Chemtec Publishing offers a large collection of books on polymers, plastics, and rubber.
- Grid List
Filter
Databook of Surface Mo...
$285.00
{"id":384204210207,"title":"Databook of Surface Modification Additives","handle":"databook-of-surface-modification-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-35-2 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2018\u003cbr\u003ePages 734 + xii\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eTen groups of additives are commercially available for improvement and surface modification of manufactured materials. These include additives improving anti-scratch and mar resistance, gloss, surface flattening, tack reduction, tack increase (tackifiers), surface tension reduction and wetting, surface cleaning, hydrophobization, anti-cratering and leveling, and coefficient of static friction. A large number of final products benefit from application of these additives, with major groups of industrial products including adhesives, appliances, automotive, bookbinding, building and construction, business machines, cellular phones, coatings, concrete, electronics, flooring, footwear, furniture, graphic arts, lacquers, leather, optical films, packaging, paints, paper, plastics, printing inks, rubber, sealants, wire and cable, and wood.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eDatabook of Surface Modification Additives contains extensive data on the most important products in the use today. The information on each additive included in the Databook of Surface Modification Additives is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; performance. The data belong to almost 130 data fields, which accommodate a variety of data available in the source publications. The description of each section below gives more detail on the composition of information. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eIn \u003cstrong\u003eGeneral\u003c\/strong\u003e information section, the following data are displayed: name, CAS #, EC #, Acronym, Active matter, Bio-renewable content, Bromine number, Chemical class, Common synonym, Empirical formula, Functional group, Mixture, Mn, Mw, Mw\/Mn, Mz, Moisture content, Moisture contents, Name, Product composition, Residue after calcination, and Solids content.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical-chemical\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e properties section contains data on State, Odor, Color, Color (Gardener), Color (platinum-cobalt scale), Acid number, Acidic residue, Boiling point, Bulk density, Cloud point values of DACP, EMDA, MMAP, ODM, and OMSCP, Density, Erichsen scratch visibility test, Evaporation rate, Gel sediment, Glass transition temperature, HLB value, Hydroxyl number, Iodine number, Kinematic viscosity, Melt flow rate, Melting point, pH, Refractive index, Relative density, Softening point, Solubility in solvents, Solubility in water, Specific gravity, State, Static coefficient of friction, Surface tension, Vapor density, Vapor pressure, Viscosity, Volatility, Water absorption, and Yellowness index.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth and safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e section contains data on Autoignition temperature, ADR\/RID class, Agency ratings, Carcinogenicity by ACGIH, IARC, NTP, and OSHA, Chronic health effects, Derived no effect level, Dermal LD50 Guinea pig, DOT Class, Eye irritation, Explosive LEL, Explosive UEL, Exposure limits: ACIGH, NIOSH, and OSHA, Exposure personal protection, First aid: eyes, skin, and inhalation, Flash point, Flash point method, HMIS Health, HMIS Fire, HMIS Reactivity, Hazard class, Hazardous combustion products, ICAO\/IATA class, IMDG class, Ingestion effect, Inhalation effect, Inhalation LC50 Rat, Mutagenicity, NFPA Health, NFPA Flammability, NFPA Reactivity, Rabbit dermal LD50, Rat oral LD50, Skin irritation, Teratogenicity, UN number, UN Risk Phrases, R, and UN Safety Phrases, S.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e properties section contains data on Aquatic toxicity LC50 (Green algae, Bluegill sunfish, Daphnia magna, and Fathead minnow), Bioaccumulative (BCF factor), Biodegradation probability, and Partition coefficient (log Koc and log Kow). \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e section contains information on Manufacturer, Outstanding properties, Potential substitute, Recommended for polymers, Recommended for products, Recommended applications, Processing methods, Concentration used, and Food approvals.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe above data are given, whenever available, for approximately 360 of the most important surface modification additives produced and used today.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe data included in Databook of Surface Modification Additives represent major suppliers and are based on the most recent available information regarding additives selection. The examples of application are also discussed. \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1. Introduction\u003cbr\u003e2. Information on the data fields\u003cbr\u003e3. Additives\u003cbr\u003ea. Anti-scratch and mar resistance\u003cbr\u003eb. Gloss enhancement\u003cbr\u003ec. Surface matting (flattening)\u003cbr\u003ed. Tack-free surfaces\u003cbr\u003ee. Tackifiers\u003cbr\u003ef. Surface tension reduction and wetting\u003cbr\u003eg. Easy surface cleaning\u003cbr\u003eh. Water repelling (hydrophobization)\u003cbr\u003ei. Anti-cratering and leveling\u003cbr\u003ej. Improvement of the coefficient of static friction\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:15:02-04:00","created_at":"2017-12-21T15:05:40-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2018","additive","additives","anti-scratch and mar resistance","book","ecological properties","gloss","health and safety","leveling and anti-cratering","matting","physical-chemical properties","polymer","polymers","tack-free surface","tackifires","use and performance"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":5105771020319,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Databook of Surface Modification Additives","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-35-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-35-2.jpg?v=1513887235"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-35-2.jpg?v=1513887235","options":["Title"],"media":[{"alt":null,"id":730915078237,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-35-2.jpg?v=1513887235"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-35-2.jpg?v=1513887235","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-35-2 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2018\u003cbr\u003ePages 734 + xii\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eTen groups of additives are commercially available for improvement and surface modification of manufactured materials. These include additives improving anti-scratch and mar resistance, gloss, surface flattening, tack reduction, tack increase (tackifiers), surface tension reduction and wetting, surface cleaning, hydrophobization, anti-cratering and leveling, and coefficient of static friction. A large number of final products benefit from application of these additives, with major groups of industrial products including adhesives, appliances, automotive, bookbinding, building and construction, business machines, cellular phones, coatings, concrete, electronics, flooring, footwear, furniture, graphic arts, lacquers, leather, optical films, packaging, paints, paper, plastics, printing inks, rubber, sealants, wire and cable, and wood.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eDatabook of Surface Modification Additives contains extensive data on the most important products in the use today. The information on each additive included in the Databook of Surface Modification Additives is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; performance. The data belong to almost 130 data fields, which accommodate a variety of data available in the source publications. The description of each section below gives more detail on the composition of information. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eIn \u003cstrong\u003eGeneral\u003c\/strong\u003e information section, the following data are displayed: name, CAS #, EC #, Acronym, Active matter, Bio-renewable content, Bromine number, Chemical class, Common synonym, Empirical formula, Functional group, Mixture, Mn, Mw, Mw\/Mn, Mz, Moisture content, Moisture contents, Name, Product composition, Residue after calcination, and Solids content.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical-chemical\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e properties section contains data on State, Odor, Color, Color (Gardener), Color (platinum-cobalt scale), Acid number, Acidic residue, Boiling point, Bulk density, Cloud point values of DACP, EMDA, MMAP, ODM, and OMSCP, Density, Erichsen scratch visibility test, Evaporation rate, Gel sediment, Glass transition temperature, HLB value, Hydroxyl number, Iodine number, Kinematic viscosity, Melt flow rate, Melting point, pH, Refractive index, Relative density, Softening point, Solubility in solvents, Solubility in water, Specific gravity, State, Static coefficient of friction, Surface tension, Vapor density, Vapor pressure, Viscosity, Volatility, Water absorption, and Yellowness index.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth and safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e section contains data on Autoignition temperature, ADR\/RID class, Agency ratings, Carcinogenicity by ACGIH, IARC, NTP, and OSHA, Chronic health effects, Derived no effect level, Dermal LD50 Guinea pig, DOT Class, Eye irritation, Explosive LEL, Explosive UEL, Exposure limits: ACIGH, NIOSH, and OSHA, Exposure personal protection, First aid: eyes, skin, and inhalation, Flash point, Flash point method, HMIS Health, HMIS Fire, HMIS Reactivity, Hazard class, Hazardous combustion products, ICAO\/IATA class, IMDG class, Ingestion effect, Inhalation effect, Inhalation LC50 Rat, Mutagenicity, NFPA Health, NFPA Flammability, NFPA Reactivity, Rabbit dermal LD50, Rat oral LD50, Skin irritation, Teratogenicity, UN number, UN Risk Phrases, R, and UN Safety Phrases, S.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e properties section contains data on Aquatic toxicity LC50 (Green algae, Bluegill sunfish, Daphnia magna, and Fathead minnow), Bioaccumulative (BCF factor), Biodegradation probability, and Partition coefficient (log Koc and log Kow). \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e section contains information on Manufacturer, Outstanding properties, Potential substitute, Recommended for polymers, Recommended for products, Recommended applications, Processing methods, Concentration used, and Food approvals.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe above data are given, whenever available, for approximately 360 of the most important surface modification additives produced and used today.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe data included in Databook of Surface Modification Additives represent major suppliers and are based on the most recent available information regarding additives selection. The examples of application are also discussed. \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1. Introduction\u003cbr\u003e2. Information on the data fields\u003cbr\u003e3. Additives\u003cbr\u003ea. Anti-scratch and mar resistance\u003cbr\u003eb. Gloss enhancement\u003cbr\u003ec. Surface matting (flattening)\u003cbr\u003ed. Tack-free surfaces\u003cbr\u003ee. Tackifiers\u003cbr\u003ef. Surface tension reduction and wetting\u003cbr\u003eg. Easy surface cleaning\u003cbr\u003eh. Water repelling (hydrophobization)\u003cbr\u003ei. Anti-cratering and leveling\u003cbr\u003ej. Improvement of the coefficient of static friction\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Rheology. Concepts, Me...
$299.00
{"id":11427417284,"title":"Rheology. Concepts, Methods, and Applications, 3rd Edition","handle":"rheology-concepts-methods-and-applications-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-21-5 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2017\u003cbr\u003ePages 486+xiv\u003cbr\u003eFigures 265\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe third edition of this excellent book brings many new additions, which include new methods and applications based on the most recently published literature. The most notable new sections discuss heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003cbr\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of the rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors are very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intent to pass their knowledge to the next generations. Previous editions of this book are used as a textbook in many universities worldwide.\u003c\/p\u003e\n\u003cp\u003eThis book is very useful in industrial applications but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eIntroduction. Rheology: Subject and Goals\u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/strong\u003e\u003cbr\u003e1.2 Deformations \u003cbr\u003e1.3 Kinematics of deformations \u003cbr\u003e1.4 Heterogeneity on flow \u003cbr\u003e1.5 Summary − continuum mechanics in rheology\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments \u003cbr\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003cbr\u003e2.3 Model interpretations \u003cbr\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003cbr\u003e2.5 Relationships among viscoelastic functions \u003cbr\u003e2.6 Viscoelasticity and molecular models \u003cbr\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 Liquids \u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003cbr\u003e3.2 Non-Newtonian shear flow \u003cbr\u003e3.3 Equations for viscosity and flow curves \u003cbr\u003e3.4 Elasticity in shear flows \u003cbr\u003e3.5 Structure rearrangements induced by shear flow \u003cbr\u003e3.6 Limits of shear flow − instabilities \u003cbr\u003e3.7 Extensional flow \u003cbr\u003e3.8 Conclusions − real liquid is a complex liquid\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions \u003cbr\u003e4.2 Linear elastic (Hookean) materials \u003cbr\u003e4.3 Linear anisotropic solids \u003cbr\u003e4.4 Large deformations in solids and non-linearity \u003cbr\u003e4.5 Limits of elasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry Experimental Methods \u003c\/strong\u003e\u003cbr\u003e5.1 Introduction − Classification of experimental methods \u003cbr\u003e5.2 Capillary viscometry \u003cbr\u003e5.3 Rotational rheometry \u003cbr\u003e5.4 Plastometers \u003cbr\u003e5.5 Method of falling sphere \u003cbr\u003e5.6 Extension \u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003cbr\u003e5.8 Physical methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology \u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Rheological properties of real materials and their characterization \u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003cbr\u003e6.4 Solution of dynamic problems \u003cbr\u003e \u003cstrong\u003eNotation \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eSolutions \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eIndex \u003c\/strong\u003e\u003c\/p\u003e","published_at":"2017-07-13T17:21:03-04:00","created_at":"2017-07-13T17:22:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","boltzmann-volterra stresses","book","capillary viscometry","creep","deformation","elongation","equations","liquid","Newtonian liquids","non-Newtonian liquids","p-properties","plastometers","polymer","rheokinetics","rheological","rheology","rheometry","solids","viscoelasticity"],"price":29900,"price_min":29900,"price_max":29900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45226298884,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications, 3rd Edition","public_title":null,"options":["Default Title"],"price":29900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-927885-21-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062","options":["Title"],"media":[{"alt":null,"id":412845899869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-21-5 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2017\u003cbr\u003ePages 486+xiv\u003cbr\u003eFigures 265\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe third edition of this excellent book brings many new additions, which include new methods and applications based on the most recently published literature. The most notable new sections discuss heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003cbr\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of the rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors are very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intent to pass their knowledge to the next generations. Previous editions of this book are used as a textbook in many universities worldwide.\u003c\/p\u003e\n\u003cp\u003eThis book is very useful in industrial applications but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eIntroduction. Rheology: Subject and Goals\u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/strong\u003e\u003cbr\u003e1.2 Deformations \u003cbr\u003e1.3 Kinematics of deformations \u003cbr\u003e1.4 Heterogeneity on flow \u003cbr\u003e1.5 Summary − continuum mechanics in rheology\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments \u003cbr\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003cbr\u003e2.3 Model interpretations \u003cbr\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003cbr\u003e2.5 Relationships among viscoelastic functions \u003cbr\u003e2.6 Viscoelasticity and molecular models \u003cbr\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 Liquids \u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003cbr\u003e3.2 Non-Newtonian shear flow \u003cbr\u003e3.3 Equations for viscosity and flow curves \u003cbr\u003e3.4 Elasticity in shear flows \u003cbr\u003e3.5 Structure rearrangements induced by shear flow \u003cbr\u003e3.6 Limits of shear flow − instabilities \u003cbr\u003e3.7 Extensional flow \u003cbr\u003e3.8 Conclusions − real liquid is a complex liquid\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions \u003cbr\u003e4.2 Linear elastic (Hookean) materials \u003cbr\u003e4.3 Linear anisotropic solids \u003cbr\u003e4.4 Large deformations in solids and non-linearity \u003cbr\u003e4.5 Limits of elasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry Experimental Methods \u003c\/strong\u003e\u003cbr\u003e5.1 Introduction − Classification of experimental methods \u003cbr\u003e5.2 Capillary viscometry \u003cbr\u003e5.3 Rotational rheometry \u003cbr\u003e5.4 Plastometers \u003cbr\u003e5.5 Method of falling sphere \u003cbr\u003e5.6 Extension \u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003cbr\u003e5.8 Physical methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology \u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Rheological properties of real materials and their characterization \u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003cbr\u003e6.4 Solution of dynamic problems \u003cbr\u003e \u003cstrong\u003eNotation \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eSolutions \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eIndex \u003c\/strong\u003e\u003c\/p\u003e"}
Handbook of Plasticize...
$350.00
{"id":11427318148,"title":"Handbook of Plasticizers, 3rd Edition","handle":"handbook-of-plasticizers-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1-895198-97-3 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: March 2017 \u003cbr\u003ePages 858+xii\u003cbr\u003eTables 122, Figures 373\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous editions. \u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used for the production of plasticizers is becoming one of the issues in the selection of plasticizers. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e \u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e \u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of a printed book, entitled \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e.\u003c\/p\u003e\nTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e \u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e \u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e \u003cbr\u003eTwenty-eight sections of Chapter 10 discuss plasticizers’ effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation.\n\u003cp\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e \u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e \u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e \u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with \u003cstrong\u003ePlasticizer Database\u003c\/strong\u003e and\/or \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e which gives information on the present status and properties of industrial and research plasticizers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eEditor\u003c\/strong\u003e\u003cbr\u003eGeorge Wypych studied chemical engineering and obtained Ph. D. in chemical engineering. The professional expertise includes both university teaching (full professor) and research \u0026amp;development. He has published 25 books (PVC Plastisols, University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, and 4th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, 1st and 2nd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st and 2nd Editions, ChemTec Publishing, The PVC Formulary, 1st and 2nd Editions, ChemTec Publishing), Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of Polymers, 1st and 2nd Editions, ChemTec Publishing, Atlas of Material Damage, 1st and 2nd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st and 2nd Editions, ChemTec Publishing), Databook of Solvents, ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents, ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing, 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability and the development of sealants and coatings. He is included in Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eRelated Publications\u003c\/strong\u003e\u003cbr\u003eDatabook of Plasticizers\u003cbr\u003ePVC Degradation and Stabilization\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003e1 \u003c\/em\u003e\u003cem\u003eINTRODUCTION \u003c\/em\u003e\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PLASTICIZER TYPES \u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e \u003cem\u003eMax Kron \u003c\/em\u003e\u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla and M. Beltrán \u003c\/em\u003e\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models\u003c\/p\u003e\n\u003cp\u003e6 \u003cstrong\u003eTHEORIES OF COMPATIBILITY\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003c\/em\u003e\u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution in materials in contact \u003cbr\u003e \u003cem\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003c\/em\u003e\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla, J. C. García and M. Beltrán \u003c\/em\u003e\u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e \u003cem\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003c\/em\u003e\u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003e \u003cem\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003c\/em\u003e\u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003c\/em\u003e\u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003c\/em\u003e\u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova\u003c\/em\u003e\u003cbr\u003e10.21 Stability of physico-mechanical properties of plasticized polyetherurethane in a humid medium\u003cbr\u003eM. A. Makarova, V. V. Tereshatov, A. I .Slobodinyuk, V. Yu. Senichev, Zh. A. Vnutskikh\u003cbr\u003e10.22 Fusible diurethane plasticizers for thermoplastic polyurethane composites\u003cbr\u003eV. V. Tereshatov, V. Yu. Senichev\u003cbr\u003e10.23 Determination of osmotic pressure of plasticizer in polymer\u003cbr\u003eV. V. Tereshatov, Zh. A. Vnutskikh, V. Yu. Senichev, A. I. Slobodinyuk\u003cbr\u003e10.24 Self-healing\u003cbr\u003e10.25 Shrinkage\u003cbr\u003e10.26 Soiling \u003cbr\u003e10.27 Free volume \u003cbr\u003e10.28 Effect of plasticizers on other properties\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003e \u003cem\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003c\/em\u003e\u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003c\/strong\u003e\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 Pipes \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003e \u003cem\u003eA. Marcilla, J.C. García, and M. Beltran \u003c\/em\u003e\u003cbr\u003e13.32 Tubing \u003cbr\u003e13.33 Wire and cable\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS \u003c\/strong\u003e\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e \u003cem\u003eM. Beltrán, J. C. Garcia, and A. Marcilla \u003c\/em\u003e\u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e16 MATHEMATICAL MODELLING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation\u003cbr\u003e16.3 Migration\u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED MATERIALS \u003c\/strong\u003e\u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e \u003cem\u003eSøren Thor Larsen\u003c\/em\u003e\u003cbr\u003e17.1.1 Introduction\u003cbr\u003e17.1.2 Airway allergy\u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers? \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers: basic biology and human \u003cbr\u003eextrapolation\u003cbr\u003e \u003cem\u003eClaire Sadler, Ann-Marie Bergholm, Nicola Powles-Glover, and Ruth A Roberts\u003c\/em\u003e\u003cbr\u003e17.2.1 Introduction\u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression\u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPARa \u003cbr\u003e17.2.4 Species differences in response to PPS \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e \u003cem\u003eJanet Y. Uriu-Adams and Carl L. Keen\u003c\/em\u003e\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP\u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal and conceptus nutrient metabolism \u003cbr\u003e17.3.4 Concluding comments\u003cbr\u003e17.3.5 Acknowledgements \u003cbr\u003e17.4 Public health implications of phthalates: A review of findings from the U.S. National Toxicology Program's Expert Panel Reports\u003cbr\u003e \u003cem\u003eStephanie R. Miles-Richardson\u003c\/em\u003e\u003cbr\u003e17.4.1 Introduction\u003cbr\u003e17.4.2 Exposure to adults in the general population \u003cbr\u003e17.4.3 Exposure of vulnerable sub-populations \u003cbr\u003e17.4.4 Health effects of phthalate exposure \u003cbr\u003e17.4.5 US NTP expert panel conclusions\u003cbr\u003e17.4.6 Public health implications\u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e \u003cem\u003eWerner Butte\u003c\/em\u003e\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.5 Summary \u003cbr\u003eAddendum \u003cbr\u003e \u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eWilliam R. Roy\u003c\/em\u003e\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment\u003cbr\u003e18.1.2 Levels in the environment\u003cbr\u003e18.2 Plasticizers in water\u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water\u003cbr\u003e18.2.5 Adsorption from water\u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003eSummary and concluding remarks\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e19 REGULATIONS AND DATA \u003c\/strong\u003e\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect\u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e20 PERSONAL PROTECTION \u003c\/strong\u003e\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-07-13T17:08:39-04:00","created_at":"2017-07-13T17:11:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","abiotic","adipates","adsorption","alkyl sulfonates","azelates","benzoates","biodegradation","book","chlorinated paraffins","citrates","coated fabrics","cosmetics","database","degradation","dental materials","electrical","electronics","energetic plasticizers","environment","epoxides","eye protection","fibers","film","flooring","foams","food","footwear","gaskets","gloves","inks","medical applications","membranes","p-additives","paints","pharmaceutical products","plasticisers","plasticizers additives","polymer","releases","solubility","varnishes","volatilization","water"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45225353156,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plasticizers, 3rd Edition","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-895198-97-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-97-3.jpg?v=1503344003"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-97-3.jpg?v=1503344003","options":["Title"],"media":[{"alt":null,"id":407379804253,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-97-3.jpg?v=1503344003"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-97-3.jpg?v=1503344003","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1-895198-97-3 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: March 2017 \u003cbr\u003ePages 858+xii\u003cbr\u003eTables 122, Figures 373\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous editions. \u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used for the production of plasticizers is becoming one of the issues in the selection of plasticizers. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e \u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e \u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of a printed book, entitled \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e.\u003c\/p\u003e\nTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e \u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e \u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e \u003cbr\u003eTwenty-eight sections of Chapter 10 discuss plasticizers’ effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation.\n\u003cp\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e \u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e \u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e \u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with \u003cstrong\u003ePlasticizer Database\u003c\/strong\u003e and\/or \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e which gives information on the present status and properties of industrial and research plasticizers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eEditor\u003c\/strong\u003e\u003cbr\u003eGeorge Wypych studied chemical engineering and obtained Ph. D. in chemical engineering. The professional expertise includes both university teaching (full professor) and research \u0026amp;development. He has published 25 books (PVC Plastisols, University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, and 4th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, 1st and 2nd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st and 2nd Editions, ChemTec Publishing, The PVC Formulary, 1st and 2nd Editions, ChemTec Publishing), Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of Polymers, 1st and 2nd Editions, ChemTec Publishing, Atlas of Material Damage, 1st and 2nd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st and 2nd Editions, ChemTec Publishing), Databook of Solvents, ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents, ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing, 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability and the development of sealants and coatings. He is included in Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eRelated Publications\u003c\/strong\u003e\u003cbr\u003eDatabook of Plasticizers\u003cbr\u003ePVC Degradation and Stabilization\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003e1 \u003c\/em\u003e\u003cem\u003eINTRODUCTION \u003c\/em\u003e\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PLASTICIZER TYPES \u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e \u003cem\u003eMax Kron \u003c\/em\u003e\u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla and M. Beltrán \u003c\/em\u003e\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models\u003c\/p\u003e\n\u003cp\u003e6 \u003cstrong\u003eTHEORIES OF COMPATIBILITY\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003c\/em\u003e\u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution in materials in contact \u003cbr\u003e \u003cem\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003c\/em\u003e\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla, J. C. García and M. Beltrán \u003c\/em\u003e\u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e \u003cem\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003c\/em\u003e\u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003e \u003cem\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003c\/em\u003e\u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003c\/em\u003e\u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003c\/em\u003e\u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova\u003c\/em\u003e\u003cbr\u003e10.21 Stability of physico-mechanical properties of plasticized polyetherurethane in a humid medium\u003cbr\u003eM. A. Makarova, V. V. Tereshatov, A. I .Slobodinyuk, V. Yu. Senichev, Zh. A. Vnutskikh\u003cbr\u003e10.22 Fusible diurethane plasticizers for thermoplastic polyurethane composites\u003cbr\u003eV. V. Tereshatov, V. Yu. Senichev\u003cbr\u003e10.23 Determination of osmotic pressure of plasticizer in polymer\u003cbr\u003eV. V. Tereshatov, Zh. A. Vnutskikh, V. Yu. Senichev, A. I. Slobodinyuk\u003cbr\u003e10.24 Self-healing\u003cbr\u003e10.25 Shrinkage\u003cbr\u003e10.26 Soiling \u003cbr\u003e10.27 Free volume \u003cbr\u003e10.28 Effect of plasticizers on other properties\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003e \u003cem\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003c\/em\u003e\u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003c\/strong\u003e\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 Pipes \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003e \u003cem\u003eA. Marcilla, J.C. García, and M. Beltran \u003c\/em\u003e\u003cbr\u003e13.32 Tubing \u003cbr\u003e13.33 Wire and cable\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS \u003c\/strong\u003e\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e \u003cem\u003eM. Beltrán, J. C. Garcia, and A. Marcilla \u003c\/em\u003e\u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e16 MATHEMATICAL MODELLING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation\u003cbr\u003e16.3 Migration\u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED MATERIALS \u003c\/strong\u003e\u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e \u003cem\u003eSøren Thor Larsen\u003c\/em\u003e\u003cbr\u003e17.1.1 Introduction\u003cbr\u003e17.1.2 Airway allergy\u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers? \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers: basic biology and human \u003cbr\u003eextrapolation\u003cbr\u003e \u003cem\u003eClaire Sadler, Ann-Marie Bergholm, Nicola Powles-Glover, and Ruth A Roberts\u003c\/em\u003e\u003cbr\u003e17.2.1 Introduction\u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression\u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPARa \u003cbr\u003e17.2.4 Species differences in response to PPS \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e \u003cem\u003eJanet Y. Uriu-Adams and Carl L. Keen\u003c\/em\u003e\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP\u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal and conceptus nutrient metabolism \u003cbr\u003e17.3.4 Concluding comments\u003cbr\u003e17.3.5 Acknowledgements \u003cbr\u003e17.4 Public health implications of phthalates: A review of findings from the U.S. National Toxicology Program's Expert Panel Reports\u003cbr\u003e \u003cem\u003eStephanie R. Miles-Richardson\u003c\/em\u003e\u003cbr\u003e17.4.1 Introduction\u003cbr\u003e17.4.2 Exposure to adults in the general population \u003cbr\u003e17.4.3 Exposure of vulnerable sub-populations \u003cbr\u003e17.4.4 Health effects of phthalate exposure \u003cbr\u003e17.4.5 US NTP expert panel conclusions\u003cbr\u003e17.4.6 Public health implications\u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e \u003cem\u003eWerner Butte\u003c\/em\u003e\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.5 Summary \u003cbr\u003eAddendum \u003cbr\u003e \u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eWilliam R. Roy\u003c\/em\u003e\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment\u003cbr\u003e18.1.2 Levels in the environment\u003cbr\u003e18.2 Plasticizers in water\u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water\u003cbr\u003e18.2.5 Adsorption from water\u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003eSummary and concluding remarks\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e19 REGULATIONS AND DATA \u003c\/strong\u003e\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect\u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e20 PERSONAL PROTECTION \u003c\/strong\u003e\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Odors in P...
$295.00
{"id":11427268036,"title":"Handbook of Odors in Plastic Materials, 2nd Ed.","handle":"handbook-of-odors-in-plastic-materials-2nd-ed","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cbr\u003eAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-98-0 (hard copy) \u003cbr\u003e\u003cbr\u003ePublished: Apr. 2017 \u003cbr\u003ePages: 252 + viii\u003cbr\u003eFigures: 61\u003cbr\u003eTables: 25\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIt is the first book ever written on this important subject. The second edition contains the most recent data and information developed for this important field. The odor of product may decide whether a product is purchased by the customer or not. Odor can also be an important reason for customer complaints and product returns. In scented products retention of volatile components is of particular interest. Many leading companies have recognized this as an opportunity and they actively study and modify odors of their products.\u003c\/p\u003e\n\u003cp\u003eSeveral reasons are behind formation of odors in plastic materials, including \u003cbr\u003e1. Properties of polymer\u003cbr\u003e2. Use of other materials than polymer, especially materials required in processing (additives)\u003cbr\u003e3. Process parameters and their effect on severity of degradation of components of formulation\u003cbr\u003e4. Exposure to different forms of radiation and oxygen\u003cbr\u003e5. Recycling of polymeric materials\u003cbr\u003e6. Contact with other products\u003cbr\u003e7. Storage\u003cbr\u003ea. Diffusion-related properties\u003cbr\u003eb. Migration-evaporation\u003cbr\u003ec. Storage in the same space\u003c\/p\u003e\n\u003cp\u003eThe above reasons are analyzed for different materials to find out the best methods to prevent unwanted odor formation. Three chapters are devoted to the analysis of odor-related matters in different polymers, products, and methods of processing. Almost forty polymers and forty-two product groups are analyzed based on research publications and patents.\u003c\/p\u003e\n\u003cp\u003eOther important chapters discuss the mechanism of odor formation and its transport within a material, distinctive odors found in plastic materials, taste, and fogging.\u003c\/p\u003e\n\u003cp\u003eThe book also contains information on testing of odor changes, a relationship between odor and toxicity, as well as a selection of raw materials for fog-free products.\u003c\/p\u003e\n\u003cp\u003eThe book also contains information on 17 methods of odor removal (the list of these methods is included in Table of Contents below).\u003c\/p\u003e\n\u003cp\u003eThe last three chapters discuss regulations related to odor in products, effects of odors on health and safety, and effect of odors from plastic materials on indoor air quality.\u003c\/p\u003e\n\u003cp\u003eHandbook of Odors in Plastic Materials is needed by anyone interested in plastic materials. The book contains complete information based on hard to find source publications and numerous patents.\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e2 Mechanisms of odor formation and its transport\u003cbr\u003e3 Distinctive odors\u003cbr\u003e4 Taste \u003cbr\u003e5 Fogging \u003cbr\u003e6 Reasons odor formation in plastic materials\u003cbr\u003e7 Methods of testing in odor analysis\u003cbr\u003e8 Odor in relation to different polymers\u003cbr\u003e9 Odor in various products\u003cbr\u003e10 Effect of processing method\u003cbr\u003e11 Methods of odor removal\u003cbr\u003e12 Regulations \u003cbr\u003e13 Health and safety \u003cbr\u003e14 Indoor air quality\u003c\/p\u003e\nIndex\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-07-13T17:05:02-04:00","created_at":"2017-07-13T17:06:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","book","environment","formation odor","general","plastic odor","plastics","storage","testning methods"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45224836164,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Odors in Plastic Materials, 2nd Ed.","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-895198-98-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-98-0.jpg?v=1499980065"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-98-0.jpg?v=1499980065","options":["Title"],"media":[{"alt":null,"id":362549739613,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-98-0.jpg?v=1499980065"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-98-0.jpg?v=1499980065","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cbr\u003eAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-98-0 (hard copy) \u003cbr\u003e\u003cbr\u003ePublished: Apr. 2017 \u003cbr\u003ePages: 252 + viii\u003cbr\u003eFigures: 61\u003cbr\u003eTables: 25\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIt is the first book ever written on this important subject. The second edition contains the most recent data and information developed for this important field. The odor of product may decide whether a product is purchased by the customer or not. Odor can also be an important reason for customer complaints and product returns. In scented products retention of volatile components is of particular interest. Many leading companies have recognized this as an opportunity and they actively study and modify odors of their products.\u003c\/p\u003e\n\u003cp\u003eSeveral reasons are behind formation of odors in plastic materials, including \u003cbr\u003e1. Properties of polymer\u003cbr\u003e2. Use of other materials than polymer, especially materials required in processing (additives)\u003cbr\u003e3. Process parameters and their effect on severity of degradation of components of formulation\u003cbr\u003e4. Exposure to different forms of radiation and oxygen\u003cbr\u003e5. Recycling of polymeric materials\u003cbr\u003e6. Contact with other products\u003cbr\u003e7. Storage\u003cbr\u003ea. Diffusion-related properties\u003cbr\u003eb. Migration-evaporation\u003cbr\u003ec. Storage in the same space\u003c\/p\u003e\n\u003cp\u003eThe above reasons are analyzed for different materials to find out the best methods to prevent unwanted odor formation. Three chapters are devoted to the analysis of odor-related matters in different polymers, products, and methods of processing. Almost forty polymers and forty-two product groups are analyzed based on research publications and patents.\u003c\/p\u003e\n\u003cp\u003eOther important chapters discuss the mechanism of odor formation and its transport within a material, distinctive odors found in plastic materials, taste, and fogging.\u003c\/p\u003e\n\u003cp\u003eThe book also contains information on testing of odor changes, a relationship between odor and toxicity, as well as a selection of raw materials for fog-free products.\u003c\/p\u003e\n\u003cp\u003eThe book also contains information on 17 methods of odor removal (the list of these methods is included in Table of Contents below).\u003c\/p\u003e\n\u003cp\u003eThe last three chapters discuss regulations related to odor in products, effects of odors on health and safety, and effect of odors from plastic materials on indoor air quality.\u003c\/p\u003e\n\u003cp\u003eHandbook of Odors in Plastic Materials is needed by anyone interested in plastic materials. The book contains complete information based on hard to find source publications and numerous patents.\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e2 Mechanisms of odor formation and its transport\u003cbr\u003e3 Distinctive odors\u003cbr\u003e4 Taste \u003cbr\u003e5 Fogging \u003cbr\u003e6 Reasons odor formation in plastic materials\u003cbr\u003e7 Methods of testing in odor analysis\u003cbr\u003e8 Odor in relation to different polymers\u003cbr\u003e9 Odor in various products\u003cbr\u003e10 Effect of processing method\u003cbr\u003e11 Methods of odor removal\u003cbr\u003e12 Regulations \u003cbr\u003e13 Health and safety \u003cbr\u003e14 Indoor air quality\u003c\/p\u003e\nIndex\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Foaming an...
$285.00
{"id":11427190148,"title":"Handbook of Foaming and Blowing Agents","handle":"handbook-of-foaming-and-blowing-agents","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003c\/p\u003e\n\u003cp\u003eISBN 978-1-895198-99-7 (hard copy)\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2017\u003c\/span\u003e\u003cbr\u003ePages 250+viii\u003cbr\u003eTables 38\u003cbr\u003eFigures 145\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, including type, amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other.\u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on mechanisms of action of blowing agents and foaming mechanisms, as well as dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology which has been discussed in fourteen chapters each devoted to a different aspect of the foaming process.\u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. In the tabulated form, the typical range of technical performance is given for each group of foaming agents, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses mechanisms of foaming with the use of solid blowing agents which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by diagrams placed close to the text of discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is a subject of Chapter 4 with special emphasis on uniformity of foam produced and parameters of the foaming process. Evaluation of importance of parameters of foaming, included in chapter 5, contains influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume.\u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain uniform structure of a foam and reinforce cell walls. Seven different foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating are discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eSelection of foaming agents, their quantity and technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, health and safety and environmental impacts of foaming processes are discussed.\u003cbr\u003e \u003cbr\u003eThis book has also companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information which is repeated in both books. They do complement each other giving reader comprehensive information on the subject never published before with such a breadth.\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction\u003cbr\u003e2 Chemical origin of blowing agents\u003cbr\u003e3 Mechanisms of action of blowing agents\u003cbr\u003e4 Dispersion and solubility of foaming agents\u003cbr\u003e5 Parameters of foaming\u003cbr\u003e6 Foam stabilization\u003cbr\u003e7 Foaming efficiency measures\u003cbr\u003e8 Morphology of foams\u003cbr\u003e9 Foaming in different processing methods\u003cbr\u003e10 Selection of blowing agents for different polymers\u003cbr\u003e11 Additives\u003cbr\u003e12 Effect of foaming on physical-mechanical properties of foams\u003cbr\u003e13 Analytical techniques useful in foaming\u003cbr\u003e14 Health and safety and environmental impact of foaming processes\u003cbr\u003eIndex\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-07-13T16:58:01-04:00","created_at":"2017-07-13T16:58:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","additive","blowing","book","expansion","foam","foaming","kicker","polymer","rubber","technology"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45224136068,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Foaming and Blowing Agents","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-895198-99-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-99-7.jpg?v=1499979724"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-99-7.jpg?v=1499979724","options":["Title"],"media":[{"alt":null,"id":362540400733,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-99-7.jpg?v=1499979724"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-99-7.jpg?v=1499979724","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003c\/p\u003e\n\u003cp\u003eISBN 978-1-895198-99-7 (hard copy)\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2017\u003c\/span\u003e\u003cbr\u003ePages 250+viii\u003cbr\u003eTables 38\u003cbr\u003eFigures 145\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, including type, amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other.\u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on mechanisms of action of blowing agents and foaming mechanisms, as well as dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology which has been discussed in fourteen chapters each devoted to a different aspect of the foaming process.\u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. In the tabulated form, the typical range of technical performance is given for each group of foaming agents, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses mechanisms of foaming with the use of solid blowing agents which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by diagrams placed close to the text of discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is a subject of Chapter 4 with special emphasis on uniformity of foam produced and parameters of the foaming process. Evaluation of importance of parameters of foaming, included in chapter 5, contains influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume.\u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain uniform structure of a foam and reinforce cell walls. Seven different foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating are discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eSelection of foaming agents, their quantity and technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, health and safety and environmental impacts of foaming processes are discussed.\u003cbr\u003e \u003cbr\u003eThis book has also companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information which is repeated in both books. They do complement each other giving reader comprehensive information on the subject never published before with such a breadth.\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction\u003cbr\u003e2 Chemical origin of blowing agents\u003cbr\u003e3 Mechanisms of action of blowing agents\u003cbr\u003e4 Dispersion and solubility of foaming agents\u003cbr\u003e5 Parameters of foaming\u003cbr\u003e6 Foam stabilization\u003cbr\u003e7 Foaming efficiency measures\u003cbr\u003e8 Morphology of foams\u003cbr\u003e9 Foaming in different processing methods\u003cbr\u003e10 Selection of blowing agents for different polymers\u003cbr\u003e11 Additives\u003cbr\u003e12 Effect of foaming on physical-mechanical properties of foams\u003cbr\u003e13 Analytical techniques useful in foaming\u003cbr\u003e14 Health and safety and environmental impact of foaming processes\u003cbr\u003eIndex\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Self-healing Materials...
$285.00
{"id":11340962436,"title":"Self-healing Materials. Principles \u0026 Technology","handle":"978-1-927885-23-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-23-9 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2017 \u003cbr\u003e\u003c\/span\u003ePages: 256 + vi Figures: 203\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eSelf-healing phenomenon, adapted from living things, was for a long time an interesting topic of discussion on the potential improvements of human-made products, but for quite a while it became applicable reality useful in many manufactured product. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has three major sections organized in fifteen chapters. The first section contains chapter which discusses the well-established mechanisms of self-healing which can be potentially applied in the development of new materials that have an ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes which occur during self-healing are also discussed and it belongs to this section. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe second part of this book compares parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning of the healing processes, activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect location, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of application the most important analytical techniques to the evaluation of the self-healing process.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final section of the book includes practical advice on the selection of additives for self-healing formulation, methods of self-healing of different polymers and application of self-healing technology in different groups of the products. This part is based on the practical knowledge, the existing patents, the published paper, and the practical application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of application of the technology of self-healing.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience for this book includes people working in the industries listed in chapter 15 and on the polymers listed in chapter 14 (see the table of contents below), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies. \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction. Lessons from Living Things \u003cbr\u003e\u003cbr\u003e2 Mechanisms of Self-healing \u003cbr\u003e2.1 Autonomic \u003cbr\u003e2.2 Click chemistry \u003cbr\u003e2.3 Crosslinking \u003cbr\u003e2.4 Hydrogen bonding \u003cbr\u003e2.5 Luminescence \u003cbr\u003e2.6 Morphological features and organization \u003cbr\u003e2.7 Shape memory \u003cbr\u003e2.8 Thermal healing \u003cbr\u003e2.9 UV \u003cbr\u003e2.10 Water \u003cbr\u003e2.11 Other mechanisms \u003cbr\u003e\u003cbr\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr\u003e3.1 Chemical reactions \u003cbr\u003e3.2 Compositional changes \u003cbr\u003e3.3 Physical processes \u003cbr\u003e3.4 Self-assembly \u003cbr\u003e\u003cbr\u003e4 Fault Detection Mechanisms \u003cbr\u003e\u003cbr\u003e5 Triggering and Tuning the Healing Processes \u003cbr\u003e\u003cbr\u003e6 Activation Energy of Self-healing \u003cbr\u003e\u003cbr\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr\u003e7.1 Autonomous \u003cbr\u003e7.2 Capsule and vascular carriers \u003cbr\u003e7.3 Environmental conditions \u003cbr\u003e7.4 Liquid flow \u003cbr\u003e7.5 Magnetic force \u003cbr\u003e7.6 Manual injection\u003c\/p\u003e\n\u003cp\u003e8 Self-healing Timescale \u003cbr\u003e\u003cbr\u003e9 Self-healing Extent \u003cbr\u003e\u003cbr\u003e10 Molecular Dynamics Simulation \u003cbr\u003e\u003cbr\u003e11 Morphology of Healing \u003cbr\u003e\u003cbr\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr\u003e12.1 X-ray computed tomography \u003cbr\u003e12.2 Raman correlation spectroscopy \u003cbr\u003e12.3 Raman spectroscopy \u003cbr\u003e12.4 Impedance spectroscopy \u003cbr\u003e12.5 Water permeability \u003cbr\u003e12.6 Surface energy \u003cbr\u003e\u003cbr\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr\u003e13.1 Polymers \u003cbr\u003e13.1.1 Urea-formaldehyde resin \u003cbr\u003e13.1.2 Polydimethylsiloxane \u003cbr\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr\u003e13.1.4 Epoxy resins \u003cbr\u003e13.1.5 Polyaniline \u003cbr\u003e13.1.6 Polyurethane \u003cbr\u003e13.2 Capsule-based materials \u003cbr\u003e13.3 Catalysts \u003cbr\u003e13.4 Chemical structures \u003cbr\u003e13.5 Coupling agents \u003cbr\u003e13.6 Crosslinkers \u003cbr\u003e13.7 Fibers \u003cbr\u003e13.8 Magneto-responsive components \u003cbr\u003e13.9 Metal complexes \u003cbr\u003e13.10 Nanoparticles \u003cbr\u003e13.11 Plasticizers \u003cbr\u003e13.12 Solvents \u003cbr\u003e13.13 Vascular self-healing materials \u003cbr\u003e\u003cbr\u003e14 Self-healing of Different Polymers \u003cbr\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr\u003e14.2 Acrylic resin \u003cbr\u003e14.3 Alkyd resin \u003cbr\u003e14.4 Cellulose and its derivatives \u003cbr\u003e14.5 Chitosan \u003cbr\u003e14.6 Cyclodextrin \u003cbr\u003e14.7 Epoxy resin \u003cbr\u003e14.8 Ethylene-vinyl acetate \u003cbr\u003e14.9 Natural rubber \u003cbr\u003e14.10 Polybutadiene \u003cbr\u003e14.11 Poly(butyl acrylate) \u003cbr\u003e14.12 Polycyclooctene \u003cbr\u003e14.13 Poly(ε-caprolactone) \u003cbr\u003e14.14 Polydimethylsiloxane \u003cbr\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr\u003e14.16 Polyethylene \u003cbr\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr\u003e14.18 Polyimide \u003cbr\u003e14.19 Polyisobutylene \u003cbr\u003e14.20 Poly(lactic acid) \u003cbr\u003e14.21 Polymethylmethacrylate \u003cbr\u003e14.22 Poly(phenylene oxide) \u003cbr\u003e14.23 Polyphosphazene \u003cbr\u003e14.24 Polypropylene \u003cbr\u003e14.25 Polystyrene \u003cbr\u003e14.26 Polysulfide \u003cbr\u003e14.27 Polyurethanes \u003cbr\u003e14.28 Poly(vinyl alcohol) \u003cbr\u003e14.29 Poly(vinyl butyral) \u003cbr\u003e14.30 Poly(vinylidene difluoride) \u003cbr\u003e\u003cbr\u003e15 Self-healing in Different Products \u003cbr\u003e15.1 Adhesives \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Asphalt pavement \u003cbr\u003e15.4 Automotive \u003cbr\u003e15.5 Cementitious materials \u003cbr\u003e15.6 Ceramic materials \u003cbr\u003e15.7 Coatings \u003cbr\u003e15.8 Composites \u003cbr\u003e15.9 Corrosion prevention \u003cbr\u003e15.10 Dental \u003cbr\u003e15.11 Electrical insulation \u003cbr\u003e15.12 Electronics \u003cbr\u003e15.13 Fabrics \u003cbr\u003e15.14 Fibers \u003cbr\u003e15.15 Film \u003cbr\u003e15.16 Foam \u003cbr\u003e15.17 Hydrogels \u003cbr\u003e15.18 Laminates \u003cbr\u003e15.19 Lubricating oils \u003cbr\u003e15.20 Medical devices \u003cbr\u003e15.21 Membranes \u003cbr\u003e15.22 Mortars \u003cbr\u003e15.23 Pipes \u003cbr\u003e15.24 Sealants \u003cbr\u003e15.25 Solar cells \u003cbr\u003e15.26 Thermal barrier coatings \u003cbr\u003e15.27 Tires \u003cbr\u003e\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/span\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:15:02-04:00","created_at":"2017-07-03T21:04:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","additives","book","healant","material","plastics","polymer","polymers","recovery","rubber","self-healing","self-repair"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":44391632260,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Self-healing Materials. Principles \u0026 Technology","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-23-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570","options":["Title"],"media":[{"alt":null,"id":353498071133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-23-9 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2017 \u003cbr\u003e\u003c\/span\u003ePages: 256 + vi Figures: 203\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eSelf-healing phenomenon, adapted from living things, was for a long time an interesting topic of discussion on the potential improvements of human-made products, but for quite a while it became applicable reality useful in many manufactured product. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has three major sections organized in fifteen chapters. The first section contains chapter which discusses the well-established mechanisms of self-healing which can be potentially applied in the development of new materials that have an ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes which occur during self-healing are also discussed and it belongs to this section. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe second part of this book compares parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning of the healing processes, activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect location, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of application the most important analytical techniques to the evaluation of the self-healing process.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final section of the book includes practical advice on the selection of additives for self-healing formulation, methods of self-healing of different polymers and application of self-healing technology in different groups of the products. This part is based on the practical knowledge, the existing patents, the published paper, and the practical application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of application of the technology of self-healing.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience for this book includes people working in the industries listed in chapter 15 and on the polymers listed in chapter 14 (see the table of contents below), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies. \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction. Lessons from Living Things \u003cbr\u003e\u003cbr\u003e2 Mechanisms of Self-healing \u003cbr\u003e2.1 Autonomic \u003cbr\u003e2.2 Click chemistry \u003cbr\u003e2.3 Crosslinking \u003cbr\u003e2.4 Hydrogen bonding \u003cbr\u003e2.5 Luminescence \u003cbr\u003e2.6 Morphological features and organization \u003cbr\u003e2.7 Shape memory \u003cbr\u003e2.8 Thermal healing \u003cbr\u003e2.9 UV \u003cbr\u003e2.10 Water \u003cbr\u003e2.11 Other mechanisms \u003cbr\u003e\u003cbr\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr\u003e3.1 Chemical reactions \u003cbr\u003e3.2 Compositional changes \u003cbr\u003e3.3 Physical processes \u003cbr\u003e3.4 Self-assembly \u003cbr\u003e\u003cbr\u003e4 Fault Detection Mechanisms \u003cbr\u003e\u003cbr\u003e5 Triggering and Tuning the Healing Processes \u003cbr\u003e\u003cbr\u003e6 Activation Energy of Self-healing \u003cbr\u003e\u003cbr\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr\u003e7.1 Autonomous \u003cbr\u003e7.2 Capsule and vascular carriers \u003cbr\u003e7.3 Environmental conditions \u003cbr\u003e7.4 Liquid flow \u003cbr\u003e7.5 Magnetic force \u003cbr\u003e7.6 Manual injection\u003c\/p\u003e\n\u003cp\u003e8 Self-healing Timescale \u003cbr\u003e\u003cbr\u003e9 Self-healing Extent \u003cbr\u003e\u003cbr\u003e10 Molecular Dynamics Simulation \u003cbr\u003e\u003cbr\u003e11 Morphology of Healing \u003cbr\u003e\u003cbr\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr\u003e12.1 X-ray computed tomography \u003cbr\u003e12.2 Raman correlation spectroscopy \u003cbr\u003e12.3 Raman spectroscopy \u003cbr\u003e12.4 Impedance spectroscopy \u003cbr\u003e12.5 Water permeability \u003cbr\u003e12.6 Surface energy \u003cbr\u003e\u003cbr\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr\u003e13.1 Polymers \u003cbr\u003e13.1.1 Urea-formaldehyde resin \u003cbr\u003e13.1.2 Polydimethylsiloxane \u003cbr\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr\u003e13.1.4 Epoxy resins \u003cbr\u003e13.1.5 Polyaniline \u003cbr\u003e13.1.6 Polyurethane \u003cbr\u003e13.2 Capsule-based materials \u003cbr\u003e13.3 Catalysts \u003cbr\u003e13.4 Chemical structures \u003cbr\u003e13.5 Coupling agents \u003cbr\u003e13.6 Crosslinkers \u003cbr\u003e13.7 Fibers \u003cbr\u003e13.8 Magneto-responsive components \u003cbr\u003e13.9 Metal complexes \u003cbr\u003e13.10 Nanoparticles \u003cbr\u003e13.11 Plasticizers \u003cbr\u003e13.12 Solvents \u003cbr\u003e13.13 Vascular self-healing materials \u003cbr\u003e\u003cbr\u003e14 Self-healing of Different Polymers \u003cbr\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr\u003e14.2 Acrylic resin \u003cbr\u003e14.3 Alkyd resin \u003cbr\u003e14.4 Cellulose and its derivatives \u003cbr\u003e14.5 Chitosan \u003cbr\u003e14.6 Cyclodextrin \u003cbr\u003e14.7 Epoxy resin \u003cbr\u003e14.8 Ethylene-vinyl acetate \u003cbr\u003e14.9 Natural rubber \u003cbr\u003e14.10 Polybutadiene \u003cbr\u003e14.11 Poly(butyl acrylate) \u003cbr\u003e14.12 Polycyclooctene \u003cbr\u003e14.13 Poly(ε-caprolactone) \u003cbr\u003e14.14 Polydimethylsiloxane \u003cbr\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr\u003e14.16 Polyethylene \u003cbr\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr\u003e14.18 Polyimide \u003cbr\u003e14.19 Polyisobutylene \u003cbr\u003e14.20 Poly(lactic acid) \u003cbr\u003e14.21 Polymethylmethacrylate \u003cbr\u003e14.22 Poly(phenylene oxide) \u003cbr\u003e14.23 Polyphosphazene \u003cbr\u003e14.24 Polypropylene \u003cbr\u003e14.25 Polystyrene \u003cbr\u003e14.26 Polysulfide \u003cbr\u003e14.27 Polyurethanes \u003cbr\u003e14.28 Poly(vinyl alcohol) \u003cbr\u003e14.29 Poly(vinyl butyral) \u003cbr\u003e14.30 Poly(vinylidene difluoride) \u003cbr\u003e\u003cbr\u003e15 Self-healing in Different Products \u003cbr\u003e15.1 Adhesives \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Asphalt pavement \u003cbr\u003e15.4 Automotive \u003cbr\u003e15.5 Cementitious materials \u003cbr\u003e15.6 Ceramic materials \u003cbr\u003e15.7 Coatings \u003cbr\u003e15.8 Composites \u003cbr\u003e15.9 Corrosion prevention \u003cbr\u003e15.10 Dental \u003cbr\u003e15.11 Electrical insulation \u003cbr\u003e15.12 Electronics \u003cbr\u003e15.13 Fabrics \u003cbr\u003e15.14 Fibers \u003cbr\u003e15.15 Film \u003cbr\u003e15.16 Foam \u003cbr\u003e15.17 Hydrogels \u003cbr\u003e15.18 Laminates \u003cbr\u003e15.19 Lubricating oils \u003cbr\u003e15.20 Medical devices \u003cbr\u003e15.21 Membranes \u003cbr\u003e15.22 Mortars \u003cbr\u003e15.23 Pipes \u003cbr\u003e15.24 Sealants \u003cbr\u003e15.25 Solar cells \u003cbr\u003e15.26 Thermal barrier coatings \u003cbr\u003e15.27 Tires \u003cbr\u003e\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/span\u003e\u003c\/p\u003e"}
Utech 2000
$300.00
{"id":11242258500,"title":"Utech 2000","handle":"978-1-85957-206-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-206-1 \u003cbr\u003e\u003cbr\u003eNetherlands Congress Centre, The Hague, The Netherlands, 28th-30th March, 2000\u003cbr\u003e\u003cbr\u003epages 460\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the UTECH 2000 event, Crain Communications Ltd, the creators of the UTECH concept, joined forces with ISOPA, the European Isocyanate Producers Association, to produce the most inspirational and informative experience in the polyurethane industry’s calendar. \u003cbr\u003e\u003cbr\u003eThe book covers a wide range of topics and outlines some of the latest developments in the use of polyurethane materials and technology from many of the world’s leading specialists. Several of the presentations also give details of the growing requirements of the polyurethane industry’s downstream customers, offering valuable insights into future demands. \u003cbr\u003e\u003cbr\u003eThe only major polyurethane meeting in the world in 2000, with a brand new format. This three day conference is designed to broaden minds and horizons across the entire industry. The programme of this key event will appeal to a wide spectrum of participants, from commercial strategists to technical innovators. \u003cbr\u003e\u003cbr\u003eThe papers at this ninth such event detail some of the massive strides the industry has made in meeting the exacting technical demands of its wide range of industrial customers in all of the key application sectors. The presentations provide an invaluable guide to the various technical advances and show the depth of expertise of these specialists as well as willingness to share often hard-worked experitise. \u003cbr\u003e\u003cbr\u003eSessions included on: \u003cbr\u003e-Automotive \u003cbr\u003e-Appliance \u003cbr\u003e- Furnishing \u003cbr\u003e-Construction \u003cbr\u003e-Polyurethanes and Sustainable Development \u003cbr\u003e-Case: Coating, Adhesives, Sealants and Elastomers Rigid Foam Developments Other \u003cbr\u003e-Rigid Foam Developments \u003cbr\u003e-Automotive Developments \u003cbr\u003e-Flexible Foam Innovations\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:39-04:00","created_at":"2017-06-22T21:15:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","adhesives","appliance","automotive","book","coating","construction","elastomers","flexible foam","furnishing","p-chemistry","polymer","polyurethane","rigid foam","sealants"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378506628,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Utech 2000","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-206-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-206-1 \u003cbr\u003e\u003cbr\u003eNetherlands Congress Centre, The Hague, The Netherlands, 28th-30th March, 2000\u003cbr\u003e\u003cbr\u003epages 460\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the UTECH 2000 event, Crain Communications Ltd, the creators of the UTECH concept, joined forces with ISOPA, the European Isocyanate Producers Association, to produce the most inspirational and informative experience in the polyurethane industry’s calendar. \u003cbr\u003e\u003cbr\u003eThe book covers a wide range of topics and outlines some of the latest developments in the use of polyurethane materials and technology from many of the world’s leading specialists. Several of the presentations also give details of the growing requirements of the polyurethane industry’s downstream customers, offering valuable insights into future demands. \u003cbr\u003e\u003cbr\u003eThe only major polyurethane meeting in the world in 2000, with a brand new format. This three day conference is designed to broaden minds and horizons across the entire industry. The programme of this key event will appeal to a wide spectrum of participants, from commercial strategists to technical innovators. \u003cbr\u003e\u003cbr\u003eThe papers at this ninth such event detail some of the massive strides the industry has made in meeting the exacting technical demands of its wide range of industrial customers in all of the key application sectors. The presentations provide an invaluable guide to the various technical advances and show the depth of expertise of these specialists as well as willingness to share often hard-worked experitise. \u003cbr\u003e\u003cbr\u003eSessions included on: \u003cbr\u003e-Automotive \u003cbr\u003e-Appliance \u003cbr\u003e- Furnishing \u003cbr\u003e-Construction \u003cbr\u003e-Polyurethanes and Sustainable Development \u003cbr\u003e-Case: Coating, Adhesives, Sealants and Elastomers Rigid Foam Developments Other \u003cbr\u003e-Rigid Foam Developments \u003cbr\u003e-Automotive Developments \u003cbr\u003e-Flexible Foam Innovations\u003cbr\u003e\u003cbr\u003e"}
Natural Ageing of Rubb...
$220.00
{"id":11242258564,"title":"Natural Ageing of Rubber: Changes in Physical Properties Over 40 Years","handle":"978-1-85957-209-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown and T. Butler \u003cbr\u003eISBN 978-1-85957-209-2 \u003cbr\u003e\u003cbr\u003epages 175\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA unique collection of long-term ageing data, available for the first time, from Rapra Technology Limited. \u003cbr\u003eThis report is an output from the Weathering of Elastomers and Sealants project which forms part of the UK government’s Department of Trade and Industry’s Degradation of Materials in Aggressive Environments Programme. \u003cbr\u003e\u003cbr\u003eRapra Technology Limited has just completed a comprehensive natural ageing and physical testing programme on 19 rubber compounds, stored in controlled conditions, for a period of 40 years. This is believed to be the most extensive such study ever carried out. Now, for the first time, all the results of this unique programme have been published in this report. \u003cbr\u003e\u003cbr\u003eThe properties of natural and synthetic rubbers suit them to a diverse range of applications, many of which demand a prolonged service life, and the retention of some or all of their mechanical properties for years or even decades. When the ageing programme was conceived in the 1950s, rubber product manufacturers were faced with a wider range of raw rubbers than had ever been available before. The relatively recent development of some of these materials also meant that there was little information available regarding their longevity. Thus the need was identified for a systematic programme of storage and testing. \u003cbr\u003e\u003cbr\u003eRubber formulations were selected to represent those used in a wide range of applications, including general purpose and ‘good ageing’ grades. Remarkably, most of these formulations are still representative of compounds being specified today. The following rubbers were studied: \u003cbr\u003e\u003cbr\u003e-Natural rubber \u003cbr\u003e-Styrene-butadiene rubber \u003cbr\u003e-Butyl rubber \u003cbr\u003e-Polychloroprene \u003cbr\u003e-Nitrile rubber \u003cbr\u003e-Acrylate rubber \u003cbr\u003e-Chlorosulphonated polyethylene \u003cbr\u003e-Polysulphide rubber \u003cbr\u003e-Silicone rubber \u003cbr\u003eSamples were stored under temperate and tropical climatic conditions, and at various intervals, the following properties were measured: \u003cbr\u003e\u003cbr\u003e-Hardness \u003cbr\u003e-Volume change \u003cbr\u003e-Resilience \u003cbr\u003e-Volume and surface resistivity \u003cbr\u003e-Tensile strength Elongation at break \u003cbr\u003e-Modulus at 100% and 300% elongation \u003cbr\u003e-Long and short-term compression set \u003cbr\u003e-Low temperature stiffness \u003cbr\u003eThe results of all these tests are presented graphically in this report, allowing the rate of deterioration of properties and the influence of the environment to be clearly seen. Properties after 40 years are also tabulated, together with calculations of percentage change. \u003cbr\u003e\u003cbr\u003eThis information will prove invaluable to anyone specifying or supplying rubber materials or components. Further work is now being carried out on the properties of the same formulations after accelerated ageing.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:39-04:00","created_at":"2017-06-22T21:15:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","acrylate rubber","book","butyl rubber","compounding of rubber","compression","elongation at break","hardness","health","natural rubber","nitrile rubber","polychloroprene","polysulphide rubber","r-compounding","r-properties","resilience","rubber","safety","silicone rubber","styrene-butadiene rubber","surface resistivity","tensile strength","toxicity","volume change","volume resistivity"],"price":22000,"price_min":22000,"price_max":22000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378507908,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Natural Ageing of Rubber: Changes in Physical Properties Over 40 Years","public_title":null,"options":["Default Title"],"price":22000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-209-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-209-2.jpg?v=1499727722"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-209-2.jpg?v=1499727722","options":["Title"],"media":[{"alt":null,"id":358525337693,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-209-2.jpg?v=1499727722"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-209-2.jpg?v=1499727722","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown and T. Butler \u003cbr\u003eISBN 978-1-85957-209-2 \u003cbr\u003e\u003cbr\u003epages 175\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA unique collection of long-term ageing data, available for the first time, from Rapra Technology Limited. \u003cbr\u003eThis report is an output from the Weathering of Elastomers and Sealants project which forms part of the UK government’s Department of Trade and Industry’s Degradation of Materials in Aggressive Environments Programme. \u003cbr\u003e\u003cbr\u003eRapra Technology Limited has just completed a comprehensive natural ageing and physical testing programme on 19 rubber compounds, stored in controlled conditions, for a period of 40 years. This is believed to be the most extensive such study ever carried out. Now, for the first time, all the results of this unique programme have been published in this report. \u003cbr\u003e\u003cbr\u003eThe properties of natural and synthetic rubbers suit them to a diverse range of applications, many of which demand a prolonged service life, and the retention of some or all of their mechanical properties for years or even decades. When the ageing programme was conceived in the 1950s, rubber product manufacturers were faced with a wider range of raw rubbers than had ever been available before. The relatively recent development of some of these materials also meant that there was little information available regarding their longevity. Thus the need was identified for a systematic programme of storage and testing. \u003cbr\u003e\u003cbr\u003eRubber formulations were selected to represent those used in a wide range of applications, including general purpose and ‘good ageing’ grades. Remarkably, most of these formulations are still representative of compounds being specified today. The following rubbers were studied: \u003cbr\u003e\u003cbr\u003e-Natural rubber \u003cbr\u003e-Styrene-butadiene rubber \u003cbr\u003e-Butyl rubber \u003cbr\u003e-Polychloroprene \u003cbr\u003e-Nitrile rubber \u003cbr\u003e-Acrylate rubber \u003cbr\u003e-Chlorosulphonated polyethylene \u003cbr\u003e-Polysulphide rubber \u003cbr\u003e-Silicone rubber \u003cbr\u003eSamples were stored under temperate and tropical climatic conditions, and at various intervals, the following properties were measured: \u003cbr\u003e\u003cbr\u003e-Hardness \u003cbr\u003e-Volume change \u003cbr\u003e-Resilience \u003cbr\u003e-Volume and surface resistivity \u003cbr\u003e-Tensile strength Elongation at break \u003cbr\u003e-Modulus at 100% and 300% elongation \u003cbr\u003e-Long and short-term compression set \u003cbr\u003e-Low temperature stiffness \u003cbr\u003eThe results of all these tests are presented graphically in this report, allowing the rate of deterioration of properties and the influence of the environment to be clearly seen. Properties after 40 years are also tabulated, together with calculations of percentage change. \u003cbr\u003e\u003cbr\u003eThis information will prove invaluable to anyone specifying or supplying rubber materials or components. Further work is now being carried out on the properties of the same formulations after accelerated ageing.\u003cbr\u003e\u003cbr\u003e"}
Utech Asia 99
$95.00
{"id":11242258244,"title":"Utech Asia 99","handle":"978-1-85957-157-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-157-6 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Utech Asia 99 conference book of papers is a compilation of more than 50 major presentations detailing the recent developments in polyurethane technology. The papers from this conference detail some of the massive strides the industry has made in meeting the exacting technical demands of its wide range of industrial customers in all key application sectors.","published_at":"2017-06-22T21:15:38-04:00","created_at":"2017-06-22T21:15:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","book","p-chemistry","polymer","polyurethanes"],"price":9500,"price_min":9500,"price_max":9500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378502980,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Utech Asia 99","public_title":null,"options":["Default Title"],"price":9500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-157-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-157-6 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Utech Asia 99 conference book of papers is a compilation of more than 50 major presentations detailing the recent developments in polyurethane technology. The papers from this conference detail some of the massive strides the industry has made in meeting the exacting technical demands of its wide range of industrial customers in all key application sectors."}
Toxicity and Safe Hand...
$310.00
{"id":11242258308,"title":"Toxicity and Safe Handling of Rubber Chemicals, Fourth Edition","handle":"978-1-85957-174-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Technology and BRMA \u003cbr\u003eISBN 978-1-85957-174-3 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 1999 \u003c\/span\u003e\u003cbr\u003ePages 380, \u003cspan\u003eSpiral-bound\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n‘Reliable and authoritative information on the risks associated with the handling and use of chemicals is a prerequisite for their proper control and for preventing risks to health and safety…..To have this key information assembled in a readily accessible and user-friendly form is a considerable bonus, and in publishing this much-revised version of their Code of Practice, the BRMA has performed a valuable service for all the people, managers and workers alike, who earn their livelihoods in the rubber industry.’ - Andrew Porter, Chairman of the Rubber Industry Advisory Committee. \u003cbr\u003e\u003cbr\u003eThis reference book provides an essential guide to health and safety in the rubber processing industry. The British Rubber Manufacturers’ Association and Rapra Technology Limited have combined forces to update the information on hundreds of different rubber chemicals. New data has been compiled from reputable manufacturers and suppliers, and from standard sources of health and safety data. The book includes an introduction to the regulations governing the labeling and use of chemicals, together with definitions of toxicity, carcinogenicity, mutagenicity, and effects on reproduction. Specific hazard, risk, and safety labels are explained. The issue of health surveillance in the industry is dealt with in detail. \u003cbr\u003e\u003cbr\u003eMany rubber chemicals are examined individually in the form of abbreviated safety data sheets. They are listed under categories of use: reinforcing agents and fillers, accelerators and retarders, vulcanising agents, antidegradants, organic peroxides, peptisers and processing aids, ester plasticisers, blowing agents, bonding agents, latex auxiliaries, pigments and miscellaneous. Each chemical has a data sheet including trade names, suppliers, physical data, fire hazards (including explosion risk), regulatory labeling, health hazards, emergency first aid, and food contact listings (FDA and BgVV). New to this edition is the addition of CAS and EINECS numbers to aid identification of materials. \u003cbr\u003e\u003cbr\u003eOther rubber chemicals are discussed as groups: natural and synthetic polymers, process oils and chlorinated waxes, tackifying and reinforcing resins, and rubber solvents. In the section on process oils, there is a discussion on the introduction of new synthetic oils, with reduced aromatic content. \u003cbr\u003e\u003cbr\u003eEnvironmental control is a key issue in today’s world. This book devotes a chapter to the subject of dust and vapour emissions during rubber processing and methods of monitoring. The section on dust includes the latest guidelines, definitions, and significance of respirable and inhalable fractions. There are details of monitoring exposure to mixtures of hydrocarbon solvents, and also of measuring specific vapours (more than thirty different chemicals are listed separately). \u003cbr\u003e\u003cbr\u003eA bibliography is provided for those who wish to study a particular subject in depth. This lists standard toxicology reference books, epidemiological case studies from the rubber industry, and useful publications from the Health and Safety Executive (including the Rubber Industry Advisory Committee, RUBIAC).\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:38-04:00","created_at":"2017-06-22T21:15:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","accelerators","antidegradants","blowing agents","bonding agents","book","emergency","explosion risk","fillers","fire hazards","first aid","food contact","health hazards","labelling","latex auxiliaries","oils","organic peroxides","peptisers","physical data","pigments","plasticisers","polymer","polymers","processing aids","r-health","reinforcing agents","retarders","rubber","solvents.","suppliers","tackifying","vulcanising agents","waxes"],"price":31000,"price_min":31000,"price_max":31000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378505156,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Toxicity and Safe Handling of Rubber Chemicals, Fourth Edition","public_title":null,"options":["Default Title"],"price":31000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-174-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Technology and BRMA \u003cbr\u003eISBN 978-1-85957-174-3 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 1999 \u003c\/span\u003e\u003cbr\u003ePages 380, \u003cspan\u003eSpiral-bound\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n‘Reliable and authoritative information on the risks associated with the handling and use of chemicals is a prerequisite for their proper control and for preventing risks to health and safety…..To have this key information assembled in a readily accessible and user-friendly form is a considerable bonus, and in publishing this much-revised version of their Code of Practice, the BRMA has performed a valuable service for all the people, managers and workers alike, who earn their livelihoods in the rubber industry.’ - Andrew Porter, Chairman of the Rubber Industry Advisory Committee. \u003cbr\u003e\u003cbr\u003eThis reference book provides an essential guide to health and safety in the rubber processing industry. The British Rubber Manufacturers’ Association and Rapra Technology Limited have combined forces to update the information on hundreds of different rubber chemicals. New data has been compiled from reputable manufacturers and suppliers, and from standard sources of health and safety data. The book includes an introduction to the regulations governing the labeling and use of chemicals, together with definitions of toxicity, carcinogenicity, mutagenicity, and effects on reproduction. Specific hazard, risk, and safety labels are explained. The issue of health surveillance in the industry is dealt with in detail. \u003cbr\u003e\u003cbr\u003eMany rubber chemicals are examined individually in the form of abbreviated safety data sheets. They are listed under categories of use: reinforcing agents and fillers, accelerators and retarders, vulcanising agents, antidegradants, organic peroxides, peptisers and processing aids, ester plasticisers, blowing agents, bonding agents, latex auxiliaries, pigments and miscellaneous. Each chemical has a data sheet including trade names, suppliers, physical data, fire hazards (including explosion risk), regulatory labeling, health hazards, emergency first aid, and food contact listings (FDA and BgVV). New to this edition is the addition of CAS and EINECS numbers to aid identification of materials. \u003cbr\u003e\u003cbr\u003eOther rubber chemicals are discussed as groups: natural and synthetic polymers, process oils and chlorinated waxes, tackifying and reinforcing resins, and rubber solvents. In the section on process oils, there is a discussion on the introduction of new synthetic oils, with reduced aromatic content. \u003cbr\u003e\u003cbr\u003eEnvironmental control is a key issue in today’s world. This book devotes a chapter to the subject of dust and vapour emissions during rubber processing and methods of monitoring. The section on dust includes the latest guidelines, definitions, and significance of respirable and inhalable fractions. There are details of monitoring exposure to mixtures of hydrocarbon solvents, and also of measuring specific vapours (more than thirty different chemicals are listed separately). \u003cbr\u003e\u003cbr\u003eA bibliography is provided for those who wish to study a particular subject in depth. This lists standard toxicology reference books, epidemiological case studies from the rubber industry, and useful publications from the Health and Safety Executive (including the Rubber Industry Advisory Committee, RUBIAC).\u003cbr\u003e\u003cbr\u003e"}
Plasticisers: Selectio...
$72.00
{"id":11242257156,"title":"Plasticisers: Selection, Applications and Implications","handle":"978-1-85957-063-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.S. Wilson \u003cbr\u003eISBN 978-1-85957-063-0 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report considers the whole subject of external plasticizers. The following topics are included: function, mechanism and performance criteria, types, selection for application, health and safety issues. The abstract section is also included which contains the most relevant publications.","published_at":"2017-06-22T21:15:35-04:00","created_at":"2017-06-22T21:15:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","acrylics","additives","adipates","alkyl sulphonate esters","automotive","azelates","benzoates","book","cellulose esters","chlorinated paraffins","citrates","criteria","epoxies","esters glycols","external plasticizers. function","health","hydrocarbons","mechanism","p-additives","phosphates","phthalates","plasticizing","polyesters","polyhydric alcohols","polymer","polysulphides","polyurethanes","polyvinyl acetate","polyvinyl butyral","PVC","rubber","safety","sebacates","trimellitates","types"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378498564,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plasticisers: Selection, Applications and Implications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-063-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-063-0.jpg?v=1499727801"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-063-0.jpg?v=1499727801","options":["Title"],"media":[{"alt":null,"id":358532612189,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-063-0.jpg?v=1499727801"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-063-0.jpg?v=1499727801","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.S. Wilson \u003cbr\u003eISBN 978-1-85957-063-0 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report considers the whole subject of external plasticizers. The following topics are included: function, mechanism and performance criteria, types, selection for application, health and safety issues. The abstract section is also included which contains the most relevant publications."}
Ring Opening Polymeriz...
$75.00
{"id":11242256772,"title":"Ring Opening Polymerization","handle":"978-1-85957-057-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Spassky \u003cbr\u003eISBN 978-1-85957-057-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003eUniversite Pierre et Marie Curie\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e101 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe dependence of polymerizability upon ring strain, the significance of ring-chain equilibria, and the potential for formation of cyclic oligomers are outlined. The mechanism and implementation of anionic ring-opening polymerization, cationic ring-opening polymerization, stereospecific coordinated anionic polymerization, free radical ring-opening polymerization, and ionic ring-opening copolymerization are described. A final section on ring-opening metathesis polymerization includes a brief discussion of catalysts, thermodynamics, stereochemistry, kinetics, and applications.","published_at":"2017-06-22T21:15:34-04:00","created_at":"2017-06-22T21:15:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","acrylic polymers","book","catalysts","kinetics","p-chemistry","ring opening polymerization","stereochemistry","thermodynamics"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378497924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Ring Opening Polymerization","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-057-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Spassky \u003cbr\u003eISBN 978-1-85957-057-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003eUniversite Pierre et Marie Curie\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e101 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe dependence of polymerizability upon ring strain, the significance of ring-chain equilibria, and the potential for formation of cyclic oligomers are outlined. The mechanism and implementation of anionic ring-opening polymerization, cationic ring-opening polymerization, stereospecific coordinated anionic polymerization, free radical ring-opening polymerization, and ionic ring-opening copolymerization are described. A final section on ring-opening metathesis polymerization includes a brief discussion of catalysts, thermodynamics, stereochemistry, kinetics, and applications."}
Rheology and its Role ...
$72.00
{"id":11242256708,"title":"Rheology and its Role in Plastics Processing","handle":"978-1-85957-053-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Prentice \u003cbr\u003eISBN 978-1-85957-053-1 \u003cbr\u003e\u003cbr\u003eThe Nottingham Trent University\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003e94 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review encompases fundamental principles and rheological equations of state, polymer melt rheology (shear and extensional flow, viscoelasticity, die swell and melt fracture) and rheological measurement techniques. It describes the main plastics processing techniques and explains the influence of polymer melt rheology upon their operation. 48 figures and more than 80 equations enhance the review, which is also supported by extensive, indexed bibliography.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eRheological Equations of State\u003c\/li\u003e\n\u003cli\u003eFundamental Principles of Rheology\u003c\/li\u003e\n\u003cli\u003ePolymer Melt Rheology\u003c\/li\u003e\n\u003cli\u003eRheological Techniques\u003c\/li\u003e\n\u003cli\u003ePolymer Processing (extrusion, injection molding, calendering, rotational casting)\u003c\/li\u003e\n\u003cli\u003eThe Effect of Rheology on Polymer Processing\u003c\/li\u003e\n\u003cli\u003eRheology in the Design\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:15:34-04:00","created_at":"2017-06-22T21:15:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","book","calendering","extrusion","injection molding","moulding","p-properties","plastics","polymer","polymers","processing","rheology","rotational casting"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378497860,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology and its Role in Plastics Processing","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-053-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-053-1.jpg?v=1499954183"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-053-1.jpg?v=1499954183","options":["Title"],"media":[{"alt":null,"id":358734987357,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-053-1.jpg?v=1499954183"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-053-1.jpg?v=1499954183","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Prentice \u003cbr\u003eISBN 978-1-85957-053-1 \u003cbr\u003e\u003cbr\u003eThe Nottingham Trent University\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003e94 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review encompases fundamental principles and rheological equations of state, polymer melt rheology (shear and extensional flow, viscoelasticity, die swell and melt fracture) and rheological measurement techniques. It describes the main plastics processing techniques and explains the influence of polymer melt rheology upon their operation. 48 figures and more than 80 equations enhance the review, which is also supported by extensive, indexed bibliography.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eRheological Equations of State\u003c\/li\u003e\n\u003cli\u003eFundamental Principles of Rheology\u003c\/li\u003e\n\u003cli\u003ePolymer Melt Rheology\u003c\/li\u003e\n\u003cli\u003eRheological Techniques\u003c\/li\u003e\n\u003cli\u003ePolymer Processing (extrusion, injection molding, calendering, rotational casting)\u003c\/li\u003e\n\u003cli\u003eThe Effect of Rheology on Polymer Processing\u003c\/li\u003e\n\u003cli\u003eRheology in the Design\u003c\/li\u003e\n\u003c\/ul\u003e"}
Emissions from Process...
$190.00
{"id":11242256452,"title":"Emissions from Processing Thermoplastics","handle":"978-1-85957-041-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.J. Forrest, A.M. Jolly, S.R. Holding, S. J. Richards \u003cbr\u003eISBN 978-1-85957-041-8 \u003cbr\u003e\u003cbr\u003e62 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eA broad range of bulk thermoplastic materials were studied by monitoring real processing situations (both moulding and extrusion). Materials studied included PVC, nylon 6, ABS, HIPS, LDPE and HDPE. Emissions collected during standard processing and purging operations were analysed by thermal desorption gas chromatography-mass spectrometry.\u003c\/p\u003e","published_at":"2017-06-22T21:15:33-04:00","created_at":"2017-06-22T21:15:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","ABS","blow molding","blown film","book","cable","chromatography","environment","extrusion","HDPE","HIPS","injection molding","LDPE","LDPE\/LLDPE","PA-6","PP","PVC","SA","sheet extrusion","spectrometry","tape"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378497412,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Emissions from Processing Thermoplastics","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-041-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-041-8.jpg?v=1499913691"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-041-8.jpg?v=1499913691","options":["Title"],"media":[{"alt":null,"id":361594650717,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-041-8.jpg?v=1499913691"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-041-8.jpg?v=1499913691","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.J. Forrest, A.M. Jolly, S.R. Holding, S. J. Richards \u003cbr\u003eISBN 978-1-85957-041-8 \u003cbr\u003e\u003cbr\u003e62 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eA broad range of bulk thermoplastic materials were studied by monitoring real processing situations (both moulding and extrusion). Materials studied included PVC, nylon 6, ABS, HIPS, LDPE and HDPE. Emissions collected during standard processing and purging operations were analysed by thermal desorption gas chromatography-mass spectrometry.\u003c\/p\u003e"}
AddCon '95
$72.00
{"id":11242256388,"title":"AddCon '95","handle":"978-1-85957-037-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-037-1 \u003cbr\u003e\u003cbr\u003eWorlwide Additives and Polymer Modifiers Conference Basel, Switzerland\u003cbr\u003e\u003cbr\u003e22 papers, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nList of papers: \u003cbr\u003e\u003cbr\u003ePlastics Material Trends and their Effects upon Additive Consumption, Richard Hudson, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eVitamin E: A New Primary Antioxidant, Terry Young, Hoffmann-La Roche Inc., USA \u003cbr\u003e\u003cbr\u003eThe Technology of Halogen-Free Flame Retardant Additives tor Polymeric Systems, John Davis, Albright \u0026amp; Wilson UK Ltd., UK \u003cbr\u003e\u003cbr\u003eFR-1808: A Novel Flame Retardant for Environmentally Friendly Applications, Richard Smith, Eurobrom BV, Netherlands \u003cbr\u003e\u003cbr\u003eComparison and Performance of Hydrotalcite Acid Neutralizers in Thermoplastics, Phil Klepak, Reheis Inc., USA \u003cbr\u003e\u003cbr\u003eNext Generation UV Absorbers tor Plastics, R. D. Cody, Cytec Industries, USA \u003cbr\u003e\u003cbr\u003eThe Next Step - Development of a Polymerizable Benzotriazole Stabilizer, Daniel Aultz, Noramco Inc., USA \u003cbr\u003e\u003cbr\u003ePhosphite Stabilizers tor Polyolefins, Don R. Stevenson, Dover Chemical Corporation, USA \u003cbr\u003e\u003cbr\u003eN-Alkoxy Hindered Amines - A New Class of Radical Scavengers, Ravi Ravichandran, Ciba Geigy Corp, USA \u003cbr\u003e\u003cbr\u003eA Universal HALS for the UV Stabilization of Polypropylene, Franco Gratani, Great Lakes Chemical Italia Srl, Italy \u003cbr\u003e\u003cbr\u003eSearch for Stabilizing Effects of Fullerenes in Polymeric Systems, G. David Mendenhall, Michigan Technical University, USA \u003cbr\u003e\u003cbr\u003eFine Particle Titanium Dioxide - Its Properties and Applications in Plastics, Donald R. Robertson, Tioxide Group R \u0026amp; T Plastics, UK \u003cbr\u003e\u003cbr\u003eTougheners Enable New Applications tor PET, J.-P. Meyer, Rohm \u0026amp; Haas France SA, France \u003cbr\u003e\u003cbr\u003eA Synergistic Liquid Antioxidant Blend tor Stabilization of Polyolefins, Steve Pontiff, Synergistic Polymer Systems Inc., USA \u003cbr\u003e\u003cbr\u003eOptimized Stabilizer Systems tor Polyolefins, Francois Gugumus, CIBA Additives, Switzerland \u003cbr\u003e\u003cbr\u003eAdditive Masterbatches Necessary Intermediates in a Quality World, Leopold Katzmayer, Gabriel-Chemie GmbH, Austria \u003cbr\u003e\u003cbr\u003eWire and Cable Compounds Using a Mixture of Chlorinated Organic and Inorganic Flame Retardants, Ronald L Markezich, Occidental Chemical Corporation, USA \u003cbr\u003e\u003cbr\u003eProcessing Additives in Compounding Olefin Polymers, John Vander Kool, Structol Company of America, USA \u003cbr\u003e\u003cbr\u003eFluoropolymer-based Additives Improve Efficiency of Polyolefin Processing and Product Characteristics, Koen Focquet, 3M Specialty Fluoropolymer Dept, Belgium \u003cbr\u003e\u003cbr\u003eSynergistic Stabilizer Blends Containing Novel Phosphite Processing Stabilizers, J. R. Pauquet, Ciba Geigy AG, Switzerland \u003cbr\u003e\u003cbr\u003eBroad Spectrum Processing Aids Based on Multi-Functional Segments Jean-Claude Cardinal, DuPont de Nemours International, Switzerland \u003cbr\u003e\u003cbr\u003eA Study of the Effect of Processing Conditions on the Degradation of Polypropylene, Paul Tock, GE Specialty Chemicals Europe, Netherlands \u003cbr\u003e\u003cbr\u003ePrediction of Nonlinear Viscoelastic Creep in Thin Polyethylene Film from Dynamic Mechanical Data, Alan Letton, Tuskegee University, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:33-04:00","created_at":"2017-06-22T21:15:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","additives","book","conference","modifiers","plastic","polymer","polymers","stabilizers"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378496964,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"AddCon '95","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-037-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-037-1.jpg?v=1498183829"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-037-1.jpg?v=1498183829","options":["Title"],"media":[{"alt":null,"id":350137548893,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-037-1.jpg?v=1498183829"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-037-1.jpg?v=1498183829","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-037-1 \u003cbr\u003e\u003cbr\u003eWorlwide Additives and Polymer Modifiers Conference Basel, Switzerland\u003cbr\u003e\u003cbr\u003e22 papers, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nList of papers: \u003cbr\u003e\u003cbr\u003ePlastics Material Trends and their Effects upon Additive Consumption, Richard Hudson, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eVitamin E: A New Primary Antioxidant, Terry Young, Hoffmann-La Roche Inc., USA \u003cbr\u003e\u003cbr\u003eThe Technology of Halogen-Free Flame Retardant Additives tor Polymeric Systems, John Davis, Albright \u0026amp; Wilson UK Ltd., UK \u003cbr\u003e\u003cbr\u003eFR-1808: A Novel Flame Retardant for Environmentally Friendly Applications, Richard Smith, Eurobrom BV, Netherlands \u003cbr\u003e\u003cbr\u003eComparison and Performance of Hydrotalcite Acid Neutralizers in Thermoplastics, Phil Klepak, Reheis Inc., USA \u003cbr\u003e\u003cbr\u003eNext Generation UV Absorbers tor Plastics, R. D. Cody, Cytec Industries, USA \u003cbr\u003e\u003cbr\u003eThe Next Step - Development of a Polymerizable Benzotriazole Stabilizer, Daniel Aultz, Noramco Inc., USA \u003cbr\u003e\u003cbr\u003ePhosphite Stabilizers tor Polyolefins, Don R. Stevenson, Dover Chemical Corporation, USA \u003cbr\u003e\u003cbr\u003eN-Alkoxy Hindered Amines - A New Class of Radical Scavengers, Ravi Ravichandran, Ciba Geigy Corp, USA \u003cbr\u003e\u003cbr\u003eA Universal HALS for the UV Stabilization of Polypropylene, Franco Gratani, Great Lakes Chemical Italia Srl, Italy \u003cbr\u003e\u003cbr\u003eSearch for Stabilizing Effects of Fullerenes in Polymeric Systems, G. David Mendenhall, Michigan Technical University, USA \u003cbr\u003e\u003cbr\u003eFine Particle Titanium Dioxide - Its Properties and Applications in Plastics, Donald R. Robertson, Tioxide Group R \u0026amp; T Plastics, UK \u003cbr\u003e\u003cbr\u003eTougheners Enable New Applications tor PET, J.-P. Meyer, Rohm \u0026amp; Haas France SA, France \u003cbr\u003e\u003cbr\u003eA Synergistic Liquid Antioxidant Blend tor Stabilization of Polyolefins, Steve Pontiff, Synergistic Polymer Systems Inc., USA \u003cbr\u003e\u003cbr\u003eOptimized Stabilizer Systems tor Polyolefins, Francois Gugumus, CIBA Additives, Switzerland \u003cbr\u003e\u003cbr\u003eAdditive Masterbatches Necessary Intermediates in a Quality World, Leopold Katzmayer, Gabriel-Chemie GmbH, Austria \u003cbr\u003e\u003cbr\u003eWire and Cable Compounds Using a Mixture of Chlorinated Organic and Inorganic Flame Retardants, Ronald L Markezich, Occidental Chemical Corporation, USA \u003cbr\u003e\u003cbr\u003eProcessing Additives in Compounding Olefin Polymers, John Vander Kool, Structol Company of America, USA \u003cbr\u003e\u003cbr\u003eFluoropolymer-based Additives Improve Efficiency of Polyolefin Processing and Product Characteristics, Koen Focquet, 3M Specialty Fluoropolymer Dept, Belgium \u003cbr\u003e\u003cbr\u003eSynergistic Stabilizer Blends Containing Novel Phosphite Processing Stabilizers, J. R. Pauquet, Ciba Geigy AG, Switzerland \u003cbr\u003e\u003cbr\u003eBroad Spectrum Processing Aids Based on Multi-Functional Segments Jean-Claude Cardinal, DuPont de Nemours International, Switzerland \u003cbr\u003e\u003cbr\u003eA Study of the Effect of Processing Conditions on the Degradation of Polypropylene, Paul Tock, GE Specialty Chemicals Europe, Netherlands \u003cbr\u003e\u003cbr\u003ePrediction of Nonlinear Viscoelastic Creep in Thin Polyethylene Film from Dynamic Mechanical Data, Alan Letton, Tuskegee University, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Reactive Processing of...
$72.00
{"id":11242255940,"title":"Reactive Processing of Polymers, 1994","handle":"978-1-85957-011-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.F. Johnson, P.D. Coates, M.W.R. Brown \u003cbr\u003eISBN 978-1-85957-011-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e136 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors survey progress made in the two types of reactive processing: batch and continuous. Developments in machinery, materials, and applications are outlined in the context of commercial considerations and advances in fundamental understanding. The principles and benefits of polymer modification and blending via reactive extrusion are explained. A number of novel techniques are also described. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eReaction Injection molding\u003c\/li\u003e\n\u003cli\u003eReinforced Reaction Injection Molding\u003c\/li\u003e\n\u003cli\u003eStructural Reaction Injection Molding\u003c\/li\u003e\n\u003cli\u003eResin Transfer Molding\u003c\/li\u003e\n\u003cli\u003eReactive Extrusion\u003c\/li\u003e\n\u003cli\u003eMachinery\u003c\/li\u003e\n\u003cli\u003eMaterials\u003c\/li\u003e\n\u003cli\u003eBlends\u003c\/li\u003e\n\u003cli\u003ePolymerization\u003c\/li\u003e\n\u003cli\u003eOther Reactive Processing Technologies\u003c\/li\u003e\n\u003cli\u003eConcluding Comments\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:15:32-04:00","created_at":"2017-06-22T21:15:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","blends","book","chain","crosslinking","extension","extrusion","injection molding","p-processing","poly","polymerisation","polymerization","polymers","processes","processing","production","reactions","resin"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378496260,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Reactive Processing of Polymers, 1994","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-011-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.F. Johnson, P.D. Coates, M.W.R. Brown \u003cbr\u003eISBN 978-1-85957-011-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e136 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors survey progress made in the two types of reactive processing: batch and continuous. Developments in machinery, materials, and applications are outlined in the context of commercial considerations and advances in fundamental understanding. The principles and benefits of polymer modification and blending via reactive extrusion are explained. A number of novel techniques are also described. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eReaction Injection molding\u003c\/li\u003e\n\u003cli\u003eReinforced Reaction Injection Molding\u003c\/li\u003e\n\u003cli\u003eStructural Reaction Injection Molding\u003c\/li\u003e\n\u003cli\u003eResin Transfer Molding\u003c\/li\u003e\n\u003cli\u003eReactive Extrusion\u003c\/li\u003e\n\u003cli\u003eMachinery\u003c\/li\u003e\n\u003cli\u003eMaterials\u003c\/li\u003e\n\u003cli\u003eBlends\u003c\/li\u003e\n\u003cli\u003ePolymerization\u003c\/li\u003e\n\u003cli\u003eOther Reactive Processing Technologies\u003c\/li\u003e\n\u003cli\u003eConcluding Comments\u003c\/li\u003e\n\u003c\/ul\u003e"}
PVC - Compounds, Proce...
$72.00
{"id":11242256068,"title":"PVC - Compounds, Processing and Applications","handle":"978-1-85957-029-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Leadbitter, J.A. Day, J.L. Ryan \u003cbr\u003eISBN 978-1-85957-029-6 \u003cbr\u003e\u003cbr\u003eHydro Polymer Ltd.\u003cbr\u003eReview Report\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e120 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report reviews the composition and synthesis of PVC, composition and formulation technology, compounding and manufacturing technology, materials obtained by blending. 500 abstracts outlines suggested references which contain required data. \u003cbr\u003e\u003cbr\u003eFrom the Table of Contents: \u003cbr\u003ePVC Resins \u003cbr\u003eHomopolymers \u003cbr\u003eCopolymers \u003cbr\u003eTerpolymers \u003cbr\u003eChlorinated PVC \u003cbr\u003eCommercial Aspects of PVC \u003cbr\u003eComparison of Formulation Technology \u003cbr\u003eCompounding Technology \u003cbr\u003eProcess Technology \u003cbr\u003ePVC Blends and Alloys\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:32-04:00","created_at":"2017-06-22T21:15:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","alloys","blends","book","composition","copolymer","copolymers","homopolymers","p-chemistry","polymer","PVC compounds","pvc processing"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378496644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC - Compounds, Processing and Applications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-029-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574","options":["Title"],"media":[{"alt":null,"id":412810444893,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Leadbitter, J.A. Day, J.L. Ryan \u003cbr\u003eISBN 978-1-85957-029-6 \u003cbr\u003e\u003cbr\u003eHydro Polymer Ltd.\u003cbr\u003eReview Report\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e120 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report reviews the composition and synthesis of PVC, composition and formulation technology, compounding and manufacturing technology, materials obtained by blending. 500 abstracts outlines suggested references which contain required data. \u003cbr\u003e\u003cbr\u003eFrom the Table of Contents: \u003cbr\u003ePVC Resins \u003cbr\u003eHomopolymers \u003cbr\u003eCopolymers \u003cbr\u003eTerpolymers \u003cbr\u003eChlorinated PVC \u003cbr\u003eCommercial Aspects of PVC \u003cbr\u003eComparison of Formulation Technology \u003cbr\u003eCompounding Technology \u003cbr\u003eProcess Technology \u003cbr\u003ePVC Blends and Alloys\u003cbr\u003e\u003cbr\u003e"}
Plastics and the Envir...
$72.00
{"id":11242256004,"title":"Plastics and the Environment","handle":"978-1-85957-016-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: I. Boustead \u003cbr\u003eISBN 978-1-85957-016-6 \u003cbr\u003e\u003cbr\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe plastics industry, like most others, was slow to respond to environmental pressures. Partly as a consequence of this it now faces irrational prejudices and demands which may lead to inappropriate decisions in response to undoubtedly real problems. Plastics possess some special characteristics but most of the potential environmental problems and their solutions are common to other materials and industries.\u003cbr\u003e\u003cbr\u003eThis review considers their environmental impact in terms of industrial systems (e.g. eco-profile and life-cycle systems) and looks at energy consumption and recovery, as well as recycling. It is supported by an extensive bibliography compiled from the Polymer Library.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:32-04:00","created_at":"2017-06-22T21:15:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","book","energy consumption","environment","plastic","plastics","recovery","recycling"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378496580,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics and the Environment","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-016-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-016-6.jpg?v=1499725948"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-016-6.jpg?v=1499725948","options":["Title"],"media":[{"alt":null,"id":358535528541,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-016-6.jpg?v=1499725948"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-016-6.jpg?v=1499725948","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: I. Boustead \u003cbr\u003eISBN 978-1-85957-016-6 \u003cbr\u003e\u003cbr\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe plastics industry, like most others, was slow to respond to environmental pressures. Partly as a consequence of this it now faces irrational prejudices and demands which may lead to inappropriate decisions in response to undoubtedly real problems. Plastics possess some special characteristics but most of the potential environmental problems and their solutions are common to other materials and industries.\u003cbr\u003e\u003cbr\u003eThis review considers their environmental impact in terms of industrial systems (e.g. eco-profile and life-cycle systems) and looks at energy consumption and recovery, as well as recycling. It is supported by an extensive bibliography compiled from the Polymer Library.\u003cbr\u003e\u003cbr\u003e"}
Toxicity of Plastics a...
$75.00
{"id":11242255684,"title":"Toxicity of Plastics and Rubber in Fire","handle":"978-1-85957-001-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.J. Fardell \u003cbr\u003eISBN 978-1-85957-001-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e101 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Rapra Review Report does not seek to single out synthetic polymers as a special case. It aims to provide an overview of the whole subject of combustion toxicity and a threat to life, whilst supplying specific information on the most frequently encountered polymeric materials, and combustion products such as dioxins which have received high levels of media attention. The coverage of the review includes the nature and types of fires, biological effects, explanations of combustion toxicity, toxic hazard, risk and life threat, and methods for their measurement or evaluation. Notes are provided on specific polymers, and much additional performance data and discussion are provided by the 423 abstracts of published papers, selected from the Polymer Library, which complete the report.","published_at":"2017-06-22T21:15:31-04:00","created_at":"2017-06-22T21:15:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","biological hazard","book","fire","life threat","plastics","polymers","r-health","rubber","toxic","toxicity"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378493828,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Toxicity of Plastics and Rubber in Fire","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-001-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-001-2_60e0eb86-a722-4850-826a-2f7f769241d5.jpg?v=1499728141"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-001-2_60e0eb86-a722-4850-826a-2f7f769241d5.jpg?v=1499728141","options":["Title"],"media":[{"alt":null,"id":358827589725,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-001-2_60e0eb86-a722-4850-826a-2f7f769241d5.jpg?v=1499728141"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-001-2_60e0eb86-a722-4850-826a-2f7f769241d5.jpg?v=1499728141","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.J. Fardell \u003cbr\u003eISBN 978-1-85957-001-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e101 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Rapra Review Report does not seek to single out synthetic polymers as a special case. It aims to provide an overview of the whole subject of combustion toxicity and a threat to life, whilst supplying specific information on the most frequently encountered polymeric materials, and combustion products such as dioxins which have received high levels of media attention. The coverage of the review includes the nature and types of fires, biological effects, explanations of combustion toxicity, toxic hazard, risk and life threat, and methods for their measurement or evaluation. Notes are provided on specific polymers, and much additional performance data and discussion are provided by the 423 abstracts of published papers, selected from the Polymer Library, which complete the report."}
Rotational Molding
$75.00
{"id":11242255812,"title":"Rotational Molding","handle":"978-1-85957-009-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford \u003cbr\u003eISBN 978-1-85957-009-8 \u003cbr\u003e\u003cbr\u003eThe Queens University of Belfast\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e86 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProf. Crawford explains the fundamentals of rotational molding, with particular reference to advances in the key areas of materials, machinery, molds, and process control. He considers relationships between processing conditions and product properties and looks at the future of the process and the likely advances still to be made. More than 350 abstracts were selected as references.","published_at":"2017-06-22T21:15:31-04:00","created_at":"2017-06-22T21:15:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","book","machinery","materials","molds","moulding","p-processing","polymer","process control","rotational molding"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378495556,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rotational Molding","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-009-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895","options":["Title"],"media":[{"alt":null,"id":358738886749,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford \u003cbr\u003eISBN 978-1-85957-009-8 \u003cbr\u003e\u003cbr\u003eThe Queens University of Belfast\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e86 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProf. Crawford explains the fundamentals of rotational molding, with particular reference to advances in the key areas of materials, machinery, molds, and process control. He considers relationships between processing conditions and product properties and looks at the future of the process and the likely advances still to be made. More than 350 abstracts were selected as references."}