- Grid List
Filter
Metallocene Catalyzed ...
$212.00
{"id":11242248068,"title":"Metallocene Catalyzed Polymers","handle":"1-884207-59-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George M. Benedikt and Brian L. Goodall \u003cbr\u003eISBN 1-884207-59-6 \n\u003cdiv class=\"weak inline printman\"\u003e\u003c\/div\u003e\n\u003cdiv class=\"weak inline printman\"\u003ePages 410\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book brings the most recent advances in metallocene technology. In the first part of the book, catalysts and their effect and economy are discussed for the major groups of polymers in which these catalysts found their commercial applications. The well-known specialists in the field discuss the details of the metallocene technology. The second part discusses the effect of metallocene catalysts on key processing properties of metallocene catalyzed polymers. Morphology, crystallization behavior, structure, rheological properties and the others and their effect on processing parameters are discussed here. It is stressed that polymers can be tailored and optimized for application in mind. The third part of the book deals with processing of this new group of materials available in the market. Also, potential benefits of these new products are discussed together with a comparison with the properties of traditional materials used for applications at present. This gives the information to the manufacturers on what is to be expected in the future markets. The last is further developed in the series of contributions on the impact of metallocene catalyzed polymers on the future position of various traditional polymeric materials.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPolyethylene\u003cbr\u003ePolypropylene\u003cbr\u003ePolystyrene\u003cbr\u003eEthylene-Olefin\u003cbr\u003eEthylene-Propylene-Diene (EPDM)\u003cbr\u003eNonbornene Copolymers\u003cbr\u003eThe Market\u003cbr\u003eSpecial Attributes","published_at":"2017-06-22T21:15:08-04:00","created_at":"2017-06-22T21:15:08-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","additives","book","catalysts","catalytic methods","crystallization","EPDM","ethylene-olefin","ethylene-propylene-diene","metallocene","molding","morphology","nonbornene copolymers","p-chemistry","polyethylene","polymer","polymers","polypropylene","polystyrene","resins","rheology","structure","technology"],"price":21200,"price_min":21200,"price_max":21200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378467076,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Metallocene Catalyzed Polymers","public_title":null,"options":["Default Title"],"price":21200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-884207-59-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-59-6.jpg?v=1499716352"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-59-6.jpg?v=1499716352","options":["Title"],"media":[{"alt":null,"id":358511509597,"position":1,"preview_image":{"aspect_ratio":0.824,"height":500,"width":412,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-59-6.jpg?v=1499716352"},"aspect_ratio":0.824,"height":500,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-59-6.jpg?v=1499716352","width":412}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George M. Benedikt and Brian L. Goodall \u003cbr\u003eISBN 1-884207-59-6 \n\u003cdiv class=\"weak inline printman\"\u003e\u003c\/div\u003e\n\u003cdiv class=\"weak inline printman\"\u003ePages 410\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book brings the most recent advances in metallocene technology. In the first part of the book, catalysts and their effect and economy are discussed for the major groups of polymers in which these catalysts found their commercial applications. The well-known specialists in the field discuss the details of the metallocene technology. The second part discusses the effect of metallocene catalysts on key processing properties of metallocene catalyzed polymers. Morphology, crystallization behavior, structure, rheological properties and the others and their effect on processing parameters are discussed here. It is stressed that polymers can be tailored and optimized for application in mind. The third part of the book deals with processing of this new group of materials available in the market. Also, potential benefits of these new products are discussed together with a comparison with the properties of traditional materials used for applications at present. This gives the information to the manufacturers on what is to be expected in the future markets. The last is further developed in the series of contributions on the impact of metallocene catalyzed polymers on the future position of various traditional polymeric materials.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPolyethylene\u003cbr\u003ePolypropylene\u003cbr\u003ePolystyrene\u003cbr\u003eEthylene-Olefin\u003cbr\u003eEthylene-Propylene-Diene (EPDM)\u003cbr\u003eNonbornene Copolymers\u003cbr\u003eThe Market\u003cbr\u003eSpecial Attributes"}
Polypropylene
$361.00
{"id":11242244036,"title":"Polypropylene","handle":"1-884207-58-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Clive Maier, Teresa Calafut \u003cbr\u003e10-ISBN 1-884207-58-8 \u003cbr\u003e13-\u003cspan\u003eISBN 978-1-884207-58-7\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 425, Figures: 315 , Tables: 115\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolypropylene, The Definitive User's Guide and Databook present in a single volume a panoramic and up-to-the-minute user's guide for today's most important thermoplastic. The book examines every aspect - science, technology, engineering, properties, design, processing, applications - of the continuing development and use of polypropylene. The unique treatment means that specialists can not only find what they want but for the first time can relate to and understand the needs and requirements of others in the product development chain. The entire work is underpinned by very extensive collections of property data that allow the reader to put the information to real industrial and commercial use.\u003cbr\u003eDespite the preeminence and unrivaled versatility of polypropylene as a thermoplastic material to manufacture, relatively few books have been devoted to its study. Polypropylene, The Definitive User's Guide, and Databook not only fills the gap but breaks new ground in doing so. Polypropylene is the most popular thermoplastic in use today, and still one of the fastest growing. Polypropylene, The Definitive User's Guide and Databook is the complete workbook and reference resource for all those who work with the material. Its comprehensive scope uniquely caters to polymer scientists, plastics engineers, processing technologists, product designers, machinery and mold makers, product managers, end users, researchers and students alike.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChemical Properties\u003cbr\u003eMorphology\u003cbr\u003eCommercial Forms\u003cbr\u003eAdditives\u003cbr\u003eData Sheet Properties\u003cbr\u003eDesign\u003cbr\u003eFilms, Sheets, Fibers \u0026amp; Foams\u003cbr\u003e\u003cstrong\u003eExtensive Processing Data On\u003c\/strong\u003e\u003cbr\u003ePre-Processing\u003cbr\u003eInjection Extrusion \u0026amp; Blow Molding\u003cbr\u003eThermoforming\u003cbr\u003eCalendering\u003cbr\u003eCompression\u003cbr\u003eMachining\u003cbr\u003eJoining\u003cbr\u003eDecorating\u003cbr\u003e\u003cstrong\u003eFunctions Including\u003c\/strong\u003e\u003cbr\u003eMechanical, Thermal \u0026amp; Electrical Properties\u003cbr\u003ePermeability\u003cbr\u003eUV Light and Weathering\u003cbr\u003eSterilization\u003cbr\u003eViscosity\u003cbr\u003eChemical Resistance\u003cbr\u003eFlammability\u003cbr\u003eToxicity\u003cbr\u003eAlso Included\u003cbr\u003eEnvironmental Considerations\u003cbr\u003eAgency Approvals\u003cbr\u003eApplications\u003cbr\u003eCommercial Suppliers\u003cbr\u003eAvailable Grades\u003cbr\u003e\u003cstrong\u003eInformation Presented As\u003c\/strong\u003e\u003cbr\u003eTextual\u003cbr\u003eDiscussions\u003cbr\u003eImages\u003cbr\u003eGraphs\u003cbr\u003eTables","published_at":"2017-06-22T21:14:56-04:00","created_at":"2017-06-22T21:14:56-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","additives","blow molding","book","calendering","chemical resistance","compression","decorating","electrical","Environment","extrusion","fibers","films","flammability","foams","injection","joining","mechanical","morphology","moulding","p-chemistry","permeability","polymer","polypropylene","processing","properties","sheets","sterilization","thermal","thermoforming","thermoplastic","toxicity","UV","viscosity","weathering"],"price":36100,"price_min":36100,"price_max":36100,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378446532,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polypropylene","public_title":null,"options":["Default Title"],"price":36100,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-884207-58-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990","options":["Title"],"media":[{"alt":null,"id":358710083677,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Clive Maier, Teresa Calafut \u003cbr\u003e10-ISBN 1-884207-58-8 \u003cbr\u003e13-\u003cspan\u003eISBN 978-1-884207-58-7\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 425, Figures: 315 , Tables: 115\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolypropylene, The Definitive User's Guide and Databook present in a single volume a panoramic and up-to-the-minute user's guide for today's most important thermoplastic. The book examines every aspect - science, technology, engineering, properties, design, processing, applications - of the continuing development and use of polypropylene. The unique treatment means that specialists can not only find what they want but for the first time can relate to and understand the needs and requirements of others in the product development chain. The entire work is underpinned by very extensive collections of property data that allow the reader to put the information to real industrial and commercial use.\u003cbr\u003eDespite the preeminence and unrivaled versatility of polypropylene as a thermoplastic material to manufacture, relatively few books have been devoted to its study. Polypropylene, The Definitive User's Guide, and Databook not only fills the gap but breaks new ground in doing so. Polypropylene is the most popular thermoplastic in use today, and still one of the fastest growing. Polypropylene, The Definitive User's Guide and Databook is the complete workbook and reference resource for all those who work with the material. Its comprehensive scope uniquely caters to polymer scientists, plastics engineers, processing technologists, product designers, machinery and mold makers, product managers, end users, researchers and students alike.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChemical Properties\u003cbr\u003eMorphology\u003cbr\u003eCommercial Forms\u003cbr\u003eAdditives\u003cbr\u003eData Sheet Properties\u003cbr\u003eDesign\u003cbr\u003eFilms, Sheets, Fibers \u0026amp; Foams\u003cbr\u003e\u003cstrong\u003eExtensive Processing Data On\u003c\/strong\u003e\u003cbr\u003ePre-Processing\u003cbr\u003eInjection Extrusion \u0026amp; Blow Molding\u003cbr\u003eThermoforming\u003cbr\u003eCalendering\u003cbr\u003eCompression\u003cbr\u003eMachining\u003cbr\u003eJoining\u003cbr\u003eDecorating\u003cbr\u003e\u003cstrong\u003eFunctions Including\u003c\/strong\u003e\u003cbr\u003eMechanical, Thermal \u0026amp; Electrical Properties\u003cbr\u003ePermeability\u003cbr\u003eUV Light and Weathering\u003cbr\u003eSterilization\u003cbr\u003eViscosity\u003cbr\u003eChemical Resistance\u003cbr\u003eFlammability\u003cbr\u003eToxicity\u003cbr\u003eAlso Included\u003cbr\u003eEnvironmental Considerations\u003cbr\u003eAgency Approvals\u003cbr\u003eApplications\u003cbr\u003eCommercial Suppliers\u003cbr\u003eAvailable Grades\u003cbr\u003e\u003cstrong\u003eInformation Presented As\u003c\/strong\u003e\u003cbr\u003eTextual\u003cbr\u003eDiscussions\u003cbr\u003eImages\u003cbr\u003eGraphs\u003cbr\u003eTables"}
Polyvinyl Alcohol: Mat...
$125.00
{"id":11242216260,"title":"Polyvinyl Alcohol: Materials, Processing and Applications","handle":"978-1-84735-095-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-095-4 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2009\u003cbr\u003e\u003c\/span\u003eRapra Review Report 191, Vol. 16, No. 11, 2009\u003c\/p\u003e\n\u003cp\u003ePages: 142\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor a number of years, plastic wastes have been accumulating at such a rate that there are now huge environmental concerns with their disposal. Options such as landfill and incineration have not been well received by the public, or indeed government legislation, and focus is now firmly upon the use of biodegradable alternatives for mass applications.\u003cbr\u003e\u003cbr\u003eOne material that has been considered for mass application has been polyvinyl alcohol (PVOH). To date, the use of this material has been confined to comparatively low technology applications such as paper coatings and fibre sizing, which rely upon its inherently poor resistance to moisture to initiate degradation and ultimate disposal.\u003cbr\u003e\u003cbr\u003ePolyvinyl Alcohol: Materials, Processing, and Applications provide a concise introduction to PVOH - the material itself, the processing and applications, and also potential future directions for PVOH. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. \u003cbr\u003e\u003cbr\u003eShe has now worked in the field of polymer processing for over twenty four years and has published work on a variety of plastic related subjects.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:28-04:00","created_at":"2017-06-22T21:13:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","applications","book","p-chemistry","polymer","polyvinyl alcohol","processing","PVOH"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378356548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polyvinyl Alcohol: Materials, Processing and Applications","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-095-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482","options":["Title"],"media":[{"alt":null,"id":358715424861,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-095-4 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2009\u003cbr\u003e\u003c\/span\u003eRapra Review Report 191, Vol. 16, No. 11, 2009\u003c\/p\u003e\n\u003cp\u003ePages: 142\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor a number of years, plastic wastes have been accumulating at such a rate that there are now huge environmental concerns with their disposal. Options such as landfill and incineration have not been well received by the public, or indeed government legislation, and focus is now firmly upon the use of biodegradable alternatives for mass applications.\u003cbr\u003e\u003cbr\u003eOne material that has been considered for mass application has been polyvinyl alcohol (PVOH). To date, the use of this material has been confined to comparatively low technology applications such as paper coatings and fibre sizing, which rely upon its inherently poor resistance to moisture to initiate degradation and ultimate disposal.\u003cbr\u003e\u003cbr\u003ePolyvinyl Alcohol: Materials, Processing, and Applications provide a concise introduction to PVOH - the material itself, the processing and applications, and also potential future directions for PVOH. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. \u003cbr\u003e\u003cbr\u003eShe has now worked in the field of polymer processing for over twenty four years and has published work on a variety of plastic related subjects.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Pol...
$90.00
{"id":11242212996,"title":"Practical Guide to Polyethylene","handle":"978-1-85957-493-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Cornelia Vasile and Mihaela Pascu \u003cbr\u003eISBN 978-1-85957-493-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyethylene is probably the most commonly used polymer in everyday life. It is the polymer that is used to make grocery bags, shampoo bottles, children's toys, and even bullet-proof vests. This Practical Guide provides information about every aspect of polyethylene production and uses in a reader-friendly form. It discusses the advantages and disadvantages of working with polyethylene, offering practical comment on the available types of polyethylene, properties and in-service performance, and processing. \u003cbr\u003e\u003cbr\u003eThe Practical Guide begins with the general background to the polyethylene family, with price, production and market share information. It describes the basic types of polyethylene including virgin \u0026amp; filled polyethylene, copolymers, block and graft polymers and composites, and reviews the types of additives used in polyethylene.Polyethylenes offer a wide range of properties due to differences in structure and molecular weight, and the Practical Guide gives the low down on the properties, including, amongst others, rheological, mechanical, chemical, thermal, and electrical properties. \u003cbr\u003e\u003cbr\u003eDesign of a polymeric product for a certain application is a complex task, and this is particularly true for polyethylene with its variety of forms and available processing methods. This Practical Guide describes the processing issues and conditions for the wide range of techniques used for polyethylene, and also considers post-processing and assembly issues. It.offers guidance on product design and development issues, including materials selection. \u003cbr\u003e\u003cbr\u003eThe Practical Guide to Polyethylene is an indispensable resource for everyone working with this material.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003eProvides a general introduction to the subject and gives information on price, production and market share. \u003cbr\u003e\u003cbr\u003e2 Basic Types\u003cbr\u003eDescribes the basic types of PE available including filled PE, copolymers, blocka nd graft polymers and composites. \u003cbr\u003e\u003cbr\u003e3 Properties\u003cbr\u003eGives the low down on the properties of PE. This section includes: density, molecular weight and molecular weight distribution, crystallinity, thermal properties, mechanical properties, electrical properties, optical properties, surface properties, hardness and scratch resistance, abrasion resitaence, friction, acoustic properties, degradation, biological behaviour, biocompatibility, wear, molecular properties, performance in service, permeability, and crosslinking. \u003cbr\u003e\u003cbr\u003e4 Additives\u003cbr\u003eLists information about the types of additives used with PE including: antioxidants, inhibitors, stabilisers, masterbatches, antistatic agents, EMI\/radiofrequency shielding, antifogging agents, biocides, blowing agents, biosensitisers, coupling agents, crosslinking agents, flame retardants, fillers\/reinforcements\/slip and antiblocking agents, metals deactivators, nucleating agents, and pigments and colorants. \u003cbr\u003e\u003cbr\u003e5 Rheological Behaviour\u003cbr\u003eCovers rheological behaviour including molar mass effects, steady flow properties, melt flow rates\/index, viscosity\/shear rate, dynamic rheological properties, chain structure effects and multiphase systems\/inhomogenous products. \u003cbr\u003e\u003cbr\u003e6 Processing of Polyethylene \u003cbr\u003eDescribes processing of PE including, injection moulding, extrusion, blow and stretched moulding, compression moulding, sintering and coating, thermoforming\/vacuum forming, rotational moulding, transfer moulding, casting, and recycling and recyclates. \u003cbr\u003e\u003cbr\u003e7 Considerations of Product Design and Development\u003cbr\u003eCovers product design and development, including: materials selection, processing techniques, film blowing thermoforming, blow moulding, rotational moulding compression moulding and injection moulding. \u003cbr\u003e\u003cbr\u003e8 Post-Processing and Assembly\u003cbr\u003eCovers post processing and assembly. This includes: joining, assembly\/fabrication, machining, joints, mechanical fastening, and decorating.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCornelia Vasile is a senior researcher at the Romanian Academy, ‘P. Poni’ Institute of Macromolecular Chemistry, and Head of Department of Physical Chemistry of Polymers. Cornelia is also an Associate Professor at Laval University - Quebec Canada, at the ‘Gh. Asachi’ Technical University of Iasi and ‘Al. I. Cuza’ University of Iasi. She is the author or co-author of eight books, 300 scientific papers, and holder of 38 patents.","published_at":"2017-06-22T21:13:17-04:00","created_at":"2017-06-22T21:13:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","abrasion","additives","antiblocking","antifoggings","antioxidants","antistatic","biocides","biosensitisers","blow","blowing","blowing agents","book","chemical","compression","coupling","crosslinking","crystallinity","electrical","EMI\/radiofrequency shielding","fillers","film","flame retardants","flow","hardness","inhibitors","injection","masterbatches","mechanical","melt","molding","moulding","optical","p-chemistry","poly","polyethylene","properties","reinforcemnets","rheological","rotational","scratch","slip","stabilisers","surface","thermal","thermoforming"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378345284,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Polyethylene","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-493-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571","options":["Title"],"media":[{"alt":null,"id":358718275677,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Cornelia Vasile and Mihaela Pascu \u003cbr\u003eISBN 978-1-85957-493-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyethylene is probably the most commonly used polymer in everyday life. It is the polymer that is used to make grocery bags, shampoo bottles, children's toys, and even bullet-proof vests. This Practical Guide provides information about every aspect of polyethylene production and uses in a reader-friendly form. It discusses the advantages and disadvantages of working with polyethylene, offering practical comment on the available types of polyethylene, properties and in-service performance, and processing. \u003cbr\u003e\u003cbr\u003eThe Practical Guide begins with the general background to the polyethylene family, with price, production and market share information. It describes the basic types of polyethylene including virgin \u0026amp; filled polyethylene, copolymers, block and graft polymers and composites, and reviews the types of additives used in polyethylene.Polyethylenes offer a wide range of properties due to differences in structure and molecular weight, and the Practical Guide gives the low down on the properties, including, amongst others, rheological, mechanical, chemical, thermal, and electrical properties. \u003cbr\u003e\u003cbr\u003eDesign of a polymeric product for a certain application is a complex task, and this is particularly true for polyethylene with its variety of forms and available processing methods. This Practical Guide describes the processing issues and conditions for the wide range of techniques used for polyethylene, and also considers post-processing and assembly issues. It.offers guidance on product design and development issues, including materials selection. \u003cbr\u003e\u003cbr\u003eThe Practical Guide to Polyethylene is an indispensable resource for everyone working with this material.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003eProvides a general introduction to the subject and gives information on price, production and market share. \u003cbr\u003e\u003cbr\u003e2 Basic Types\u003cbr\u003eDescribes the basic types of PE available including filled PE, copolymers, blocka nd graft polymers and composites. \u003cbr\u003e\u003cbr\u003e3 Properties\u003cbr\u003eGives the low down on the properties of PE. This section includes: density, molecular weight and molecular weight distribution, crystallinity, thermal properties, mechanical properties, electrical properties, optical properties, surface properties, hardness and scratch resistance, abrasion resitaence, friction, acoustic properties, degradation, biological behaviour, biocompatibility, wear, molecular properties, performance in service, permeability, and crosslinking. \u003cbr\u003e\u003cbr\u003e4 Additives\u003cbr\u003eLists information about the types of additives used with PE including: antioxidants, inhibitors, stabilisers, masterbatches, antistatic agents, EMI\/radiofrequency shielding, antifogging agents, biocides, blowing agents, biosensitisers, coupling agents, crosslinking agents, flame retardants, fillers\/reinforcements\/slip and antiblocking agents, metals deactivators, nucleating agents, and pigments and colorants. \u003cbr\u003e\u003cbr\u003e5 Rheological Behaviour\u003cbr\u003eCovers rheological behaviour including molar mass effects, steady flow properties, melt flow rates\/index, viscosity\/shear rate, dynamic rheological properties, chain structure effects and multiphase systems\/inhomogenous products. \u003cbr\u003e\u003cbr\u003e6 Processing of Polyethylene \u003cbr\u003eDescribes processing of PE including, injection moulding, extrusion, blow and stretched moulding, compression moulding, sintering and coating, thermoforming\/vacuum forming, rotational moulding, transfer moulding, casting, and recycling and recyclates. \u003cbr\u003e\u003cbr\u003e7 Considerations of Product Design and Development\u003cbr\u003eCovers product design and development, including: materials selection, processing techniques, film blowing thermoforming, blow moulding, rotational moulding compression moulding and injection moulding. \u003cbr\u003e\u003cbr\u003e8 Post-Processing and Assembly\u003cbr\u003eCovers post processing and assembly. This includes: joining, assembly\/fabrication, machining, joints, mechanical fastening, and decorating.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCornelia Vasile is a senior researcher at the Romanian Academy, ‘P. Poni’ Institute of Macromolecular Chemistry, and Head of Department of Physical Chemistry of Polymers. Cornelia is also an Associate Professor at Laval University - Quebec Canada, at the ‘Gh. Asachi’ Technical University of Iasi and ‘Al. I. Cuza’ University of Iasi. She is the author or co-author of eight books, 300 scientific papers, and holder of 38 patents."}
Practical Guide to Pol...
$90.00
{"id":11242228932,"title":"Practical Guide to Polyvinyl Chloride","handle":"978-1-85957-511-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S. Patrick \u003cbr\u003eISBN 978-1-85957-511-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 162\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyvinyl chloride (PVC) has been around since the late part of the 19th century, although it was not produced commercially until the 1920s; it is the second largest consumed plastic material after polyethylene. PVC products can be rigid or flexible, opaque or transparent, coloured, and insulating or conducting. There is not just one PVC but a whole family of products tailor-made to suit the needs of each application. \u003cbr\u003e\u003cbr\u003eRapra's Practical Guide to PVC is packed with information for everyone working with PVC. It provides a comprehensive background on the resins and additives, their properties and processing characteristics, as well as discussion of product design and development issues. \u003cbr\u003e\u003cbr\u003ePVC is extremely cost effective in comparison to other plastics with a high degree of versatility in end-use and processing possibilities, as the reader will note from this book. It is durable, easily maintained, and can be produced in a large range of colours. As a result, PVC finds use in an extensive range of applications in virtually all areas of human activity, including medical equipment, construction applications such as flexible roof membranes, pipes and window profiles, toys, automotive parts and electrical cabling. \u003cbr\u003e\u003cbr\u003eThe PVC industry has also started to tackle some of its end-of-life issues. \u003cbr\u003eThere have been, and still are, issues and perceptions over environmental and health acceptance covering vinyl chloride monomer, dioxins, phthalate plasticisers, and lead (and cadmium) based heat stabilisers and these are discussed in depth in this book. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to raw materials suppliers and processors or end-users of PVC, as well as anyone with a general interest in this versatile material: resins and additives properties and testing design issues processing, including post processing and assembly property enhancement sustainable development.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 History\u003cbr\u003e1.3 Major Advantages and Limitations\u003cbr\u003e1.3.1 Major Advantages\u003cbr\u003e1.3.2 Limitations\u003cbr\u003e1.4 Applications\u003cbr\u003e1.5 Competitive Materials\u003cbr\u003e1.6 Market Share and Consumption Trend\u003cbr\u003e1.7 Industry Outline and Major Suppliers\u003cbr\u003e1.8 Material Pricing\u003cbr\u003e1.9 Safety, Health, and Environmental Issues\u003cbr\u003e1.9.1 Phthalate Plasticisers\u003cbr\u003e1.9.2 Heat Stabilisers\u003cbr\u003e1.9.3 Bisphenol A\/Alkylphenols\u003cbr\u003e1.9.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e1.9.5 Green Product Procurement Policies\/Eco-labelling\u003cbr\u003e1.9.6 End-of-life Issues\u003cbr\u003e1.9.7 Fire Performance \u003cbr\u003e2 PVC RESINS\u003cbr\u003e2.1 Raw Starting Materials\u003cbr\u003e2.2 Vinyl Chloride Manufacture\u003cbr\u003e2.3 Polymerisation\u003cbr\u003e2.3.1 Homopolymers\u003cbr\u003e2.3.2 Copolymers and Terpolymers\u003cbr\u003e2.3.3 Chlorinated PVC (C-PVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.4.4 Porosity\u003cbr\u003e2.5 Storage and Transportation\u003cbr\u003e2.6 Role of Additives\u003cbr\u003e2.7 Identification \u003cbr\u003e3 PVC ADDITIVES\u003cbr\u003e3.1 Heat Stabilisers\u003cbr\u003e3.1.1 Solid Form\u003cbr\u003e3.1.2 Liquid Stabilisers\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 PVC\/Plasticiser Compatibility\u003cbr\u003e3.2.2 Plasticisation Process\u003cbr\u003e3.2.3 Plasticiser Influence on Physical Properties\u003cbr\u003e3.2.4 Plasticiser Choice and Selection\u003cbr\u003e3.2.5 Plasticiser Types\u003cbr\u003e3.3 Impact Modifiers\u003cbr\u003e3.4 Process Aids\u003cbr\u003e3.5 Lubricants\u003cbr\u003e3.6 Fillers\u003cbr\u003e3.6.1 Calcium Carbonate\u003cbr\u003e3.6.2 Other Fillers\u003cbr\u003e3.7 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e3.8 Pigments\u003cbr\u003e3.8.1 Titanium Dioxide (TiO2)\u003cbr\u003e3.8.2 Other Inorganic Pigments\u003cbr\u003e3.8.3 Organic Pigments\u003cbr\u003e3.8.4 Pigment Concentrates and Masterbatches\u003cbr\u003e3.9 Microbiocides\u003cbr\u003e3.10 Blowing Agents\u003cbr\u003e3.11 Antioxidants and Light Stabilisers\u003cbr\u003e3.12 Other PVC-P Additives\u003cbr\u003e3.12.1 Antistatic Agents\u003cbr\u003e3.12.2 Viscosity and Rheology Modifiers\u003cbr\u003e3.12.3 Bonding Agents\/Adhesion Promoters \u003cbr\u003e4 TESTING AND PROPERTIES\u003cbr\u003e4.1 Density\u003cbr\u003e4.2 Water Absorption\u003cbr\u003e4.3 Mechanical Properties\u003cbr\u003e4.3.1 Hardness\u003cbr\u003e4.3.2 Tensile Properties\u003cbr\u003e4.3.3 Flexural Properties\u003cbr\u003e4.3.4 Impact Properties\u003cbr\u003e4.3.5 Fatigue\u003cbr\u003e4.4 Thermal Properties\u003cbr\u003e4.4.1 Thermal Conductivity\u003cbr\u003e4.4.2 Heat Deflection Temperature\u003cbr\u003e4.4.3 Vicat Softening Point\u003cbr\u003e4.4.4 Linear Expansion Coefficient\u003cbr\u003e4.4.5 Specific Heat Capacity\u003cbr\u003e4.4.6 Cold Flex Temperature\u003cbr\u003e4.5 Electrical Properties\u003cbr\u003e4.5.1 Volume Resistivity\u003cbr\u003e4.5.2 Dielectric Constant or Relative Permittivity\u003cbr\u003e4.5.3 Loss Modulus or Dissipation Factor\u003cbr\u003e4.5.4 Breakdown Voltage or Dielectric Strength\u003cbr\u003e4.5.5 Arc Resistance\u003cbr\u003e4.6 Fire Properties\u003cbr\u003e4.6.1 Self-ignition Temperature\u003cbr\u003e4.6.2 Flame Ignition Temperature\u003cbr\u003e4.6.3 Limiting Oxygen Index (LOI)\u003cbr\u003e4.6.4 NBS Cone Calorimeter\u003cbr\u003e4.6.5 Smoke Evolution\u003cbr\u003e4.6.6 Fire Performance of PVC\u003cbr\u003e4.6.7 Fire Testing in the EU\u003cbr\u003e4.7 Optical Properties\u003cbr\u003e4.7.1 Transparency\u003cbr\u003e4.7.2 Gloss Level\u003cbr\u003e4.7.3 Colour\u003cbr\u003e4.8 Surface Properties\u003cbr\u003e4.8.1 Abrasion Resistance\u003cbr\u003e4.8.2 Surface Resistivity\u003cbr\u003e4.9 Biological Behaviour\u003cbr\u003e4.9.1 Assessment under Food and Water Legislation\u003cbr\u003e4.9.2 Assessment under Medical Legislation\u003cbr\u003e4.9.3 Sterilisation\u003cbr\u003e4.10 Resistance to Micro-organisms\u003cbr\u003e4.11 Performance in Service\u003cbr\u003e4.11.1 Maximum Continuous Use Temperature\u003cbr\u003e4.11.2 Stability to Light, UV Radiation, and Weathering\u003cbr\u003e4.11.4 Permeability \u003cbr\u003e5 DESIGN\u003cbr\u003e5.1 Design Considerations for PVC-U Materials\u003cbr\u003e5.1.1 Pipe\u003cbr\u003e5.1.2 Exterior Construction Applications\u003cbr\u003e5.1.3 Interior Construction Applications\u003cbr\u003e5.2 Design Considerations for PVC-P Materials\u003cbr\u003e5.2.1 Electrical Cable\u003cbr\u003e5.2.2 Resilient Flooring\u003cbr\u003e5.2.3 Wall Covering\u003cbr\u003e5.2.4 Roofing Membranes\u003cbr\u003e5.2.5 Coated Metal\u003cbr\u003e5.2.6 Toys and Baby Care Items\u003cbr\u003e5.2.7 Safety and Personal Protection\u003cbr\u003e5.2.8 Automotive and Transport\u003cbr\u003e5.2.9 Advertising Banners \u003cbr\u003e6 PROCESSING OF PVC\u003cbr\u003e6.1 Dry Blend Mixing\u003cbr\u003e6.1.1 High Intensity\u003cbr\u003e6.1.2 Low Intensity\u003cbr\u003e6.2 Liquid PVC Blending\u003cbr\u003e6.3 Gelation\u003cbr\u003e6.4 Melt Processing\u003cbr\u003e6.4.1 Melt Compounding\u003cbr\u003e6.4.2 Extrusion\u003cbr\u003e6.5 Injection Moulding\u003cbr\u003e6.6 Extrusion Blow Moulding\u003cbr\u003e6.7 Calendering\u003cbr\u003e6.8 Plastisol Moulding Processes\u003cbr\u003e6.8.1 Rheology\u003cbr\u003e6.8.2 Spreading or Coating\u003cbr\u003e6.8.3 Rotational, Slush, and Dip Moulding\u003cbr\u003e6.9 Powder Moulding Processes\u003cbr\u003e6.9.1 Fluidised Bed \u003cbr\u003e7 PROPERTY ENHANCEMENT OF PVC\u003cbr\u003e7.1 Crosslinked PVC\u003cbr\u003e7.1.1 Chemical Crosslinking\u003cbr\u003e7.1.2 Irradiation Crosslinking\u003cbr\u003e7.2 Orientation\u003cbr\u003e7.2.1 Pipe\u003cbr\u003e7.2.2 Sheet\u003cbr\u003e7.3 Blends and Alloys\u003cbr\u003e7.3.1 Flexibilisers\/Internal Plasticisers\u003cbr\u003e7.3.2 Ultrahigh Molecular Weight (UHMW) PVC\u003cbr\u003e7.4 Nanocomposites\u003cbr\u003e7.4.1 Melt Intercalation\u003cbr\u003e7.4.2 Solvent Method\u003cbr\u003e7.4.3 In Situ Polymerisation\u003cbr\u003e7.5 Wood Composites \u003cbr\u003e8 POST-PROCESSING AND ASSEMBLY\u003cbr\u003e8.1 Post-processing\u003cbr\u003e8.1.1 Thermoforming\u003cbr\u003e8.1.2 Printing and Coating\u003cbr\u003e8.2 Assembly Techniques\u003cbr\u003e8.2.1 Welding\u003cbr\u003e8.2.2 Adhesion\u003cbr\u003e8.3 Mechanical Assembly\u003cbr\u003e8.3.1 Machining, Cutting, and Fastening \u003cbr\u003e9 SUSTAINABLE DEVELOPMENT\u003cbr\u003e9.1 Environmental Attack and Response\u003cbr\u003e9.2 Vinyl 2010\/Chlorine Industry Sustainability Commitments\u003cbr\u003e9.2.1 Chlorine Generation\u003cbr\u003e9.2.2 PVC Production Industry Charters\u003cbr\u003e9.2.3 Conversion with Additives\u003cbr\u003e9.3 End of Life and Waste Management\u003cbr\u003e9.3.1 PVC-rich Waste: Mechanical Recycling\u003cbr\u003e9.3.2 PVC Feedstock Recycling\u003cbr\u003e9.3.3 Incineration\/Energy Recovery\u003cbr\u003e9.3.4 Controlled Landfill\u003cbr\u003e9.4 Life Cycle Assessments\u003cbr\u003e9.4.1 Eco-profiles\u003cbr\u003e9.5 Social Factors \u003cbr\u003e10 CAUSES OF FAILURE\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick has worked extensively in the PVC and additives business and been involved in both market and technical developments in this competitive field. Before retirement, he was Global R\u0026amp;D Manager with Akzo Nobel \/ Akcros Chemicals. He is now utilising his experience as a part-time lecturer at IPTME, Loughborough University and as a coordinator for a Research Network established to improve the sustainable use of PVC. Stuart is a Fellow Institute of Materials, Minerals, and Mining, Chartered Scientist, Chartered Chemist, Member of the Royal Society of Chemistry.","published_at":"2017-06-22T21:14:09-04:00","created_at":"2017-06-22T21:14:09-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","A\/Alkylphenols","additives","afety","bisphenol","blow molding","blow moulding","book","calendering","environmental","epoxidised","ESBO","extrusion","fillers","health","injection molding","injection moulding","molecular weight","p-chemistry","particle","phthalate","pipe","plasticisers","plasticizers","plastics","polymer","polyvinyl chloride","porosity","powder","pvc","resines","rheology","sheet","soya bean oil","storage","transportation"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378397700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Polyvinyl Chloride","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-511-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592","options":["Title"],"media":[{"alt":null,"id":358719488093,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S. Patrick \u003cbr\u003eISBN 978-1-85957-511-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 162\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyvinyl chloride (PVC) has been around since the late part of the 19th century, although it was not produced commercially until the 1920s; it is the second largest consumed plastic material after polyethylene. PVC products can be rigid or flexible, opaque or transparent, coloured, and insulating or conducting. There is not just one PVC but a whole family of products tailor-made to suit the needs of each application. \u003cbr\u003e\u003cbr\u003eRapra's Practical Guide to PVC is packed with information for everyone working with PVC. It provides a comprehensive background on the resins and additives, their properties and processing characteristics, as well as discussion of product design and development issues. \u003cbr\u003e\u003cbr\u003ePVC is extremely cost effective in comparison to other plastics with a high degree of versatility in end-use and processing possibilities, as the reader will note from this book. It is durable, easily maintained, and can be produced in a large range of colours. As a result, PVC finds use in an extensive range of applications in virtually all areas of human activity, including medical equipment, construction applications such as flexible roof membranes, pipes and window profiles, toys, automotive parts and electrical cabling. \u003cbr\u003e\u003cbr\u003eThe PVC industry has also started to tackle some of its end-of-life issues. \u003cbr\u003eThere have been, and still are, issues and perceptions over environmental and health acceptance covering vinyl chloride monomer, dioxins, phthalate plasticisers, and lead (and cadmium) based heat stabilisers and these are discussed in depth in this book. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to raw materials suppliers and processors or end-users of PVC, as well as anyone with a general interest in this versatile material: resins and additives properties and testing design issues processing, including post processing and assembly property enhancement sustainable development.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 History\u003cbr\u003e1.3 Major Advantages and Limitations\u003cbr\u003e1.3.1 Major Advantages\u003cbr\u003e1.3.2 Limitations\u003cbr\u003e1.4 Applications\u003cbr\u003e1.5 Competitive Materials\u003cbr\u003e1.6 Market Share and Consumption Trend\u003cbr\u003e1.7 Industry Outline and Major Suppliers\u003cbr\u003e1.8 Material Pricing\u003cbr\u003e1.9 Safety, Health, and Environmental Issues\u003cbr\u003e1.9.1 Phthalate Plasticisers\u003cbr\u003e1.9.2 Heat Stabilisers\u003cbr\u003e1.9.3 Bisphenol A\/Alkylphenols\u003cbr\u003e1.9.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e1.9.5 Green Product Procurement Policies\/Eco-labelling\u003cbr\u003e1.9.6 End-of-life Issues\u003cbr\u003e1.9.7 Fire Performance \u003cbr\u003e2 PVC RESINS\u003cbr\u003e2.1 Raw Starting Materials\u003cbr\u003e2.2 Vinyl Chloride Manufacture\u003cbr\u003e2.3 Polymerisation\u003cbr\u003e2.3.1 Homopolymers\u003cbr\u003e2.3.2 Copolymers and Terpolymers\u003cbr\u003e2.3.3 Chlorinated PVC (C-PVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.4.4 Porosity\u003cbr\u003e2.5 Storage and Transportation\u003cbr\u003e2.6 Role of Additives\u003cbr\u003e2.7 Identification \u003cbr\u003e3 PVC ADDITIVES\u003cbr\u003e3.1 Heat Stabilisers\u003cbr\u003e3.1.1 Solid Form\u003cbr\u003e3.1.2 Liquid Stabilisers\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 PVC\/Plasticiser Compatibility\u003cbr\u003e3.2.2 Plasticisation Process\u003cbr\u003e3.2.3 Plasticiser Influence on Physical Properties\u003cbr\u003e3.2.4 Plasticiser Choice and Selection\u003cbr\u003e3.2.5 Plasticiser Types\u003cbr\u003e3.3 Impact Modifiers\u003cbr\u003e3.4 Process Aids\u003cbr\u003e3.5 Lubricants\u003cbr\u003e3.6 Fillers\u003cbr\u003e3.6.1 Calcium Carbonate\u003cbr\u003e3.6.2 Other Fillers\u003cbr\u003e3.7 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e3.8 Pigments\u003cbr\u003e3.8.1 Titanium Dioxide (TiO2)\u003cbr\u003e3.8.2 Other Inorganic Pigments\u003cbr\u003e3.8.3 Organic Pigments\u003cbr\u003e3.8.4 Pigment Concentrates and Masterbatches\u003cbr\u003e3.9 Microbiocides\u003cbr\u003e3.10 Blowing Agents\u003cbr\u003e3.11 Antioxidants and Light Stabilisers\u003cbr\u003e3.12 Other PVC-P Additives\u003cbr\u003e3.12.1 Antistatic Agents\u003cbr\u003e3.12.2 Viscosity and Rheology Modifiers\u003cbr\u003e3.12.3 Bonding Agents\/Adhesion Promoters \u003cbr\u003e4 TESTING AND PROPERTIES\u003cbr\u003e4.1 Density\u003cbr\u003e4.2 Water Absorption\u003cbr\u003e4.3 Mechanical Properties\u003cbr\u003e4.3.1 Hardness\u003cbr\u003e4.3.2 Tensile Properties\u003cbr\u003e4.3.3 Flexural Properties\u003cbr\u003e4.3.4 Impact Properties\u003cbr\u003e4.3.5 Fatigue\u003cbr\u003e4.4 Thermal Properties\u003cbr\u003e4.4.1 Thermal Conductivity\u003cbr\u003e4.4.2 Heat Deflection Temperature\u003cbr\u003e4.4.3 Vicat Softening Point\u003cbr\u003e4.4.4 Linear Expansion Coefficient\u003cbr\u003e4.4.5 Specific Heat Capacity\u003cbr\u003e4.4.6 Cold Flex Temperature\u003cbr\u003e4.5 Electrical Properties\u003cbr\u003e4.5.1 Volume Resistivity\u003cbr\u003e4.5.2 Dielectric Constant or Relative Permittivity\u003cbr\u003e4.5.3 Loss Modulus or Dissipation Factor\u003cbr\u003e4.5.4 Breakdown Voltage or Dielectric Strength\u003cbr\u003e4.5.5 Arc Resistance\u003cbr\u003e4.6 Fire Properties\u003cbr\u003e4.6.1 Self-ignition Temperature\u003cbr\u003e4.6.2 Flame Ignition Temperature\u003cbr\u003e4.6.3 Limiting Oxygen Index (LOI)\u003cbr\u003e4.6.4 NBS Cone Calorimeter\u003cbr\u003e4.6.5 Smoke Evolution\u003cbr\u003e4.6.6 Fire Performance of PVC\u003cbr\u003e4.6.7 Fire Testing in the EU\u003cbr\u003e4.7 Optical Properties\u003cbr\u003e4.7.1 Transparency\u003cbr\u003e4.7.2 Gloss Level\u003cbr\u003e4.7.3 Colour\u003cbr\u003e4.8 Surface Properties\u003cbr\u003e4.8.1 Abrasion Resistance\u003cbr\u003e4.8.2 Surface Resistivity\u003cbr\u003e4.9 Biological Behaviour\u003cbr\u003e4.9.1 Assessment under Food and Water Legislation\u003cbr\u003e4.9.2 Assessment under Medical Legislation\u003cbr\u003e4.9.3 Sterilisation\u003cbr\u003e4.10 Resistance to Micro-organisms\u003cbr\u003e4.11 Performance in Service\u003cbr\u003e4.11.1 Maximum Continuous Use Temperature\u003cbr\u003e4.11.2 Stability to Light, UV Radiation, and Weathering\u003cbr\u003e4.11.4 Permeability \u003cbr\u003e5 DESIGN\u003cbr\u003e5.1 Design Considerations for PVC-U Materials\u003cbr\u003e5.1.1 Pipe\u003cbr\u003e5.1.2 Exterior Construction Applications\u003cbr\u003e5.1.3 Interior Construction Applications\u003cbr\u003e5.2 Design Considerations for PVC-P Materials\u003cbr\u003e5.2.1 Electrical Cable\u003cbr\u003e5.2.2 Resilient Flooring\u003cbr\u003e5.2.3 Wall Covering\u003cbr\u003e5.2.4 Roofing Membranes\u003cbr\u003e5.2.5 Coated Metal\u003cbr\u003e5.2.6 Toys and Baby Care Items\u003cbr\u003e5.2.7 Safety and Personal Protection\u003cbr\u003e5.2.8 Automotive and Transport\u003cbr\u003e5.2.9 Advertising Banners \u003cbr\u003e6 PROCESSING OF PVC\u003cbr\u003e6.1 Dry Blend Mixing\u003cbr\u003e6.1.1 High Intensity\u003cbr\u003e6.1.2 Low Intensity\u003cbr\u003e6.2 Liquid PVC Blending\u003cbr\u003e6.3 Gelation\u003cbr\u003e6.4 Melt Processing\u003cbr\u003e6.4.1 Melt Compounding\u003cbr\u003e6.4.2 Extrusion\u003cbr\u003e6.5 Injection Moulding\u003cbr\u003e6.6 Extrusion Blow Moulding\u003cbr\u003e6.7 Calendering\u003cbr\u003e6.8 Plastisol Moulding Processes\u003cbr\u003e6.8.1 Rheology\u003cbr\u003e6.8.2 Spreading or Coating\u003cbr\u003e6.8.3 Rotational, Slush, and Dip Moulding\u003cbr\u003e6.9 Powder Moulding Processes\u003cbr\u003e6.9.1 Fluidised Bed \u003cbr\u003e7 PROPERTY ENHANCEMENT OF PVC\u003cbr\u003e7.1 Crosslinked PVC\u003cbr\u003e7.1.1 Chemical Crosslinking\u003cbr\u003e7.1.2 Irradiation Crosslinking\u003cbr\u003e7.2 Orientation\u003cbr\u003e7.2.1 Pipe\u003cbr\u003e7.2.2 Sheet\u003cbr\u003e7.3 Blends and Alloys\u003cbr\u003e7.3.1 Flexibilisers\/Internal Plasticisers\u003cbr\u003e7.3.2 Ultrahigh Molecular Weight (UHMW) PVC\u003cbr\u003e7.4 Nanocomposites\u003cbr\u003e7.4.1 Melt Intercalation\u003cbr\u003e7.4.2 Solvent Method\u003cbr\u003e7.4.3 In Situ Polymerisation\u003cbr\u003e7.5 Wood Composites \u003cbr\u003e8 POST-PROCESSING AND ASSEMBLY\u003cbr\u003e8.1 Post-processing\u003cbr\u003e8.1.1 Thermoforming\u003cbr\u003e8.1.2 Printing and Coating\u003cbr\u003e8.2 Assembly Techniques\u003cbr\u003e8.2.1 Welding\u003cbr\u003e8.2.2 Adhesion\u003cbr\u003e8.3 Mechanical Assembly\u003cbr\u003e8.3.1 Machining, Cutting, and Fastening \u003cbr\u003e9 SUSTAINABLE DEVELOPMENT\u003cbr\u003e9.1 Environmental Attack and Response\u003cbr\u003e9.2 Vinyl 2010\/Chlorine Industry Sustainability Commitments\u003cbr\u003e9.2.1 Chlorine Generation\u003cbr\u003e9.2.2 PVC Production Industry Charters\u003cbr\u003e9.2.3 Conversion with Additives\u003cbr\u003e9.3 End of Life and Waste Management\u003cbr\u003e9.3.1 PVC-rich Waste: Mechanical Recycling\u003cbr\u003e9.3.2 PVC Feedstock Recycling\u003cbr\u003e9.3.3 Incineration\/Energy Recovery\u003cbr\u003e9.3.4 Controlled Landfill\u003cbr\u003e9.4 Life Cycle Assessments\u003cbr\u003e9.4.1 Eco-profiles\u003cbr\u003e9.5 Social Factors \u003cbr\u003e10 CAUSES OF FAILURE\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick has worked extensively in the PVC and additives business and been involved in both market and technical developments in this competitive field. Before retirement, he was Global R\u0026amp;D Manager with Akzo Nobel \/ Akcros Chemicals. He is now utilising his experience as a part-time lecturer at IPTME, Loughborough University and as a coordinator for a Research Network established to improve the sustainable use of PVC. Stuart is a Fellow Institute of Materials, Minerals, and Mining, Chartered Scientist, Chartered Chemist, Member of the Royal Society of Chemistry."}
PVC - Compounds, Proce...
$72.00
{"id":11242256068,"title":"PVC - Compounds, Processing and Applications","handle":"978-1-85957-029-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Leadbitter, J.A. Day, J.L. Ryan \u003cbr\u003eISBN 978-1-85957-029-6 \u003cbr\u003e\u003cbr\u003eHydro Polymer Ltd.\u003cbr\u003eReview Report\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e120 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report reviews the composition and synthesis of PVC, composition and formulation technology, compounding and manufacturing technology, materials obtained by blending. 500 abstracts outlines suggested references which contain required data. \u003cbr\u003e\u003cbr\u003eFrom the Table of Contents: \u003cbr\u003ePVC Resins \u003cbr\u003eHomopolymers \u003cbr\u003eCopolymers \u003cbr\u003eTerpolymers \u003cbr\u003eChlorinated PVC \u003cbr\u003eCommercial Aspects of PVC \u003cbr\u003eComparison of Formulation Technology \u003cbr\u003eCompounding Technology \u003cbr\u003eProcess Technology \u003cbr\u003ePVC Blends and Alloys\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:32-04:00","created_at":"2017-06-22T21:15:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","alloys","blends","book","composition","copolymer","copolymers","homopolymers","p-chemistry","polymer","PVC compounds","pvc processing"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378496644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC - Compounds, Processing and Applications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-029-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574","options":["Title"],"media":[{"alt":null,"id":412810444893,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Leadbitter, J.A. Day, J.L. Ryan \u003cbr\u003eISBN 978-1-85957-029-6 \u003cbr\u003e\u003cbr\u003eHydro Polymer Ltd.\u003cbr\u003eReview Report\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e120 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report reviews the composition and synthesis of PVC, composition and formulation technology, compounding and manufacturing technology, materials obtained by blending. 500 abstracts outlines suggested references which contain required data. \u003cbr\u003e\u003cbr\u003eFrom the Table of Contents: \u003cbr\u003ePVC Resins \u003cbr\u003eHomopolymers \u003cbr\u003eCopolymers \u003cbr\u003eTerpolymers \u003cbr\u003eChlorinated PVC \u003cbr\u003eCommercial Aspects of PVC \u003cbr\u003eComparison of Formulation Technology \u003cbr\u003eCompounding Technology \u003cbr\u003eProcess Technology \u003cbr\u003ePVC Blends and Alloys\u003cbr\u003e\u003cbr\u003e"}
PVC Compound and Proce...
$125.00
{"id":11242228996,"title":"PVC Compound and Processing","handle":"978-1-85957-472-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Stuart G. Patrick \u003cbr\u003eISBN 978-1-85957-472-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003epages: 176\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe PVC global market size in 2000 was around 25,400 kt. Pipes and fittings constitute the largest volume application at 36% of the marketplace with profiles at 13%. Thus, PVC is one of the most widely used plastics in the world. This overview covers the basics of PVC formulation and processing, while extending the information to include the latest developments in materials and technology. This makes the report accessible and useful to all levels of the industry. \u003cbr\u003e\u003cbr\u003ePVC is of low thermal stability and high melt viscosity. Therefore, it is combined with a number of additives to varying properties to suit different end-use applications. PVC formulation is key to processing a success. This review looks at the different additive types available, their uses and new developments. The main groups of additives are: heat stabilisers, plasticisers, impact modifiers, process aids, lubricants, fillers, flame retardants, pigments, blowing agents, biocides, viscosity modifiers, antistatic agents, antioxidants, UV absorbers, antifogging agents and bonding agents. Formulation changes are being driven by legislation banning heavy metals and possible health risks from additives such as phthalate plasticisers. \u003cbr\u003e\u003cbr\u003ePVC compounding methods are considered here. There are many different ways of processing PVC: extrusion, calendering, injection moulding, extrusion\/stretch blow moulding, spreading\/coating, rotational moulding, dip moulding and slush moulding. The technology is covered in this report. Fabrication and treatment of PVC are also reviewed, for example, surface modification to enhance biocompatibility and reduce plasticiser migration. \u003cbr\u003e\u003cbr\u003eThe PVC industry has been under intense scrutiny in recent years due to health and environmental safety concerns. The industry has responded proactively to these pressures by reviewing practice and undertaking research into ways of reducing all types of risk. Sustainability issues have also been addressed and many different recycling projects have been set up. The legislation is driving this work forward with EU Directives on such issues as disposal of end-of-life vehicles. \u003cbr\u003e\u003cbr\u003eOver 400 references from recent literature are cited in the review, which is accompanied by abstracts from the Rapra Polymer Library database, to facilitate further reading. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Polyvinyl Chloride\u003cbr\u003e1.2 PVC Compounds\u003cbr\u003e1.3 History \u003cbr\u003e2 PVC Industry\u003cbr\u003e2.1 PVC Resin\u003cbr\u003e2.1.1 Vinyl Chloride Manufacture\u003cbr\u003e2.1.2 Homopolymers\u003cbr\u003e2.2 Copolymers and Terpolymers\u003cbr\u003e2.3 Chlorinated PVC (CPVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.5 Key Additives\u003cbr\u003e2.6 Processing Techniques\u003cbr\u003e2.7 Industry Outline\u003cbr\u003e2.7.1 PVC Resin Producers\u003cbr\u003e2.7.2 PVC Compounders\u003cbr\u003e2.7.3 Global Market by Application \u003cbr\u003e3 Health and Environmental Aspects of PVC\u003cbr\u003e3.1 VCM and PVC Production\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 Phthalates\u003cbr\u003e3.2.2 Adipates\u003cbr\u003e3.3 Heat Stabilisers\u003cbr\u003e3.3.1 Lead Based Stabilisers\u003cbr\u003e3.3.2 Organotin Stabilisers\u003cbr\u003e3.3.3 Bisphenol A\/Alkylphenols\u003cbr\u003e3.3.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e3.4 Waste Management\u003cbr\u003e3.4.1 Incineration\u003cbr\u003e3.4.2 Landfill\u003cbr\u003e3.4.3 Recycling \u003cbr\u003e4 Additives, Formulations, and Applications\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Heat Stabilisers\u003cbr\u003e4.2.1 Solid Stabilisers\u003cbr\u003e4.3 Plasticisers\u003cbr\u003e4.3.1 Phthalate Alternatives\u003cbr\u003e4.3.2 Polymeric Plasticisers\u003cbr\u003e4.4 Multifunctional Additives\u003cbr\u003e4.5 Property Modifiers\u003cbr\u003e4.5.1 Process Aids\u003cbr\u003e4.5.2 Impact Modifiers\u003cbr\u003e4.5.3 Heat Distortion Temperature Modification\u003cbr\u003e4.5.4 Modifiers for Semi-Rigid and Plasticised Applications\u003cbr\u003e4.6 Lubricants\u003cbr\u003e4.7 Fillers\u003cbr\u003e4.7.1 Calcium Carbonate\u003cbr\u003e4.7.2 Wood Fillers\/Fibres\/Flour Composites\u003cbr\u003e4.7.3 Glass Beads\/Glass Fibre\u003cbr\u003e4.7.4 Conductive and Magnetic Fillers\u003cbr\u003e4.7.5 Other Fillers\u003cbr\u003e4.7.6 Nanocomposites\u003cbr\u003e4.8 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e4.9 Pigments\u003cbr\u003e4.10 Biocides\u003cbr\u003e4.11 Blowing Agents\u003cbr\u003e4.12 Antioxidants and Light Stabilisers\u003cbr\u003e4.13 Other Additives for PVC-P\u003cbr\u003e4.13.1 Antistatic Agents\u003cbr\u003e4.13.2 Viscosity Modifiers\u003cbr\u003e4.13.3 Antifogging Agents\u003cbr\u003e4.13.4 Bonding Agents\u003cbr\u003e4.14 Formulations\u003cbr\u003e4.14.1 PVC-U Compounds and Testing\u003cbr\u003e4.14.2 Crosslinked PVC\u003cbr\u003e4.14.3 Medical and Food Contact Use\u003cbr\u003e4.14.4 Membranes \u003cbr\u003e5 Compounding and Processing Technology\u003cbr\u003e5.1 Compounding\u003cbr\u003e5.1.1 Dry Blend Mixing\u003cbr\u003e5.1.2 Melt Compounding\u003cbr\u003e5.1.3 Liquid PVC Blending\u003cbr\u003e5.2 Processing\u003cbr\u003e5.2.1 Gelation\u003cbr\u003e5.2.2 Extrusion\u003cbr\u003e5.2.3 Injection Moulding\u003cbr\u003e5.2.4. Extrusion Blow Moulding\u003cbr\u003e5.2.5 Orientation\u003cbr\u003e5.2.6 Calendering\u003cbr\u003e5.2.7 Moulding Processes for Plastisols and Pastes \u003cbr\u003e6 Fabrication and Treatment\u003cbr\u003e6.1 Thermoforming\u003cbr\u003e6.2 Surface Modification Processes\u003cbr\u003e6.3 Coatings\u003cbr\u003e6.4 Adhesion \u003cbr\u003e7 PVC and Sustainable Development\u003cbr\u003e7.1 Waste Management\u003cbr\u003e7.1.1 PVC Rich Waste - Mechanical Recycling\u003cbr\u003e7.1.2 PVC Feedstock Recycling\u003cbr\u003e7.1.3 Incineration\/Energy Recovery \u003cbr\u003e8 Conclusions \u003cbr\u003eAcknowledgement\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick is a Chartered Chemist and a Member of the Royal Society of Chemistry. He is chairman of the PVC Committee of the IOM3. His career has included 23 years in the PVC Additives business of Akzo Nobel\/Akcros Chemicals, where he has been involved in technical services, research, and development. From 2001 to 2003, he was the Global Research and Development Manager. Current projects include sustainability research at IPTME, Loughborough.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:10-04:00","created_at":"2017-06-22T21:14:10-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","additives","antioxidants","antistatic","beads","biocides","blow moulding","blowing agents","book","calcium carbonate","calendering","coating","composites","compounds","conductive","extrusion","fibres","fillers","flame retardants","glass","injection moulding","magnetic","melt","modifiers","nanocomposites","orientation","p-chemistry","phthalate","pigments","plasticisers","plasticizers","polymer","polymeric","process aids","processing","PVC","smoke suppressants","stabilisers","stability","viscosity","waste","wood"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378397956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Compound and Processing","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-472-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830","options":["Title"],"media":[{"alt":null,"id":358726664285,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Stuart G. Patrick \u003cbr\u003eISBN 978-1-85957-472-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003epages: 176\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe PVC global market size in 2000 was around 25,400 kt. Pipes and fittings constitute the largest volume application at 36% of the marketplace with profiles at 13%. Thus, PVC is one of the most widely used plastics in the world. This overview covers the basics of PVC formulation and processing, while extending the information to include the latest developments in materials and technology. This makes the report accessible and useful to all levels of the industry. \u003cbr\u003e\u003cbr\u003ePVC is of low thermal stability and high melt viscosity. Therefore, it is combined with a number of additives to varying properties to suit different end-use applications. PVC formulation is key to processing a success. This review looks at the different additive types available, their uses and new developments. The main groups of additives are: heat stabilisers, plasticisers, impact modifiers, process aids, lubricants, fillers, flame retardants, pigments, blowing agents, biocides, viscosity modifiers, antistatic agents, antioxidants, UV absorbers, antifogging agents and bonding agents. Formulation changes are being driven by legislation banning heavy metals and possible health risks from additives such as phthalate plasticisers. \u003cbr\u003e\u003cbr\u003ePVC compounding methods are considered here. There are many different ways of processing PVC: extrusion, calendering, injection moulding, extrusion\/stretch blow moulding, spreading\/coating, rotational moulding, dip moulding and slush moulding. The technology is covered in this report. Fabrication and treatment of PVC are also reviewed, for example, surface modification to enhance biocompatibility and reduce plasticiser migration. \u003cbr\u003e\u003cbr\u003eThe PVC industry has been under intense scrutiny in recent years due to health and environmental safety concerns. The industry has responded proactively to these pressures by reviewing practice and undertaking research into ways of reducing all types of risk. Sustainability issues have also been addressed and many different recycling projects have been set up. The legislation is driving this work forward with EU Directives on such issues as disposal of end-of-life vehicles. \u003cbr\u003e\u003cbr\u003eOver 400 references from recent literature are cited in the review, which is accompanied by abstracts from the Rapra Polymer Library database, to facilitate further reading. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Polyvinyl Chloride\u003cbr\u003e1.2 PVC Compounds\u003cbr\u003e1.3 History \u003cbr\u003e2 PVC Industry\u003cbr\u003e2.1 PVC Resin\u003cbr\u003e2.1.1 Vinyl Chloride Manufacture\u003cbr\u003e2.1.2 Homopolymers\u003cbr\u003e2.2 Copolymers and Terpolymers\u003cbr\u003e2.3 Chlorinated PVC (CPVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.5 Key Additives\u003cbr\u003e2.6 Processing Techniques\u003cbr\u003e2.7 Industry Outline\u003cbr\u003e2.7.1 PVC Resin Producers\u003cbr\u003e2.7.2 PVC Compounders\u003cbr\u003e2.7.3 Global Market by Application \u003cbr\u003e3 Health and Environmental Aspects of PVC\u003cbr\u003e3.1 VCM and PVC Production\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 Phthalates\u003cbr\u003e3.2.2 Adipates\u003cbr\u003e3.3 Heat Stabilisers\u003cbr\u003e3.3.1 Lead Based Stabilisers\u003cbr\u003e3.3.2 Organotin Stabilisers\u003cbr\u003e3.3.3 Bisphenol A\/Alkylphenols\u003cbr\u003e3.3.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e3.4 Waste Management\u003cbr\u003e3.4.1 Incineration\u003cbr\u003e3.4.2 Landfill\u003cbr\u003e3.4.3 Recycling \u003cbr\u003e4 Additives, Formulations, and Applications\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Heat Stabilisers\u003cbr\u003e4.2.1 Solid Stabilisers\u003cbr\u003e4.3 Plasticisers\u003cbr\u003e4.3.1 Phthalate Alternatives\u003cbr\u003e4.3.2 Polymeric Plasticisers\u003cbr\u003e4.4 Multifunctional Additives\u003cbr\u003e4.5 Property Modifiers\u003cbr\u003e4.5.1 Process Aids\u003cbr\u003e4.5.2 Impact Modifiers\u003cbr\u003e4.5.3 Heat Distortion Temperature Modification\u003cbr\u003e4.5.4 Modifiers for Semi-Rigid and Plasticised Applications\u003cbr\u003e4.6 Lubricants\u003cbr\u003e4.7 Fillers\u003cbr\u003e4.7.1 Calcium Carbonate\u003cbr\u003e4.7.2 Wood Fillers\/Fibres\/Flour Composites\u003cbr\u003e4.7.3 Glass Beads\/Glass Fibre\u003cbr\u003e4.7.4 Conductive and Magnetic Fillers\u003cbr\u003e4.7.5 Other Fillers\u003cbr\u003e4.7.6 Nanocomposites\u003cbr\u003e4.8 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e4.9 Pigments\u003cbr\u003e4.10 Biocides\u003cbr\u003e4.11 Blowing Agents\u003cbr\u003e4.12 Antioxidants and Light Stabilisers\u003cbr\u003e4.13 Other Additives for PVC-P\u003cbr\u003e4.13.1 Antistatic Agents\u003cbr\u003e4.13.2 Viscosity Modifiers\u003cbr\u003e4.13.3 Antifogging Agents\u003cbr\u003e4.13.4 Bonding Agents\u003cbr\u003e4.14 Formulations\u003cbr\u003e4.14.1 PVC-U Compounds and Testing\u003cbr\u003e4.14.2 Crosslinked PVC\u003cbr\u003e4.14.3 Medical and Food Contact Use\u003cbr\u003e4.14.4 Membranes \u003cbr\u003e5 Compounding and Processing Technology\u003cbr\u003e5.1 Compounding\u003cbr\u003e5.1.1 Dry Blend Mixing\u003cbr\u003e5.1.2 Melt Compounding\u003cbr\u003e5.1.3 Liquid PVC Blending\u003cbr\u003e5.2 Processing\u003cbr\u003e5.2.1 Gelation\u003cbr\u003e5.2.2 Extrusion\u003cbr\u003e5.2.3 Injection Moulding\u003cbr\u003e5.2.4. Extrusion Blow Moulding\u003cbr\u003e5.2.5 Orientation\u003cbr\u003e5.2.6 Calendering\u003cbr\u003e5.2.7 Moulding Processes for Plastisols and Pastes \u003cbr\u003e6 Fabrication and Treatment\u003cbr\u003e6.1 Thermoforming\u003cbr\u003e6.2 Surface Modification Processes\u003cbr\u003e6.3 Coatings\u003cbr\u003e6.4 Adhesion \u003cbr\u003e7 PVC and Sustainable Development\u003cbr\u003e7.1 Waste Management\u003cbr\u003e7.1.1 PVC Rich Waste - Mechanical Recycling\u003cbr\u003e7.1.2 PVC Feedstock Recycling\u003cbr\u003e7.1.3 Incineration\/Energy Recovery \u003cbr\u003e8 Conclusions \u003cbr\u003eAcknowledgement\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick is a Chartered Chemist and a Member of the Royal Society of Chemistry. He is chairman of the PVC Committee of the IOM3. His career has included 23 years in the PVC Additives business of Akzo Nobel\/Akcros Chemicals, where he has been involved in technical services, research, and development. From 2001 to 2003, he was the Global Research and Development Manager. Current projects include sustainability research at IPTME, Loughborough.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
PVC Degradation and St...
$275.00
{"id":11242219972,"title":"PVC Degradation and Stabilization","handle":"978-1-895198-39-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-39-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003eSecond edition\u003cbr\u003ePages: 442\u003cbr\u003eFigures: 275 \u003cbr\u003eTables: 66\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the global renewal of interest in PVC, this book is well timed, considering that PVC stabilization is the most important aspect of its formulation and performance.\n\u003cp\u003eOnly four books have been published on PVC degradation and stabilization (the last one in the 1980s), and two of them are by the author of this book.\u003c\/p\u003e\n\u003cp\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, and UV, gamma, and other forms of radiation, mechanodegradation, chemical degradation, analytic methods used in studying of degradative and stabilization processes, stabilization, and effect of PVC and its additives on health, safety and environment.\u003c\/p\u003e\n\u003cp\u003eThis book contains an analysis of all essential papers published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found.\u003c\/p\u003e\n\u003cp\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003ePVC has a long history of development which began nearly 100 years ago with the patenting of the concepts of emulsion and suspension polymerization, the development of the industrial process of vinyl chloride synthesis, and patents on its plasticization, followed by the development of stabilization about 75 years ago. PVC has known rapid growth to utmost prominence and dramatic downfall almost to elimination, and it finally has regained a deserved, second position among commercial polymers.\u003cbr\u003ePVC owes both its prominence and its downfall to research: meticulous, cutting-edge studies and unscrupulous bad science which stops progress and derails achievements.\u003cbr\u003ePVC degradation during processing and use was always one of the essential elements of PVC science and technology. Many approaches to stabilization changed and some groups of stabilizers are not used in new production. This book was written to show new trends and directions. It also contains clearly indicated information about past stabilizers, which is needed in order to understand the principles of stabilization and effective recycling.\u003cbr\u003eFor me, it has been an interesting experience to actively participate in the growth of this branch of science and summarize its achievements and the directions which it faces now, here and in my two previous books, written 25 years ago. I hope the clarity and completeness of the description of research findings as we know them today will help in further research and, most importantly, lead to successful and responsible practical applications of additives in PVC processing and applications.\u003cbr\u003e\u003cbr\u003eGeorge Wypych\u003cbr\u003eToronto, May 8, 2008\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cbr\u003e1 Chemical Structure of PVC\u003c\/strong\u003e\u003cbr\u003e1.1 Repeat structures and their basic organic chemistry \u003cbr\u003e1.1.1 Bronsted acid source with controllable emission \u003cbr\u003e1.2 Molecular weight and its distribution \u003cbr\u003e1.2.1 Kuhn-Mark-Houwink-Sakurada \u003cbr\u003e1.2.2 Fikentscher K number \u003cbr\u003e1.2.3 Chain length \u003cbr\u003e1.3 Prediction of formation of irregular segments \u003cbr\u003e1.3.1 Ab initio \u003cbr\u003e1.3.2 Monte Carlo \u003cbr\u003e1.4 Irregular segments \u003cbr\u003e1.4.1 Branches \u003cbr\u003e1.4.2 Tertiary chlorine \u003cbr\u003e1.4.3 Unsaturations \u003cbr\u003e1.4.4 Oxygen containing groups \u003cbr\u003e1.4.4.1 Ketochloroallyl groups \u003cbr\u003e1.4.4.2 a- and b-carbonyl groups \u003cbr\u003e1.4.5 Head-to-head structures \u003cbr\u003e1.4.5 Initiator rests \u003cbr\u003e1.4.6 Transfer agent rests \u003cbr\u003e1.4.8 Defects introduced during processing \u003cbr\u003e1.4.9 PVC having increased stability \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PVC Manufacture Technology \u003c\/strong\u003e\u003cbr\u003e2.1 Monomer \u003cbr\u003e2.2 Basic Steps of Radical Polymerization \u003cbr\u003e2.2.1 Initiation \u003cbr\u003e2.2.2 Propagation \u003cbr\u003e2.2.3 Termination \u003cbr\u003e2.2.4 Chain transfer to monomer \u003cbr\u003e2.3 Polymerization technology \u003cbr\u003e2.3.1 Suspension \u003cbr\u003e2.3.2 Paste resin manufacturing processes \u003cbr\u003e2.3.3 Bulk \u003cbr\u003e2.3.4 Solution \u003cbr\u003e2.4 Polymerization conditions and PVC properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 PVC Morphology\u003c\/strong\u003e\u003cbr\u003e3.1. Molecular weight of polymer (chain length) \u003cbr\u003e3.2. Configuration and conformation \u003cbr\u003e3.3. Chain folds \u003cbr\u003e3.4. Chain thickness \u003cbr\u003e3.5 Entanglements \u003cbr\u003e3.6 Crystalline structure \u003cbr\u003e3.7 Grain morphology \u003cbr\u003e3.7.1 Stages of morphology development during manufacture \u003cbr\u003e3.7.1.1 Suspension polymerization \u003cbr\u003e3.7.1.2 Paste grades manufacture \u003cbr\u003e3.7.1.3 Bulk polymerization \u003cbr\u003e3.7.2 Effect of morphology on degradation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Principles of Thermal Degradation\u003c\/strong\u003e\u003cbr\u003e4.1 The reasons for polymer instability \u003cbr\u003e4.1.1 Structural defects \u003cbr\u003e4.1.1.1 Branches \u003cbr\u003e4.1.1.2 Tertiary chlorine \u003cbr\u003e4.1.1.3 Unstaturations \u003cbr\u003e4.1.1.4 Oxygen containing groups \u003cbr\u003e4.1.1.5 Head-to-head structures \u003cbr\u003e4.1.1.6 Morphology \u003cbr\u003e4.1.2 Polymerization residue \u003cbr\u003e4.1.2.1 Initiator rests \u003cbr\u003e4.1.2.2 Transfer agent rests \u003cbr\u003e4.1.2.3 Polymerization additives \u003cbr\u003e4.1.3 Metal derivatives \u003cbr\u003e4.1.3.1 Metal chlorides \u003cbr\u003e4.1.3.2 Copper and its oxide \u003cbr\u003e4.1.4 Hydrogen chloride 14 \u003cbr\u003e4.1.5 Impurities \u003cbr\u003e4.1.6 Shear \u003cbr\u003e4.1.7 Temperature \u003cbr\u003e4.1.8 Surrounding atmosphere \u003cbr\u003e4.1.9 Additives \u003cbr\u003e4.2 Mechanisms of thermal degradation \u003cbr\u003e4.2.1 Molecular mechanism \u003cbr\u003e4.2.2 Amer-Shapiro mechanism \u003cbr\u003e4.2.3 Six-center concerted mechanism \u003cbr\u003e4.2.4 Activation enthalpy \u003cbr\u003e4.2.5 Radical-chain theory \u003cbr\u003e4.2.6 Ionic \u003cbr\u003e4.2.7 Polaron \u003cbr\u003e4.2.8 Degenerated branching \u003cbr\u003e4.2.9 Transition state theory \u003cbr\u003e4.2.10 Recapitulation \u003cbr\u003e4.3 Kinetics \u003cbr\u003e4.3.1 Initiation \u003cbr\u003e4.3.2 Propagation \u003cbr\u003e4.3.3 Termination \u003cbr\u003e4.4 Results of thermal degradation \u003cbr\u003e4.4.1 Volatiles \u003cbr\u003e4.4.2 Weight loss \u003cbr\u003e4.4.3 Char formation \u003cbr\u003e4.4.4 Ash content \u003cbr\u003e4.4.5 Thermal lifetime \u003cbr\u003e4.4.6 Optical properties \u003cbr\u003e4.4.6.1 Color change \u003cbr\u003e4.4.6.2 Extinction coefficient \u003cbr\u003e4.4.6.3 Absorbance \u003cbr\u003e4.4.7 Molecular weight \u003cbr\u003e4.4.8 Mechanical properties \u003cbr\u003e4.4.9 Electric properties \u003cbr\u003e4.5 Effect of additives \u003cbr\u003e4.5.1 Blend polymers \u003cbr\u003e4.5.1.1 ABS \u003cbr\u003e4.5.1.2 Chlorinated polyethylene, CPE \u003cbr\u003e4.5.1.3 Epoxidized butadiene\/styrene block copolymer \u003cbr\u003e4.5.1.4 Epoxidized natural rubber \u003cbr\u003e4.5.1.5 Ethylene vinyl acetate, EVA \u003cbr\u003e4.5.1.6 High impact polystyrene, HIPS \u003cbr\u003e4.5.1.7 Methylmethacrylate-butadiene-styrene \u003cbr\u003e4.5.1.8 Nitrile rubber, NBR \u003cbr\u003e4.5.1.9 Oxidized polyethylene, OPE \u003cbr\u003e4.5.1.10 Polyacrylate \u003cbr\u003e4.5.1.11 Polyacrylonitrile \u003cbr\u003e4.5.1.12 Polyamide \u003cbr\u003e4.5.1.13 Polyaniline, PANI \u003cbr\u003e4.5.1.13 Polycarbonate, PC \u003cbr\u003e4.5.1.14 Polyethylene, PE \u003cbr\u003e4.5.1.15 Poly(methyl methacrylate), PMMA \u003cbr\u003e4.5.1.16 Poly(N-vinyl-2-pyrrolidone), PVP \u003cbr\u003e4.5.1.17 Polysiloxane \u003cbr\u003e4.5.1.18 Polystyrene, PS \u003cbr\u003e4.5.1.19 Polythiophene \u003cbr\u003e4.5.1.20 Polyurethane \u003cbr\u003e4.5.1.21 Poly(vinyl acetate), PVAc \u003cbr\u003e4.5.1.22 Poly(vinyl alcohol), PVA \u003cbr\u003e4.5.1.23 Poly(vinyl butyral), PVB \u003cbr\u003e4.5.1.24 SAN \u003cbr\u003e4.5.2 Antiblocking \u003cbr\u003e4.5.3 Antistatics agents \u003cbr\u003e4.5.4 Biocides and fungicides \u003cbr\u003e4.5.5 Blowing agents \u003cbr\u003e4.5.6 Fillers \u003cbr\u003e4.5.7 Flame retardants \u003cbr\u003e4.5.8 Impact modifiers \u003cbr\u003e4.5.9 Lubricants \u003cbr\u003e4.5.10 Pigments \u003cbr\u003e4.5.11 Plasticizers \u003cbr\u003e4.5.12 Process aids \u003cbr\u003e4.5.13 Solvents \u003cbr\u003e4.5.14 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Principles of UV Degradation\u003c\/strong\u003e\u003cbr\u003e5.1 Reasons for polymer instability \u003cbr\u003e5.1.1 Radiative energy \u003cbr\u003e5.1.2 Radiation intensity \u003cbr\u003e5.1.3 Radiation incidence \u003cbr\u003e5.1.4 Absorption of radiation by materials \u003cbr\u003e5.1.5 Bond structure \u003cbr\u003e5.1.6 Thermal history \u003cbr\u003e5.1.7 Photosensitizers \u003cbr\u003e5.1.8 Wavelength sensitivity \u003cbr\u003e5.1.9 Thermal variability \u003cbr\u003e5.1.10 Pollutants \u003cbr\u003e5.1.11 Laboratory degradation conditions \u003cbr\u003e5.2 Mechanisms of degradation \u003cbr\u003e5.2.1 Radical mechanism \u003cbr\u003e5.2.1.1 Photooxidation mechanism \u003cbr\u003e5.2.1.2 Mechanistic scheme \u003cbr\u003e5.2.1.3 Conformational mechanism \u003cbr\u003e5.2.1.4 Electronic-to-vibrational energy transfer \u003cbr\u003e5.2.1.5 Other contributions to the mechanism of photodegradation \u003cbr\u003e5.3 Kinetics \u003cbr\u003e5.3.1 Initiation \u003cbr\u003e5.3.2 Propagation \u003cbr\u003e5.3.3 Termination \u003cbr\u003e5.4 Results of UV degradation \u003cbr\u003e5.4.1 Photodiscoloration \u003cbr\u003e5.4.2 Mechanical properties \u003cbr\u003e5.4.3 Other properties \u003cbr\u003e5.5 Effect of additives \u003cbr\u003e5.5.1 Biocides and fungicides \u003cbr\u003e5.5.2 Fillers \u003cbr\u003e5.5.3 Flame retardants \u003cbr\u003e5.5.4 Impact modifiers \u003cbr\u003e5.5.5 Lubricants \u003cbr\u003e5.5.6 Pigments and colorants \u003cbr\u003e5.5.6.1 Titanium dioxide \u003cbr\u003e5.5.6.2 Zinc oxide \u003cbr\u003e5.5.6.3 Iron-containing pigments \u003cbr\u003e5.5.7 Plasticizers \u003cbr\u003e5.5.8 Polymer blends \u003cbr\u003e5.5.9 Solvents \u003cbr\u003e5.5.10 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Principles of Degradation by γ-Radiation\u003c\/strong\u003e\u003cbr\u003e6.1 The reasons for polymer instability \u003cbr\u003e6.2 Mechanisms \u003cbr\u003e6.3 Kinetics \u003cbr\u003e6.4 Results \u003cbr\u003e6.5 Effect of additives \u003cbr\u003e6.5.1 Plasticizers \u003cbr\u003e6.5.2 Fillers \u003cbr\u003e6.5.3 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Degradation by Other Forms of Radiation\u003c\/strong\u003e\u003cbr\u003e7.1 Argon plasma \u003cbr\u003e7.2 b-radiation (electron beam) \u003cbr\u003e7.3 Corona discharge \u003cbr\u003e7.4 Ion (proton) beam \u003cbr\u003e7.5 Laser \u003cbr\u003e7.6 Metallization \u003cbr\u003e7.7 Microwave \u003cbr\u003e7.8 Neutron irradiation \u003cbr\u003e7.9 Oxygen plasma \u003cbr\u003e7.10 X-rays \u003cbr\u003e7.11 Ultrasonic \u003cbr\u003eReferences \u003cbr\u003e8 Mechanodegradation \u003cbr\u003eReferences \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e9 Chemical Degradation\u003c\/strong\u003e\u003cbr\u003e9.1 methods of chemical dehydrochlorination \u003cbr\u003e9.2. Kinetics and mechanisms of reaction \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Analytical Methods\u003c\/strong\u003e\u003cbr\u003e10.1 Heat stability test \u003cbr\u003e10.1.1 Sample preparation \u003cbr\u003e10.1.2 Kinetic studies of dehydrochlorination \u003cbr\u003e10.1.3 Dehydrochlorination rate and optical changes \u003cbr\u003e10.1.4 Degradation in solution \u003cbr\u003e10.2 Thermogravimetric analysis \u003cbr\u003e10.2.1 Differential scanning calorimetry, DSC \u003cbr\u003e10.2.2 Mass loss \u003cbr\u003e10.3 Combustion \u003cbr\u003e10.4 Optical properties \u003cbr\u003e10.5 Spectroscopic methods \u003cbr\u003e10.5.1 Atomic absorption, AAS \u003cbr\u003e10.5.2 Auger \u003cbr\u003e10.5.3 Electron spin resonance, ESR \u003cbr\u003e10.5.4 Fourier transform infrared, FTIR \u003cbr\u003e10.5.5 Laser photopyroelectric effect spectrometry \u003cbr\u003e10.5.6 Mass, MS \u003cbr\u003e10.5.7 Mossbauer \u003cbr\u003e10.5.8 Near-infrared, NIR \u003cbr\u003e10.5.9 Nuclear magnetic resonance, NMR \u003cbr\u003e10.5.10 Positron annihilation lifetime spectroscopy, PAS \u003cbr\u003e10.5.11 Raman \u003cbr\u003e10.5.12 Time-of-flight secondary ion mass spectrometry, ToF-SIMS \u003cbr\u003e10.5.13 X-ray analysis \u003cbr\u003e10.5.13.1 Small angle light scattering, SAXS \u003cbr\u003e10.5.13.2 Wide angle light scattering, WAXS or WAXD \u003cbr\u003e10.5.14 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e10.5.15 UV-visible \u003cbr\u003e10.6 Chromatographic methods \u003cbr\u003e10.1 Gas chromatography \u003cbr\u003e10.6.2 Liquid chromatography \u003cbr\u003e10.7 Mechanical properties \u003cbr\u003e10.8 Other essential methods of testing \u003cbr\u003e10.8.1 Action spectrum \u003cbr\u003e10.8.2 Coulter counter \u003cbr\u003e10.8.3 Gel content \u003cbr\u003e10.8.4 Ozonolysis \u003cbr\u003e10.8.5 Peroxide titration \u003cbr\u003e10.8.6 Rheological studies \u003cbr\u003e10.9 International standards \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 Principles of Stabilization \u003c\/strong\u003e\u003cbr\u003e11.1 Functions of PVC stabilizers\u003cbr\u003e11.1.1 Hydrogen chloride binding\u003cbr\u003e11.1.2 Removal of reactive chlorine\u003cbr\u003e11.1.3 Reactions with metal chlorides\u003cbr\u003e11.1.4 Reactions with isolated unsaturations\u003cbr\u003e11.1.5 Reaction with conjugated unsaturations\u003cbr\u003e11.1.6 Decomposition of hydroperoxides\u003cbr\u003e11.1.7 Removal of reactive radicals (chain breaking function)\u003cbr\u003e11.1.8 UV screening\u003cbr\u003e11.2 Theories\u003cbr\u003e11.2.1 Frye and Horst\u003cbr\u003e11.2.2 Application of the Debye-Hückel theory\u003cbr\u003e11.2.3 Kinetic model of PVC stabilization\u003cbr\u003e11.3 Stabilizer groups\u003cbr\u003e11.3.1 Metal soaps\u003cbr\u003e(The groups of stabilizers below are discussed according to the following breakdown: Properties and applications of commercial stabilizers Mechanisms of action Costabilizers Research findings)\u003cbr\u003e11.3.1.1 Barium\/zinc\u003cbr\u003e11.3.1.2 Calcium\/zinc\u003cbr\u003e11.3.1.3 Magnesium\/zinc\u003cbr\u003e11.3.1.4 Potassium\/zinc\u003cbr\u003e11.3.1.5 Barium\/cadmium\u003cbr\u003e11.3.1.6 Barium\/cadmium\/zinc\u003cbr\u003e11.3.2 Lead stabilizers\u003cbr\u003e11.3.3 Organotin stabilizers\u003cbr\u003e11.3.4 Organic stabilizers\u003cbr\u003e11.3.4.1 Epoxidized compounds\u003cbr\u003e11.3.4.3 Phenolic antioxidants\u003cbr\u003e11.3.4.4 Multiketones\u003cbr\u003e11.3.4.5 Other costabilizers\u003cbr\u003e11.3.5 UV stabilizers\u003cbr\u003e11.3.5.1 Organic UV absorbers\u003cbr\u003e11.3.5.2 Inorganic UV absorbers\u003cbr\u003e11.3.5.3 Hindered amine light stabilizers, HALS\u003cbr\u003e11.3.6 Lubricants \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 Health and safety and environmental impact\u003c\/strong\u003e\u003cbr\u003e12.1 Toxic substance control \u003cbr\u003e12.2. Carcinogenic effect \u003cbr\u003e12.3 Teratogenic and mutagenic effect \u003cbr\u003e12.4 Workplace exposure limits \u003cbr\u003e12.5 Exposure from consumer products \u003cbr\u003e12.6 Drinking water \u003cbr\u003e12.7 Food regulatory acts \u003cbr\u003e12.8 Toxicity of stabilizers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:41-04:00","created_at":"2017-06-22T21:13:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","chemical structure of PVC","mechanical properties","morphology","p-chemistry","polymer","PVC UV degradation","PVC additives","PVC chemical degradation","PVC compounding","PVC formulation","PVC mechanodegradation","PVC stabilization","PVC thermal degradation","stability of PVC"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-39-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619","options":["Title"],"media":[{"alt":null,"id":358726893661,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-39-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003eSecond edition\u003cbr\u003ePages: 442\u003cbr\u003eFigures: 275 \u003cbr\u003eTables: 66\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the global renewal of interest in PVC, this book is well timed, considering that PVC stabilization is the most important aspect of its formulation and performance.\n\u003cp\u003eOnly four books have been published on PVC degradation and stabilization (the last one in the 1980s), and two of them are by the author of this book.\u003c\/p\u003e\n\u003cp\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, and UV, gamma, and other forms of radiation, mechanodegradation, chemical degradation, analytic methods used in studying of degradative and stabilization processes, stabilization, and effect of PVC and its additives on health, safety and environment.\u003c\/p\u003e\n\u003cp\u003eThis book contains an analysis of all essential papers published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found.\u003c\/p\u003e\n\u003cp\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003ePVC has a long history of development which began nearly 100 years ago with the patenting of the concepts of emulsion and suspension polymerization, the development of the industrial process of vinyl chloride synthesis, and patents on its plasticization, followed by the development of stabilization about 75 years ago. PVC has known rapid growth to utmost prominence and dramatic downfall almost to elimination, and it finally has regained a deserved, second position among commercial polymers.\u003cbr\u003ePVC owes both its prominence and its downfall to research: meticulous, cutting-edge studies and unscrupulous bad science which stops progress and derails achievements.\u003cbr\u003ePVC degradation during processing and use was always one of the essential elements of PVC science and technology. Many approaches to stabilization changed and some groups of stabilizers are not used in new production. This book was written to show new trends and directions. It also contains clearly indicated information about past stabilizers, which is needed in order to understand the principles of stabilization and effective recycling.\u003cbr\u003eFor me, it has been an interesting experience to actively participate in the growth of this branch of science and summarize its achievements and the directions which it faces now, here and in my two previous books, written 25 years ago. I hope the clarity and completeness of the description of research findings as we know them today will help in further research and, most importantly, lead to successful and responsible practical applications of additives in PVC processing and applications.\u003cbr\u003e\u003cbr\u003eGeorge Wypych\u003cbr\u003eToronto, May 8, 2008\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cbr\u003e1 Chemical Structure of PVC\u003c\/strong\u003e\u003cbr\u003e1.1 Repeat structures and their basic organic chemistry \u003cbr\u003e1.1.1 Bronsted acid source with controllable emission \u003cbr\u003e1.2 Molecular weight and its distribution \u003cbr\u003e1.2.1 Kuhn-Mark-Houwink-Sakurada \u003cbr\u003e1.2.2 Fikentscher K number \u003cbr\u003e1.2.3 Chain length \u003cbr\u003e1.3 Prediction of formation of irregular segments \u003cbr\u003e1.3.1 Ab initio \u003cbr\u003e1.3.2 Monte Carlo \u003cbr\u003e1.4 Irregular segments \u003cbr\u003e1.4.1 Branches \u003cbr\u003e1.4.2 Tertiary chlorine \u003cbr\u003e1.4.3 Unsaturations \u003cbr\u003e1.4.4 Oxygen containing groups \u003cbr\u003e1.4.4.1 Ketochloroallyl groups \u003cbr\u003e1.4.4.2 a- and b-carbonyl groups \u003cbr\u003e1.4.5 Head-to-head structures \u003cbr\u003e1.4.5 Initiator rests \u003cbr\u003e1.4.6 Transfer agent rests \u003cbr\u003e1.4.8 Defects introduced during processing \u003cbr\u003e1.4.9 PVC having increased stability \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PVC Manufacture Technology \u003c\/strong\u003e\u003cbr\u003e2.1 Monomer \u003cbr\u003e2.2 Basic Steps of Radical Polymerization \u003cbr\u003e2.2.1 Initiation \u003cbr\u003e2.2.2 Propagation \u003cbr\u003e2.2.3 Termination \u003cbr\u003e2.2.4 Chain transfer to monomer \u003cbr\u003e2.3 Polymerization technology \u003cbr\u003e2.3.1 Suspension \u003cbr\u003e2.3.2 Paste resin manufacturing processes \u003cbr\u003e2.3.3 Bulk \u003cbr\u003e2.3.4 Solution \u003cbr\u003e2.4 Polymerization conditions and PVC properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 PVC Morphology\u003c\/strong\u003e\u003cbr\u003e3.1. Molecular weight of polymer (chain length) \u003cbr\u003e3.2. Configuration and conformation \u003cbr\u003e3.3. Chain folds \u003cbr\u003e3.4. Chain thickness \u003cbr\u003e3.5 Entanglements \u003cbr\u003e3.6 Crystalline structure \u003cbr\u003e3.7 Grain morphology \u003cbr\u003e3.7.1 Stages of morphology development during manufacture \u003cbr\u003e3.7.1.1 Suspension polymerization \u003cbr\u003e3.7.1.2 Paste grades manufacture \u003cbr\u003e3.7.1.3 Bulk polymerization \u003cbr\u003e3.7.2 Effect of morphology on degradation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Principles of Thermal Degradation\u003c\/strong\u003e\u003cbr\u003e4.1 The reasons for polymer instability \u003cbr\u003e4.1.1 Structural defects \u003cbr\u003e4.1.1.1 Branches \u003cbr\u003e4.1.1.2 Tertiary chlorine \u003cbr\u003e4.1.1.3 Unstaturations \u003cbr\u003e4.1.1.4 Oxygen containing groups \u003cbr\u003e4.1.1.5 Head-to-head structures \u003cbr\u003e4.1.1.6 Morphology \u003cbr\u003e4.1.2 Polymerization residue \u003cbr\u003e4.1.2.1 Initiator rests \u003cbr\u003e4.1.2.2 Transfer agent rests \u003cbr\u003e4.1.2.3 Polymerization additives \u003cbr\u003e4.1.3 Metal derivatives \u003cbr\u003e4.1.3.1 Metal chlorides \u003cbr\u003e4.1.3.2 Copper and its oxide \u003cbr\u003e4.1.4 Hydrogen chloride 14 \u003cbr\u003e4.1.5 Impurities \u003cbr\u003e4.1.6 Shear \u003cbr\u003e4.1.7 Temperature \u003cbr\u003e4.1.8 Surrounding atmosphere \u003cbr\u003e4.1.9 Additives \u003cbr\u003e4.2 Mechanisms of thermal degradation \u003cbr\u003e4.2.1 Molecular mechanism \u003cbr\u003e4.2.2 Amer-Shapiro mechanism \u003cbr\u003e4.2.3 Six-center concerted mechanism \u003cbr\u003e4.2.4 Activation enthalpy \u003cbr\u003e4.2.5 Radical-chain theory \u003cbr\u003e4.2.6 Ionic \u003cbr\u003e4.2.7 Polaron \u003cbr\u003e4.2.8 Degenerated branching \u003cbr\u003e4.2.9 Transition state theory \u003cbr\u003e4.2.10 Recapitulation \u003cbr\u003e4.3 Kinetics \u003cbr\u003e4.3.1 Initiation \u003cbr\u003e4.3.2 Propagation \u003cbr\u003e4.3.3 Termination \u003cbr\u003e4.4 Results of thermal degradation \u003cbr\u003e4.4.1 Volatiles \u003cbr\u003e4.4.2 Weight loss \u003cbr\u003e4.4.3 Char formation \u003cbr\u003e4.4.4 Ash content \u003cbr\u003e4.4.5 Thermal lifetime \u003cbr\u003e4.4.6 Optical properties \u003cbr\u003e4.4.6.1 Color change \u003cbr\u003e4.4.6.2 Extinction coefficient \u003cbr\u003e4.4.6.3 Absorbance \u003cbr\u003e4.4.7 Molecular weight \u003cbr\u003e4.4.8 Mechanical properties \u003cbr\u003e4.4.9 Electric properties \u003cbr\u003e4.5 Effect of additives \u003cbr\u003e4.5.1 Blend polymers \u003cbr\u003e4.5.1.1 ABS \u003cbr\u003e4.5.1.2 Chlorinated polyethylene, CPE \u003cbr\u003e4.5.1.3 Epoxidized butadiene\/styrene block copolymer \u003cbr\u003e4.5.1.4 Epoxidized natural rubber \u003cbr\u003e4.5.1.5 Ethylene vinyl acetate, EVA \u003cbr\u003e4.5.1.6 High impact polystyrene, HIPS \u003cbr\u003e4.5.1.7 Methylmethacrylate-butadiene-styrene \u003cbr\u003e4.5.1.8 Nitrile rubber, NBR \u003cbr\u003e4.5.1.9 Oxidized polyethylene, OPE \u003cbr\u003e4.5.1.10 Polyacrylate \u003cbr\u003e4.5.1.11 Polyacrylonitrile \u003cbr\u003e4.5.1.12 Polyamide \u003cbr\u003e4.5.1.13 Polyaniline, PANI \u003cbr\u003e4.5.1.13 Polycarbonate, PC \u003cbr\u003e4.5.1.14 Polyethylene, PE \u003cbr\u003e4.5.1.15 Poly(methyl methacrylate), PMMA \u003cbr\u003e4.5.1.16 Poly(N-vinyl-2-pyrrolidone), PVP \u003cbr\u003e4.5.1.17 Polysiloxane \u003cbr\u003e4.5.1.18 Polystyrene, PS \u003cbr\u003e4.5.1.19 Polythiophene \u003cbr\u003e4.5.1.20 Polyurethane \u003cbr\u003e4.5.1.21 Poly(vinyl acetate), PVAc \u003cbr\u003e4.5.1.22 Poly(vinyl alcohol), PVA \u003cbr\u003e4.5.1.23 Poly(vinyl butyral), PVB \u003cbr\u003e4.5.1.24 SAN \u003cbr\u003e4.5.2 Antiblocking \u003cbr\u003e4.5.3 Antistatics agents \u003cbr\u003e4.5.4 Biocides and fungicides \u003cbr\u003e4.5.5 Blowing agents \u003cbr\u003e4.5.6 Fillers \u003cbr\u003e4.5.7 Flame retardants \u003cbr\u003e4.5.8 Impact modifiers \u003cbr\u003e4.5.9 Lubricants \u003cbr\u003e4.5.10 Pigments \u003cbr\u003e4.5.11 Plasticizers \u003cbr\u003e4.5.12 Process aids \u003cbr\u003e4.5.13 Solvents \u003cbr\u003e4.5.14 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Principles of UV Degradation\u003c\/strong\u003e\u003cbr\u003e5.1 Reasons for polymer instability \u003cbr\u003e5.1.1 Radiative energy \u003cbr\u003e5.1.2 Radiation intensity \u003cbr\u003e5.1.3 Radiation incidence \u003cbr\u003e5.1.4 Absorption of radiation by materials \u003cbr\u003e5.1.5 Bond structure \u003cbr\u003e5.1.6 Thermal history \u003cbr\u003e5.1.7 Photosensitizers \u003cbr\u003e5.1.8 Wavelength sensitivity \u003cbr\u003e5.1.9 Thermal variability \u003cbr\u003e5.1.10 Pollutants \u003cbr\u003e5.1.11 Laboratory degradation conditions \u003cbr\u003e5.2 Mechanisms of degradation \u003cbr\u003e5.2.1 Radical mechanism \u003cbr\u003e5.2.1.1 Photooxidation mechanism \u003cbr\u003e5.2.1.2 Mechanistic scheme \u003cbr\u003e5.2.1.3 Conformational mechanism \u003cbr\u003e5.2.1.4 Electronic-to-vibrational energy transfer \u003cbr\u003e5.2.1.5 Other contributions to the mechanism of photodegradation \u003cbr\u003e5.3 Kinetics \u003cbr\u003e5.3.1 Initiation \u003cbr\u003e5.3.2 Propagation \u003cbr\u003e5.3.3 Termination \u003cbr\u003e5.4 Results of UV degradation \u003cbr\u003e5.4.1 Photodiscoloration \u003cbr\u003e5.4.2 Mechanical properties \u003cbr\u003e5.4.3 Other properties \u003cbr\u003e5.5 Effect of additives \u003cbr\u003e5.5.1 Biocides and fungicides \u003cbr\u003e5.5.2 Fillers \u003cbr\u003e5.5.3 Flame retardants \u003cbr\u003e5.5.4 Impact modifiers \u003cbr\u003e5.5.5 Lubricants \u003cbr\u003e5.5.6 Pigments and colorants \u003cbr\u003e5.5.6.1 Titanium dioxide \u003cbr\u003e5.5.6.2 Zinc oxide \u003cbr\u003e5.5.6.3 Iron-containing pigments \u003cbr\u003e5.5.7 Plasticizers \u003cbr\u003e5.5.8 Polymer blends \u003cbr\u003e5.5.9 Solvents \u003cbr\u003e5.5.10 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Principles of Degradation by γ-Radiation\u003c\/strong\u003e\u003cbr\u003e6.1 The reasons for polymer instability \u003cbr\u003e6.2 Mechanisms \u003cbr\u003e6.3 Kinetics \u003cbr\u003e6.4 Results \u003cbr\u003e6.5 Effect of additives \u003cbr\u003e6.5.1 Plasticizers \u003cbr\u003e6.5.2 Fillers \u003cbr\u003e6.5.3 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Degradation by Other Forms of Radiation\u003c\/strong\u003e\u003cbr\u003e7.1 Argon plasma \u003cbr\u003e7.2 b-radiation (electron beam) \u003cbr\u003e7.3 Corona discharge \u003cbr\u003e7.4 Ion (proton) beam \u003cbr\u003e7.5 Laser \u003cbr\u003e7.6 Metallization \u003cbr\u003e7.7 Microwave \u003cbr\u003e7.8 Neutron irradiation \u003cbr\u003e7.9 Oxygen plasma \u003cbr\u003e7.10 X-rays \u003cbr\u003e7.11 Ultrasonic \u003cbr\u003eReferences \u003cbr\u003e8 Mechanodegradation \u003cbr\u003eReferences \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e9 Chemical Degradation\u003c\/strong\u003e\u003cbr\u003e9.1 methods of chemical dehydrochlorination \u003cbr\u003e9.2. Kinetics and mechanisms of reaction \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Analytical Methods\u003c\/strong\u003e\u003cbr\u003e10.1 Heat stability test \u003cbr\u003e10.1.1 Sample preparation \u003cbr\u003e10.1.2 Kinetic studies of dehydrochlorination \u003cbr\u003e10.1.3 Dehydrochlorination rate and optical changes \u003cbr\u003e10.1.4 Degradation in solution \u003cbr\u003e10.2 Thermogravimetric analysis \u003cbr\u003e10.2.1 Differential scanning calorimetry, DSC \u003cbr\u003e10.2.2 Mass loss \u003cbr\u003e10.3 Combustion \u003cbr\u003e10.4 Optical properties \u003cbr\u003e10.5 Spectroscopic methods \u003cbr\u003e10.5.1 Atomic absorption, AAS \u003cbr\u003e10.5.2 Auger \u003cbr\u003e10.5.3 Electron spin resonance, ESR \u003cbr\u003e10.5.4 Fourier transform infrared, FTIR \u003cbr\u003e10.5.5 Laser photopyroelectric effect spectrometry \u003cbr\u003e10.5.6 Mass, MS \u003cbr\u003e10.5.7 Mossbauer \u003cbr\u003e10.5.8 Near-infrared, NIR \u003cbr\u003e10.5.9 Nuclear magnetic resonance, NMR \u003cbr\u003e10.5.10 Positron annihilation lifetime spectroscopy, PAS \u003cbr\u003e10.5.11 Raman \u003cbr\u003e10.5.12 Time-of-flight secondary ion mass spectrometry, ToF-SIMS \u003cbr\u003e10.5.13 X-ray analysis \u003cbr\u003e10.5.13.1 Small angle light scattering, SAXS \u003cbr\u003e10.5.13.2 Wide angle light scattering, WAXS or WAXD \u003cbr\u003e10.5.14 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e10.5.15 UV-visible \u003cbr\u003e10.6 Chromatographic methods \u003cbr\u003e10.1 Gas chromatography \u003cbr\u003e10.6.2 Liquid chromatography \u003cbr\u003e10.7 Mechanical properties \u003cbr\u003e10.8 Other essential methods of testing \u003cbr\u003e10.8.1 Action spectrum \u003cbr\u003e10.8.2 Coulter counter \u003cbr\u003e10.8.3 Gel content \u003cbr\u003e10.8.4 Ozonolysis \u003cbr\u003e10.8.5 Peroxide titration \u003cbr\u003e10.8.6 Rheological studies \u003cbr\u003e10.9 International standards \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 Principles of Stabilization \u003c\/strong\u003e\u003cbr\u003e11.1 Functions of PVC stabilizers\u003cbr\u003e11.1.1 Hydrogen chloride binding\u003cbr\u003e11.1.2 Removal of reactive chlorine\u003cbr\u003e11.1.3 Reactions with metal chlorides\u003cbr\u003e11.1.4 Reactions with isolated unsaturations\u003cbr\u003e11.1.5 Reaction with conjugated unsaturations\u003cbr\u003e11.1.6 Decomposition of hydroperoxides\u003cbr\u003e11.1.7 Removal of reactive radicals (chain breaking function)\u003cbr\u003e11.1.8 UV screening\u003cbr\u003e11.2 Theories\u003cbr\u003e11.2.1 Frye and Horst\u003cbr\u003e11.2.2 Application of the Debye-Hückel theory\u003cbr\u003e11.2.3 Kinetic model of PVC stabilization\u003cbr\u003e11.3 Stabilizer groups\u003cbr\u003e11.3.1 Metal soaps\u003cbr\u003e(The groups of stabilizers below are discussed according to the following breakdown: Properties and applications of commercial stabilizers Mechanisms of action Costabilizers Research findings)\u003cbr\u003e11.3.1.1 Barium\/zinc\u003cbr\u003e11.3.1.2 Calcium\/zinc\u003cbr\u003e11.3.1.3 Magnesium\/zinc\u003cbr\u003e11.3.1.4 Potassium\/zinc\u003cbr\u003e11.3.1.5 Barium\/cadmium\u003cbr\u003e11.3.1.6 Barium\/cadmium\/zinc\u003cbr\u003e11.3.2 Lead stabilizers\u003cbr\u003e11.3.3 Organotin stabilizers\u003cbr\u003e11.3.4 Organic stabilizers\u003cbr\u003e11.3.4.1 Epoxidized compounds\u003cbr\u003e11.3.4.3 Phenolic antioxidants\u003cbr\u003e11.3.4.4 Multiketones\u003cbr\u003e11.3.4.5 Other costabilizers\u003cbr\u003e11.3.5 UV stabilizers\u003cbr\u003e11.3.5.1 Organic UV absorbers\u003cbr\u003e11.3.5.2 Inorganic UV absorbers\u003cbr\u003e11.3.5.3 Hindered amine light stabilizers, HALS\u003cbr\u003e11.3.6 Lubricants \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 Health and safety and environmental impact\u003c\/strong\u003e\u003cbr\u003e12.1 Toxic substance control \u003cbr\u003e12.2. Carcinogenic effect \u003cbr\u003e12.3 Teratogenic and mutagenic effect \u003cbr\u003e12.4 Workplace exposure limits \u003cbr\u003e12.5 Exposure from consumer products \u003cbr\u003e12.6 Drinking water \u003cbr\u003e12.7 Food regulatory acts \u003cbr\u003e12.8 Toxicity of stabilizers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
PVC Degradation and St...
$285.00
{"id":11242220292,"title":"PVC Degradation and Stabilization, 3rd Edition","handle":"978-1-895198-85-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-85-0 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 488\u003c\/div\u003e\n\u003cdiv\u003eFigures: 283\u003c\/div\u003e\n\u003cdiv\u003eTables: 67\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPVC stabilization, the most important aspect of formulation and performance of this polymer, is discussed in details. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying of degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains the analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by ?-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:42-04:00","created_at":"2017-06-22T21:13:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","book","chemical structure of PVC","health and safety","morphology","p-chemistry","polymer","PVC UV degradation","PVC additives","PVC chemical degradation","PVC compounding","PVC formulation","PVC mechanodegradation","PVC stabilization","PVC thermal degradation","stability of PVC"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371716,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization, 3rd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-85-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309","options":["Title"],"media":[{"alt":null,"id":358727221341,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-85-0 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 488\u003c\/div\u003e\n\u003cdiv\u003eFigures: 283\u003c\/div\u003e\n\u003cdiv\u003eTables: 67\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPVC stabilization, the most important aspect of formulation and performance of this polymer, is discussed in details. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying of degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains the analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by ?-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
PVC Formulary, 2nd Edi...
$285.00
{"id":11242221700,"title":"PVC Formulary, 2nd Edition","handle":"978-1-895198-84-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-84-3 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eSecond edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eFigures: 130\u003c\/div\u003e\n\u003cdiv\u003eTables: 450\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In the first introductory chapter, the new product development and product re-engineering tools and the market for PVC products are discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear form in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains about 600 formulations of products belonging to 23 categories derived from characteristic methods of production. Formulations come from patents, publications in journals, and from suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This part results from a review of thousands of patents, over two thousands of research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, use, and application information. The data are based on information contained in over 1450 research papers and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization, the new edition will be published in 2015) is to provide the reader with complete information and data required to formulate successful and durable products or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Powder coating \u003cbr\u003e4.15 Printing \u003cbr\u003e4.16 Rotational molding \u003cbr\u003e4.17 Sintering \u003cbr\u003e4.18 Slush molding \u003cbr\u003e4.19 Solvent casting \u003cbr\u003e4.20 Spraying \u003cbr\u003e4.21 Thermoforming \u003cbr\u003e4.22 Web coating \u003cbr\u003e4.22.1 General \u003cbr\u003e4.22.2 Coated fabrics \u003cbr\u003e4.22.3 Conveyor belts \u003cbr\u003e4.22.4 Flooring \u003cbr\u003e4.22.5 Swimming pool liners \u003cbr\u003e4.22.6 Tarpaulin \u003cbr\u003e4.22.7 Upholstery \u003cbr\u003e4.22.8 Wallcovering \u003cbr\u003e4.22.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.23 Wire \u0026amp; cable \u003cbr\u003e4.23.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.23.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:47-04:00","created_at":"2017-06-22T21:13:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","book","George Wypych","p-chemistry","polymer","PVC additives","PVC compounding","PVC compounds","PVC compounds and processing","PVC formulary","PVC formulations","PVC processing","PVC stabbilization","the compounding of PVC"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374724,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Formulary, 2nd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-84-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386","options":["Title"],"media":[{"alt":null,"id":358727909469,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-84-3 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eSecond edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eFigures: 130\u003c\/div\u003e\n\u003cdiv\u003eTables: 450\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In the first introductory chapter, the new product development and product re-engineering tools and the market for PVC products are discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear form in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains about 600 formulations of products belonging to 23 categories derived from characteristic methods of production. Formulations come from patents, publications in journals, and from suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This part results from a review of thousands of patents, over two thousands of research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, use, and application information. The data are based on information contained in over 1450 research papers and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization, the new edition will be published in 2015) is to provide the reader with complete information and data required to formulate successful and durable products or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Powder coating \u003cbr\u003e4.15 Printing \u003cbr\u003e4.16 Rotational molding \u003cbr\u003e4.17 Sintering \u003cbr\u003e4.18 Slush molding \u003cbr\u003e4.19 Solvent casting \u003cbr\u003e4.20 Spraying \u003cbr\u003e4.21 Thermoforming \u003cbr\u003e4.22 Web coating \u003cbr\u003e4.22.1 General \u003cbr\u003e4.22.2 Coated fabrics \u003cbr\u003e4.22.3 Conveyor belts \u003cbr\u003e4.22.4 Flooring \u003cbr\u003e4.22.5 Swimming pool liners \u003cbr\u003e4.22.6 Tarpaulin \u003cbr\u003e4.22.7 Upholstery \u003cbr\u003e4.22.8 Wallcovering \u003cbr\u003e4.22.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.23 Wire \u0026amp; cable \u003cbr\u003e4.23.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.23.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Ring Opening Polymeriz...
$75.00
{"id":11242256772,"title":"Ring Opening Polymerization","handle":"978-1-85957-057-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Spassky \u003cbr\u003eISBN 978-1-85957-057-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003eUniversite Pierre et Marie Curie\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e101 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe dependence of polymerizability upon ring strain, the significance of ring-chain equilibria, and the potential for formation of cyclic oligomers are outlined. The mechanism and implementation of anionic ring-opening polymerization, cationic ring-opening polymerization, stereospecific coordinated anionic polymerization, free radical ring-opening polymerization, and ionic ring-opening copolymerization are described. A final section on ring-opening metathesis polymerization includes a brief discussion of catalysts, thermodynamics, stereochemistry, kinetics, and applications.","published_at":"2017-06-22T21:15:34-04:00","created_at":"2017-06-22T21:15:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","acrylic polymers","book","catalysts","kinetics","p-chemistry","ring opening polymerization","stereochemistry","thermodynamics"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378497924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Ring Opening Polymerization","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-057-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Spassky \u003cbr\u003eISBN 978-1-85957-057-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003eUniversite Pierre et Marie Curie\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e101 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe dependence of polymerizability upon ring strain, the significance of ring-chain equilibria, and the potential for formation of cyclic oligomers are outlined. The mechanism and implementation of anionic ring-opening polymerization, cationic ring-opening polymerization, stereospecific coordinated anionic polymerization, free radical ring-opening polymerization, and ionic ring-opening copolymerization are described. A final section on ring-opening metathesis polymerization includes a brief discussion of catalysts, thermodynamics, stereochemistry, kinetics, and applications."}
Silicon Based Polymers...
$249.00
{"id":11242249348,"title":"Silicon Based Polymers Advances in Synthesis and Supramolecular Organization","handle":"978-1-4020-8527-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ganachaud, François; Boileau, Sylvie; Boury, Bruno (Eds.) \u003cbr\u003eISBN 978-1-4020-8527-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003cbr\u003e\u003c\/span\u003e285 p. 70 illus., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicon Based Polymers presents highlights in advanced research and technological innovations using macromolecular organosilicon compounds and systems, as presented in the 2007 ISPO congress. Silicon-containing materials and polymers are used all over the world and in a variety of industries, domestic products, and high technology applications. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAmong them, silicones are certainly the most well–known, however, there are still new properties discovered and preparative processes developed all the time, therefore adding to their potential. Less known, but in preparation for the future, are other silicon containing-polymers which are now close to maturity and in fact, some are already available like polysilsesquioxanes and polysilanes.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAll these silicon-based materials can adopt very different structures like chains, dendrimers, hyperbranched and networks, physical and chemical gels. The result is a vast array of materials with applications in various areas such as optics, electronics, ionic electrolytes, liquid crystals, biomaterials, ceramics and concrete, paints and coatings … all needed to face the environmental, energetical and technological issues of today. Some industrial aspects of the applications of these materials will also be presented.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e\u003cbr\u003eChapter 1 – Functional Polysiloxanes\u003cbr\u003e\u003cbr\u003e1 - New Avenues, New Outcomes: Nanoparticle Catalysis for Polymer Makeovers\u003cbr\u003eBhanu P. S. Chauhan, Bharathi Balagam, Jitendra S. Rathore and Alok Sarkar\u003cbr\u003e\u003cbr\u003e2 - Polysiloxane based Interpenetrating Polymer networks: synthesis and properties\u003cbr\u003eOdile Fichet, Frédéric Vidal, Vincent Darras, Sylvie Boileau and Dominique Teyssié\u003cbr\u003e\u003cbr\u003e3 - Simple Strategies to Manipulate Hydrophilic Domains in Silicones\u003cbr\u003eDavid B. Thompson, Amanda S. Fawcett, and Michael A. Brook\u003cbr\u003e\u003cbr\u003e4 - Aldehyde and Carboxy Functional Polysiloxanes\u003cbr\u003eElke Fritz-Langhals\u003cbr\u003e\u003cbr\u003e5 - Molecular Devices. Chiral, Bichromophoric Silicones: Ordering Principles in Complex Molecules\u003cbr\u003eHeinz Langhals\u003cbr\u003e\u003cbr\u003e6 - Modified azo-polysiloxanes for complex photo-sensible supramolecular systems\u003cbr\u003eNicolae Hurduc, Ramona Enea, Ana-Maria Resmerita, Ioana Moleavin, Mariana Cristea, Dan Scutaru\u003cbr\u003e\u003cbr\u003e7 - Thermoreversible crosslinking of silicones using acceptor-donor interactions\u003cbr\u003eEmmanuel Pouget, François Ganachaud, and Bernard Boutevin\u003cbr\u003e\u003cbr\u003e8 - Star-shape Poly(methylvinyl-co-dimethyl)siloxanes with Carbosilane Core – Synthesis and Application\u003cbr\u003eAnna Kowalewska and Bogumila Delczyk\u003cbr\u003e\u003cbr\u003e9 - Copolycondensation of functional silanes and siloxanes in solution using tris(pentafluorophenyl)borane as a catalyst in a view to generate hybrid silicones\u003cbr\u003eClaire Longuet and François Ganachaud\u003cbr\u003e\u003cbr\u003e10 - Hydrosilylation of polymethylhydrogenosiloxanes in the presence of functional molecules such as amines, esters or alcohols\u003cbr\u003eCorinne Binet, Mathieu Dumont, Juliette Fitremann, Stéphane Gineste, Elisabeth Laurent, Jean-Daniel Marty, Monique Mauzac, Anne-Françoise Mingotaud, Waêl Moukarzel, Guillaume Palaprat and Lacramioara Zadoina\u003cbr\u003e\u003cbr\u003e11 - High Refraction Index Polysiloxanes via Organometallic Routes - an Overview.\u003cbr\u003eWlodzimierz A. Stanczyk, Anna Czech, Wojciech Duczmal, Tomasz Ganicz, Malgorzata Noskowska and Anna Szelag\u003cbr\u003e\u003cbr\u003e12 - Grafting ß-cyclodextrins to silicone, formulation of emulsions and encapsulation of antifungal drug\u003cbr\u003eAhlem Noomen, Alexandra Penciu, Souhaira Hbaieb, Rafik Kalfat, Hélène Parrot-Lopez, Noureddine Amdouni and Yves Chevalier\u003cbr\u003e\u003cbr\u003e13 - Glycosilicones\u003cbr\u003eJuliette Fitremann, Waêl Moukarzel and Monique Mauzac\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 2 – Functional Polysilsesquioxanes \u003cbr\u003e\u003cbr\u003e1 - Silsesquioxane-based Polymers: Synthesis of Phenylsilsesquioxanes with Double-decker Structure and Their Polymers\u003cbr\u003eKazuhiro Yoshida, Takayuki Hattori, and Nobumasa Ootake\u003cbr\u003e\u003cbr\u003e2 - Organosilica Mesoporous Materials With Double Functionality Amino Groups and b-cyclodextrine –Synthesis and Properties\u003cbr\u003eMaryse Bacquet, Stéphanie Willai, Michel Morcellet\u003cbr\u003e\u003cbr\u003e3 - Direct synthesis of mesoporous hybrid organic-inorganic silica powders and thin films for potential nonlinear optic applications\u003cbr\u003eEric Besson, Ahmad Mehdi, Catherine Réyé, Alain Gibaud and Robert J. P. Corriu\u003cbr\u003e\u003cbr\u003e4 - Self-association in hybrid organic-inorganic silicon-based material prepared by surfactant-free sol-gel of organosilane.\u003cbr\u003eBruno Boury\u003cbr\u003e\u003cbr\u003eChapter 3 - Polysilanes\u003cbr\u003e\u003cbr\u003e1 - The Synthesis, Self-Assembly, and Self-Organisation of Polysilane Block Copolymers\u003cbr\u003eSimon J. Holder and Richard G. Jones\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:12-04:00","created_at":"2017-06-22T21:15:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","glycosilicones","Industrial Applications","Macromolecular","nanoparticles","Organosilicon","p-chemistry","polymer","polysiloxanes","silica","Silicon Chemistry","silicones","Sol-Gel Chemistry","Supramolecular"],"price":24900,"price_min":24900,"price_max":24900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378468740,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicon Based Polymers Advances in Synthesis and Supramolecular Organization","public_title":null,"options":["Default Title"],"price":24900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4020-8527-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-8527-7.jpg?v=1499955518"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-8527-7.jpg?v=1499955518","options":["Title"],"media":[{"alt":null,"id":358749470813,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-8527-7.jpg?v=1499955518"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-8527-7.jpg?v=1499955518","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ganachaud, François; Boileau, Sylvie; Boury, Bruno (Eds.) \u003cbr\u003eISBN 978-1-4020-8527-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003cbr\u003e\u003c\/span\u003e285 p. 70 illus., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicon Based Polymers presents highlights in advanced research and technological innovations using macromolecular organosilicon compounds and systems, as presented in the 2007 ISPO congress. Silicon-containing materials and polymers are used all over the world and in a variety of industries, domestic products, and high technology applications. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAmong them, silicones are certainly the most well–known, however, there are still new properties discovered and preparative processes developed all the time, therefore adding to their potential. Less known, but in preparation for the future, are other silicon containing-polymers which are now close to maturity and in fact, some are already available like polysilsesquioxanes and polysilanes.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAll these silicon-based materials can adopt very different structures like chains, dendrimers, hyperbranched and networks, physical and chemical gels. The result is a vast array of materials with applications in various areas such as optics, electronics, ionic electrolytes, liquid crystals, biomaterials, ceramics and concrete, paints and coatings … all needed to face the environmental, energetical and technological issues of today. Some industrial aspects of the applications of these materials will also be presented.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e\u003cbr\u003eChapter 1 – Functional Polysiloxanes\u003cbr\u003e\u003cbr\u003e1 - New Avenues, New Outcomes: Nanoparticle Catalysis for Polymer Makeovers\u003cbr\u003eBhanu P. S. Chauhan, Bharathi Balagam, Jitendra S. Rathore and Alok Sarkar\u003cbr\u003e\u003cbr\u003e2 - Polysiloxane based Interpenetrating Polymer networks: synthesis and properties\u003cbr\u003eOdile Fichet, Frédéric Vidal, Vincent Darras, Sylvie Boileau and Dominique Teyssié\u003cbr\u003e\u003cbr\u003e3 - Simple Strategies to Manipulate Hydrophilic Domains in Silicones\u003cbr\u003eDavid B. Thompson, Amanda S. Fawcett, and Michael A. Brook\u003cbr\u003e\u003cbr\u003e4 - Aldehyde and Carboxy Functional Polysiloxanes\u003cbr\u003eElke Fritz-Langhals\u003cbr\u003e\u003cbr\u003e5 - Molecular Devices. Chiral, Bichromophoric Silicones: Ordering Principles in Complex Molecules\u003cbr\u003eHeinz Langhals\u003cbr\u003e\u003cbr\u003e6 - Modified azo-polysiloxanes for complex photo-sensible supramolecular systems\u003cbr\u003eNicolae Hurduc, Ramona Enea, Ana-Maria Resmerita, Ioana Moleavin, Mariana Cristea, Dan Scutaru\u003cbr\u003e\u003cbr\u003e7 - Thermoreversible crosslinking of silicones using acceptor-donor interactions\u003cbr\u003eEmmanuel Pouget, François Ganachaud, and Bernard Boutevin\u003cbr\u003e\u003cbr\u003e8 - Star-shape Poly(methylvinyl-co-dimethyl)siloxanes with Carbosilane Core – Synthesis and Application\u003cbr\u003eAnna Kowalewska and Bogumila Delczyk\u003cbr\u003e\u003cbr\u003e9 - Copolycondensation of functional silanes and siloxanes in solution using tris(pentafluorophenyl)borane as a catalyst in a view to generate hybrid silicones\u003cbr\u003eClaire Longuet and François Ganachaud\u003cbr\u003e\u003cbr\u003e10 - Hydrosilylation of polymethylhydrogenosiloxanes in the presence of functional molecules such as amines, esters or alcohols\u003cbr\u003eCorinne Binet, Mathieu Dumont, Juliette Fitremann, Stéphane Gineste, Elisabeth Laurent, Jean-Daniel Marty, Monique Mauzac, Anne-Françoise Mingotaud, Waêl Moukarzel, Guillaume Palaprat and Lacramioara Zadoina\u003cbr\u003e\u003cbr\u003e11 - High Refraction Index Polysiloxanes via Organometallic Routes - an Overview.\u003cbr\u003eWlodzimierz A. Stanczyk, Anna Czech, Wojciech Duczmal, Tomasz Ganicz, Malgorzata Noskowska and Anna Szelag\u003cbr\u003e\u003cbr\u003e12 - Grafting ß-cyclodextrins to silicone, formulation of emulsions and encapsulation of antifungal drug\u003cbr\u003eAhlem Noomen, Alexandra Penciu, Souhaira Hbaieb, Rafik Kalfat, Hélène Parrot-Lopez, Noureddine Amdouni and Yves Chevalier\u003cbr\u003e\u003cbr\u003e13 - Glycosilicones\u003cbr\u003eJuliette Fitremann, Waêl Moukarzel and Monique Mauzac\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 2 – Functional Polysilsesquioxanes \u003cbr\u003e\u003cbr\u003e1 - Silsesquioxane-based Polymers: Synthesis of Phenylsilsesquioxanes with Double-decker Structure and Their Polymers\u003cbr\u003eKazuhiro Yoshida, Takayuki Hattori, and Nobumasa Ootake\u003cbr\u003e\u003cbr\u003e2 - Organosilica Mesoporous Materials With Double Functionality Amino Groups and b-cyclodextrine –Synthesis and Properties\u003cbr\u003eMaryse Bacquet, Stéphanie Willai, Michel Morcellet\u003cbr\u003e\u003cbr\u003e3 - Direct synthesis of mesoporous hybrid organic-inorganic silica powders and thin films for potential nonlinear optic applications\u003cbr\u003eEric Besson, Ahmad Mehdi, Catherine Réyé, Alain Gibaud and Robert J. P. Corriu\u003cbr\u003e\u003cbr\u003e4 - Self-association in hybrid organic-inorganic silicon-based material prepared by surfactant-free sol-gel of organosilane.\u003cbr\u003eBruno Boury\u003cbr\u003e\u003cbr\u003eChapter 3 - Polysilanes\u003cbr\u003e\u003cbr\u003e1 - The Synthesis, Self-Assembly, and Self-Organisation of Polysilane Block Copolymers\u003cbr\u003eSimon J. Holder and Richard G. Jones\u003cbr\u003e\u003cbr\u003e"}
Silicone Elastomers
$125.00
{"id":11242214916,"title":"Silicone Elastomers","handle":"978-1-85957-297-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. P. Jershow, Wacker-Chemie GmbH \u003cbr\u003eISBN 978-1-85957-297-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003ePages: 164\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, domestic appliances and medical. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties. \u003cbr\u003e\u003cbr\u003eThis is a very comprehensive review of the state-of-the-art in silicone elastomers. It deals with the advantages of using silicone rubbers, such as high temperature and chemical resistance, pigmentability and transparency, combined with good electrical properties. \u003cbr\u003e\u003cbr\u003eIt describes processing by extrusion, injection moulding and calendering, and the use of silicones inflexible and rigid mould making. The key issues concerning the processing of silicones are addressed here. \u003cbr\u003e\u003cbr\u003eThe key material types and the nomenclature used to describe silicones are explained. Room temperature vulcanised (RTV), high temperature vulcanised (HTV) and liquid silicone rubbers (LSR) are all discussed. \u003cbr\u003e\u003cbr\u003eSpeciality silicones are continually being developed to meet specific application requirements, for example, standard silicone is a good electrical insulator and is used in cable coverings, however, conductive silicones are now available. These new grades of silicones are described and compared to standard grades for key performance issues. \u003cbr\u003e\u003cbr\u003eThis review is packed with details on specific silicone materials, containing over 50 tables of information together with useful graphs. It is much longer than the usual reviews in this series. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from the Rapra Abstracts database, to facilitate further reading on this subject.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Nomenclature \u003cbr\u003e2. Silicone Elastomers Market \u003cbr\u003e3. Applications for Silicone Elastomers \u003cbr\u003e3.1 Automotive \u003cbr\u003e3.2 Healthcare and Medical \u003cbr\u003e3.3 Wire and Cable \u003cbr\u003e3.4 Sanitary, Household, and Leisure \u003cbr\u003e3.5 Transmission and Distribution \u003cbr\u003e3.6 Electronics \u003cbr\u003e3.7 Mould Making \u003cbr\u003e3.8 Food Sector \u003cbr\u003e3.9 Other \u003cbr\u003e4. Composition and Function of Silicone Elastomers \u003cbr\u003e4.1 Introduction and Classifications \u003cbr\u003e4.2 Properties of Silicone Elastomers \u003cbr\u003e4.3 Chemistry and Curing Mechanisms of Silicone Elastomers \u003cbr\u003e\u003cbr\u003e5. RTV - Room Temperature Vulcanising Silicone Elastomers \u003cbr\u003e5.1 General \u003cbr\u003e5.2 Condensation Curing RTVs \u003cbr\u003e5.3 RTV-1 for CIPG and FIPG \u003cbr\u003e5.4 RTV-1 for Baking Tray Coatings \u003cbr\u003e5.5 Adhesive RTV-1 Materials \u003cbr\u003e5.6 Condensation Curing RTV-2 Systems \u003cbr\u003e5.7 Mould Making Condensation Curing RTV-2 Materials \u003cbr\u003e5.8 Condensation Curing RTV-2 Compounds for Encapsulation \u003cbr\u003e5.9 Adhesives and Sealants Based on Condensation Curing RTV-2 Compounds \u003cbr\u003e5.10 Addition Curing RTV-2 Systems \u003cbr\u003e5.11 Silicone Gels \u003cbr\u003e5.12 Addition Curing Systems for Mould Making \u003cbr\u003e5.13 Addition Cured RTV-2 Systems for Encapsulation \u003cbr\u003e5.14 Addition Cured RTV-2 Adhesives and Sealants \u003cbr\u003e5.15 Addition Cured RTV-2 Sponge for Compressible Gaskets \u003cbr\u003e6. Liquid Silicone Rubber \u003cbr\u003e6.1 General \u003cbr\u003e6.2 Curing Mechanism of Liquid Silicone Rubbers \u003cbr\u003e6.3 Standard Liquid Silicone Rubbers \u003cbr\u003e6.4 Speciality LRs \u003cbr\u003e6.5 Pigment Pastes \u003cbr\u003e7. Solid Silicone Rubber \u003cbr\u003e7.1 General \u003cbr\u003e7.2 Curing Mechanisms of Solid Silicone Rubbers \u003cbr\u003e7.3 Standard Solid Silicone Rubbers \u003cbr\u003e7.4 Speciality HTV (all peroxide) \u003cbr\u003e7.5 Addition Cured HTV \u003cbr\u003e8. Processing Silicone Elastomers \u003cbr\u003e8.1 RTV-1 Systems \u003cbr\u003e8.2 RTV-2 Systems \u003cbr\u003e8.3 LR and HTV\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Jerschow is a leading scientist in the field of silicone elastomers having written papers on processing, properties and applications and also on bonding. He works for Wacker-Chemie GmbH, a leading silicone elastomer manufacturer, hence examples in the text are drawn from the Wacker-Chemie repertoire of material grades.","published_at":"2017-06-22T21:13:24-04:00","created_at":"2017-06-22T21:13:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","adhesives","automotive","book","cable","cost management","cured RTV-2","curing","electronics","healthcare","household","leisure","medical","mold","mould","p-chemistry","plastics","polymer","processing","sanitary","sealants","sponge","transmission","wire"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354308,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-297-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-297-9.jpg?v=1499955539"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-297-9.jpg?v=1499955539","options":["Title"],"media":[{"alt":null,"id":358750453853,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-297-9.jpg?v=1499955539"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-297-9.jpg?v=1499955539","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. P. Jershow, Wacker-Chemie GmbH \u003cbr\u003eISBN 978-1-85957-297-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003ePages: 164\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, domestic appliances and medical. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties. \u003cbr\u003e\u003cbr\u003eThis is a very comprehensive review of the state-of-the-art in silicone elastomers. It deals with the advantages of using silicone rubbers, such as high temperature and chemical resistance, pigmentability and transparency, combined with good electrical properties. \u003cbr\u003e\u003cbr\u003eIt describes processing by extrusion, injection moulding and calendering, and the use of silicones inflexible and rigid mould making. The key issues concerning the processing of silicones are addressed here. \u003cbr\u003e\u003cbr\u003eThe key material types and the nomenclature used to describe silicones are explained. Room temperature vulcanised (RTV), high temperature vulcanised (HTV) and liquid silicone rubbers (LSR) are all discussed. \u003cbr\u003e\u003cbr\u003eSpeciality silicones are continually being developed to meet specific application requirements, for example, standard silicone is a good electrical insulator and is used in cable coverings, however, conductive silicones are now available. These new grades of silicones are described and compared to standard grades for key performance issues. \u003cbr\u003e\u003cbr\u003eThis review is packed with details on specific silicone materials, containing over 50 tables of information together with useful graphs. It is much longer than the usual reviews in this series. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from the Rapra Abstracts database, to facilitate further reading on this subject.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Nomenclature \u003cbr\u003e2. Silicone Elastomers Market \u003cbr\u003e3. Applications for Silicone Elastomers \u003cbr\u003e3.1 Automotive \u003cbr\u003e3.2 Healthcare and Medical \u003cbr\u003e3.3 Wire and Cable \u003cbr\u003e3.4 Sanitary, Household, and Leisure \u003cbr\u003e3.5 Transmission and Distribution \u003cbr\u003e3.6 Electronics \u003cbr\u003e3.7 Mould Making \u003cbr\u003e3.8 Food Sector \u003cbr\u003e3.9 Other \u003cbr\u003e4. Composition and Function of Silicone Elastomers \u003cbr\u003e4.1 Introduction and Classifications \u003cbr\u003e4.2 Properties of Silicone Elastomers \u003cbr\u003e4.3 Chemistry and Curing Mechanisms of Silicone Elastomers \u003cbr\u003e\u003cbr\u003e5. RTV - Room Temperature Vulcanising Silicone Elastomers \u003cbr\u003e5.1 General \u003cbr\u003e5.2 Condensation Curing RTVs \u003cbr\u003e5.3 RTV-1 for CIPG and FIPG \u003cbr\u003e5.4 RTV-1 for Baking Tray Coatings \u003cbr\u003e5.5 Adhesive RTV-1 Materials \u003cbr\u003e5.6 Condensation Curing RTV-2 Systems \u003cbr\u003e5.7 Mould Making Condensation Curing RTV-2 Materials \u003cbr\u003e5.8 Condensation Curing RTV-2 Compounds for Encapsulation \u003cbr\u003e5.9 Adhesives and Sealants Based on Condensation Curing RTV-2 Compounds \u003cbr\u003e5.10 Addition Curing RTV-2 Systems \u003cbr\u003e5.11 Silicone Gels \u003cbr\u003e5.12 Addition Curing Systems for Mould Making \u003cbr\u003e5.13 Addition Cured RTV-2 Systems for Encapsulation \u003cbr\u003e5.14 Addition Cured RTV-2 Adhesives and Sealants \u003cbr\u003e5.15 Addition Cured RTV-2 Sponge for Compressible Gaskets \u003cbr\u003e6. Liquid Silicone Rubber \u003cbr\u003e6.1 General \u003cbr\u003e6.2 Curing Mechanism of Liquid Silicone Rubbers \u003cbr\u003e6.3 Standard Liquid Silicone Rubbers \u003cbr\u003e6.4 Speciality LRs \u003cbr\u003e6.5 Pigment Pastes \u003cbr\u003e7. Solid Silicone Rubber \u003cbr\u003e7.1 General \u003cbr\u003e7.2 Curing Mechanisms of Solid Silicone Rubbers \u003cbr\u003e7.3 Standard Solid Silicone Rubbers \u003cbr\u003e7.4 Speciality HTV (all peroxide) \u003cbr\u003e7.5 Addition Cured HTV \u003cbr\u003e8. Processing Silicone Elastomers \u003cbr\u003e8.1 RTV-1 Systems \u003cbr\u003e8.2 RTV-2 Systems \u003cbr\u003e8.3 LR and HTV\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Jerschow is a leading scientist in the field of silicone elastomers having written papers on processing, properties and applications and also on bonding. He works for Wacker-Chemie GmbH, a leading silicone elastomer manufacturer, hence examples in the text are drawn from the Wacker-Chemie repertoire of material grades."}
Silicone Elastomers 2006
$140.00
{"id":11242237892,"title":"Silicone Elastomers 2006","handle":"978-1-84735-002-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Report \u003cbr\u003eISBN 978-1-84735-002-2 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 19-20 September 2006\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, gaskets, domestic appliances, fabric coatings (e.g. airbags), baby bottle teats, and medical devices. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties, such as high and low temperature stability, inertness (no smell or taste), low toxicity, colorability, and transparency, combined with good electrical properties. The hardness range is wide, from 10-80 Shore A. \u003cbr\u003e\u003cbr\u003eSilicones have been in use in medical applications for over 30 years because of their long-term stability and biocompatibility. High gas permeability is a positive property in many medical devices; silicones have up to 400 times the permeability of butyl rubber at room temperature. They are also used in cosmetic applications, where their colorability and sensory properties are important (a soft, skin-like touch and appearance can be achieved). \u003cbr\u003e\u003cbr\u003eThese proceedings from Rapra’s first international conference on Silicone Elastomers will be of interest to rubber manufacturers and technologists, with a common interest in silicone elastomer materials, applications, and technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1:\u003c\/strong\u003e TRENDS AND GROWTH IN SILICONE ELASTOMERS \u003cbr\u003ePaper 1 Silicone elastomers: introduction and basic considerations\u003cbr\u003eBarry Statham, Polymer Consultant, UK \u003cbr\u003ePaper 2 Silicone expansion: trend indicators for growth in the silicone elastomer market\u003cbr\u003eThomas Tangney \u0026amp; Rachelle Jacques, Dow Corning Corporation, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2:\u003c\/strong\u003e FOOD CONTACT STUDIES \u003cbr\u003ePaper 3 The use of GCXGC-TOFMS and LC-MS for the determination of migrants from silicone rubbers into food simulants and food products\u003cbr\u003eDr. Martin Forrest, Dr. SR Holding, D Howells and M Eardley Rapra Technology, UK \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 3:\u003c\/strong\u003e SILICONE ELASTOMER MATERIALS \u003cbr\u003ePaper 4 Silicone rubber: the material of choice to meet new challenges\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning Corporation, Germany \u003cbr\u003ePaper 5 Fluorinated silicone elastomers in automotive applications\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Boßhammer, GE Bayer Silicones GmbH \u0026amp; Co.KG, Germany \u003cbr\u003ePaper 6 Influence of the network structure of silicone rubber on time-dependent autohesion as mechanism for self-healing\u003cbr\u003eMarek Mikrut \u0026amp; JWM Noordermeer, University of Twente \u0026amp; G Verbeek, Océ Technologies BV, The Netherlands \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 4:\u003c\/strong\u003e LIQUID SILICONE RUBBER \u003cbr\u003ePaper 7 The five elements to run a successful LSR process\u003cbr\u003eKurt Manigatter, ELMET Elastomere Produktions und Dienstleistungs GmbH, Germany \u003cbr\u003ePaper 8 2-Component injection moulding of LSR\u003cbr\u003eClemens Trumm, GE Bayer Silicones GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 9 Machine technology for processing LSR\u003cbr\u003eDipl Ing Wolfgang Roth, Battenfeld, GmbH, Austria \u003cbr\u003ePaper 10 LSR processing with electric driven injection moulding machines - application and experiences\u003cbr\u003eDipl Ing (FH) Martin Neff, ARBURG GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 11 Innovative machine systems for moulding LSR components\u003cbr\u003eIng. Leo Praher, ENGEL Austria GmbH, Austria \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5:\u003c\/strong\u003e PROCESSING SILICONE ELASTOMERS \u003cbr\u003ePaper 12 New developments in silicone processing\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy \u003cbr\u003ePaper 13 Machine, mould and process technology for processing HTV silicones\u003cbr\u003eManfred Arning, Esitec, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6:\u003c\/strong\u003e ADDITIVES AND FINISHING FOR SILICONE ELASTOMERS \u003cbr\u003ePaper 14 New opportunities for using silicone rubber\u003cbr\u003eDr. Maike Benter, Nanon A\/S, Denmark \u003cbr\u003ePaper 15 Colours in silicone: the visible additive\u003cbr\u003eThomas Klehr, Holland Colours, The Netherlands \u003cbr\u003ePaper 16 Bonding silicone elastomers\u003cbr\u003eAissa Benarous \u0026amp; Dr. Keith Worthington, Technical Advisor, Chemical Innovations Ltd, UK \u003cbr\u003ePaper 17 Acetone cure 1-part RTVs – non-corrosive silicone adhesives that perform\u003cbr\u003eSean Stoodley, ACC Silicones Europe, UK \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7:\u003c\/strong\u003e MEDICAL APPLICATIONS OF SILICONE ELASTOMERS \u003cbr\u003ePaper 18 Pharmaceutical and medical device applications of novel silicones\u003cbr\u003eProf David S Jones, Queen’s University of Belfast, UK \u003cbr\u003ePaper 19 Silicone elastomer gels for medical devices: viscoelasticity and performance\u003cbr\u003eDr. Gilles Lorentz, Delphine Blanc \u0026amp; Ludovic Odoni, Rhodia Research \u0026amp; Technology CRTL, France \u003cbr\u003ePaper 20 Hydrophilization of silicone rubber for biomedical applications\u003cbr\u003eFarhang Abbasi \u0026amp; Kyoumars Jalili, Sahand University of Technology, Iran\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:37-04:00","created_at":"2017-06-22T21:14:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","applications","biocompatibility","book","colorability","cosmetics","determination","fluorinated silicone","food","hardness","medical","migrants","p-chemistry","polymer","rubber","silicone elastomer","stability","technology"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378425540,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2006","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-002-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889","options":["Title"],"media":[{"alt":null,"id":413511286877,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Report \u003cbr\u003eISBN 978-1-84735-002-2 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 19-20 September 2006\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, gaskets, domestic appliances, fabric coatings (e.g. airbags), baby bottle teats, and medical devices. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties, such as high and low temperature stability, inertness (no smell or taste), low toxicity, colorability, and transparency, combined with good electrical properties. The hardness range is wide, from 10-80 Shore A. \u003cbr\u003e\u003cbr\u003eSilicones have been in use in medical applications for over 30 years because of their long-term stability and biocompatibility. High gas permeability is a positive property in many medical devices; silicones have up to 400 times the permeability of butyl rubber at room temperature. They are also used in cosmetic applications, where their colorability and sensory properties are important (a soft, skin-like touch and appearance can be achieved). \u003cbr\u003e\u003cbr\u003eThese proceedings from Rapra’s first international conference on Silicone Elastomers will be of interest to rubber manufacturers and technologists, with a common interest in silicone elastomer materials, applications, and technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1:\u003c\/strong\u003e TRENDS AND GROWTH IN SILICONE ELASTOMERS \u003cbr\u003ePaper 1 Silicone elastomers: introduction and basic considerations\u003cbr\u003eBarry Statham, Polymer Consultant, UK \u003cbr\u003ePaper 2 Silicone expansion: trend indicators for growth in the silicone elastomer market\u003cbr\u003eThomas Tangney \u0026amp; Rachelle Jacques, Dow Corning Corporation, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2:\u003c\/strong\u003e FOOD CONTACT STUDIES \u003cbr\u003ePaper 3 The use of GCXGC-TOFMS and LC-MS for the determination of migrants from silicone rubbers into food simulants and food products\u003cbr\u003eDr. Martin Forrest, Dr. SR Holding, D Howells and M Eardley Rapra Technology, UK \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 3:\u003c\/strong\u003e SILICONE ELASTOMER MATERIALS \u003cbr\u003ePaper 4 Silicone rubber: the material of choice to meet new challenges\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning Corporation, Germany \u003cbr\u003ePaper 5 Fluorinated silicone elastomers in automotive applications\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Boßhammer, GE Bayer Silicones GmbH \u0026amp; Co.KG, Germany \u003cbr\u003ePaper 6 Influence of the network structure of silicone rubber on time-dependent autohesion as mechanism for self-healing\u003cbr\u003eMarek Mikrut \u0026amp; JWM Noordermeer, University of Twente \u0026amp; G Verbeek, Océ Technologies BV, The Netherlands \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 4:\u003c\/strong\u003e LIQUID SILICONE RUBBER \u003cbr\u003ePaper 7 The five elements to run a successful LSR process\u003cbr\u003eKurt Manigatter, ELMET Elastomere Produktions und Dienstleistungs GmbH, Germany \u003cbr\u003ePaper 8 2-Component injection moulding of LSR\u003cbr\u003eClemens Trumm, GE Bayer Silicones GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 9 Machine technology for processing LSR\u003cbr\u003eDipl Ing Wolfgang Roth, Battenfeld, GmbH, Austria \u003cbr\u003ePaper 10 LSR processing with electric driven injection moulding machines - application and experiences\u003cbr\u003eDipl Ing (FH) Martin Neff, ARBURG GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 11 Innovative machine systems for moulding LSR components\u003cbr\u003eIng. Leo Praher, ENGEL Austria GmbH, Austria \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5:\u003c\/strong\u003e PROCESSING SILICONE ELASTOMERS \u003cbr\u003ePaper 12 New developments in silicone processing\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy \u003cbr\u003ePaper 13 Machine, mould and process technology for processing HTV silicones\u003cbr\u003eManfred Arning, Esitec, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6:\u003c\/strong\u003e ADDITIVES AND FINISHING FOR SILICONE ELASTOMERS \u003cbr\u003ePaper 14 New opportunities for using silicone rubber\u003cbr\u003eDr. Maike Benter, Nanon A\/S, Denmark \u003cbr\u003ePaper 15 Colours in silicone: the visible additive\u003cbr\u003eThomas Klehr, Holland Colours, The Netherlands \u003cbr\u003ePaper 16 Bonding silicone elastomers\u003cbr\u003eAissa Benarous \u0026amp; Dr. Keith Worthington, Technical Advisor, Chemical Innovations Ltd, UK \u003cbr\u003ePaper 17 Acetone cure 1-part RTVs – non-corrosive silicone adhesives that perform\u003cbr\u003eSean Stoodley, ACC Silicones Europe, UK \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7:\u003c\/strong\u003e MEDICAL APPLICATIONS OF SILICONE ELASTOMERS \u003cbr\u003ePaper 18 Pharmaceutical and medical device applications of novel silicones\u003cbr\u003eProf David S Jones, Queen’s University of Belfast, UK \u003cbr\u003ePaper 19 Silicone elastomer gels for medical devices: viscoelasticity and performance\u003cbr\u003eDr. Gilles Lorentz, Delphine Blanc \u0026amp; Ludovic Odoni, Rhodia Research \u0026amp; Technology CRTL, France \u003cbr\u003ePaper 20 Hydrophilization of silicone rubber for biomedical applications\u003cbr\u003eFarhang Abbasi \u0026amp; Kyoumars Jalili, Sahand University of Technology, Iran\u003cbr\u003e\u003cbr\u003e"}
Silicone Elastomers 2008
$140.00
{"id":11242237188,"title":"Silicone Elastomers 2008","handle":"978-1-84375-069-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra conference proceedings \u003cbr\u003eISBN 978-1-84375-069-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eSilicone Elastomers 2008 brought together major material manufacturers, such as Dow Corning, Wacker Chemie, Momentive Performance Materials and Bluestar Silicones, looking at market trends and new developments in materials such as LSR and liquid fluorosilicone rubber.\u003c\/p\u003e\n\u003cp\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 2: LIQUID SILICONE RUBBER\u003c\/p\u003e\n\u003cp\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 5: FILLERS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 6: CROSSLINKING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 8: INJECTION MOULDING LIQUID SILICONE RUBBER\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePaper 1 Global expansion for the silicone rubber market\u003cbr\u003e\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: LIQUID SILICONE RUBBER\u003c\/strong\u003e\u003cbr\u003eMarco Pagliani, Dow Corning SpA, Italy \u0026amp; Fabien Virlogeux, Dow Corning France SAS\u003cbr\u003e\u003cbr\u003ePaper 2 Liquid silicone rubber, the material of your choice\u003cbr\u003e\u003cbr\u003ePaper 3 Real fluorosilicones combined with LSR processing: new product family FFSL\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Bosshammer, Momentive Performance Materials GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eAndre Colas, Dow Corning SA, Belgium\u003cbr\u003e\u003cbr\u003ePaper 4 Silicone elastomers in medical applications\u003cbr\u003e\u003cbr\u003ePaper 5 Adding colour to medical devices using pigment masterbatches\u003cbr\u003ePatrick Peignot \u0026amp; Stephen Brunerm NuSil Technology Europe, France\u003cbr\u003e\u003cbr\u003ePaper 6 Silicone elastomers for outdoor electrical power transmission and distribution applications\u003cbr\u003eDr. Hans-Jrg Winter, Wacker Chemie AG, Germany\u003cbr\u003e\u003cbr\u003ePaper 7 Corpo Fibre Reinforcement for Elastomer Applications\u003cbr\u003eSiebe Nooij, Coen Ten Herkel \u0026amp; Soren Blomaard, Taniq BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eLaurent Perier \u0026amp; Arnaud Favier, DMA Products and Consulting, 01dB-Metravib, France\u003cbr\u003e\u003cbr\u003ePaper 8 A single testing instrument with multiple testing capabilities for silicone elastomers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: FILLERS FOR SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eMichael Claes \u0026amp; Daniel Bonduel, Nanocyl SA, Belgium \u0026amp; Philippe Dubois, Universit of Mons-Hainaut, Belgium\u003cbr\u003e\u003cbr\u003ePaper 9 Carbon nanotubes\/silicone elastomer nanocomposites: multi-fuctional and high-performance products; review and trends of their applications\u003cbr\u003e\u003cbr\u003ePaper 10 Structure modified fumed silica-a clear solution for silicone rubber\u003cbr\u003eDr Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003e\u003cbr\u003ePaper 11 Improvements in reinforcement with diatomaceous earth in silicone systems\u003cbr\u003eJulian Danvers, World Minerals, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6: CROSSLINKING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eLeo Nijhof, Akzo Nobel Polymer Chemicals BV, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 12 Peroxide curing of silicone elastomers\u003cbr\u003e\u003cbr\u003ePaper 13 Crosslinking in PDMS particulate composites\u003cbr\u003eDr. Catarina Esteves, Dr. J Brokken-Zijp, Dr. J Laven \u0026amp; Dr. G de With, Technische Universiteit Eindhoven, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Silicone mixing and extrusion processing\u003cbr\u003e\u003cbr\u003ePaper 15 Carbon dioxide: good news for silicone rubber\u003cbr\u003eThomas Christensen, Nanon A\/S, Denmark\u003cbr\u003e\u003cbr\u003ePaper 16 Silicone composites\u003cbr\u003eDr. Jrgen Weidinger \u0026amp; Dr. Jrgen Ismeier, Wacker Chemie AG, Germany\u003cbr\u003e\u003cbr\u003ePaper 17 Bonding silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 18 Bubbling modelization, a help for the development of low density RTV foams\u003cbr\u003eDr. Delphine Blanc, Bluestar silicones, France\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 8: INJECTION MOULDING LIQUID SILICONE RUBBER\u003c\/strong\u003e\u003cbr\u003eProf Dr-Ing Dr-Ing Eh W Michaeli \u0026amp; Dipl-Ing Kai Openwinkel \u0026amp;, IKV Aachenm Germany\u003cbr\u003e\u003cbr\u003ePaper 19 Physical foaming of liquid silicone rubber in the injection moulding process\u003cbr\u003e\u003cbr\u003ePaper 20 High-quality LSR moulding\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:34-04:00","created_at":"2017-06-22T21:14:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","acrylic polymers","book","elastomers","fillers","fluorosilicone","liquid silicone","moulding","p-chemistry","rubber","rubbers","silicone"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378424708,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2008","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84375-069-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84375-069-5.jpg?v=1504199172"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84375-069-5.jpg?v=1504199172","options":["Title"],"media":[{"alt":null,"id":413512368221,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84375-069-5.jpg?v=1504199172"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84375-069-5.jpg?v=1504199172","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra conference proceedings \u003cbr\u003eISBN 978-1-84375-069-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eSilicone Elastomers 2008 brought together major material manufacturers, such as Dow Corning, Wacker Chemie, Momentive Performance Materials and Bluestar Silicones, looking at market trends and new developments in materials such as LSR and liquid fluorosilicone rubber.\u003c\/p\u003e\n\u003cp\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 2: LIQUID SILICONE RUBBER\u003c\/p\u003e\n\u003cp\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 5: FILLERS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 6: CROSSLINKING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 8: INJECTION MOULDING LIQUID SILICONE RUBBER\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePaper 1 Global expansion for the silicone rubber market\u003cbr\u003e\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: LIQUID SILICONE RUBBER\u003c\/strong\u003e\u003cbr\u003eMarco Pagliani, Dow Corning SpA, Italy \u0026amp; Fabien Virlogeux, Dow Corning France SAS\u003cbr\u003e\u003cbr\u003ePaper 2 Liquid silicone rubber, the material of your choice\u003cbr\u003e\u003cbr\u003ePaper 3 Real fluorosilicones combined with LSR processing: new product family FFSL\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Bosshammer, Momentive Performance Materials GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eAndre Colas, Dow Corning SA, Belgium\u003cbr\u003e\u003cbr\u003ePaper 4 Silicone elastomers in medical applications\u003cbr\u003e\u003cbr\u003ePaper 5 Adding colour to medical devices using pigment masterbatches\u003cbr\u003ePatrick Peignot \u0026amp; Stephen Brunerm NuSil Technology Europe, France\u003cbr\u003e\u003cbr\u003ePaper 6 Silicone elastomers for outdoor electrical power transmission and distribution applications\u003cbr\u003eDr. Hans-Jrg Winter, Wacker Chemie AG, Germany\u003cbr\u003e\u003cbr\u003ePaper 7 Corpo Fibre Reinforcement for Elastomer Applications\u003cbr\u003eSiebe Nooij, Coen Ten Herkel \u0026amp; Soren Blomaard, Taniq BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eLaurent Perier \u0026amp; Arnaud Favier, DMA Products and Consulting, 01dB-Metravib, France\u003cbr\u003e\u003cbr\u003ePaper 8 A single testing instrument with multiple testing capabilities for silicone elastomers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: FILLERS FOR SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eMichael Claes \u0026amp; Daniel Bonduel, Nanocyl SA, Belgium \u0026amp; Philippe Dubois, Universit of Mons-Hainaut, Belgium\u003cbr\u003e\u003cbr\u003ePaper 9 Carbon nanotubes\/silicone elastomer nanocomposites: multi-fuctional and high-performance products; review and trends of their applications\u003cbr\u003e\u003cbr\u003ePaper 10 Structure modified fumed silica-a clear solution for silicone rubber\u003cbr\u003eDr Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003e\u003cbr\u003ePaper 11 Improvements in reinforcement with diatomaceous earth in silicone systems\u003cbr\u003eJulian Danvers, World Minerals, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6: CROSSLINKING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eLeo Nijhof, Akzo Nobel Polymer Chemicals BV, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 12 Peroxide curing of silicone elastomers\u003cbr\u003e\u003cbr\u003ePaper 13 Crosslinking in PDMS particulate composites\u003cbr\u003eDr. Catarina Esteves, Dr. J Brokken-Zijp, Dr. J Laven \u0026amp; Dr. G de With, Technische Universiteit Eindhoven, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Silicone mixing and extrusion processing\u003cbr\u003e\u003cbr\u003ePaper 15 Carbon dioxide: good news for silicone rubber\u003cbr\u003eThomas Christensen, Nanon A\/S, Denmark\u003cbr\u003e\u003cbr\u003ePaper 16 Silicone composites\u003cbr\u003eDr. Jrgen Weidinger \u0026amp; Dr. Jrgen Ismeier, Wacker Chemie AG, Germany\u003cbr\u003e\u003cbr\u003ePaper 17 Bonding silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 18 Bubbling modelization, a help for the development of low density RTV foams\u003cbr\u003eDr. Delphine Blanc, Bluestar silicones, France\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 8: INJECTION MOULDING LIQUID SILICONE RUBBER\u003c\/strong\u003e\u003cbr\u003eProf Dr-Ing Dr-Ing Eh W Michaeli \u0026amp; Dipl-Ing Kai Openwinkel \u0026amp;, IKV Aachenm Germany\u003cbr\u003e\u003cbr\u003ePaper 19 Physical foaming of liquid silicone rubber in the injection moulding process\u003cbr\u003e\u003cbr\u003ePaper 20 High-quality LSR moulding\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria\u003cbr\u003e\u003cbr\u003e"}
Silicone Elastomers 2009
$135.00
{"id":11242237252,"title":"Silicone Elastomers 2009","handle":"978-1-84735-395-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-395-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2009 \u003cbr\u003e\u003c\/span\u003ePages: 20 papers\u003cbr\u003eFormat: Soft-backed\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third international conference on silicone elastomers informed the length and breadth of the silicone elastomers supply chain on current research developments and new applications. The application areas of silicone elastomers are widespread due to their wide spectrum of high performance qualities; temperature stability, electrical resistance, chemical inertia and high biocompatibility. Medical, healthcare, food, automotive, electrical, electronic and domestic appliance industries all require silicone elastomer blends that meet individual criteria.\u003cbr\u003e\u003cbr\u003eOrganisations that work with fluorosilicone, silicone composites, thermoplastic silicones, bonding agents, epoxy silicone blends, carbon nanotubes, medical grade silicones, extrusion, mixing or fine mesh straining will all benefit from these proceedings. The conference informed delegates on silicone elastomer market trends, materials, applications, testing, additives, fillers, and processing.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 1: Silicone elastomers – solutions for the future\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Hans Peter Wolf, Fabien Virlogeux \u0026amp; E Gerlach, Dow Corning GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: SILICONE ELASTOMER MATERIALS\u003cbr\u003ePaper 2: Fluoro technologies created new dimensions for liquid silicone rubber \u003cbr\u003e\u003c\/strong\u003eFabien Virlogeux, HP Wolf \u0026amp; E Gerlach, Dow Corning GmbH, Germany\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003ePaper 3: Silicone elastomers – clear as glass\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eDip –Ing Oliver Franssen \u0026amp; H Bayerl, Momentive Performance Materials GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePaper 4: Formulation of two-part elastomer systems: From theory to practice\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eDelphine Blanc \u0026amp; Caroline Moine, Bluestar Silicones, France\u003c\/p\u003e\n\u003cbr\u003e\u003cstrong\u003ePaper 5: Contribution of soft segment entanglements on thermomechanical properties of silicone-urea copolymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eIskender Yiglor, T Eynur, M Bakan \u0026amp; E Yilgor, Koc University, Turkey\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 6: Mechanical and thermal properties of epoxy silicone blends synthesized in supercritical carbon dioxide\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eM G H Zaidi, A Tiwari, T Agarwal, V Kumar, P L Sah, G B Pant University, India \u0026amp; S Alam, Defense Material Stores Research \u0026amp; Development Establishment, India\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 7: Advances in silicone elastomers for healthcare applications\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eBurkhard Ledig, Momentive Performance Materials GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 8: Silicone elastomers in medical applications: Recent developments\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Andre Colas \u0026amp; X Thomas, Dow Corning SA, Belgium\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 9: Determination of the overall migration from silicone elastomers into stimulants and foodstuffs using H-NMR techniques\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eProf Dr. Thomas Simat, Dresden University of Technology, Germany \u0026amp; R Helling, Saxon Institute for Public and Veterinary Health, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003ePaper 10: Claim and benefit –based approaches for assessing the antimicrobial performance of silicone elastomer formulations\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePeter D Askew, Industrial Microbiological Services Ltd (IMSL), UK\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: ADDITIVES FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 11: Microbial biofilm inhibitor for silicone elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eSvoboda Tabakova \u0026amp; V Mircheva, Bulgarian Academy of Sciences, Bulgaria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6: FILLERS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 12: Silicones and carbon nanotubes – from antistatic to fire barrier and fouling release coatings\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Michel Mahy, Nanocyl SA, Belgium\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13: Fumed silica – more than just a powder\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eMario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14: Fillers for silicone elastomers – non-silica alternatives\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ei V Dr. Thomas Doege, Quarzwerke GmbH, Germany \u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15: Collapse resistant extrusions and further benefits with Neuburg Siliceous Earth in peroxide cured high consistency silicone rubber\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eHubert Oggermüller, Nicole Westhaus, Rainer Lüttich, Hoffmann Mineral GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 16: Recent advances in bonding agents for silicone elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eAlbert Achen, LORD Germany GmbH, Germany \u0026amp; Patrick Warren, LORD Corporation, USA\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 17: Recent advances in silicone mixing and extrusion processing\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 18: Fine mesh straining and extrusion applications with gear pump systems for silicone elastomers\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eWinfried Trost \u0026amp; H Hain, Uth GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 19: Elastomer multi component moulding\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eIng Leopol Praher, Engel Austria GmbH, Austria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 20: LSR tooling at its best, what are the main factors for efficient and economic production?\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:34-04:00","created_at":"2017-06-22T21:14:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","application","book","carbon nanotubes","elastomers","epoxy silicone","formulation","fumed silica","p-chemistry","polymer","properties","rubber","Silicone","silicone-urea"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378424772,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2009","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-395-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-395-5.jpg?v=1499955602"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-395-5.jpg?v=1499955602","options":["Title"],"media":[{"alt":null,"id":358752125021,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-395-5.jpg?v=1499955602"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-395-5.jpg?v=1499955602","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-395-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2009 \u003cbr\u003e\u003c\/span\u003ePages: 20 papers\u003cbr\u003eFormat: Soft-backed\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third international conference on silicone elastomers informed the length and breadth of the silicone elastomers supply chain on current research developments and new applications. The application areas of silicone elastomers are widespread due to their wide spectrum of high performance qualities; temperature stability, electrical resistance, chemical inertia and high biocompatibility. Medical, healthcare, food, automotive, electrical, electronic and domestic appliance industries all require silicone elastomer blends that meet individual criteria.\u003cbr\u003e\u003cbr\u003eOrganisations that work with fluorosilicone, silicone composites, thermoplastic silicones, bonding agents, epoxy silicone blends, carbon nanotubes, medical grade silicones, extrusion, mixing or fine mesh straining will all benefit from these proceedings. The conference informed delegates on silicone elastomer market trends, materials, applications, testing, additives, fillers, and processing.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 1: Silicone elastomers – solutions for the future\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Hans Peter Wolf, Fabien Virlogeux \u0026amp; E Gerlach, Dow Corning GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: SILICONE ELASTOMER MATERIALS\u003cbr\u003ePaper 2: Fluoro technologies created new dimensions for liquid silicone rubber \u003cbr\u003e\u003c\/strong\u003eFabien Virlogeux, HP Wolf \u0026amp; E Gerlach, Dow Corning GmbH, Germany\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003ePaper 3: Silicone elastomers – clear as glass\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eDip –Ing Oliver Franssen \u0026amp; H Bayerl, Momentive Performance Materials GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePaper 4: Formulation of two-part elastomer systems: From theory to practice\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eDelphine Blanc \u0026amp; Caroline Moine, Bluestar Silicones, France\u003c\/p\u003e\n\u003cbr\u003e\u003cstrong\u003ePaper 5: Contribution of soft segment entanglements on thermomechanical properties of silicone-urea copolymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eIskender Yiglor, T Eynur, M Bakan \u0026amp; E Yilgor, Koc University, Turkey\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 6: Mechanical and thermal properties of epoxy silicone blends synthesized in supercritical carbon dioxide\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eM G H Zaidi, A Tiwari, T Agarwal, V Kumar, P L Sah, G B Pant University, India \u0026amp; S Alam, Defense Material Stores Research \u0026amp; Development Establishment, India\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 7: Advances in silicone elastomers for healthcare applications\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eBurkhard Ledig, Momentive Performance Materials GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 8: Silicone elastomers in medical applications: Recent developments\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Andre Colas \u0026amp; X Thomas, Dow Corning SA, Belgium\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 9: Determination of the overall migration from silicone elastomers into stimulants and foodstuffs using H-NMR techniques\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eProf Dr. Thomas Simat, Dresden University of Technology, Germany \u0026amp; R Helling, Saxon Institute for Public and Veterinary Health, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003ePaper 10: Claim and benefit –based approaches for assessing the antimicrobial performance of silicone elastomer formulations\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePeter D Askew, Industrial Microbiological Services Ltd (IMSL), UK\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: ADDITIVES FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 11: Microbial biofilm inhibitor for silicone elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eSvoboda Tabakova \u0026amp; V Mircheva, Bulgarian Academy of Sciences, Bulgaria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6: FILLERS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 12: Silicones and carbon nanotubes – from antistatic to fire barrier and fouling release coatings\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Michel Mahy, Nanocyl SA, Belgium\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13: Fumed silica – more than just a powder\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eMario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14: Fillers for silicone elastomers – non-silica alternatives\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ei V Dr. Thomas Doege, Quarzwerke GmbH, Germany \u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15: Collapse resistant extrusions and further benefits with Neuburg Siliceous Earth in peroxide cured high consistency silicone rubber\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eHubert Oggermüller, Nicole Westhaus, Rainer Lüttich, Hoffmann Mineral GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 16: Recent advances in bonding agents for silicone elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eAlbert Achen, LORD Germany GmbH, Germany \u0026amp; Patrick Warren, LORD Corporation, USA\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 17: Recent advances in silicone mixing and extrusion processing\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 18: Fine mesh straining and extrusion applications with gear pump systems for silicone elastomers\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eWinfried Trost \u0026amp; H Hain, Uth GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 19: Elastomer multi component moulding\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eIng Leopol Praher, Engel Austria GmbH, Austria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 20: LSR tooling at its best, what are the main factors for efficient and economic production?\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e"}
Silicone Elastomers 2011
$165.00
{"id":11242230852,"title":"Silicone Elastomers 2011","handle":"978-1-84735-627-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-627-7\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers have a unique combination of properties not found with organic elastomers, such as stability over a very wide temperature range, good electrical properties and environmental resistance, no smell or taste, high biocompatibility, low softness without plasticizers, and high colourability and transparency. Despite their relatively high cost, silicone elastomers are being increasingly used for applications where durability and safety in use are particularly important such as; automotive, electrical and electronic, domestic appliances, food processing, medical devices and baby bottle teats.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered the whole range of silicone elastomer materials, including high temperature vulcanised (HTV), room temperature vulcanised (RTV) and liquid silicone rubber (LSR).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1 MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 1 Silicone elastomers – from innovation to function\u003cbr\u003eHans Winkelbach, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 2 Building the future on silicone elastomers – sustainable innovation\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cb\u003eSESSION 2 SILICONE ELASTOMER MATERIALS\u003c\/b\u003e\u003cbr\u003ePaper 3 Silicone elastomers beyond traditional self bonding and self lubricating technology\u003cbr\u003eDr. Jürgen Ismeier \u0026amp; Axel Schmidt, Wacker Chemie AG, Germany\u003cbr\u003ePaper 4 Innovations in silicone rubber technologies\u003cbr\u003eFabien Virlogeux, Dr. H P Wolf \u0026amp; P Beyer, Dow Corning France SaS, France\u003cbr\u003ePaper 5 Novel silicone rubber curing technology with UV light\u003cbr\u003eClemens Trumm, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 6 Effect of electron beam irradiation on structure-property relationship of compatible blends of LLDPE and PDMS rubber\u003cbr\u003eRadhasvam Giri, K Naskar \u0026amp; Prof G B Nando, Rubber Technology Centre, Indian Institute of Technology, India\u003cbr\u003e\u003cb\u003eSESSION 3 APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 7 High-temperature silicone elastomers for rolling stock cables\u003cbr\u003eDr. Bernard Dalbe, Nexans Research Centre, France\u003cbr\u003ePaper 8 New high modulus silicone elastomer – fibre reinforced LSR\u003cbr\u003eOliver Franssen, Momentive Performance Materials GmbH, Germany \u0026amp; Alexander Widmayr Woco Industrietechnik GmbH, Germany\u003cbr\u003ePaper 9 Lighting applications for silicones\u003cbr\u003eMariusz Kalecinski, Philips Lighting Poland SA, Poland\u003cbr\u003ePAPER UNAVAILABLE Paper 10 Silicone soft skin adhesive technology\u003cbr\u003eAudrey Wipret, Dow Corning Europe SA, Belgium\u003cbr\u003e\u003cb\u003eSESSION 4 TESTING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 11 Are silicone elastomers suitable for all food contact applications? Migration properties and durability of silicone elastomers in food contact\u003cbr\u003eRuediger Helling, Saxon Institute for Public and Veterinary Health \u0026amp; Prof Dr. Thomas J Simat, University of Technology Dresden, Germany\u003cbr\u003e\u003cb\u003eSESSION 5 FILLERS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 12 New and tailor-made precipitated silica grades for high performance silicone rubber\u003cbr\u003eDr. Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003ePaper 13 Preparation and structure-property behaviour of silica modified silicone-urea copolymers\u003cbr\u003eIskender Yilgor \u0026amp; Emel Yilgor, Koc University, Turkey\u003cbr\u003e\u003cb\u003eSESSION 6 PROCESSING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 14 Bonding capabilities of a new agent for silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003ePaper 15 Innovation in silicone processing equipment\u003cbr\u003eDr. Fabio Belotti, Battaggion SpA, Italy\u003cbr\u003ePaper 16 The latest technical advances in mixing and extrusion of silicone compounds\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003ePaper 17 Quality requirements and economic aspects for the production of high-quality silicone elastomers\u003cbr\u003eHorst Hain, Uth GmbH, Germany\u003cbr\u003ePaper 18 2K solutions for thermoplastics and LSR\u003cbr\u003eDaniel Schölmberger, Elmet GmbH, Austria\u003cbr\u003ePaper 19 HTV\/LSR machinery and equipment, highest accuracy and lowest energy consumption\u003cbr\u003eArmin Mattes, Engel Austria GmbH, Austria\u003cbr\u003ePaper 20 State of the art dosing technology for LSR\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria","published_at":"2017-06-22T21:14:16-04:00","created_at":"2017-06-22T21:14:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","application","biocompatibility","bonding","book","environmental resistance","fillers","food contact","high temperature vulcanised (HTV)","medical devices","p-chemistry","plasticizers","polymer","room temperature vulcanised (RTV)","rubber","Silicone elastomers","silicone rubber","testing"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378402948,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-627-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957","options":["Title"],"media":[{"alt":null,"id":358752190557,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-627-7\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers have a unique combination of properties not found with organic elastomers, such as stability over a very wide temperature range, good electrical properties and environmental resistance, no smell or taste, high biocompatibility, low softness without plasticizers, and high colourability and transparency. Despite their relatively high cost, silicone elastomers are being increasingly used for applications where durability and safety in use are particularly important such as; automotive, electrical and electronic, domestic appliances, food processing, medical devices and baby bottle teats.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered the whole range of silicone elastomer materials, including high temperature vulcanised (HTV), room temperature vulcanised (RTV) and liquid silicone rubber (LSR).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1 MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 1 Silicone elastomers – from innovation to function\u003cbr\u003eHans Winkelbach, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 2 Building the future on silicone elastomers – sustainable innovation\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cb\u003eSESSION 2 SILICONE ELASTOMER MATERIALS\u003c\/b\u003e\u003cbr\u003ePaper 3 Silicone elastomers beyond traditional self bonding and self lubricating technology\u003cbr\u003eDr. Jürgen Ismeier \u0026amp; Axel Schmidt, Wacker Chemie AG, Germany\u003cbr\u003ePaper 4 Innovations in silicone rubber technologies\u003cbr\u003eFabien Virlogeux, Dr. H P Wolf \u0026amp; P Beyer, Dow Corning France SaS, France\u003cbr\u003ePaper 5 Novel silicone rubber curing technology with UV light\u003cbr\u003eClemens Trumm, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 6 Effect of electron beam irradiation on structure-property relationship of compatible blends of LLDPE and PDMS rubber\u003cbr\u003eRadhasvam Giri, K Naskar \u0026amp; Prof G B Nando, Rubber Technology Centre, Indian Institute of Technology, India\u003cbr\u003e\u003cb\u003eSESSION 3 APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 7 High-temperature silicone elastomers for rolling stock cables\u003cbr\u003eDr. Bernard Dalbe, Nexans Research Centre, France\u003cbr\u003ePaper 8 New high modulus silicone elastomer – fibre reinforced LSR\u003cbr\u003eOliver Franssen, Momentive Performance Materials GmbH, Germany \u0026amp; Alexander Widmayr Woco Industrietechnik GmbH, Germany\u003cbr\u003ePaper 9 Lighting applications for silicones\u003cbr\u003eMariusz Kalecinski, Philips Lighting Poland SA, Poland\u003cbr\u003ePAPER UNAVAILABLE Paper 10 Silicone soft skin adhesive technology\u003cbr\u003eAudrey Wipret, Dow Corning Europe SA, Belgium\u003cbr\u003e\u003cb\u003eSESSION 4 TESTING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 11 Are silicone elastomers suitable for all food contact applications? Migration properties and durability of silicone elastomers in food contact\u003cbr\u003eRuediger Helling, Saxon Institute for Public and Veterinary Health \u0026amp; Prof Dr. Thomas J Simat, University of Technology Dresden, Germany\u003cbr\u003e\u003cb\u003eSESSION 5 FILLERS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 12 New and tailor-made precipitated silica grades for high performance silicone rubber\u003cbr\u003eDr. Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003ePaper 13 Preparation and structure-property behaviour of silica modified silicone-urea copolymers\u003cbr\u003eIskender Yilgor \u0026amp; Emel Yilgor, Koc University, Turkey\u003cbr\u003e\u003cb\u003eSESSION 6 PROCESSING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 14 Bonding capabilities of a new agent for silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003ePaper 15 Innovation in silicone processing equipment\u003cbr\u003eDr. Fabio Belotti, Battaggion SpA, Italy\u003cbr\u003ePaper 16 The latest technical advances in mixing and extrusion of silicone compounds\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003ePaper 17 Quality requirements and economic aspects for the production of high-quality silicone elastomers\u003cbr\u003eHorst Hain, Uth GmbH, Germany\u003cbr\u003ePaper 18 2K solutions for thermoplastics and LSR\u003cbr\u003eDaniel Schölmberger, Elmet GmbH, Austria\u003cbr\u003ePaper 19 HTV\/LSR machinery and equipment, highest accuracy and lowest energy consumption\u003cbr\u003eArmin Mattes, Engel Austria GmbH, Austria\u003cbr\u003ePaper 20 State of the art dosing technology for LSR\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria"}
Silicone Products for ...
$125.00
{"id":11242215492,"title":"Silicone Products for Food Contact Applications","handle":"978-1-84735-097-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Martin Forrest \u003cbr\u003eISBN 978-1-84735-097-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003c\/span\u003e\u003cbr\u003eRapra Review Report\u003cbr\u003eVol. 16, No. 8, Report 188\u003cbr\u003eSoft-backed, 297 x 210 mm, 124 pages.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nin a variety of different food contact situations and conditions. \u003cbr\u003e\u003cbr\u003eThe origin of this review report was a Food Standards Agency (FSA) project on food contact silicone based materials that was carried out at Rapra from 2003 until 2005. The objective of this project was to provide detailed information on the types and composition of silicone based products that are used in contact with food and to identify the extent to which the migration of specific constituents into food could occur. In addition to giving a summary of the findings of this extensive FSA project, this review report also provides an extensive overview of the principal types of silicone products that are used in food contact situations, from a description of their manufacture and chemical composition, to a detailed review of the potential migrants and their migration behaviour. It also covers the relevant national and EU food contact legislation and describes recent, food related technological developments. \u003cbr\u003e\u003cbr\u003eThis report is the final one of a trilogy that has addressed food contact materials. It joins a report summarising the current situation with respect to the use of rubber products for food applications (Review Report No. 182) and one reviewing the use of coatings and inks (Review Report No. 186). \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 230 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. Silicone Products for Food Contact Applications\u003c\/strong\u003e \u003cbr\u003e2.1 Silicone Polymers – Chemistry, Structure, and Properties \u003cbr\u003e2.1.1 Definition of a Silicone Polymer \u003cbr\u003e2.1.2 Chemical Bonding in Silicones \u003cbr\u003e2.1.3 Physical Characteristics \u003cbr\u003e2.1.4 Chemical Properties \u003cbr\u003e2.2 Food Contact Silicone Products – Manufacture and Composition \u003cbr\u003e2.2.1 Introduction \u003cbr\u003e2.2.2 Manufacture of Silicone Polymers and Their Precursors \u003cbr\u003e2.2.3 Silicone Fluids and Silicone Gums \u003cbr\u003e2.2.4 Silicone Rubbers – from High MW Gums \u003cbr\u003e2.2.5 Silicone Rubbers – From Relatively Low MW Liquids \u003cbr\u003e2.2.6 Silicone Resins \u003cbr\u003e2.2.7 Silicone Greases \u003cbr\u003e2.2.8 Copolymers \u003cbr\u003e2.2.9 Silicone Surfactants \u003cbr\u003e2.3 Food Contact and Food Related Applications \u003cbr\u003e2.3.1 Release Agents \u003cbr\u003e2.3.2 Silicone Rubbers \u003cbr\u003e2.3.3 Silicones as Additives for Polymers \u003cbr\u003e2.3.4 Silicones in Food Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Regulations Covering the Use of Silicones With Food\u003c\/strong\u003e \u003cbr\u003e3.1 Existing EU Legislation and Guideline Documents \u003cbr\u003e3.2 Council of Europe Resolution on Silicones (Resolution AP (2004)) \u003cbr\u003e3.3 German Recommendation XV from the BfR \u003cbr\u003e3.4 Other National Legislation in the EU \u003cbr\u003e3.4.1 Belgium \u003cbr\u003e3.4.2 Italy \u003cbr\u003e3.4.3 Netherlands \u003cbr\u003e3.4.4 United Kingdom \u003cbr\u003e3.5 The US Food and Drug Administration (FDA) \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. Assessing the Safety of Silicone Materials and Articles for Food Applications\u003c\/strong\u003e \u003cbr\u003e4.1 Fingerprinting of Potential Migrants from Silicone Products \u003cbr\u003e4.1.1 Multi-element Semi-quantitative Inductively Coupled Plasma Scan \u003cbr\u003e4.1.2 Targeting of Specific Species \u003cbr\u003e4.1.3 Identification of Low MW Potential Migrants \u003cbr\u003e4.2 Overall Migration Tests \u003cbr\u003e4.2.1 FDA Regulations for Rubbers \u003cbr\u003e4.2.2 Council of Europe Silicone Resolution \u003cbr\u003e4.3 Determination of Specific Species in Food Simulants and Foods \u003cbr\u003e4.3.1 Determination of Specific Elements \u003cbr\u003e4.3.2 Determination of Formaldehyde \u003cbr\u003e4.3.3 Determination of Low MW Species Using GC-MS and LC-MS \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Foods Standards Agency Silicone Project – Contract Number A03046\u003c\/strong\u003e \u003cbr\u003e5.1 Silicone Products Studied in the Project \u003cbr\u003e5.1.1 Silicone Rubbers \u003cbr\u003e5.1.2 Silicone Fluids \u003cbr\u003e5.1.3 Silicone Resins – Uncured Products \u003cbr\u003e5.1.4 Silicon Resin Coated Bakeware from Supermarkets \u003cbr\u003e5.1.5 Compositional Fingerprinting Work \u003cbr\u003e5.2 Migration Experiments with Food Simulants \u003cbr\u003e5.2.1 Overall Migration Work \u003cbr\u003e5.2.2 Specific Migration Work \u003cbr\u003e5.3 Migration Experiments with Food Products \u003cbr\u003e5.3.1 Contact Tests Performed on the Silicone Products \u003cbr\u003e5.3.2 Determination of Specific Migrants in Food Products \u003cbr\u003e5.4 Summary of Project Results \u003cbr\u003e5.4.1 Summary of the Data Obtained on the Silicone Rubber Samples \u003cbr\u003e5.4.2 Summary of the Data Obtained on the Silicone Fluids \u003cbr\u003e5.4.3 Summary of the Data Obtained on the Silicone Resin Samples \u003cbr\u003e5.4.4 Overall Summary of the Project and the Results Obtained \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Migration Mechanisms, Potential Migrants, and Published Migration Data\u003c\/strong\u003e \u003cbr\u003e6.1 Possible Migration Mechanisms for Chemical Species from Silicone Products \u003cbr\u003e6.1.1 Migration to Air (Volatilisation) \u003cbr\u003e6.1.2 Migration into Fluids \u003cbr\u003e6.1.3 Migration into Foodstuffs \u003cbr\u003e6.2 Potential Migrants from Silicone Products \u003cbr\u003e6.2.1 Summary of Potential Migrants \u003cbr\u003e6.2.2 Specific Potential Migrants \u003cbr\u003e6.3 Published Migration Data \u003cbr\u003e6.3.1 Silicone Rubber Study \u003cbr\u003e6.3.2 Silicone Rubber Teats and Soothers \u003cbr\u003e6.3.3 Peroxide Breakdown Products \u003cbr\u003e6.3.4 Polydimethylsiloxane Oligomers \u003cbr\u003e6.3.5 General Assessment of Silicone Rubbers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Improving the Safety of Silicones for Food Use and Future Trends\u003c\/strong\u003e \u003cbr\u003e7.1 Silicone Foams \u003cbr\u003e7.2 Antibacterial Additives and Coatings \u003cbr\u003e7.3 Intelligent Packaging \u003cbr\u003e7.4 Barrier Coatings \u003cbr\u003e7.5 Non-stick Additives \u003cbr\u003e7.6 Nanoparticulate Silicones \u003cbr\u003e7.7 Inks and Varnishes \u003cbr\u003e7.8 Radiation-cured Release Coatings \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Conclusion\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eReferences \u003cbr\u003eAcknowledgements \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eStructural Assignments for Silicone Polymers and Oligomers \u003cbr\u003eReferences from the Polymer Library Database \u003cbr\u003eSubject Index \u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest started his career in 1977 with James Walkers \u0026amp; Co. Ltd, and during this time he progressed to the position of Rubber Technologist, having obtained his first degree in Polymer Technology at the London School of Polymer Technology (LSPT). In 1983 he started a full time Master of Science course in Polymer Science and Technology at the LSPT. After being awarded his MSc in 1984, he completed a Ph.D. in Polymer Chemistry at Loughborough University in 1988. He then joined Rapra Technology as a Consultant in the Polymer Analysis section and remained in that section until 2006, rising to the position of Principal Consultant. During his time in the Polymer Analysis section, Dr. Forrest was the main contact at Rapra for consultancy projects involving the analysis of rubber compounds and rubber based products. During his 20 years at Rapra he has also managed a number of FSA, TSB, and EU funded research projects, and since 2006 he has been a Project Manager for the Research Projects Group.","published_at":"2017-06-22T21:13:26-04:00","created_at":"2017-06-22T21:13:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","acrylic polymers","additives","book","food","food contact","p-chemistry","polymer","resins","silicone","silicone fluids","silicone gums","silicone rubbers"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378355140,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Products for Food Contact Applications","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-097-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-097-8.jpg?v=1499725036"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-097-8.jpg?v=1499725036","options":["Title"],"media":[{"alt":null,"id":358752714845,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-097-8.jpg?v=1499725036"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-097-8.jpg?v=1499725036","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Martin Forrest \u003cbr\u003eISBN 978-1-84735-097-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003c\/span\u003e\u003cbr\u003eRapra Review Report\u003cbr\u003eVol. 16, No. 8, Report 188\u003cbr\u003eSoft-backed, 297 x 210 mm, 124 pages.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nin a variety of different food contact situations and conditions. \u003cbr\u003e\u003cbr\u003eThe origin of this review report was a Food Standards Agency (FSA) project on food contact silicone based materials that was carried out at Rapra from 2003 until 2005. The objective of this project was to provide detailed information on the types and composition of silicone based products that are used in contact with food and to identify the extent to which the migration of specific constituents into food could occur. In addition to giving a summary of the findings of this extensive FSA project, this review report also provides an extensive overview of the principal types of silicone products that are used in food contact situations, from a description of their manufacture and chemical composition, to a detailed review of the potential migrants and their migration behaviour. It also covers the relevant national and EU food contact legislation and describes recent, food related technological developments. \u003cbr\u003e\u003cbr\u003eThis report is the final one of a trilogy that has addressed food contact materials. It joins a report summarising the current situation with respect to the use of rubber products for food applications (Review Report No. 182) and one reviewing the use of coatings and inks (Review Report No. 186). \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 230 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. Silicone Products for Food Contact Applications\u003c\/strong\u003e \u003cbr\u003e2.1 Silicone Polymers – Chemistry, Structure, and Properties \u003cbr\u003e2.1.1 Definition of a Silicone Polymer \u003cbr\u003e2.1.2 Chemical Bonding in Silicones \u003cbr\u003e2.1.3 Physical Characteristics \u003cbr\u003e2.1.4 Chemical Properties \u003cbr\u003e2.2 Food Contact Silicone Products – Manufacture and Composition \u003cbr\u003e2.2.1 Introduction \u003cbr\u003e2.2.2 Manufacture of Silicone Polymers and Their Precursors \u003cbr\u003e2.2.3 Silicone Fluids and Silicone Gums \u003cbr\u003e2.2.4 Silicone Rubbers – from High MW Gums \u003cbr\u003e2.2.5 Silicone Rubbers – From Relatively Low MW Liquids \u003cbr\u003e2.2.6 Silicone Resins \u003cbr\u003e2.2.7 Silicone Greases \u003cbr\u003e2.2.8 Copolymers \u003cbr\u003e2.2.9 Silicone Surfactants \u003cbr\u003e2.3 Food Contact and Food Related Applications \u003cbr\u003e2.3.1 Release Agents \u003cbr\u003e2.3.2 Silicone Rubbers \u003cbr\u003e2.3.3 Silicones as Additives for Polymers \u003cbr\u003e2.3.4 Silicones in Food Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Regulations Covering the Use of Silicones With Food\u003c\/strong\u003e \u003cbr\u003e3.1 Existing EU Legislation and Guideline Documents \u003cbr\u003e3.2 Council of Europe Resolution on Silicones (Resolution AP (2004)) \u003cbr\u003e3.3 German Recommendation XV from the BfR \u003cbr\u003e3.4 Other National Legislation in the EU \u003cbr\u003e3.4.1 Belgium \u003cbr\u003e3.4.2 Italy \u003cbr\u003e3.4.3 Netherlands \u003cbr\u003e3.4.4 United Kingdom \u003cbr\u003e3.5 The US Food and Drug Administration (FDA) \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. Assessing the Safety of Silicone Materials and Articles for Food Applications\u003c\/strong\u003e \u003cbr\u003e4.1 Fingerprinting of Potential Migrants from Silicone Products \u003cbr\u003e4.1.1 Multi-element Semi-quantitative Inductively Coupled Plasma Scan \u003cbr\u003e4.1.2 Targeting of Specific Species \u003cbr\u003e4.1.3 Identification of Low MW Potential Migrants \u003cbr\u003e4.2 Overall Migration Tests \u003cbr\u003e4.2.1 FDA Regulations for Rubbers \u003cbr\u003e4.2.2 Council of Europe Silicone Resolution \u003cbr\u003e4.3 Determination of Specific Species in Food Simulants and Foods \u003cbr\u003e4.3.1 Determination of Specific Elements \u003cbr\u003e4.3.2 Determination of Formaldehyde \u003cbr\u003e4.3.3 Determination of Low MW Species Using GC-MS and LC-MS \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Foods Standards Agency Silicone Project – Contract Number A03046\u003c\/strong\u003e \u003cbr\u003e5.1 Silicone Products Studied in the Project \u003cbr\u003e5.1.1 Silicone Rubbers \u003cbr\u003e5.1.2 Silicone Fluids \u003cbr\u003e5.1.3 Silicone Resins – Uncured Products \u003cbr\u003e5.1.4 Silicon Resin Coated Bakeware from Supermarkets \u003cbr\u003e5.1.5 Compositional Fingerprinting Work \u003cbr\u003e5.2 Migration Experiments with Food Simulants \u003cbr\u003e5.2.1 Overall Migration Work \u003cbr\u003e5.2.2 Specific Migration Work \u003cbr\u003e5.3 Migration Experiments with Food Products \u003cbr\u003e5.3.1 Contact Tests Performed on the Silicone Products \u003cbr\u003e5.3.2 Determination of Specific Migrants in Food Products \u003cbr\u003e5.4 Summary of Project Results \u003cbr\u003e5.4.1 Summary of the Data Obtained on the Silicone Rubber Samples \u003cbr\u003e5.4.2 Summary of the Data Obtained on the Silicone Fluids \u003cbr\u003e5.4.3 Summary of the Data Obtained on the Silicone Resin Samples \u003cbr\u003e5.4.4 Overall Summary of the Project and the Results Obtained \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Migration Mechanisms, Potential Migrants, and Published Migration Data\u003c\/strong\u003e \u003cbr\u003e6.1 Possible Migration Mechanisms for Chemical Species from Silicone Products \u003cbr\u003e6.1.1 Migration to Air (Volatilisation) \u003cbr\u003e6.1.2 Migration into Fluids \u003cbr\u003e6.1.3 Migration into Foodstuffs \u003cbr\u003e6.2 Potential Migrants from Silicone Products \u003cbr\u003e6.2.1 Summary of Potential Migrants \u003cbr\u003e6.2.2 Specific Potential Migrants \u003cbr\u003e6.3 Published Migration Data \u003cbr\u003e6.3.1 Silicone Rubber Study \u003cbr\u003e6.3.2 Silicone Rubber Teats and Soothers \u003cbr\u003e6.3.3 Peroxide Breakdown Products \u003cbr\u003e6.3.4 Polydimethylsiloxane Oligomers \u003cbr\u003e6.3.5 General Assessment of Silicone Rubbers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Improving the Safety of Silicones for Food Use and Future Trends\u003c\/strong\u003e \u003cbr\u003e7.1 Silicone Foams \u003cbr\u003e7.2 Antibacterial Additives and Coatings \u003cbr\u003e7.3 Intelligent Packaging \u003cbr\u003e7.4 Barrier Coatings \u003cbr\u003e7.5 Non-stick Additives \u003cbr\u003e7.6 Nanoparticulate Silicones \u003cbr\u003e7.7 Inks and Varnishes \u003cbr\u003e7.8 Radiation-cured Release Coatings \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Conclusion\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eReferences \u003cbr\u003eAcknowledgements \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eStructural Assignments for Silicone Polymers and Oligomers \u003cbr\u003eReferences from the Polymer Library Database \u003cbr\u003eSubject Index \u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest started his career in 1977 with James Walkers \u0026amp; Co. Ltd, and during this time he progressed to the position of Rubber Technologist, having obtained his first degree in Polymer Technology at the London School of Polymer Technology (LSPT). In 1983 he started a full time Master of Science course in Polymer Science and Technology at the LSPT. After being awarded his MSc in 1984, he completed a Ph.D. in Polymer Chemistry at Loughborough University in 1988. He then joined Rapra Technology as a Consultant in the Polymer Analysis section and remained in that section until 2006, rising to the position of Principal Consultant. During his time in the Polymer Analysis section, Dr. Forrest was the main contact at Rapra for consultancy projects involving the analysis of rubber compounds and rubber based products. During his 20 years at Rapra he has also managed a number of FSA, TSB, and EU funded research projects, and since 2006 he has been a Project Manager for the Research Projects Group."}
Thermoplastic Elastome...
$72.00
{"id":11242238596,"title":"Thermoplastic Elastomers - Properties and Applications","handle":"978-1-85957-044-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J.A. Brydson \u003cbr\u003eISBN 978-1-85957-044-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003cbr\u003e\u003c\/span\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe nature and general properties of TPEs are explained and classes of materials considered. Developments in specific market sectors are outlined. The groups of materials considered include styrenics, polyether-esters, polyamides, polyurethanes, and polyolefins. The review is supported by extensive references and abstracts section containing over 400 abstracts. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e Styrenic block copolymers, polyether-ester block copolymers, thermoplastic polyamide elastomers, thermoplastic polyurethane elastomers, thermoplastic polyolefin elastomers, miscellaneous thermoplastic elastomers (6 groups). \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eGeneral Properties of Thermoplastic Elastomers\u003c\/li\u003e\n\u003cli\u003eClasses of Thermoplastic Elastomers (properties, processing, applications)\u003c\/li\u003e\n\u003cli\u003eApplications (automotive, footwear, hose, tube, wire, cable, medical)\u003c\/li\u003e\n\u003cli\u003eGeneral Prospects for Thermoplastic Elastomers\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","block copolymers","book","elastomers","p-chemistry","polyamide","polyamides","polyether-ester","polymer","polyolefins","polyurethane","polyurethanes","styrenic","thermoplastic"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378430148,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermoplastic Elastomers - Properties and Applications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-044-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778","options":["Title"],"media":[{"alt":null,"id":358823460957,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J.A. Brydson \u003cbr\u003eISBN 978-1-85957-044-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003cbr\u003e\u003c\/span\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe nature and general properties of TPEs are explained and classes of materials considered. Developments in specific market sectors are outlined. The groups of materials considered include styrenics, polyether-esters, polyamides, polyurethanes, and polyolefins. The review is supported by extensive references and abstracts section containing over 400 abstracts. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e Styrenic block copolymers, polyether-ester block copolymers, thermoplastic polyamide elastomers, thermoplastic polyurethane elastomers, thermoplastic polyolefin elastomers, miscellaneous thermoplastic elastomers (6 groups). \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eGeneral Properties of Thermoplastic Elastomers\u003c\/li\u003e\n\u003cli\u003eClasses of Thermoplastic Elastomers (properties, processing, applications)\u003c\/li\u003e\n\u003cli\u003eApplications (automotive, footwear, hose, tube, wire, cable, medical)\u003c\/li\u003e\n\u003cli\u003eGeneral Prospects for Thermoplastic Elastomers\u003c\/li\u003e\n\u003c\/ul\u003e"}
TPE 2001
$120.00
{"id":11242238660,"title":"TPE 2001","handle":"978-1-85957-276-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-276-4 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 18th-19th June 2001\u003cbr\u003epages 128\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe’s premier meeting place for the thermoplastic elastomers sector. The last two events brought together more than 200 key players involved in all stages of the TPE supply chain. \u003cbr\u003e\u003cbr\u003eThe TPE 2001 conference programme was even more comprehensive than those of previous years. It features expert presentations on key market trends, new application developments and the very latest material innovations. \u003cbr\u003e\u003cbr\u003eIf you are involved in manufacturing, researching, selling, selecting or processing TPEs, then these conference proceedings will give you a real competitive advantage, providing you with information on all the latest developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOlefinic and Styrenic TPEs: Markets, Economics, Intermaterials Competition, and the Role of Plastomers. Robert Eller, Robert Eller Associates, Inc., USA\u003c\/li\u003e\n\u003cli\u003eMarkets and Applications for TPE: A Changing World. Stephen J. Duckworth, PolyOne Compounds \u0026amp; Colours Group, PolyOne Corporation, Germany\u003c\/li\u003e\n\u003cli\u003eInnovative TPE-S and TPE-V in the Various Market Segments. Andrea Vivarelli and Antonio Citarella, So.F.TeR SpA, Italy\u003c\/li\u003e\n\u003cli\u003eA New Family of Heat and Oil Resistant TPVs. Christer Bergström and Johanna Lampinen, Optatech Corporation, Finland\u003c\/li\u003e\n\u003cli\u003eA Novel Oil-and Heat-Resistant TPE-V. Markus Beitzel and Stuart Cook, Kraiburg TPE, Germany and TARRC, UK\u003c\/li\u003e\n\u003cli\u003eInnovative TPVs Opening New Markets. Julian Barnett, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eProcessing and Properties of Thermoplastic Vulcanizates (TPV). Edward V. Prut, Institute of Chemical Physics of RAS, Russia\u003c\/li\u003e\n\u003cli\u003eNew TPV Grades for Airbag Covers. Cees Ozinga and Edwin Willems, DSM Thermoplastic Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eUltra-High Molecular Weight Siloxane Masterbatches in TPE Compounding. Vivian John, Dow Corning Limited, UK\u003c\/li\u003e\n\u003cli\u003eTool Development for 2K-TPE Components for the Automotive Industry using 3D-Simulation. Lothar H. Kallien and Markus Menchen, SIGMA Engineering GmbH, Germany and Beckunbach GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eSwiftool Keeps Ford Racing on Track. Nick Osborn, Swift Technologies, UK\u003c\/li\u003e\n\u003cli\u003eSoft Blends of Acrylate Elastomer and Thermoplastic Polyurethane: Properties and Applications. Thierry Reichmann and Guy R. Duval, ECTC - Goodyear Chemical Europe, France\u003c\/li\u003e\n\u003cli\u003eThermoplastic Polyurethanes Without Plasticizer Within the Hardness Range Shore 50-70 A. Stephen Horsley, Elastogran UK Limited, UK\u003c\/li\u003e\n\u003cli\u003eTechnological Advantages of Polyether Copolymer Based TPUs. Dennis H.W. Feijen, J.L. Müller, J. Julià, D. Salvatella, Maria Josep Riba, Merquinsa Mercados Quimicos S.L., Spain\u003c\/li\u003e\n\u003cli\u003eSealing Performance of TPVs and its Prediction From Sress Relaxation Testing Methods. Thierry Burton, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eSurface Modification of Sarlink TPV Sealing Systems. Mathias Wilms, DSM Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eA Novel, Fully Vulcanised EPDM\/PP TPV for Automotive and Construction Weather-Seal as Well as General Rubber Mechanical Goods. Jonas Angus, Thermoplastic Rubber Systems, USA. (Paper unavailable at time of print)\u003c\/li\u003e\n\u003cli\u003eDevelopments of TPE in Automotive Interiors. Giorgio Golinelli, So.F.Ter S.p.A., Italy\u003c\/li\u003e\n\u003cli\u003eTPEs Used in CVJ (Constant Velocity Joint) Boot Application - Current Status, Future Challenges. Nader Khoshoei, GKN Automotive GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eRutgers 1 and Ronald F.M. Lange 2, 1 DSM Engineering Plastics, The Netherlands and 2 DSM Research, The NThe Use of Co-poly(ether esters) (1) in Automotive Applications. Gerhard Netherlands\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:39-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","book","elastomers","p-chemistry","polymer","research","surface","thermoplastic"," hardness"," olefinic"," plasticizer"," polyether copolymer"," polyurethanes"," sealing"," sress"," styrenic"," testing methods"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378430788,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"TPE 2001","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-276-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-276-4 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 18th-19th June 2001\u003cbr\u003epages 128\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe’s premier meeting place for the thermoplastic elastomers sector. The last two events brought together more than 200 key players involved in all stages of the TPE supply chain. \u003cbr\u003e\u003cbr\u003eThe TPE 2001 conference programme was even more comprehensive than those of previous years. It features expert presentations on key market trends, new application developments and the very latest material innovations. \u003cbr\u003e\u003cbr\u003eIf you are involved in manufacturing, researching, selling, selecting or processing TPEs, then these conference proceedings will give you a real competitive advantage, providing you with information on all the latest developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOlefinic and Styrenic TPEs: Markets, Economics, Intermaterials Competition, and the Role of Plastomers. Robert Eller, Robert Eller Associates, Inc., USA\u003c\/li\u003e\n\u003cli\u003eMarkets and Applications for TPE: A Changing World. Stephen J. Duckworth, PolyOne Compounds \u0026amp; Colours Group, PolyOne Corporation, Germany\u003c\/li\u003e\n\u003cli\u003eInnovative TPE-S and TPE-V in the Various Market Segments. Andrea Vivarelli and Antonio Citarella, So.F.TeR SpA, Italy\u003c\/li\u003e\n\u003cli\u003eA New Family of Heat and Oil Resistant TPVs. Christer Bergström and Johanna Lampinen, Optatech Corporation, Finland\u003c\/li\u003e\n\u003cli\u003eA Novel Oil-and Heat-Resistant TPE-V. Markus Beitzel and Stuart Cook, Kraiburg TPE, Germany and TARRC, UK\u003c\/li\u003e\n\u003cli\u003eInnovative TPVs Opening New Markets. Julian Barnett, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eProcessing and Properties of Thermoplastic Vulcanizates (TPV). Edward V. Prut, Institute of Chemical Physics of RAS, Russia\u003c\/li\u003e\n\u003cli\u003eNew TPV Grades for Airbag Covers. Cees Ozinga and Edwin Willems, DSM Thermoplastic Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eUltra-High Molecular Weight Siloxane Masterbatches in TPE Compounding. Vivian John, Dow Corning Limited, UK\u003c\/li\u003e\n\u003cli\u003eTool Development for 2K-TPE Components for the Automotive Industry using 3D-Simulation. Lothar H. Kallien and Markus Menchen, SIGMA Engineering GmbH, Germany and Beckunbach GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eSwiftool Keeps Ford Racing on Track. Nick Osborn, Swift Technologies, UK\u003c\/li\u003e\n\u003cli\u003eSoft Blends of Acrylate Elastomer and Thermoplastic Polyurethane: Properties and Applications. Thierry Reichmann and Guy R. Duval, ECTC - Goodyear Chemical Europe, France\u003c\/li\u003e\n\u003cli\u003eThermoplastic Polyurethanes Without Plasticizer Within the Hardness Range Shore 50-70 A. Stephen Horsley, Elastogran UK Limited, UK\u003c\/li\u003e\n\u003cli\u003eTechnological Advantages of Polyether Copolymer Based TPUs. Dennis H.W. Feijen, J.L. Müller, J. Julià, D. Salvatella, Maria Josep Riba, Merquinsa Mercados Quimicos S.L., Spain\u003c\/li\u003e\n\u003cli\u003eSealing Performance of TPVs and its Prediction From Sress Relaxation Testing Methods. Thierry Burton, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eSurface Modification of Sarlink TPV Sealing Systems. Mathias Wilms, DSM Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eA Novel, Fully Vulcanised EPDM\/PP TPV for Automotive and Construction Weather-Seal as Well as General Rubber Mechanical Goods. Jonas Angus, Thermoplastic Rubber Systems, USA. (Paper unavailable at time of print)\u003c\/li\u003e\n\u003cli\u003eDevelopments of TPE in Automotive Interiors. Giorgio Golinelli, So.F.Ter S.p.A., Italy\u003c\/li\u003e\n\u003cli\u003eTPEs Used in CVJ (Constant Velocity Joint) Boot Application - Current Status, Future Challenges. Nader Khoshoei, GKN Automotive GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eRutgers 1 and Ronald F.M. Lange 2, 1 DSM Engineering Plastics, The Netherlands and 2 DSM Research, The NThe Use of Co-poly(ether esters) (1) in Automotive Applications. Gerhard Netherlands\u003c\/li\u003e\n\u003c\/ul\u003e"}