolymer\u003cbr\u003e5.3.2 Poly(Vinyl Chloride) Blends\u003cbr\u003e5.4 Polyamides (PA)\u003cbr\u003e5.4.1 Poly(Ester Amide)s\u003cbr\u003e5.4.2 Liquid-Crystalline Polyamides\u003cbr\u003e5.4.3 Polyamide Blends\u003cbr\u003e5.5 Polyurethanes (PUs)\u003cbr\u003e5.5.1 Thermoplastic Polyurethanes\u003cbr\u003e5.5.2 Polyurethane Foams\u003cbr\u003e5.6 Polyesters\u003cbr\u003e5.6.1 Poly(Ethylene Terephthalate) (PET)\u003cbr\u003e5.6.2 Biodegradable Polyesters\u003cbr\u003e5.7 Acryl Polymers\u003cbr\u003e5.7.1 Poly(Methyl Methacrylate) (PMMA)\u003cbr\u003e5.7.2 Acryl (Co)Polymers\u003cbr\u003e5.7.3 Acrylonitrile-Containing (Co)Polymers\u003cbr\u003e5.8 Others\u003cbr\u003e5.8.1 Poly(Vinyl Acetate) (PVAc)\u003cbr\u003e5.8.2 Poly(Vinyl Alcohol) (PVOH)\u003cbr\u003e5.8.3 Vinylidene Chloride (VDC) Copolymers\u003cbr\u003e5.8.4 Sulfone-Containing Polymers\u003cbr\u003e5.8.5 Sulfide-Containing (Co)Polymers\u003cbr\u003e5.8.6 Poly(Bisphenol-A Carbonate) (PC)\u003cbr\u003e5.8.7 Poly(Butylene Terephthalate) (PBT)\u003cbr\u003e5.8.8 Poly(Ethylene Glycol Allenyl Methyl Ether) (PEGA)\u003cbr\u003e5.8.9 Poly(Ether Ketone)s (PEKs)\u003cbr\u003e5.8.10 Poly(Epichlorohydrin-co-Ethylene Oxide) \u003cbr\u003e6 Natural Polymers\u003cbr\u003e6.1 Starch\u003cbr\u003e6.2 Chitin and Chitosan\u003cbr\u003e6.3 Cellulose\u003cbr\u003e6.4 Lignins\u003cbr\u003e6.5 Poly(Hydroxyalkanoate)s (PHAs)\u003cbr\u003e6.6 Proteins\u003cbr\u003e6.7 Natural Rubber\u003cbr\u003e6.8 Poly(Hydroxy Acid)s\u003cbr\u003e6.8.1 Poly(L-Lactic Acid) (PLLA)\u003cbr\u003e6.8.2 Poly(L-Lactic Acid) Blends\u003cbr\u003e6.9 Poly(p-Dioxanone) (PPDO) \u003cbr\u003e7 Reinforced Polymer Nanocomposites\u003cbr\u003e7.1 Glass-Fibre-Reinforced Composites\u003cbr\u003e7.2 Carbon-Fibre-Reinforced Composites\u003cbr\u003e7.3 Unsaturated Polyester Resins Reinforced with Fibres\u003cbr\u003e7.4 Reinforced Polyurethane Composites\u003cbr\u003e7.5 Polyamides with Natural Fibres\u003cbr\u003e7.6 Other Composites \u003cbr\u003e8 Inorganic Polymers\u003cbr\u003e8.1 Polysiloxanes\u003cbr\u003e8.2 Polyphosphazenes\u003cbr\u003e8.3 Polysilazanes and Polysilanes\u003cbr\u003e8.4 Organic-Inorganic Hybrid Polymers \u003cbr\u003e9 High Temperature-Resistant Polymers\u003cbr\u003e9.1 Aromatic Polyamides\u003cbr\u003e9.2 Aromatic Polycarbonates\u003cbr\u003e9.3 Aromatic Polyethers\u003cbr\u003e9.4 Phenylene-Containing Polymers\u003cbr\u003e9.5 Poly(Ether Ether Ketone) (PEEK)\u003cbr\u003e9.6 Polybenzimidazoles (PBIs)\u003cbr\u003e9.7 Polybismaleimides (BMIs)\u003cbr\u003e9.8 Polybenzoxazines\u003cbr\u003e9.9 Other High-Temperature Polymers\u003cbr\u003e9.9.1 Phenolic Resins\u003cbr\u003e9.9.2 Epoxies\u003cbr\u003e9.9.3 Poly(Ether Imide) (PEI) \u003cbr\u003e10 Recycling of Polymers by Thermal Degradation\u003cbr\u003e10.1 Polyolefins\u003cbr\u003e10.2 Polystyrene\u003cbr\u003e10.2.1 Polystyrene in the Melt\u003cbr\u003e10.2.2 Polystyrene in Solution\u003cbr\u003e10.3 Poly(Vinyl Chloride)\u003cbr\u003e10.4 Polyamides\u003cbr\u003e10.5 Natural Polymers\u003cbr\u003e10.5.1 Poly(L-Lactic Acid)\u003cbr\u003e10.5.2 Lignocellulose\u003cbr\u003e10.6 Other Homopolymers\u003cbr\u003e10.7 Mixtures of Polymer Wastes\u003cbr\u003e10.8 Thermal Degradation of Polymeric Materials – Ecological Issues\u003cbr\u003e10.8.1 Disposal Options and Sources of Information\u003cbr\u003e10.8.2 Sustainable Development \u003cbr\u003e11 Thermal Degradation During Processing of Polymers\u003cbr\u003e11.1 Polyethylene\u003cbr\u003e11.2 Polypropylene and its Blends\u003cbr\u003e11.3 Poly(Vinyl Alcohol)\u003cbr\u003e11.4 Other Polymers \u003cbr\u003e12 Modelling of Thermal Degradation Processes \u003cbr\u003e13 Concluding Remarks \u003cbr\u003e14 References \u003cbr\u003e15 References Available from the Polymer Library\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eKrzysztof Pielichowski\u003c\/strong\u003e is currently an associate professor of polymer science at the Cracow University of Technology. He has written over 80 articles and was awarded the Foundation for Polish Science fellowship in 1996 and the Fulbright fellowship in 2003. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eJames Njuguna\u003c\/strong\u003e is a Ph.D. student at the City University of London. He was a Marie Curie Fellow at the Cracow University of Technology in 2003\/2004, performing research in the area of polymeric nanocomposites.\u003cbr\u003e\u003cbr\u003e"}
Thermal Methods of Pol...
$205.00
{"id":11242241028,"title":"Thermal Methods of Polymer Analysis","handle":"9781847356611","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847356611 \u003cbr\u003e\u003cbr\u003epages 242, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book reviews the various thermal methods used for the characterisation of polymer properties and composition. All these methods study the properties of polymers as they change with temperature.\u003cbr\u003e\u003cbr\u003eThe methods discussed in this book are: differential photocalorimetry, differential scanning calorimetry, dielectric thermal analysis, differential thermal analysis, dynamic mechanical analysis, evolved gas analysis, gas chromatography, gas chromatography combined with mass spectrometry, mass spectrometry, microthermal analysis, thermal volatilisation, thermogravimetric analysis and thermomechanical analysis.\u003cbr\u003e\u003cbr\u003eEach technique is discussed in detail and examples of the use of each technique are also given. Each chapter has an extensive list of references so that the reader can follow up topics of interest.\u003cbr\u003e\u003cbr\u003eThis book will be a useful reference for those who already use any of these thermal methods but will also be of interest to undergraduates and those who are just starting to use these techniques.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Pyrolysis–Gas Chromatography Techniques \u003cbr\u003e1.1 Theoretical Considerations \u003cbr\u003e1.2 Instrumentation \u003cbr\u003e1.2.1 Combustion Furnace Pyrolyser \u003cbr\u003e1.2.2 Filament Pyrolyser \u003cbr\u003e1.2.3 Curie Point Pyrolyser \u003cbr\u003e1.2.4 Laser Pyrolysis \u003cbr\u003e1.3 Polymer Degradation Mechanisms \u003cbr\u003e1.3.1 Depolymerisation \u003cbr\u003e1.3.2 Side Group Elimination \u003cbr\u003e1.4 Polypropylene \u003cbr\u003e1.5 Determination of the Degree of Cure of Rubber\u003cbr\u003e1.6 Polybutadiene \u003cbr\u003e1.7 Polyacrylates and Polymethacrylates \u003cbr\u003e1.8 Polyethylene Oxide \u003cbr\u003e1.9 Polysulfides \u003cbr\u003e1.10 Silicon Polymers\u003cbr\u003e1.11 Determination of Unsaturation in Ethylene–Propylene–Diene Terpolymers \u003cbr\u003e1.12 Polyethylene Acrylate and Ethylene-vinyl Acetate Copolymers \u003cbr\u003e1.13 Styrene-based Copolymers \u003cbr\u003e1.13.1 Styrene-n-butyl Acrylate Copolymers\u003cbr\u003e1.14 Styrene–Methylymethacrylate Copolymers \u003cbr\u003e1.15 Styrene–isoprene Copolymers \u003cbr\u003e1.16 Styrene Divinylbenzene \u003cbr\u003e1.17 Chloromethylated Polystyrene–Divinylbenzene Copolymers \u003cbr\u003e1.18 Vinyl Chloride–Vinylidene Chloride Copolymers \u003cbr\u003e1.19 Comonomer Units in Polyhexafluoropropylene–Vinylidene Chloride Copolymers\u003cbr\u003e1.20 Nitrile–butadiene \u003cbr\u003e1.21 Miscellaneous Copolymers \u003cbr\u003e2 Thermogravimetric Analysis \u003cbr\u003e2.1 Theoretical Considerations \u003cbr\u003e2.2 Applications\u003cbr\u003e2.2.1 Thermal Stability Studies \u003cbr\u003e2.2.2 Degradation Studies \u003cbr\u003e2.2.3 Complementary Pyrolysis Studies \u003cbr\u003e2.2.4 Activation Energy \u003cbr\u003e2.2.5 Polymer Transitions \u003cbr\u003e2.2.6 Effect of Antioxidants on Polymer Ageing \u003cbr\u003e2.2.7 Polymer Lifetime Measurements \u003cbr\u003e2.2.8 Combustion Inhibition \u003cbr\u003e3 Complementary Thermogravimetry, Gas chromatography-Mass Spectroscopy and Fourier-Transform-Infrared Spectroscopy \u003cbr\u003e3.1 Thermogravimetry – Gas chromatography-Mass Spectroscopy Techniques \u003cbr\u003e3.1.1 Instrumentation \u003cbr\u003e3.1.2 Applications \u003cbr\u003e3.1.2.1 Ethylene–polystyrene Copolymer \u003cbr\u003e3.1.2.2 Ethylene-vinyl Acetate \u003cbr\u003e3.1.2.3 Epoxy Resins \u003cbr\u003e3.1.2.4 Phosphorus-Containing Polymers \u003cbr\u003e3.1.2.5 Polyimides. \u003cbr\u003e3.1.2.6 Miscellaneous Polymers \u003cbr\u003e3.2 Thermogravimetric Analysis–FT-IR \u003cbr\u003e3.2.1 Instrumentation \u003cbr\u003e3.2.2 Applications \u003cbr\u003e3.2.2.1 Polypropylene Carbonate \u003cbr\u003e3.2.2.2 Miscellaneous Polymers \u003cbr\u003e4 Evolved Gas Analysis \u003cbr\u003e4.1 Theoretical Considerations \u003cbr\u003e4.2 Applications. \u003cbr\u003e4.2.1 Polypropylene \u003cbr\u003e4.2.2 Polyethylene Oxide\u003cbr\u003e4.2.3 Cellulosic Flame Retardants \u003cbr\u003e4.3 TGA – GC based Evolved Gas Analysis \u003cbr\u003e4.3.1 Thermoresist Rubbers\u003cbr\u003e4.4 Pyrolysis-evolved Gas–infrared Spectroscopy \u003cbr\u003e4.5 Antioxidant Degradation \u003cbr\u003e5 Thermal Volatilisation Analysis\u003cbr\u003e5.1 Applications\u003cbr\u003e6 Thermal Volatilisation Analysis\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Measurement of Polymer Transitions\u003cbr\u003e6.1.2 Phase Change\u003cbr\u003e6.1.3 Curing Kinetics\u003cbr\u003e6.1.4 Polymer Degradation Studies\u003cbr\u003e6.1.5 Thermal and Oxidative Stability \u003cbr\u003e6.1.6 Polymer Characterisation\u003cbr\u003e6.1.7 Crystallinity \u003cbr\u003e6.1.8 Miscellaneous Applications\u003cbr\u003e6.2 Complimentary Differential Thermal Analysis–Mass Spectrometry \u003cbr\u003e7 Differential Scanning Calorimetry \u003cbr\u003e7.1 Instrumentation\u003cbr\u003e7.2 Applications\u003cbr\u003e7.2.1 Determination of Crystallinity \u003cbr\u003e7.2.2 Effect of Solvents on Crystallinity \u003cbr\u003e7.2.3 Crystallisation Kinetics\u003cbr\u003e7.2.4 Effects of Fillers on Crystallinity \u003cbr\u003e7.2.5 Crystallisation Temperature \u003cbr\u003e7.2.6 Curing Kinetics \u003cbr\u003e7.2.7 Measurement of Transition Temperatures, Glass Transition, other Transitions \u003cbr\u003e7.2.8 Preparation of Phase Diagrams\u003cbr\u003e7.2.9 Melting Temperature \u003cbr\u003e7.2.10 Miscellaneous Applications of DSC \u003cbr\u003e8 Dynamic Mechanical Thermal Analysis \u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Measurement of Glass Transition Temperature and other Transitions =\u003cbr\u003e8.1.2 Resin Cure Studies \u003cbr\u003e8.1.3 Modulus Measurements\u003cbr\u003e8.1.4 Stress–strain Measurements \u003cbr\u003e8.1.5 Rheological Properties and Viscosity \u003cbr\u003e8.1.6 Relaxation Phenomena \u003cbr\u003e8.1.7 Morphology\u003cbr\u003e8.1.8 Thermal Properties \u003cbr\u003e8.1.9 Other Applications \u003cbr\u003e9 Thermomechanical Analysis\u003cbr\u003e9.1 Theoretical Considerations \u003cbr\u003e9.2 Instrumentation \u003cbr\u003e9.3 Applications \u003cbr\u003e9.3.1 Mechanical and Thermal Properties\u003cbr\u003e9.3.2 Transitions \u003cbr\u003e9.3.3 Fibre Stress–strain Measurements \u003cbr\u003e9.2.4 Polymer Characterisation Studies\u003cbr\u003e9.3.5 Viscoelastic and Rheological Properties \u003cbr\u003e9.3.6 Gel Time Measurement \u003cbr\u003e10 Microthermal Analysis \u003cbr\u003e10.1 Theoretical Considerations \u003cbr\u003e10.2 Atomic Force Microscopy \u003cbr\u003e10.3 Instrumentation \u003cbr\u003e10.4 Applications \u003cbr\u003e10.4.1 Morphology\u003cbr\u003e10.4.2 Topography Studies\u003cbr\u003e10.4.3 Depth Profiling \u003cbr\u003e10.4.4 Glass Transition\u003cbr\u003e11 Differential Photocalorimetry \u003cbr\u003e11.1 Theoretical Considerations \u003cbr\u003e11.2 Instrumentation \u003cbr\u003e11.3 Applications \u003cbr\u003e11.3.1 Photocure Rates\u003cbr\u003e11.3.2 Degree of Cure \u003cbr\u003e11.3.3 Dependence of Reactivity upon Functionalisation\u003cbr\u003e11.3.3.1 Influence of Wavelength \u003cbr\u003e11.3.3.2 Influence of Photoinitiator Concentration \u003cbr\u003e11.3.3.3 Influence of Humidity \u003cbr\u003e11.3.4 Miscellaneous Applications \u003cbr\u003e12 Dielectric Thermal Analysis \u003cbr\u003e12.1 Theoretical Considerations \u003cbr\u003e12.2 Applications \u003cbr\u003e12.2.1 Resin Cure Studies \u003cbr\u003e12.2.2 Viscoelastic and Rheological Properties \u003cbr\u003e12.2.2.1 Flow and Cure of an Aerospace Adhesive \u003cbr\u003e12.2.2.2 Influence of Thermal History on Nylon \u003cbr\u003e12.2.3 Thermal Transitions\u003cbr\u003e12.2.4 Polymer Characterisation \u003cbr\u003e13 Resin Cure Studies \u003cbr\u003e13.1 Techniques \u003cbr\u003e13.1.1 Differential Photocalorimetry\u003cbr\u003e13.1.2 Dielectric Thermal Analysis\u003cbr\u003e13.1.3 Differential Scanning Calorimetry\u003cbr\u003e13.1.4 Dynamic Mechanical Analysis \u003cbr\u003e14 Thermal Degradation Mechanisms \u003cbr\u003e14.1 Theoretical Considerations \u003cbr\u003e14.2 Pyrolysis-Gas Chromatography-Mass Spectrometry \u003cbr\u003e14.2.1 Polypropylene Carbonate Decomposition \u003cbr\u003e14.2.2 Polyisobutylene Decomposition \u003cbr\u003e14.2.3 Polystyrene Decompositions \u003cbr\u003e14.2.4 Nitrogen-Containing Polymers \u003cbr\u003e14.2.5 Sulfur Containing Polymers \u003cbr\u003e14.2.6 Miscellaneous Polymers \u003cbr\u003e14.3 Pyrolysis–FT-IR Spectroscopy \u003cbr\u003e14.4 Derivitisation–Pyrolysis–Mass Spectrometry\u003cbr\u003e14.5 Differential Scanning Calorimetry and Thermogravimetry\u003cbr\u003e14.6 Pyrolysis – Mass Spectrometry (Without an Intervening Chromatographic Stage)\u003cbr\u003e14.7 Examination of Thermal Stability \u003cbr\u003eAppendix 1\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","analysis","book","p-properties","polymer"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436228,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Methods of Polymer Analysis","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356611","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231","options":["Title"],"media":[{"alt":null,"id":358806388829,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847356611 \u003cbr\u003e\u003cbr\u003epages 242, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book reviews the various thermal methods used for the characterisation of polymer properties and composition. All these methods study the properties of polymers as they change with temperature.\u003cbr\u003e\u003cbr\u003eThe methods discussed in this book are: differential photocalorimetry, differential scanning calorimetry, dielectric thermal analysis, differential thermal analysis, dynamic mechanical analysis, evolved gas analysis, gas chromatography, gas chromatography combined with mass spectrometry, mass spectrometry, microthermal analysis, thermal volatilisation, thermogravimetric analysis and thermomechanical analysis.\u003cbr\u003e\u003cbr\u003eEach technique is discussed in detail and examples of the use of each technique are also given. Each chapter has an extensive list of references so that the reader can follow up topics of interest.\u003cbr\u003e\u003cbr\u003eThis book will be a useful reference for those who already use any of these thermal methods but will also be of interest to undergraduates and those who are just starting to use these techniques.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Pyrolysis–Gas Chromatography Techniques \u003cbr\u003e1.1 Theoretical Considerations \u003cbr\u003e1.2 Instrumentation \u003cbr\u003e1.2.1 Combustion Furnace Pyrolyser \u003cbr\u003e1.2.2 Filament Pyrolyser \u003cbr\u003e1.2.3 Curie Point Pyrolyser \u003cbr\u003e1.2.4 Laser Pyrolysis \u003cbr\u003e1.3 Polymer Degradation Mechanisms \u003cbr\u003e1.3.1 Depolymerisation \u003cbr\u003e1.3.2 Side Group Elimination \u003cbr\u003e1.4 Polypropylene \u003cbr\u003e1.5 Determination of the Degree of Cure of Rubber\u003cbr\u003e1.6 Polybutadiene \u003cbr\u003e1.7 Polyacrylates and Polymethacrylates \u003cbr\u003e1.8 Polyethylene Oxide \u003cbr\u003e1.9 Polysulfides \u003cbr\u003e1.10 Silicon Polymers\u003cbr\u003e1.11 Determination of Unsaturation in Ethylene–Propylene–Diene Terpolymers \u003cbr\u003e1.12 Polyethylene Acrylate and Ethylene-vinyl Acetate Copolymers \u003cbr\u003e1.13 Styrene-based Copolymers \u003cbr\u003e1.13.1 Styrene-n-butyl Acrylate Copolymers\u003cbr\u003e1.14 Styrene–Methylymethacrylate Copolymers \u003cbr\u003e1.15 Styrene–isoprene Copolymers \u003cbr\u003e1.16 Styrene Divinylbenzene \u003cbr\u003e1.17 Chloromethylated Polystyrene–Divinylbenzene Copolymers \u003cbr\u003e1.18 Vinyl Chloride–Vinylidene Chloride Copolymers \u003cbr\u003e1.19 Comonomer Units in Polyhexafluoropropylene–Vinylidene Chloride Copolymers\u003cbr\u003e1.20 Nitrile–butadiene \u003cbr\u003e1.21 Miscellaneous Copolymers \u003cbr\u003e2 Thermogravimetric Analysis \u003cbr\u003e2.1 Theoretical Considerations \u003cbr\u003e2.2 Applications\u003cbr\u003e2.2.1 Thermal Stability Studies \u003cbr\u003e2.2.2 Degradation Studies \u003cbr\u003e2.2.3 Complementary Pyrolysis Studies \u003cbr\u003e2.2.4 Activation Energy \u003cbr\u003e2.2.5 Polymer Transitions \u003cbr\u003e2.2.6 Effect of Antioxidants on Polymer Ageing \u003cbr\u003e2.2.7 Polymer Lifetime Measurements \u003cbr\u003e2.2.8 Combustion Inhibition \u003cbr\u003e3 Complementary Thermogravimetry, Gas chromatography-Mass Spectroscopy and Fourier-Transform-Infrared Spectroscopy \u003cbr\u003e3.1 Thermogravimetry – Gas chromatography-Mass Spectroscopy Techniques \u003cbr\u003e3.1.1 Instrumentation \u003cbr\u003e3.1.2 Applications \u003cbr\u003e3.1.2.1 Ethylene–polystyrene Copolymer \u003cbr\u003e3.1.2.2 Ethylene-vinyl Acetate \u003cbr\u003e3.1.2.3 Epoxy Resins \u003cbr\u003e3.1.2.4 Phosphorus-Containing Polymers \u003cbr\u003e3.1.2.5 Polyimides. \u003cbr\u003e3.1.2.6 Miscellaneous Polymers \u003cbr\u003e3.2 Thermogravimetric Analysis–FT-IR \u003cbr\u003e3.2.1 Instrumentation \u003cbr\u003e3.2.2 Applications \u003cbr\u003e3.2.2.1 Polypropylene Carbonate \u003cbr\u003e3.2.2.2 Miscellaneous Polymers \u003cbr\u003e4 Evolved Gas Analysis \u003cbr\u003e4.1 Theoretical Considerations \u003cbr\u003e4.2 Applications. \u003cbr\u003e4.2.1 Polypropylene \u003cbr\u003e4.2.2 Polyethylene Oxide\u003cbr\u003e4.2.3 Cellulosic Flame Retardants \u003cbr\u003e4.3 TGA – GC based Evolved Gas Analysis \u003cbr\u003e4.3.1 Thermoresist Rubbers\u003cbr\u003e4.4 Pyrolysis-evolved Gas–infrared Spectroscopy \u003cbr\u003e4.5 Antioxidant Degradation \u003cbr\u003e5 Thermal Volatilisation Analysis\u003cbr\u003e5.1 Applications\u003cbr\u003e6 Thermal Volatilisation Analysis\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Measurement of Polymer Transitions\u003cbr\u003e6.1.2 Phase Change\u003cbr\u003e6.1.3 Curing Kinetics\u003cbr\u003e6.1.4 Polymer Degradation Studies\u003cbr\u003e6.1.5 Thermal and Oxidative Stability \u003cbr\u003e6.1.6 Polymer Characterisation\u003cbr\u003e6.1.7 Crystallinity \u003cbr\u003e6.1.8 Miscellaneous Applications\u003cbr\u003e6.2 Complimentary Differential Thermal Analysis–Mass Spectrometry \u003cbr\u003e7 Differential Scanning Calorimetry \u003cbr\u003e7.1 Instrumentation\u003cbr\u003e7.2 Applications\u003cbr\u003e7.2.1 Determination of Crystallinity \u003cbr\u003e7.2.2 Effect of Solvents on Crystallinity \u003cbr\u003e7.2.3 Crystallisation Kinetics\u003cbr\u003e7.2.4 Effects of Fillers on Crystallinity \u003cbr\u003e7.2.5 Crystallisation Temperature \u003cbr\u003e7.2.6 Curing Kinetics \u003cbr\u003e7.2.7 Measurement of Transition Temperatures, Glass Transition, other Transitions \u003cbr\u003e7.2.8 Preparation of Phase Diagrams\u003cbr\u003e7.2.9 Melting Temperature \u003cbr\u003e7.2.10 Miscellaneous Applications of DSC \u003cbr\u003e8 Dynamic Mechanical Thermal Analysis \u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Measurement of Glass Transition Temperature and other Transitions =\u003cbr\u003e8.1.2 Resin Cure Studies \u003cbr\u003e8.1.3 Modulus Measurements\u003cbr\u003e8.1.4 Stress–strain Measurements \u003cbr\u003e8.1.5 Rheological Properties and Viscosity \u003cbr\u003e8.1.6 Relaxation Phenomena \u003cbr\u003e8.1.7 Morphology\u003cbr\u003e8.1.8 Thermal Properties \u003cbr\u003e8.1.9 Other Applications \u003cbr\u003e9 Thermomechanical Analysis\u003cbr\u003e9.1 Theoretical Considerations \u003cbr\u003e9.2 Instrumentation \u003cbr\u003e9.3 Applications \u003cbr\u003e9.3.1 Mechanical and Thermal Properties\u003cbr\u003e9.3.2 Transitions \u003cbr\u003e9.3.3 Fibre Stress–strain Measurements \u003cbr\u003e9.2.4 Polymer Characterisation Studies\u003cbr\u003e9.3.5 Viscoelastic and Rheological Properties \u003cbr\u003e9.3.6 Gel Time Measurement \u003cbr\u003e10 Microthermal Analysis \u003cbr\u003e10.1 Theoretical Considerations \u003cbr\u003e10.2 Atomic Force Microscopy \u003cbr\u003e10.3 Instrumentation \u003cbr\u003e10.4 Applications \u003cbr\u003e10.4.1 Morphology\u003cbr\u003e10.4.2 Topography Studies\u003cbr\u003e10.4.3 Depth Profiling \u003cbr\u003e10.4.4 Glass Transition\u003cbr\u003e11 Differential Photocalorimetry \u003cbr\u003e11.1 Theoretical Considerations \u003cbr\u003e11.2 Instrumentation \u003cbr\u003e11.3 Applications \u003cbr\u003e11.3.1 Photocure Rates\u003cbr\u003e11.3.2 Degree of Cure \u003cbr\u003e11.3.3 Dependence of Reactivity upon Functionalisation\u003cbr\u003e11.3.3.1 Influence of Wavelength \u003cbr\u003e11.3.3.2 Influence of Photoinitiator Concentration \u003cbr\u003e11.3.3.3 Influence of Humidity \u003cbr\u003e11.3.4 Miscellaneous Applications \u003cbr\u003e12 Dielectric Thermal Analysis \u003cbr\u003e12.1 Theoretical Considerations \u003cbr\u003e12.2 Applications \u003cbr\u003e12.2.1 Resin Cure Studies \u003cbr\u003e12.2.2 Viscoelastic and Rheological Properties \u003cbr\u003e12.2.2.1 Flow and Cure of an Aerospace Adhesive \u003cbr\u003e12.2.2.2 Influence of Thermal History on Nylon \u003cbr\u003e12.2.3 Thermal Transitions\u003cbr\u003e12.2.4 Polymer Characterisation \u003cbr\u003e13 Resin Cure Studies \u003cbr\u003e13.1 Techniques \u003cbr\u003e13.1.1 Differential Photocalorimetry\u003cbr\u003e13.1.2 Dielectric Thermal Analysis\u003cbr\u003e13.1.3 Differential Scanning Calorimetry\u003cbr\u003e13.1.4 Dynamic Mechanical Analysis \u003cbr\u003e14 Thermal Degradation Mechanisms \u003cbr\u003e14.1 Theoretical Considerations \u003cbr\u003e14.2 Pyrolysis-Gas Chromatography-Mass Spectrometry \u003cbr\u003e14.2.1 Polypropylene Carbonate Decomposition \u003cbr\u003e14.2.2 Polyisobutylene Decomposition \u003cbr\u003e14.2.3 Polystyrene Decompositions \u003cbr\u003e14.2.4 Nitrogen-Containing Polymers \u003cbr\u003e14.2.5 Sulfur Containing Polymers \u003cbr\u003e14.2.6 Miscellaneous Polymers \u003cbr\u003e14.3 Pyrolysis–FT-IR Spectroscopy \u003cbr\u003e14.4 Derivitisation–Pyrolysis–Mass Spectrometry\u003cbr\u003e14.5 Differential Scanning Calorimetry and Thermogravimetry\u003cbr\u003e14.6 Pyrolysis – Mass Spectrometry (Without an Intervening Chromatographic Stage)\u003cbr\u003e14.7 Examination of Thermal Stability \u003cbr\u003eAppendix 1\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
Thermal Stability of P...
$205.00
{"id":11242241412,"title":"Thermal Stability of Polymers","handle":"9781847355133","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847355133 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2012\u003cbr\u003e\u003c\/span\u003eNumber of pages 216, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years numerous research papers have been published on the changes in chemical structure and in physical properties of polymers when they are exposed to heat over a range of temperatures. For example, these changes can occur at any time during the injection moulding of the plastic, in the subsequent processing and in its end-use application when exposed to elevated temperatures.\u003cbr\u003e\u003cbr\u003eThermal stability is a very important parameter which must be taken into account when selecting polymers whether for their use as constructional or engineering applications or in the packaging of food at high temperatures.\u003cbr\u003e\u003cbr\u003eThe mechanisms by which such changes occur are many and it is important to know what these are and to be able to measure the rate of change of polymer structure and its dependence on temperature and time. Development of an understanding of the mechanisms of thermal degradation will help the chemist to develop materials with better thermal stability. This is particularly important in newer developments in engineering and aerospace.\u003cbr\u003e\u003cbr\u003eThis book reviews in nine chapters the measurement of these properties in the main types of polymers in use today. Numerous techniques are discussed ranging from thermogravimetric analysis, differential scanning calorimetry, infrared and nuclear magnetic resonance-based methods to pyrolytic techniques such as those based on pyrolysis, gas chromatography, and mass spectrometry.\u003cbr\u003e\u003cbr\u003eThe book is aimed at those engaged in the manufacture of polymers and the development of end-user applications. It is essential that students of polymer science should have a thorough understanding of polymer stability and an additional aim of the book is to help in the development of such an interest.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Carbon Hydrogen Polymers \u003cbr\u003e1.1 Polyethylene\u003cbr\u003e1.1.1 Random Scission \u003cbr\u003e1.1.2 Depolymerisation \u003cbr\u003e1.1.3 Side Group Elimination \u003cbr\u003e1.1.3.1 Differential Thermal Analysis \u003cbr\u003e1.1.3.2 Differential Scanning Calorimetry \u003cbr\u003e1.1.3.3 Other Techniques \u003cbr\u003e1.2 Polypropylene and Polyisobutylene\u003cbr\u003e1.3 Polystyrene and Copolymers\u003cbr\u003e1.3.1 Polystyrenes \u003cbr\u003e1.3.2 Polystyrene Copolymers \u003cbr\u003e1.3.2.1 Styrene Acrylonitrile \u003cbr\u003e1.3.2.2 Styrene-divinylbenzene \u003cbr\u003e1.3.2.3 Styrene-Isoprene (Kraton 1107)\u003cbr\u003e1.3.2.4 Miscellaneous Copolymers\u003cbr\u003e1.4 Carbocyclic Polymers \u003cbr\u003eRubbers\u003cbr\u003e2.1 Polyisoprene \u003cbr\u003e2.2 Styrene-Butadiene \u003cbr\u003e2.3 Polyisobutylene \u003cbr\u003e2.Thermal Stability of Polymers\u003cbr\u003e2.4 Polybutadiene \u003cbr\u003e2.5 Ethylene–propylene–diene rubbers\u003cbr\u003e2.6 Chlorinated Rubber \u003cbr\u003e2.7 Miscellaneous Rubbers \u003cbr\u003e3. Oxygen-Containing Polymers \u003cbr\u003e3.1 Phenol-Formaldehyde Resins \u003cbr\u003e3.2 Polyethers \u003cbr\u003e3.3 Epoxy Resins \u003cbr\u003e3.4 Polymethyl Methacrylates \u003cbr\u003e3.4.1 Homopolymers\u003cbr\u003e3.4.2 Copolymers \u003cbr\u003e3.5 Polyacrylates.\u003cbr\u003e3.6 Polyarylates \u003cbr\u003e3.7 Polyalkylene Oxides \u003cbr\u003e3.8 Polycarbonates \u003cbr\u003e3.9 Polyvinyl Alcohol and Polyvinyl Acetate\u003cbr\u003e3.10 Polyethylene Terephthalate\u003cbr\u003e3.11 Polyethylene Oxalate \u003cbr\u003e3.12 Polyoxymethylene \u003cbr\u003e3.13 Other Oxygen Containing Polymers \u003cbr\u003e4. Halogen-Containing Polymers \u003cbr\u003e4.1 Chloro Polymers \u003cbr\u003e4.1.1 Polyvinyl Chloride and Polyvinylidene Chloride \u003cbr\u003e4.1.1.1 Negative ions \u003cbr\u003e4.1.1.2 Positive ions\u003cbr\u003e4.1.2 Chloromethyl Substituted Polystyrene \u003cbr\u003e4.1.3 Chlorinated Polyethylene \u003cbr\u003e4.2 Fluorine-Containing Polymers \u003cbr\u003e4.2.1 Polytetrafluoroethylene\u003cbr\u003e4.2.2 Polychlorotrifluoroethylene \u003cbr\u003e4.2.3 Polyvinylidene Fluoride \u003cbr\u003e4.2.4 Fluorinated Polyimides \u003cbr\u003e4.2.5 Other Fluoropolymers \u003cbr\u003e5. Nitrogen-Containing Polymers \u003cbr\u003e5.1 Polyamides\u003cbr\u003e5.2 Polyimides \u003cbr\u003e5.3 Polyacrylamides \u003cbr\u003e5.4 Polyacrylonitrile \u003cbr\u003e5.5 Polyureas\u003cbr\u003e5.6 Polyurethanes \u003cbr\u003e5.7 Polyazides \u003cbr\u003e5.8 Polybutyl Cyanoacrylate \u003cbr\u003e5.9 Polyhydrazides \u003cbr\u003e5.10 Miscellaneous Polymers \u003cbr\u003e6. Sulfur-Containing Polymers \u003cbr\u003e6.1 Polyolefin Sulfides \u003cbr\u003e6.2 Polystyrene Sulfide – Polyethylene Sulfide Copolymers \u003cbr\u003e6.3 Polyphenylene Sulfides \u003cbr\u003e6.4 Polyxylylene Sulfide \u003cbr\u003e6.5 Polydisulfides \u003cbr\u003e6.6 Polysulfones. \u003cbr\u003e6.7 Miscellaneous Sulfur Compounds \u003cbr\u003e7. Silicon-Containing Polymers\u003cbr\u003e7.1 Silsesquioxanes \u003cbr\u003e7.2 Polyborosilazanes\u003cbr\u003e7.3 Polyoxadisilacyclopentene \u003cbr\u003e7.4 Miscellaneous Silicon Polymers\u003cbr\u003e8. Phosphorus-Containing Polymers \u003cbr\u003e8.1 Triacryloyloxyethyl Phosphate and Diacryloyl Oxyethyl Ethyl Phosphate \u003cbr\u003e8.2 Other phosphorus-containing compounds \u003cbr\u003e9. Effect of Metal Contamination on the Heat Stability of Polymers.","published_at":"2017-06-22T21:14:48-04:00","created_at":"2017-06-22T21:14:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","analysis","book","degradation","depolymerisation","material","mechanism of degradation","p-properties","poly","polymers","resins","rubbers","stabilty","thermal analysis","weathering"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378439108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Stability of Polymers","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847355133","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847355133_aedc2f5d-25e3-4838-849e-b713e11a84ee.jpg?v=1499956664"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847355133_aedc2f5d-25e3-4838-849e-b713e11a84ee.jpg?v=1499956664","options":["Title"],"media":[{"alt":null,"id":358807371869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847355133_aedc2f5d-25e3-4838-849e-b713e11a84ee.jpg?v=1499956664"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847355133_aedc2f5d-25e3-4838-849e-b713e11a84ee.jpg?v=1499956664","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847355133 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2012\u003cbr\u003e\u003c\/span\u003eNumber of pages 216, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years numerous research papers have been published on the changes in chemical structure and in physical properties of polymers when they are exposed to heat over a range of temperatures. For example, these changes can occur at any time during the injection moulding of the plastic, in the subsequent processing and in its end-use application when exposed to elevated temperatures.\u003cbr\u003e\u003cbr\u003eThermal stability is a very important parameter which must be taken into account when selecting polymers whether for their use as constructional or engineering applications or in the packaging of food at high temperatures.\u003cbr\u003e\u003cbr\u003eThe mechanisms by which such changes occur are many and it is important to know what these are and to be able to measure the rate of change of polymer structure and its dependence on temperature and time. Development of an understanding of the mechanisms of thermal degradation will help the chemist to develop materials with better thermal stability. This is particularly important in newer developments in engineering and aerospace.\u003cbr\u003e\u003cbr\u003eThis book reviews in nine chapters the measurement of these properties in the main types of polymers in use today. Numerous techniques are discussed ranging from thermogravimetric analysis, differential scanning calorimetry, infrared and nuclear magnetic resonance-based methods to pyrolytic techniques such as those based on pyrolysis, gas chromatography, and mass spectrometry.\u003cbr\u003e\u003cbr\u003eThe book is aimed at those engaged in the manufacture of polymers and the development of end-user applications. It is essential that students of polymer science should have a thorough understanding of polymer stability and an additional aim of the book is to help in the development of such an interest.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Carbon Hydrogen Polymers \u003cbr\u003e1.1 Polyethylene\u003cbr\u003e1.1.1 Random Scission \u003cbr\u003e1.1.2 Depolymerisation \u003cbr\u003e1.1.3 Side Group Elimination \u003cbr\u003e1.1.3.1 Differential Thermal Analysis \u003cbr\u003e1.1.3.2 Differential Scanning Calorimetry \u003cbr\u003e1.1.3.3 Other Techniques \u003cbr\u003e1.2 Polypropylene and Polyisobutylene\u003cbr\u003e1.3 Polystyrene and Copolymers\u003cbr\u003e1.3.1 Polystyrenes \u003cbr\u003e1.3.2 Polystyrene Copolymers \u003cbr\u003e1.3.2.1 Styrene Acrylonitrile \u003cbr\u003e1.3.2.2 Styrene-divinylbenzene \u003cbr\u003e1.3.2.3 Styrene-Isoprene (Kraton 1107)\u003cbr\u003e1.3.2.4 Miscellaneous Copolymers\u003cbr\u003e1.4 Carbocyclic Polymers \u003cbr\u003eRubbers\u003cbr\u003e2.1 Polyisoprene \u003cbr\u003e2.2 Styrene-Butadiene \u003cbr\u003e2.3 Polyisobutylene \u003cbr\u003e2.Thermal Stability of Polymers\u003cbr\u003e2.4 Polybutadiene \u003cbr\u003e2.5 Ethylene–propylene–diene rubbers\u003cbr\u003e2.6 Chlorinated Rubber \u003cbr\u003e2.7 Miscellaneous Rubbers \u003cbr\u003e3. Oxygen-Containing Polymers \u003cbr\u003e3.1 Phenol-Formaldehyde Resins \u003cbr\u003e3.2 Polyethers \u003cbr\u003e3.3 Epoxy Resins \u003cbr\u003e3.4 Polymethyl Methacrylates \u003cbr\u003e3.4.1 Homopolymers\u003cbr\u003e3.4.2 Copolymers \u003cbr\u003e3.5 Polyacrylates.\u003cbr\u003e3.6 Polyarylates \u003cbr\u003e3.7 Polyalkylene Oxides \u003cbr\u003e3.8 Polycarbonates \u003cbr\u003e3.9 Polyvinyl Alcohol and Polyvinyl Acetate\u003cbr\u003e3.10 Polyethylene Terephthalate\u003cbr\u003e3.11 Polyethylene Oxalate \u003cbr\u003e3.12 Polyoxymethylene \u003cbr\u003e3.13 Other Oxygen Containing Polymers \u003cbr\u003e4. Halogen-Containing Polymers \u003cbr\u003e4.1 Chloro Polymers \u003cbr\u003e4.1.1 Polyvinyl Chloride and Polyvinylidene Chloride \u003cbr\u003e4.1.1.1 Negative ions \u003cbr\u003e4.1.1.2 Positive ions\u003cbr\u003e4.1.2 Chloromethyl Substituted Polystyrene \u003cbr\u003e4.1.3 Chlorinated Polyethylene \u003cbr\u003e4.2 Fluorine-Containing Polymers \u003cbr\u003e4.2.1 Polytetrafluoroethylene\u003cbr\u003e4.2.2 Polychlorotrifluoroethylene \u003cbr\u003e4.2.3 Polyvinylidene Fluoride \u003cbr\u003e4.2.4 Fluorinated Polyimides \u003cbr\u003e4.2.5 Other Fluoropolymers \u003cbr\u003e5. Nitrogen-Containing Polymers \u003cbr\u003e5.1 Polyamides\u003cbr\u003e5.2 Polyimides \u003cbr\u003e5.3 Polyacrylamides \u003cbr\u003e5.4 Polyacrylonitrile \u003cbr\u003e5.5 Polyureas\u003cbr\u003e5.6 Polyurethanes \u003cbr\u003e5.7 Polyazides \u003cbr\u003e5.8 Polybutyl Cyanoacrylate \u003cbr\u003e5.9 Polyhydrazides \u003cbr\u003e5.10 Miscellaneous Polymers \u003cbr\u003e6. Sulfur-Containing Polymers \u003cbr\u003e6.1 Polyolefin Sulfides \u003cbr\u003e6.2 Polystyrene Sulfide – Polyethylene Sulfide Copolymers \u003cbr\u003e6.3 Polyphenylene Sulfides \u003cbr\u003e6.4 Polyxylylene Sulfide \u003cbr\u003e6.5 Polydisulfides \u003cbr\u003e6.6 Polysulfones. \u003cbr\u003e6.7 Miscellaneous Sulfur Compounds \u003cbr\u003e7. Silicon-Containing Polymers\u003cbr\u003e7.1 Silsesquioxanes \u003cbr\u003e7.2 Polyborosilazanes\u003cbr\u003e7.3 Polyoxadisilacyclopentene \u003cbr\u003e7.4 Miscellaneous Silicon Polymers\u003cbr\u003e8. Phosphorus-Containing Polymers \u003cbr\u003e8.1 Triacryloyloxyethyl Phosphate and Diacryloyl Oxyethyl Ethyl Phosphate \u003cbr\u003e8.2 Other phosphorus-containing compounds \u003cbr\u003e9. Effect of Metal Contamination on the Heat Stability of Polymers."}
Thermo-oxidative Degra...
$165.00
{"id":11242228292,"title":"Thermo-oxidative Degradation of Polymers","handle":"978-1-84735-472-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-472-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eAvailable in July 2010\u003c\/p\u003e\n\u003cp\u003eFormat: Hard-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe oxidative and thermal degradation of polymers has very important implications on their suitability for particular end-user applications. Particularly in relation to their physical properties and the lifetime over which the manufactured article retains these properties, after which they become unsuitable for purpose.\u003cbr\u003e\u003cbr\u003eThis book brings together information on the thermooxidative resistance of polymers to change during processing and end-use life.\u003cbr\u003e\u003cbr\u003eOur present understanding of the chemical changes of the polymer that accompany degradation are also reviewed and the analytical methods by which changes can be ascertained are also discussed.\u003cbr\u003e\u003cbr\u003eThe principal techniques used in thermooxidative studies are based on thermal analysis methods such as thermogravimetric analysis and differential scanning calorimetry and on methods based on polymer pyrolysis followed by gas chromatography and mass spectrometry and\/or infrared spectroscopy of the volatiles produced. Other techniques which have been including nuclear magnetic spectroscopy, electron spin resonance spectroscopy, and methods based on chemiluminescence and positron annihilation lifetime mass spectrometry.\u003cbr\u003e\u003cbr\u003eThis book will be of interest to those involved in the investigation of polymer stability and studies of the mechanics of polymer degradation, to polymer manufacturers and those who use polymers to manufacture end-use articles.\u003cbr\u003e\u003cbr\u003eThe book will also be of interest to those involved in the manufacture of stabilisers for oxidation resistance for use in polymer manufacture, mechanical engineers, and designers of polymer products.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoy Crompton was Head of the polymer analysis research department of a major international polymer producer for some 15 years. In the early fifties, he was heavily engaged in the development of methods of analysis for low-pressure polyolefins produced by the Ziegler-Natta route, including work on high-density polyethylene and polypropylene. He was responsible for the development of methods of analysis of the organoaluminum catalysts used for the synthesis of these polymers. He was also responsible for the development of thin-layer chromatography for the determination of various types of additives in polymers and did pioneering work on the use of TLC to separate polymer additives and to examine the separated additives by infrared and mass spectrometry. He retired in 1988 and has since been engaged as a consultant in the field of analytical chemistry and has written extensively on this subject, with some 20 books published.","published_at":"2017-06-22T21:14:07-04:00","created_at":"2017-06-22T21:14:07-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","acrylic polymers","book","degradation","EGA","environmentally friendly polymers","epoxy resins","oxidative degradation","p-properties","polyesters","polymer","polyoxymethylene","PVC","stability","TGA","thermal-oxidative","Thermooxidative"],"price":16500,"price_min":16500,"price_max":20000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378396484,"title":"Hard Cover","option1":"Hard Cover","option2":null,"option3":null,"sku":"978-1-84735-471-6","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermo-oxidative Degradation of Polymers - Hard Cover","public_title":"Hard Cover","options":["Hard Cover"],"price":20000,"weight":0,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-471-6","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50532067332,"title":"Soft Cover","option1":"Soft Cover","option2":null,"option3":null,"sku":"978-1-84735-472-3","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermo-oxidative Degradation of Polymers - Soft Cover","public_title":"Soft Cover","options":["Soft Cover"],"price":16500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-472-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-472-3_b0d2c085-4c49-4953-99c8-d322c9416a55.jpg?v=1499725290"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-472-3_b0d2c085-4c49-4953-99c8-d322c9416a55.jpg?v=1499725290","options":["Cover"],"media":[{"alt":null,"id":358808485981,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-472-3_b0d2c085-4c49-4953-99c8-d322c9416a55.jpg?v=1499725290"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-472-3_b0d2c085-4c49-4953-99c8-d322c9416a55.jpg?v=1499725290","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-472-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eAvailable in July 2010\u003c\/p\u003e\n\u003cp\u003eFormat: Hard-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe oxidative and thermal degradation of polymers has very important implications on their suitability for particular end-user applications. Particularly in relation to their physical properties and the lifetime over which the manufactured article retains these properties, after which they become unsuitable for purpose.\u003cbr\u003e\u003cbr\u003eThis book brings together information on the thermooxidative resistance of polymers to change during processing and end-use life.\u003cbr\u003e\u003cbr\u003eOur present understanding of the chemical changes of the polymer that accompany degradation are also reviewed and the analytical methods by which changes can be ascertained are also discussed.\u003cbr\u003e\u003cbr\u003eThe principal techniques used in thermooxidative studies are based on thermal analysis methods such as thermogravimetric analysis and differential scanning calorimetry and on methods based on polymer pyrolysis followed by gas chromatography and mass spectrometry and\/or infrared spectroscopy of the volatiles produced. Other techniques which have been including nuclear magnetic spectroscopy, electron spin resonance spectroscopy, and methods based on chemiluminescence and positron annihilation lifetime mass spectrometry.\u003cbr\u003e\u003cbr\u003eThis book will be of interest to those involved in the investigation of polymer stability and studies of the mechanics of polymer degradation, to polymer manufacturers and those who use polymers to manufacture end-use articles.\u003cbr\u003e\u003cbr\u003eThe book will also be of interest to those involved in the manufacture of stabilisers for oxidation resistance for use in polymer manufacture, mechanical engineers, and designers of polymer products.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoy Crompton was Head of the polymer analysis research department of a major international polymer producer for some 15 years. In the early fifties, he was heavily engaged in the development of methods of analysis for low-pressure polyolefins produced by the Ziegler-Natta route, including work on high-density polyethylene and polypropylene. He was responsible for the development of methods of analysis of the organoaluminum catalysts used for the synthesis of these polymers. He was also responsible for the development of thin-layer chromatography for the determination of various types of additives in polymers and did pioneering work on the use of TLC to separate polymer additives and to examine the separated additives by infrared and mass spectrometry. He retired in 1988 and has since been engaged as a consultant in the field of analytical chemistry and has written extensively on this subject, with some 20 books published."}
Weathering of Polymers
$78.00
{"id":11242235140,"title":"Weathering of Polymers","handle":"978-0-08041960-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S.M. Hallwell \u003cbr\u003eISBN 978-0-08041960-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1992\u003cbr\u003e\u003c\/span\u003eReview Report\u003cbr\u003e119 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report describes the theory of weathering and its effect on polymer properties, methods of stabilization and natural and accelerated weathering tests. The problems associated with particular polymers used in outdoor applications are explained. 461 abstracts and references complete the report. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e PVC, polyolefins, PS, acrylics, PA, PC, POM, PSS, polyesters, PU, rubbers, composites \u003cbr\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eWeathering Factors\u003c\/li\u003e\n\u003cli\u003eEffect of Polymer Properties\u003c\/li\u003e\n\u003cli\u003ePhoto-oxidation and Stabilization\u003c\/li\u003e\n\u003cli\u003eWeathering Trials\u003c\/li\u003e\n\u003cli\u003eWeathering of Polymers\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:28-04:00","created_at":"2017-06-22T21:14:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1992","acrylics","book","composites","p-properties","PA","PC","polyesters","polymer","polyolefins","POM","PS","PSS","PU","PVC","rubbers","weathering"],"price":7800,"price_min":7800,"price_max":7800,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378417988,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Weathering of Polymers","public_title":null,"options":["Default Title"],"price":7800,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08041960-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-08041960-2_f15ca862-0c2c-4cc8-a642-5f70ffe9d67b.jpg?v=1499957336"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-08041960-2_f15ca862-0c2c-4cc8-a642-5f70ffe9d67b.jpg?v=1499957336","options":["Title"],"media":[{"alt":null,"id":358842990685,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-08041960-2_f15ca862-0c2c-4cc8-a642-5f70ffe9d67b.jpg?v=1499957336"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-08041960-2_f15ca862-0c2c-4cc8-a642-5f70ffe9d67b.jpg?v=1499957336","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S.M. Hallwell \u003cbr\u003eISBN 978-0-08041960-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1992\u003cbr\u003e\u003c\/span\u003eReview Report\u003cbr\u003e119 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report describes the theory of weathering and its effect on polymer properties, methods of stabilization and natural and accelerated weathering tests. The problems associated with particular polymers used in outdoor applications are explained. 461 abstracts and references complete the report. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e PVC, polyolefins, PS, acrylics, PA, PC, POM, PSS, polyesters, PU, rubbers, composites \u003cbr\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eWeathering Factors\u003c\/li\u003e\n\u003cli\u003eEffect of Polymer Properties\u003c\/li\u003e\n\u003cli\u003ePhoto-oxidation and Stabilization\u003c\/li\u003e\n\u003cli\u003eWeathering Trials\u003c\/li\u003e\n\u003cli\u003eWeathering of Polymers\u003c\/li\u003e\n\u003c\/ul\u003e"}