Handbook of Biodegradable Polymers
Biodegradable polymers are niche market materials finding focused applications, including agricultural applications such as mulch films, flowerpots and controlled-release fertilisers and packaging items such as carrier bags and food wrapping and containers. They have the potential to provide a solution to a range of environmental concerns: decreasing availability of landfill space, declining petrochemical sources, and also offer an alternative option to recycling. Rapra's Handbook of Biodegradable Polymers is a complete guide to the subject of biodegradable polymers and is ideal for those new to the subject or those wanting to supplement their existing knowledge. The book covers the mechanisms of degradation in various environments, by both biological and non-biological means, and the methods for measuring biodegradation. The degree and rate of biodegradation is dependent on the chemical composition of the polymer and its working environment, and so there is no single optimal method for determining biodegradation. This handbook provides discussion of international and national standards and certification procedures developed to ensure accurate communication of a material's biodegradability between producers, authorities and consumers. The book goes on to consider the characteristics, processability and application areas for biodegradable polymers, with key polymer family groups discussed.
1 Biodegradability of Polymers – Mechanisms and Evaluation Methods
1.1 Introduction
1.2 Background
1.3 Defining Biodegradability
1.4 Mechanisms of Polymer Degradation
1.4.1 Non-biological Degradation of Polymers
1.4.2 Biological Degradation of Polymers
1.5 Measuring Biodegradation of Polymers
1.5.1 Enzyme Assays
1.5.2 Plate Tests
1.5.3 Respiration Tests
1.5.4 Gas (CO2 or CH4) Evolution Tests
1.5.5 Radioactively Labelled Polymers
1.5.6 Laboratory-scale Simulated Accelerating Environments
1.5.7 Natural Environments – Field Trials
1.6 Factors Affecting Biodegradability
1.7 Conclusions
2 Biodegradation Behaviour of Polymers in Liquid Environments
2.1 Introduction
2.2 Degradation in Real Liquid Environments
2.2.1 Degradation in Sweet Water and Marine Environment
2.3 Degradation in Laboratory Tests Simulating Real Aquatic Environments
2.3.1 Aerobic Liquid Environments
2.3.2 Anaerobic Liquid Environments
2.4 Degradation in Laboratory Tests with Optimised and Defined Liquid Media
2.5 Standard Tests for Biodegradable Polymers Using Liquid Media
2.6 Summary
3 Biodegradation Behaviour of Polymers in the Soil
3.1 I Introduction
3.1.1 Biodegradable Polymers and the Environment
3.1.2 Biodegradable Polymers and Soil
3.2 How Polymers Reach Soil
3.2.1 Intentional Delivery
3.2.2 Unintentional Delivery: Littering
3.3 The Soil Environment
3.3.1 Surface Factors
3.3.2 Underground Factors
3.4 Degradability of Polymers in Soil
3.4.1 The Standardisation Approach
3.4.2 T Test Methods and Criteria
3.5 Effects of Biodegradable Polymers on Soil Living Organisms
3.5.1 Performing the Assessment: Transient and Permanent Effects
3.5.2 Test Material Concentration
3.5.3 Preparation of the Soil Sample Ready for Ecotoxicity Testing
3.5.4 Test Methods
3.6 Biodegradability of Materials in Soil: A Survey of the Literature
4 Ecotoxicological Aspects in the Biodegradation Process of Polymers
4.1 The Need of Ecotoxicity Analysis for Biodegradable Materials
4.1.1 Standards and Regulations for Testing of Biodegradable Polymers
4.1.2 Detection of the Influences on an Ecosystem Caused by the Biodegradation of Polymers
4.1.3 Potential Influences of Polymers After Composting
4.1.4 Potential Influences of Polymers During and After Biodegradation in Soil and Sediment
4.2 A Short Introduction to Ecotoxicology
4.2.1 Theory of Dose-Response Relationships
4.2.2 Test Design in Ecotoxicology
4.2.3 Toxicity Tests and Bioassays
4.2.4 Ecotoxicity Profile Analysis
4.3 Recommendations and Standard Procedures for Biotests
4.3.1 Bioassays with Higher Plants
4.3.2 Bioassays with Earthworms (Eisenia foetida)
4.3 Preparation of Elutriates for Aquatic Ecotoxicity Tests
4.3.4 Bioassays with Algae
4.3.5 Bioassays with Luminescent Bacteria
4.3.6 Bioassays with Daphnia
4.3.7 Evaluation of Bioassay Results Obtained from Samples of Complex Composition
4.3.8 Testing of Sediments
4.4 Special Prerequisites to be Considered when Applying Bioassays for Biodegradable Polymers
4.4.1 Nutrients in the Sample
4.4.2 Biodegradation Intermediates
4.4.3 Diversity of the Microorganism Population
4.4.4 Humic Substances
4.4.5 Evaluation of Test Results and Limits of Bioassays
4.5 Research Results for Ecotoxicity Testing of Biodegradable Polymers
4.5.1 The Relationship Between Chemical Structure, Biodegradation Pathways and Formation of Potentially Ecotoxic Metabolites
4.5.2 Ecotoxicity of the Polymers
4.5.3 Ecotoxic Effects Appearing After Degradation in Compost or After Anaerobic Digestion
4.5.4 Ecotoxic Effects Appearing During Degradation in Soil
4.6 Conclusion
4.6.1 Consequences for Test Schemes for Investigations on Biodegradable Polymers
4.6.2 Conclusion
5 International and National Norms on Biodegradability and Certification Procedures
5.1 Introduction
5.2 Organisations for Standardisation
5.3 Norms
5.3.1 Aquatic, Aerobic Biodegradation Tests
5.3.2 Compost Biodegradation Tests
5.3.3 Compostability Norms
5.3.4 Compost Disintegration Tests
5.3.5 Soil Biodegradation Tests
5.3.6 Aquatic, Anaerobic Biodegradation Tests
5.3.7 High-Solids, Anaerobic Biodegradation Tests
5.3.8 Marine Biodegradation Tests
5.3.9 Other Biodegradation Tests
5.4 Certification
5.4.1 Introduction
5.4.2 Different Certification Systems
6 General Characteristics, Processability, Industrial Applications and Market Evolution of Biodegradable Polymers
6.1 General Characteristics
6.1.1 Polymer Biodegradation Mechanisms
6.1.2 Polymer Molecular Size, Structure and Chemical Composition
6.1.3 Biodegradable Polymer Classes
6.1.4 Naturally Biodegradable Polymers
6.1.5 Synthetic Biodegradable Polymers
6.1.6 Modified Naturally Biodegradable Polymers
6.2 Processability
6.2.1 Extrusion
6.2.2 Film Blowing and Casting
6.2.3 Moulding
6.2.4 Fibre Spinning
6.3 Industrial Applications
6.3.1 Loose-Fill Packaging
6.3.2 Compost Bags
6.3.3 Other Applications
6.4 Market Evolution
7 Polyhydroxyalkanoates
7.1 Introduction
7.2 The Various Types of PHA
7.2.1 Poly[R-3-hydroxybutyrate] (P[3HB])
7.2.2 Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (P[3HB-co-3HV])
7.2.3 Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] (P[3HB-co-4HB])
7.2.4 Other PHA Copolymers with Interesting Physical Properties
7.2.5 Uncommon PHA Constituents
7.3 Mechanisms of PHA Biosynthesis
7.3.1 Conditions that Promote the Biosynthesis and Accumulation of PHA in Microorganisms
7.3.2 Carbon Sources for the Production of PHA
7.3.3 Biochemical Pathways Involved in the Metabolism of PHA
7.3.4 The Key Enzyme of PHA Biosynthesis, PHA Synthase
7.4 Genetically Modified Systems and Other Methods for the Production of PHA
7.4.1 Recombinant Escherichia coli
7.4.2 Transgenic Plants
7.4.3 In vitro Production of PHA
7.5 Biodegradation of PHA
7.6 Applications of PHA
7.7 Conclusions and Outlook
8 Starch-Based Technology
8.1 Introduction
8.2 Starch Polymer
8.3 Starch-filled Plastics
8.4 Thermoplastic Starch
8.5 Starch-Based Materials on the Market
8.6 Conclusions
9 Poly(Lactic Acid) and Copolyesters
9.1 Introduction
9.2 Synthesis
9.2.1 Homopolymers
9.2.2 Copolymers
9.2.3 Functionalised Polymers
9.3 Structure, Properties, Degradation, and Applications
9.3.1 Physical Properties
9.3.2 Chemical Properties
9.3.3 Applications
9.4 Conclusions
10 Aliphatic-Aromatic Polyesters
10.1 Introduction
10.2 Development of Biodegradable Aliphatic-Aromatic Copolyesters
10.3 Degradability and Degradation Mechanism
10.3.1 General Mechanism/Definition
10.3.2 Degradation of Pure Aromatic Polyesters
10.3.3 Degradation of Aliphatic-Aromatic Copolyesters
10.4 Commercial Products and Characteristic Material Data
10.4.1 Ecoflex
10.4.2 Eastar Bio
10.4.3 Biomax
10.4.4 EnPol
10.4.5 Characteristic Material Data
11 Material Formed from Proteins
11.1 Introduction
11.2 Structure of Material Proteins
11.3 Protein-Based Materials
11.4 Formation of Protein-Based Materials
11.4.1 ‘Solvent Process’
11.4.2 ‘Thermoplastic Process’
11.5 Properties of Protein-Based Materials
11.6 Applications
12 Enzyme Catalysis in the Synthesis of Biodegradable Polymers
12.1 Introduction
12.2 Polyester Synthesis
12.2.1 Polycondensation of Hydroxyacids and Esters
12.2.2 Polymerisation of Dicarboxylic Acids or Their Activated Derivatives with Glycols
12.2.3 Ring Opening Polymerisation of Carbonates and Other Cyclic Monomers
12.2.4 Ring Opening Polymerisation and Copolymerisation of Lactones
12.3 Oxidative Polymerisation of Phenol and Derivatives of Phenol
12.4 Enzymatic Polymerisation of Polysaccharides
12.5 Conclusions
13 Environmental Life Cycle Comparisons of Biodegradable Plastics
13.1 Introduction
13.2 Methodology of LCA
13.3 Presentation of Comparative Data
13.3.1 Starch Polymers
13.3.2 Polyhydroxyalkanoates
13.3.3 Polylactides (PLA)
13.3.4 Other Biodegradable Polymers
13.4 Summarising Comparison
13.5 Discussion
13.6 Conclusions
Appendix 13.1 Overview of environmental life cycle comparisons or biodegradable polymers included in this review
Appendix 13.2 Checklist for the preparation of an LCA for biodegradable plastics
Appendix 13.3 List of abbreviations
14 Biodegradable Polymers and the Optimisation of Models for Source Separation and Composting of Municipal Solid Waste
14.1 Introduction
14.1.1 The Development of Composting and Schemes for Source Separation of Biowaste in Europe: A Matter of Quality
14.2 The Driving Forces for Composting in the EU
14.2.1 The Directive on the Landfill of Waste
14.2.2 The Proposed Directive on Biological Treatment of Biodegradable Waste
14.3 Source Separation of Organic Waste in Mediterranean Countries: An Overview
14.5 ‘Biowaste’, ‘VGF’ and ‘Food Waste’: Relevance of a Definition on Performances of the Waste Management System
14.6 The Importance of Biobags
14.6.1 Features of ‘Biobags’: The Importance of Biodegradability and its Cost-Efficiency
14.7 Cost Assessment of Optimised Schemes
14.7.1 Tools to Optimise the Schemes and their Suitability in Different Situations
14.8 Conclusions
Abbreviations
Contributors
Index
1.1 Introduction
1.2 Background
1.3 Defining Biodegradability
1.4 Mechanisms of Polymer Degradation
1.4.1 Non-biological Degradation of Polymers
1.4.2 Biological Degradation of Polymers
1.5 Measuring Biodegradation of Polymers
1.5.1 Enzyme Assays
1.5.2 Plate Tests
1.5.3 Respiration Tests
1.5.4 Gas (CO2 or CH4) Evolution Tests
1.5.5 Radioactively Labelled Polymers
1.5.6 Laboratory-scale Simulated Accelerating Environments
1.5.7 Natural Environments – Field Trials
1.6 Factors Affecting Biodegradability
1.7 Conclusions
2 Biodegradation Behaviour of Polymers in Liquid Environments
2.1 Introduction
2.2 Degradation in Real Liquid Environments
2.2.1 Degradation in Sweet Water and Marine Environment
2.3 Degradation in Laboratory Tests Simulating Real Aquatic Environments
2.3.1 Aerobic Liquid Environments
2.3.2 Anaerobic Liquid Environments
2.4 Degradation in Laboratory Tests with Optimised and Defined Liquid Media
2.5 Standard Tests for Biodegradable Polymers Using Liquid Media
2.6 Summary
3 Biodegradation Behaviour of Polymers in the Soil
3.1 I Introduction
3.1.1 Biodegradable Polymers and the Environment
3.1.2 Biodegradable Polymers and Soil
3.2 How Polymers Reach Soil
3.2.1 Intentional Delivery
3.2.2 Unintentional Delivery: Littering
3.3 The Soil Environment
3.3.1 Surface Factors
3.3.2 Underground Factors
3.4 Degradability of Polymers in Soil
3.4.1 The Standardisation Approach
3.4.2 T Test Methods and Criteria
3.5 Effects of Biodegradable Polymers on Soil Living Organisms
3.5.1 Performing the Assessment: Transient and Permanent Effects
3.5.2 Test Material Concentration
3.5.3 Preparation of the Soil Sample Ready for Ecotoxicity Testing
3.5.4 Test Methods
3.6 Biodegradability of Materials in Soil: A Survey of the Literature
4 Ecotoxicological Aspects in the Biodegradation Process of Polymers
4.1 The Need of Ecotoxicity Analysis for Biodegradable Materials
4.1.1 Standards and Regulations for Testing of Biodegradable Polymers
4.1.2 Detection of the Influences on an Ecosystem Caused by the Biodegradation of Polymers
4.1.3 Potential Influences of Polymers After Composting
4.1.4 Potential Influences of Polymers During and After Biodegradation in Soil and Sediment
4.2 A Short Introduction to Ecotoxicology
4.2.1 Theory of Dose-Response Relationships
4.2.2 Test Design in Ecotoxicology
4.2.3 Toxicity Tests and Bioassays
4.2.4 Ecotoxicity Profile Analysis
4.3 Recommendations and Standard Procedures for Biotests
4.3.1 Bioassays with Higher Plants
4.3.2 Bioassays with Earthworms (Eisenia foetida)
4.3 Preparation of Elutriates for Aquatic Ecotoxicity Tests
4.3.4 Bioassays with Algae
4.3.5 Bioassays with Luminescent Bacteria
4.3.6 Bioassays with Daphnia
4.3.7 Evaluation of Bioassay Results Obtained from Samples of Complex Composition
4.3.8 Testing of Sediments
4.4 Special Prerequisites to be Considered when Applying Bioassays for Biodegradable Polymers
4.4.1 Nutrients in the Sample
4.4.2 Biodegradation Intermediates
4.4.3 Diversity of the Microorganism Population
4.4.4 Humic Substances
4.4.5 Evaluation of Test Results and Limits of Bioassays
4.5 Research Results for Ecotoxicity Testing of Biodegradable Polymers
4.5.1 The Relationship Between Chemical Structure, Biodegradation Pathways and Formation of Potentially Ecotoxic Metabolites
4.5.2 Ecotoxicity of the Polymers
4.5.3 Ecotoxic Effects Appearing After Degradation in Compost or After Anaerobic Digestion
4.5.4 Ecotoxic Effects Appearing During Degradation in Soil
4.6 Conclusion
4.6.1 Consequences for Test Schemes for Investigations on Biodegradable Polymers
4.6.2 Conclusion
5 International and National Norms on Biodegradability and Certification Procedures
5.1 Introduction
5.2 Organisations for Standardisation
5.3 Norms
5.3.1 Aquatic, Aerobic Biodegradation Tests
5.3.2 Compost Biodegradation Tests
5.3.3 Compostability Norms
5.3.4 Compost Disintegration Tests
5.3.5 Soil Biodegradation Tests
5.3.6 Aquatic, Anaerobic Biodegradation Tests
5.3.7 High-Solids, Anaerobic Biodegradation Tests
5.3.8 Marine Biodegradation Tests
5.3.9 Other Biodegradation Tests
5.4 Certification
5.4.1 Introduction
5.4.2 Different Certification Systems
6 General Characteristics, Processability, Industrial Applications and Market Evolution of Biodegradable Polymers
6.1 General Characteristics
6.1.1 Polymer Biodegradation Mechanisms
6.1.2 Polymer Molecular Size, Structure and Chemical Composition
6.1.3 Biodegradable Polymer Classes
6.1.4 Naturally Biodegradable Polymers
6.1.5 Synthetic Biodegradable Polymers
6.1.6 Modified Naturally Biodegradable Polymers
6.2 Processability
6.2.1 Extrusion
6.2.2 Film Blowing and Casting
6.2.3 Moulding
6.2.4 Fibre Spinning
6.3 Industrial Applications
6.3.1 Loose-Fill Packaging
6.3.2 Compost Bags
6.3.3 Other Applications
6.4 Market Evolution
7 Polyhydroxyalkanoates
7.1 Introduction
7.2 The Various Types of PHA
7.2.1 Poly[R-3-hydroxybutyrate] (P[3HB])
7.2.2 Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (P[3HB-co-3HV])
7.2.3 Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] (P[3HB-co-4HB])
7.2.4 Other PHA Copolymers with Interesting Physical Properties
7.2.5 Uncommon PHA Constituents
7.3 Mechanisms of PHA Biosynthesis
7.3.1 Conditions that Promote the Biosynthesis and Accumulation of PHA in Microorganisms
7.3.2 Carbon Sources for the Production of PHA
7.3.3 Biochemical Pathways Involved in the Metabolism of PHA
7.3.4 The Key Enzyme of PHA Biosynthesis, PHA Synthase
7.4 Genetically Modified Systems and Other Methods for the Production of PHA
7.4.1 Recombinant Escherichia coli
7.4.2 Transgenic Plants
7.4.3 In vitro Production of PHA
7.5 Biodegradation of PHA
7.6 Applications of PHA
7.7 Conclusions and Outlook
8 Starch-Based Technology
8.1 Introduction
8.2 Starch Polymer
8.3 Starch-filled Plastics
8.4 Thermoplastic Starch
8.5 Starch-Based Materials on the Market
8.6 Conclusions
9 Poly(Lactic Acid) and Copolyesters
9.1 Introduction
9.2 Synthesis
9.2.1 Homopolymers
9.2.2 Copolymers
9.2.3 Functionalised Polymers
9.3 Structure, Properties, Degradation, and Applications
9.3.1 Physical Properties
9.3.2 Chemical Properties
9.3.3 Applications
9.4 Conclusions
10 Aliphatic-Aromatic Polyesters
10.1 Introduction
10.2 Development of Biodegradable Aliphatic-Aromatic Copolyesters
10.3 Degradability and Degradation Mechanism
10.3.1 General Mechanism/Definition
10.3.2 Degradation of Pure Aromatic Polyesters
10.3.3 Degradation of Aliphatic-Aromatic Copolyesters
10.4 Commercial Products and Characteristic Material Data
10.4.1 Ecoflex
10.4.2 Eastar Bio
10.4.3 Biomax
10.4.4 EnPol
10.4.5 Characteristic Material Data
11 Material Formed from Proteins
11.1 Introduction
11.2 Structure of Material Proteins
11.3 Protein-Based Materials
11.4 Formation of Protein-Based Materials
11.4.1 ‘Solvent Process’
11.4.2 ‘Thermoplastic Process’
11.5 Properties of Protein-Based Materials
11.6 Applications
12 Enzyme Catalysis in the Synthesis of Biodegradable Polymers
12.1 Introduction
12.2 Polyester Synthesis
12.2.1 Polycondensation of Hydroxyacids and Esters
12.2.2 Polymerisation of Dicarboxylic Acids or Their Activated Derivatives with Glycols
12.2.3 Ring Opening Polymerisation of Carbonates and Other Cyclic Monomers
12.2.4 Ring Opening Polymerisation and Copolymerisation of Lactones
12.3 Oxidative Polymerisation of Phenol and Derivatives of Phenol
12.4 Enzymatic Polymerisation of Polysaccharides
12.5 Conclusions
13 Environmental Life Cycle Comparisons of Biodegradable Plastics
13.1 Introduction
13.2 Methodology of LCA
13.3 Presentation of Comparative Data
13.3.1 Starch Polymers
13.3.2 Polyhydroxyalkanoates
13.3.3 Polylactides (PLA)
13.3.4 Other Biodegradable Polymers
13.4 Summarising Comparison
13.5 Discussion
13.6 Conclusions
Appendix 13.1 Overview of environmental life cycle comparisons or biodegradable polymers included in this review
Appendix 13.2 Checklist for the preparation of an LCA for biodegradable plastics
Appendix 13.3 List of abbreviations
14 Biodegradable Polymers and the Optimisation of Models for Source Separation and Composting of Municipal Solid Waste
14.1 Introduction
14.1.1 The Development of Composting and Schemes for Source Separation of Biowaste in Europe: A Matter of Quality
14.2 The Driving Forces for Composting in the EU
14.2.1 The Directive on the Landfill of Waste
14.2.2 The Proposed Directive on Biological Treatment of Biodegradable Waste
14.3 Source Separation of Organic Waste in Mediterranean Countries: An Overview
14.5 ‘Biowaste’, ‘VGF’ and ‘Food Waste’: Relevance of a Definition on Performances of the Waste Management System
14.6 The Importance of Biobags
14.6.1 Features of ‘Biobags’: The Importance of Biodegradability and its Cost-Efficiency
14.7 Cost Assessment of Optimised Schemes
14.7.1 Tools to Optimise the Schemes and their Suitability in Different Situations
14.8 Conclusions
Abbreviations
Contributors
Index
Catia Bastioli is the Managing Director and Research Manager of Novamont, a leading innovation company in the sector of bioplastics. She is the author of more than 90 papers on various scientific and industrial subjects published in International Journals, Proceedings of International Conferences and books. She has filed more than 50 patents and patent applications in the sectors of synthetic and natural polymers. The patents in the sector of starch-based materials are a significant part of the Novamont patent portfolio.
Related Products
The Foundations of Rhe...
$320.00
{"id":8811964235933,"title":"The Foundations of Rheology","handle":"2025-the-foundations-of-rheology","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin\u003cbr\u003eISBN 978-1-77467-046-0 \u003cspan style=\"font-family: -apple-system, BlinkMacSystemFont, 'San Francisco', 'Segoe UI', Roboto, 'Helvetica Neue', sans-serif; font-size: 0.875rem;\"\u003e(hard copy)\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003ePublished: 2025\u003cbr\u003ePages: 344 + vi\u003cbr\u003eFigures 377\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book is for anyone who could not understand rheology, the science of the flow of natural and artificial liquids, because of its extensive jargon and infestation with complex formulas, which cloud the real meaning and potential of rheology, but those who really wish to understand and (possibly) use it in his work and life. In this book, rheology appears as one of the techniques that help enhance our knowledge of chemistry, physics, material science, applied technology, and many other similar fields. Learning rheology is no longer restricted to a selected few but is an enchanting story of human inventiveness and perception – due to the understanding and skills of conveying this complex information by the author of this book. \u003c\/p\u003e\n\u003cp\u003eThe book presents the main theoretical concepts of rheology illustrated with experimental data, and a discussion of the practical applications of the results of studies of the flow of many real liquids encountered in everyday life, medicine, pharmaceutical production, engineering, process technology, building construction and their decoration, cosmetics, marine applications, and many other disciplines which rely on rheological measurements and data.\u003c\/p\u003e\n\u003cp\u003eThe author is one of the most recognized world rheologists, who, in his long practice, developed courses that are comprehensive and easy to understand. The main goal of this book is to serve the needs of experienced practitioners and novices, university professors and students, as well as designers of new products and those who work with and adapt these products to everyday applications.\u003c\/p\u003e\n\u003cp\u003eNumerous common fluid liquids such materials, such as polymers, pastes, creams, biological fluids (blood), paints, oil, food products, pharmacological cosmetics, building materials, oils, etc. not only have different requirements but also a very broad range of properties difficult to describe by a single theory, equation, or numerical value, and, thus require special methods of measurement and interpretation. Six chapters of this book outline these different needs of theory and practice, forming the foundations of rheology.\u003cbr\u003e \u003cbr\u003eThe book begins with fundamental aspects of continuum mechanics that define stresses and related deformations, describing fundamental principles, such as equations of conservation and applications of continuum mechanics in rheology.\u003c\/p\u003e\n\u003cp\u003eThe next (second) chapter discusses the commonly understood principles of flow and deformation of solids, such as those of Newtonian liquids and Hookean solids, respectively, followed by more complex phenomena of plasticity and linear viscoelasticity.\u2028\u003cbr\u003eNon-linear effects in rheology are discussed in the third chapter. This chapter plays a central role in the book. It comprehensively describes various phenomena that seem “strange” to specialists brought up on classical continuum mechanics. These phenomena are inherent in many (if not all) real technological materials. These are unusual flow peculiarities of elastic liquids and yielding media, relaxation, and creep, the memory of past events, and damping in vibrations of elastic products. This chapter examines the fundamental role of structure that changes under external influence, as well as inevitable heterogeneities of real commercial materials and understanding of deformation-induced phase transitions. Finally, the issues discussed that are usually kept silent in books of this kind play a decisive role in today's life and science - these are bifurcations and the emergence of instability. turning into chaos\u003cbr\u003e. \u003cbr\u003eChapters four and five concentrate on applying rheology to two main classes of liquids - polymeric and dispersed systems. They discuss the effects of molecular weight, concentration, temperature, and elasticity, as well as instabilities, viscoelasticity, uniaxial extension, stress, prokinetics, structural transitions, and many other aspects, as listed in the Table of Contents below. These chapters best represent what a researcher or consumer may encounter when dealing with real technical or household materials\u003c\/p\u003e\n\u003cp\u003eThe last chapter is devoted to measuring rheological properties with different types of viscometers, rheometers, plastometers, and penetrometers. It includes all available and most modern methods of measurement, their practical applications, and the interpretation of results. Both instruments for scientific research and standardized methods of technical testing are considered. \u003c\/p\u003e\n\u003cp\u003eSome of the described striking rheological effects are illustrated by reproductions of paintings by great artists who convey the essence of the matter in their own language\u003c\/p\u003e\n\u003cp\u003eEach chapter contains questions and answers to help readers check their mastery of the subject and further elaborate on discussed topics.\u003c\/p\u003e\n\u003cp\u003eThis book will provide every reader with a sufficient understanding of rheology to practice the subject with competence and it will be handy for consultation whenever required.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1. Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 What is rheology - the subject of rheology\u003cbr\u003e1.2 Continuum mechanics - basic definitions \u003cbr\u003e1.2.1 Stresses\u003cbr\u003e 1.2.2 Equations of conservation\u003cbr\u003e 1.2.3 Deformations\u003cbr\u003e 1.2.4 Kinematics of deformations\u003cbr\u003e 1.2.5 Continuum mechanics in rheology\u003cbr\u003e 1.3. Questions and problems \u003cbr\u003e\u003cstrong\u003e2. «Linear» media and materials\u003c\/strong\u003e\u003cbr\u003e2.1 Linearity and Non-linearity\u003cbr\u003e2.2 Newton viscous fluid\u003cbr\u003e2.3 Hooke elastic solid\u003cbr\u003e 2.3.1 Introduction\u003cbr\u003e 2.3.2 Hookian natters (materials) (материалы)\u003cbr\u003e2.3.3 Linear anisotropic elastic materials\u003cbr\u003e2.3.4 Limits of elasticity\u003cbr\u003e2.4 Plasticity\u003cbr\u003e 2.4.1 Plasticity as a phenomenon\u003cbr\u003e 2.4.2 Deformation hardening \u003cbr\u003e2.4.3 Plasticity and fracture criteria\u003cbr\u003e2.5 Linear viscoelasticity\u003cbr\u003e 2.5.1 Basic experiments - relaxation\u003cbr\u003e2.5.2 Basic experiments – creep, delayed deformation \u003cbr\u003e2.5.3 Basic experiments – fading memory\u003cbr\u003e2.5.4 Basic experiments – harmonic oscillations\u003cbr\u003e2.5.5 Deborah number and Weissenberg criterion \u003cbr\u003e2.6 Questions and problems\u003cbr\u003e\u003cstrong\u003e3. Non-linear effects\u003c\/strong\u003e\u003cbr\u003e 3.1 Non-Newtonian viscosity\u003cbr\u003e 3.1.1 Basic definitions\u003cbr\u003e.3.1.2 On the nature of non-Newtonian flow \u003cbr\u003e3.1.3 Flow curves with the highest Newtonian viscosity \u003cbr\u003e3.1.4 Flow curves of yielding liquids\u003cbr\u003e3.2 Elasticity of liquids\u003cbr\u003e3.2.1 Weissenberg effect – normal stresses in shear flow \u003cbr\u003e3.2.2 Secondary flows\u003cbr\u003e3.2.3 Non-linearity due to large elastic deformations\u003cbr\u003e3.3 Nonlinear viscoelasticity\u003cbr\u003e 3.3.1 Nonlinear relaxation\u003cbr\u003e 3.3.2 Nonlinear creep\u003cbr\u003e3.3.3 Periodic oscillations at large amplitudes \u003cbr\u003e3.4 Structural and temporal effects \u003cbr\u003e3.4.1 Thixotropy\u003cbr\u003e 3.4.2 Structure formation and durability \u003cbr\u003e3.4.3 Phase transitions initiated by deformation \u003cbr\u003e3.4.4 Heterogeneity in \u003cbr\u003e3.4. Instabilities\u003cbr\u003e 3.5 Questions and problems\u003cbr\u003e\u003cstrong\u003e4. Rheological properties of polymers\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e 4.2 Rheology of polymer solutions \u003cbr\u003e4.2.1 Diluted solutions \u003cbr\u003e4.2.2 Concentrated solutions (viscosity)\u003cbr\u003e 4.2.3 Liquid crystal solutions of polymers \u003cbr\u003e4.2.4 Non-Newtonian flow and elasticity of polymer solutions\u003cbr\u003e4.2.5 Instability of the flow polymer solutions\u003cbr\u003e 4.2.6 Toms effectффект Томса \u003cbr\u003e4.3 Rheology of melts of flexible-chain polymers\u003cbr\u003e 4.3.1 Viscosity of melts \u003cbr\u003e 4.3.2 Dependence of viscosity on molecular weight\u003cbr\u003e 4.2.Temperature dependence of viscosity\u003cbr\u003e 4.2.4 Viscoelasticity and elasticity of polymer melts\u003cbr\u003e 4.2.5 Uniaxtial extension of polymers\u003cbr\u003e 4.2.6 Rheokinetics – rheology in processes of synthesis and transformation of polymers\u003cbr\u003e- 4.2.7 Instability of shear flow\u003cbr\u003e4.4 On physical models in the polymer rheology\u003cbr\u003e4.5. Questions and problems \u003cbr\u003e\u003cstrong\u003e5. Rheology of dispersed materials\u003c\/strong\u003e\u003cbr\u003e 5.1 Introduction\u003cbr\u003e 5.2 Diluted dispersions \u003cbr\u003e5.3 Viscosity of semi-diluted and concentrated dispersions \u003cbr\u003e5.4 Non-Newtonian effects in concentrated dispersions \u003cbr\u003e5.4.1 Low-stress region - yield strength \u003cbr\u003e5.4.2 High-stress region - deformation structuring\u003cbr\u003e 5.4.3 Electro- (magneto) rheological effects\u003cbr\u003e 5.4.4 Features of the rheological properties of various concentrated dispersions\u003cbr\u003e5.5 Concentrated and super-concentrated emulsions \u003cbr\u003e5.6 Instability and destruction of droplets in emulsions\u003cbr\u003e 5.6.1 Phase and structural transitions \u003cbr\u003e5.6.2 Breakdown of droplets in emulsions \u003cbr\u003e5.7 Questions and problems \u003cbr\u003e\u003cstrong\u003e6. Instrumental methods\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction – classification\u003cbr\u003e6.2 Rotational rheometry\u003cbr\u003e 6.2.1 Rotational viscometry - Couette flow \u003cbr\u003e6.2.2 Rotational rheometry based on Couette flow\u003cbr\u003e6.2.3. Deformation between conical and flat surfaces \u003cbr\u003e6.2.4 Rotary instruments\u003cbr\u003e 6.2.5 Industrial methods \u003cbr\u003e6.2.6 Tasks and possibilities of rotational rheometry\u003cbr\u003e 6.3 Capillary viscometry\u003cbr\u003e 6.3.1 Measurement principles \u003cbr\u003e6.3.2 Amendments \u003cbr\u003e6.3.3 Capillary viscometers\u003cbr\u003e 6.3.4 Problems solved by methods of capillary viscometry \u003cbr\u003e6.4 Viscometers. Plastometers, Penetrometers \u003cbr\u003e6.4.1 Motion of a rigid body within a liquid medium \u003cbr\u003e6.4.2 Plastomers \u003cbr\u003e6.4.3 Telescopic shift method. Penetrometers\u003cbr\u003e 6.5 Measurement of extensional viscosity\u003cbr\u003e` 6.5.1 Introduction \u003cbr\u003e6.5.2 Methods \u003cbr\u003e6.6. Measurement of viscoelastic properties by dynamic method (vibration methods) \u003cbr\u003e6.6.1 Introduction \u003cbr\u003e6.6.2 Torsional vibrations \u003cbr\u003e6.6.3 Resonant vibrations \u003cbr\u003e6.6.4 Damped (free) vibrations \u003cbr\u003e6.6.5 Vibrational viscometry\u003cbr\u003e 6.6.7 Wave propagation \u003cbr\u003e6.7. Physical methods\u003cbr\u003e 6.7.1 Rheo-optical methods \u003cbr\u003e6.7.2 Velocimetry \u003cbr\u003e6.7.3 Small-angle neutron scattering \u003cbr\u003e6.7.4 Viscometer-calorimeters\u003cbr\u003e6.8 Questions and problems\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e","published_at":"2025-12-30T15:08:48-05:00","created_at":"2025-12-30T10:37:14-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","boltzmann-volterra stresses","book","capillary viscometry","creep","deformation","elongation","equations","liquid","Newtonian liquids","non-Newtonian liquids","p-properties","plastometers","polymer","rheokinetics","rheological","rheology","rheometry","solids","viscoelasticity"],"price":32000,"price_min":32000,"price_max":32000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":47520791920797,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":null,"requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Foundations of Rheology","public_title":null,"options":["Default Title"],"price":32000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-77467-046-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/files\/9781774670460.png?v=1767125290"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670460.png?v=1767125290","options":["Title"],"media":[{"alt":null,"id":32589484851357,"position":1,"preview_image":{"aspect_ratio":0.662,"height":450,"width":298,"src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670460.png?v=1767125290"},"aspect_ratio":0.662,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670460.png?v=1767125290","width":298}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin\u003cbr\u003eISBN 978-1-77467-046-0 \u003cspan style=\"font-family: -apple-system, BlinkMacSystemFont, 'San Francisco', 'Segoe UI', Roboto, 'Helvetica Neue', sans-serif; font-size: 0.875rem;\"\u003e(hard copy)\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003ePublished: 2025\u003cbr\u003ePages: 344 + vi\u003cbr\u003eFigures 377\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book is for anyone who could not understand rheology, the science of the flow of natural and artificial liquids, because of its extensive jargon and infestation with complex formulas, which cloud the real meaning and potential of rheology, but those who really wish to understand and (possibly) use it in his work and life. In this book, rheology appears as one of the techniques that help enhance our knowledge of chemistry, physics, material science, applied technology, and many other similar fields. Learning rheology is no longer restricted to a selected few but is an enchanting story of human inventiveness and perception – due to the understanding and skills of conveying this complex information by the author of this book. \u003c\/p\u003e\n\u003cp\u003eThe book presents the main theoretical concepts of rheology illustrated with experimental data, and a discussion of the practical applications of the results of studies of the flow of many real liquids encountered in everyday life, medicine, pharmaceutical production, engineering, process technology, building construction and their decoration, cosmetics, marine applications, and many other disciplines which rely on rheological measurements and data.\u003c\/p\u003e\n\u003cp\u003eThe author is one of the most recognized world rheologists, who, in his long practice, developed courses that are comprehensive and easy to understand. The main goal of this book is to serve the needs of experienced practitioners and novices, university professors and students, as well as designers of new products and those who work with and adapt these products to everyday applications.\u003c\/p\u003e\n\u003cp\u003eNumerous common fluid liquids such materials, such as polymers, pastes, creams, biological fluids (blood), paints, oil, food products, pharmacological cosmetics, building materials, oils, etc. not only have different requirements but also a very broad range of properties difficult to describe by a single theory, equation, or numerical value, and, thus require special methods of measurement and interpretation. Six chapters of this book outline these different needs of theory and practice, forming the foundations of rheology.\u003cbr\u003e \u003cbr\u003eThe book begins with fundamental aspects of continuum mechanics that define stresses and related deformations, describing fundamental principles, such as equations of conservation and applications of continuum mechanics in rheology.\u003c\/p\u003e\n\u003cp\u003eThe next (second) chapter discusses the commonly understood principles of flow and deformation of solids, such as those of Newtonian liquids and Hookean solids, respectively, followed by more complex phenomena of plasticity and linear viscoelasticity.\u2028\u003cbr\u003eNon-linear effects in rheology are discussed in the third chapter. This chapter plays a central role in the book. It comprehensively describes various phenomena that seem “strange” to specialists brought up on classical continuum mechanics. These phenomena are inherent in many (if not all) real technological materials. These are unusual flow peculiarities of elastic liquids and yielding media, relaxation, and creep, the memory of past events, and damping in vibrations of elastic products. This chapter examines the fundamental role of structure that changes under external influence, as well as inevitable heterogeneities of real commercial materials and understanding of deformation-induced phase transitions. Finally, the issues discussed that are usually kept silent in books of this kind play a decisive role in today's life and science - these are bifurcations and the emergence of instability. turning into chaos\u003cbr\u003e. \u003cbr\u003eChapters four and five concentrate on applying rheology to two main classes of liquids - polymeric and dispersed systems. They discuss the effects of molecular weight, concentration, temperature, and elasticity, as well as instabilities, viscoelasticity, uniaxial extension, stress, prokinetics, structural transitions, and many other aspects, as listed in the Table of Contents below. These chapters best represent what a researcher or consumer may encounter when dealing with real technical or household materials\u003c\/p\u003e\n\u003cp\u003eThe last chapter is devoted to measuring rheological properties with different types of viscometers, rheometers, plastometers, and penetrometers. It includes all available and most modern methods of measurement, their practical applications, and the interpretation of results. Both instruments for scientific research and standardized methods of technical testing are considered. \u003c\/p\u003e\n\u003cp\u003eSome of the described striking rheological effects are illustrated by reproductions of paintings by great artists who convey the essence of the matter in their own language\u003c\/p\u003e\n\u003cp\u003eEach chapter contains questions and answers to help readers check their mastery of the subject and further elaborate on discussed topics.\u003c\/p\u003e\n\u003cp\u003eThis book will provide every reader with a sufficient understanding of rheology to practice the subject with competence and it will be handy for consultation whenever required.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1. Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 What is rheology - the subject of rheology\u003cbr\u003e1.2 Continuum mechanics - basic definitions \u003cbr\u003e1.2.1 Stresses\u003cbr\u003e 1.2.2 Equations of conservation\u003cbr\u003e 1.2.3 Deformations\u003cbr\u003e 1.2.4 Kinematics of deformations\u003cbr\u003e 1.2.5 Continuum mechanics in rheology\u003cbr\u003e 1.3. Questions and problems \u003cbr\u003e\u003cstrong\u003e2. «Linear» media and materials\u003c\/strong\u003e\u003cbr\u003e2.1 Linearity and Non-linearity\u003cbr\u003e2.2 Newton viscous fluid\u003cbr\u003e2.3 Hooke elastic solid\u003cbr\u003e 2.3.1 Introduction\u003cbr\u003e 2.3.2 Hookian natters (materials) (материалы)\u003cbr\u003e2.3.3 Linear anisotropic elastic materials\u003cbr\u003e2.3.4 Limits of elasticity\u003cbr\u003e2.4 Plasticity\u003cbr\u003e 2.4.1 Plasticity as a phenomenon\u003cbr\u003e 2.4.2 Deformation hardening \u003cbr\u003e2.4.3 Plasticity and fracture criteria\u003cbr\u003e2.5 Linear viscoelasticity\u003cbr\u003e 2.5.1 Basic experiments - relaxation\u003cbr\u003e2.5.2 Basic experiments – creep, delayed deformation \u003cbr\u003e2.5.3 Basic experiments – fading memory\u003cbr\u003e2.5.4 Basic experiments – harmonic oscillations\u003cbr\u003e2.5.5 Deborah number and Weissenberg criterion \u003cbr\u003e2.6 Questions and problems\u003cbr\u003e\u003cstrong\u003e3. Non-linear effects\u003c\/strong\u003e\u003cbr\u003e 3.1 Non-Newtonian viscosity\u003cbr\u003e 3.1.1 Basic definitions\u003cbr\u003e.3.1.2 On the nature of non-Newtonian flow \u003cbr\u003e3.1.3 Flow curves with the highest Newtonian viscosity \u003cbr\u003e3.1.4 Flow curves of yielding liquids\u003cbr\u003e3.2 Elasticity of liquids\u003cbr\u003e3.2.1 Weissenberg effect – normal stresses in shear flow \u003cbr\u003e3.2.2 Secondary flows\u003cbr\u003e3.2.3 Non-linearity due to large elastic deformations\u003cbr\u003e3.3 Nonlinear viscoelasticity\u003cbr\u003e 3.3.1 Nonlinear relaxation\u003cbr\u003e 3.3.2 Nonlinear creep\u003cbr\u003e3.3.3 Periodic oscillations at large amplitudes \u003cbr\u003e3.4 Structural and temporal effects \u003cbr\u003e3.4.1 Thixotropy\u003cbr\u003e 3.4.2 Structure formation and durability \u003cbr\u003e3.4.3 Phase transitions initiated by deformation \u003cbr\u003e3.4.4 Heterogeneity in \u003cbr\u003e3.4. Instabilities\u003cbr\u003e 3.5 Questions and problems\u003cbr\u003e\u003cstrong\u003e4. Rheological properties of polymers\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e 4.2 Rheology of polymer solutions \u003cbr\u003e4.2.1 Diluted solutions \u003cbr\u003e4.2.2 Concentrated solutions (viscosity)\u003cbr\u003e 4.2.3 Liquid crystal solutions of polymers \u003cbr\u003e4.2.4 Non-Newtonian flow and elasticity of polymer solutions\u003cbr\u003e4.2.5 Instability of the flow polymer solutions\u003cbr\u003e 4.2.6 Toms effectффект Томса \u003cbr\u003e4.3 Rheology of melts of flexible-chain polymers\u003cbr\u003e 4.3.1 Viscosity of melts \u003cbr\u003e 4.3.2 Dependence of viscosity on molecular weight\u003cbr\u003e 4.2.Temperature dependence of viscosity\u003cbr\u003e 4.2.4 Viscoelasticity and elasticity of polymer melts\u003cbr\u003e 4.2.5 Uniaxtial extension of polymers\u003cbr\u003e 4.2.6 Rheokinetics – rheology in processes of synthesis and transformation of polymers\u003cbr\u003e- 4.2.7 Instability of shear flow\u003cbr\u003e4.4 On physical models in the polymer rheology\u003cbr\u003e4.5. Questions and problems \u003cbr\u003e\u003cstrong\u003e5. Rheology of dispersed materials\u003c\/strong\u003e\u003cbr\u003e 5.1 Introduction\u003cbr\u003e 5.2 Diluted dispersions \u003cbr\u003e5.3 Viscosity of semi-diluted and concentrated dispersions \u003cbr\u003e5.4 Non-Newtonian effects in concentrated dispersions \u003cbr\u003e5.4.1 Low-stress region - yield strength \u003cbr\u003e5.4.2 High-stress region - deformation structuring\u003cbr\u003e 5.4.3 Electro- (magneto) rheological effects\u003cbr\u003e 5.4.4 Features of the rheological properties of various concentrated dispersions\u003cbr\u003e5.5 Concentrated and super-concentrated emulsions \u003cbr\u003e5.6 Instability and destruction of droplets in emulsions\u003cbr\u003e 5.6.1 Phase and structural transitions \u003cbr\u003e5.6.2 Breakdown of droplets in emulsions \u003cbr\u003e5.7 Questions and problems \u003cbr\u003e\u003cstrong\u003e6. Instrumental methods\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction – classification\u003cbr\u003e6.2 Rotational rheometry\u003cbr\u003e 6.2.1 Rotational viscometry - Couette flow \u003cbr\u003e6.2.2 Rotational rheometry based on Couette flow\u003cbr\u003e6.2.3. Deformation between conical and flat surfaces \u003cbr\u003e6.2.4 Rotary instruments\u003cbr\u003e 6.2.5 Industrial methods \u003cbr\u003e6.2.6 Tasks and possibilities of rotational rheometry\u003cbr\u003e 6.3 Capillary viscometry\u003cbr\u003e 6.3.1 Measurement principles \u003cbr\u003e6.3.2 Amendments \u003cbr\u003e6.3.3 Capillary viscometers\u003cbr\u003e 6.3.4 Problems solved by methods of capillary viscometry \u003cbr\u003e6.4 Viscometers. Plastometers, Penetrometers \u003cbr\u003e6.4.1 Motion of a rigid body within a liquid medium \u003cbr\u003e6.4.2 Plastomers \u003cbr\u003e6.4.3 Telescopic shift method. Penetrometers\u003cbr\u003e 6.5 Measurement of extensional viscosity\u003cbr\u003e` 6.5.1 Introduction \u003cbr\u003e6.5.2 Methods \u003cbr\u003e6.6. Measurement of viscoelastic properties by dynamic method (vibration methods) \u003cbr\u003e6.6.1 Introduction \u003cbr\u003e6.6.2 Torsional vibrations \u003cbr\u003e6.6.3 Resonant vibrations \u003cbr\u003e6.6.4 Damped (free) vibrations \u003cbr\u003e6.6.5 Vibrational viscometry\u003cbr\u003e 6.6.7 Wave propagation \u003cbr\u003e6.7. Physical methods\u003cbr\u003e 6.7.1 Rheo-optical methods \u003cbr\u003e6.7.2 Velocimetry \u003cbr\u003e6.7.3 Small-angle neutron scattering \u003cbr\u003e6.7.4 Viscometer-calorimeters\u003cbr\u003e6.8 Questions and problems\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e"}
Handbook of UV Degrada...
$350.00
{"id":8694780461213,"title":"Handbook of UV Degradation and Stabilization, 4th Edition","handle":"handbook-of-uv-degradation-and-stabilization-4th-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1- 77467-078-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2026\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 636+x\u003cbr\u003eFigures 300\u003cbr\u003eTables 260\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThis book is a completely updated version of the previous edition, with the most recent literature and patents. It has 12 chapters, each discussing a different aspect of UV-related phenomena that occur when materials are exposed to UV radiation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThe introduction reviews the existing literature to determine how plants, animals, and humans protect themselves against UV radiation. This review permits comparing mechanisms of protection against UV used by living things and the effect of UV radiation on materials derived from natural products, polymers, and rubber. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003ePhotophysics, discussed in the second chapter, helps to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of the process's photophysics. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThese effects are combined with the photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 4 contains information on available UV stabilizers. It contains data prepared according to a systematic outline, as listed in the Table of Contents. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 5 discusses the stability of UV stabilizers, which is important for predicting the lifetime of their protection. The evaluation points out different reasons for instability.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 6 provides the principles of stabilizer selection. This chapter discusses ten areas of influence of stabilizer properties and expectations from the final products. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapters 7 and 8 give specific information on the degradation and stabilization of different polymers \u0026amp; rubbers and the final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7, and over 40 groups of final products, which use the majority of UV stabilizers, are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in the Table of Contents.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 10 discusses specific effects of UV stabilizers that may affect formulation because of interactions between UV stabilizers and other formulation components. Chapter 11 discusses analytical methods, which are most frequently used in UV stabilization, to show their potential in further understanding UV degradation and stabilization.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThe book concludes with the effect of UV stabilizers on the health and safety of workers involved in the processing and commercial use of the products (Chapter 12).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003eThis book is an excellent companion to the \u003cb style=\"mso-bidi-font-weight: normal;\"\u003eDatabook of UV Stabilizers\u003c\/b\u003e, which was also recently published. Both books supplement each other without repeating the same information—one contains data, another theory, mechanisms of action, practical effects, and implications of application.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003eThe information contained in both books is essential for the automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and the large number of industries that derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n\u003cp\u003e1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms, and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, the concentration of stabilizers in formulation, and examples of a lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of the formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e","published_at":"2025-11-14T09:29:17-05:00","created_at":"2025-08-27T11:57:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2026","book","new","UV stabilizers"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":47159619223709,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":null,"requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of UV Degradation and Stabilization, 4th Edition","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 77467-078-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/files\/9781774670781-Case.jpg?v=1763130783"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670781-Case.jpg?v=1763130783","options":["Title"],"media":[{"alt":null,"id":32417810055325,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670781-Case.jpg?v=1763130783"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670781-Case.jpg?v=1763130783","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1- 77467-078-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2026\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 636+x\u003cbr\u003eFigures 300\u003cbr\u003eTables 260\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThis book is a completely updated version of the previous edition, with the most recent literature and patents. It has 12 chapters, each discussing a different aspect of UV-related phenomena that occur when materials are exposed to UV radiation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThe introduction reviews the existing literature to determine how plants, animals, and humans protect themselves against UV radiation. This review permits comparing mechanisms of protection against UV used by living things and the effect of UV radiation on materials derived from natural products, polymers, and rubber. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003ePhotophysics, discussed in the second chapter, helps to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of the process's photophysics. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThese effects are combined with the photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 4 contains information on available UV stabilizers. It contains data prepared according to a systematic outline, as listed in the Table of Contents. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 5 discusses the stability of UV stabilizers, which is important for predicting the lifetime of their protection. The evaluation points out different reasons for instability.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 6 provides the principles of stabilizer selection. This chapter discusses ten areas of influence of stabilizer properties and expectations from the final products. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapters 7 and 8 give specific information on the degradation and stabilization of different polymers \u0026amp; rubbers and the final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7, and over 40 groups of final products, which use the majority of UV stabilizers, are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in the Table of Contents.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 10 discusses specific effects of UV stabilizers that may affect formulation because of interactions between UV stabilizers and other formulation components. Chapter 11 discusses analytical methods, which are most frequently used in UV stabilization, to show their potential in further understanding UV degradation and stabilization.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThe book concludes with the effect of UV stabilizers on the health and safety of workers involved in the processing and commercial use of the products (Chapter 12).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003eThis book is an excellent companion to the \u003cb style=\"mso-bidi-font-weight: normal;\"\u003eDatabook of UV Stabilizers\u003c\/b\u003e, which was also recently published. Both books supplement each other without repeating the same information—one contains data, another theory, mechanisms of action, practical effects, and implications of application.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003eThe information contained in both books is essential for the automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and the large number of industries that derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n\u003cp\u003e1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms, and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, the concentration of stabilizers in formulation, and examples of a lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of the formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e"}
Handbook of Polyuretha...
$350.00
{"id":8694779642013,"title":"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates","handle":"handbook-of-polyurethanes-polyureas-and-polyisocyanurates","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-092-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublished: May 2026\u003c\/span\u003e\u003cbr\u003ePages: 530\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 80\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe \u003cb\u003eHandbook of Polyurethanes, Polyureas, and Polyisocyanurates\u003c\/b\u003e begins with an \u003cb\u003eintroduction\u003c\/b\u003e defining key terms for understanding these versatile materials' chemistry and applications. Following this, a \u003cb\u003ehistorical timeline\u003c\/b\u003e provides context by tracing the development of polyurethanes from their inception to present-day innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook focuses heavily on the \u003cb\u003eraw materials for polyurethane synthesis\u003c\/b\u003e. It explores various \u003cb\u003eisocyanates\u003c\/b\u003e and \u003cb\u003epolyols\u003c\/b\u003e, detailing their chemical properties and roles in creating diverse polymer structures. The section also discusses \u003cb\u003eamines, solvents, catalysts,\u003c\/b\u003e and \u003cb\u003eadditives\u003c\/b\u003e that enhance the synthesis process, including \u003cb\u003eprepolymers\u003c\/b\u003e, which serve as intermediates in production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe text delves into \u003cb\u003etypical methods of synthesis\u003c\/b\u003e, examining the \u003cb\u003emechanisms of catalysis\u003c\/b\u003e that speed up reactions, factors affecting \u003cb\u003ereaction rates\u003c\/b\u003e, and potential \u003cb\u003eside reactions\u003c\/b\u003e that can occur during polymerization. This leads to a discussion on the \u003cb\u003estructures of linear and crosslinked polyurethanes\u003c\/b\u003e, highlighting how these configurations influence the physical and chemical properties of the final products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eUnderstanding polyurethanes' domain morphology and crystalline structure is crucial, as these factors play a significant role in phase separation and hydrogen bonding, which impact material performance. The handbook also details \u003cb\u003etypical methods for analyzing polyurethanes\u003c\/b\u003e, allowing for assessment of their characteristics and qualities.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe following is a comprehensive review of the physical-mechanical properties of polyurethanes, addressing attributes such as elasticity, tensile strength, and thermal stability. The interactions between polyurethanes and various \u003cb\u003esubstrates\u003c\/b\u003e are also explored, highlighting their compatibility in different applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eDegradation mechanisms, including thermal, UV, and chemical degradation, and strategies for polyurethane stabilization to enhance durability are critically examined.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook discusses the creation of \u003cb\u003epolyurethane blends\u003c\/b\u003e and \u003cb\u003einterpenetrating networks\u003c\/b\u003e, which can combine different material properties for improved performance.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eAn extensive section on \u003cb\u003eadditives\u003c\/b\u003e used with polyurethanes covers a wide range of substances, such as \u003cb\u003eplasticizers\u003c\/b\u003e, \u003cb\u003epigments\u003c\/b\u003e, \u003cb\u003eflame retardants\u003c\/b\u003e, and many others, each contributing to specific attributes in the final product.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe chapter on \u003cb\u003epolyurethane processing\u003c\/b\u003e outlines essential techniques, including \u003cb\u003emetering, mixing,\u003c\/b\u003e and \u003cb\u003estorage\u003c\/b\u003e, which are vital for efficient production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eIn terms of applications, the handbook provides a thorough overview of the myriad uses of polyurethanes, from \u003cb\u003eautomotive parts\u003c\/b\u003e and \u003cb\u003ebedding\u003c\/b\u003e to \u003cb\u003emedical devices\u003c\/b\u003e and \u003cb\u003epackaging\u003c\/b\u003e, emphasizing the properties and formulations unique to each application.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook underscores the importance of health and safety by offering guidelines for safely handling and using polyurethane materials. Finally, it addresses \u003cb\u003ewaste disposal, processing,\u003c\/b\u003e and \u003cb\u003erecycling\u003c\/b\u003e strategies, promoting environmentally responsible practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThis summary encapsulates the core themes and topics of the handbook, providing an overview of what readers can expect from each section. The table of contents also includes concise information about the contents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eHere are some suggestions for potential users of the \"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates\":\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e1. Researchers and Academics\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To gain comprehensive knowledge of polyurethane synthesis, properties, and applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a reference for literature reviews, experimental designs, and foundational understanding in materials science.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e2. Chemists and Material Scientists\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To explore polyurethanes' chemical and physical properties and their raw materials.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidance on material selection, synthesis techniques, and formulation development.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e3. Industrial Engineers and Process Designers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the processing methods and operational parameters for manufacturing polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a resource for optimizing production processes and enhancing product quality.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e4. Product Development Teams\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To develop new polyurethane-based products across various industries (e.g., automotive, construction, medical).\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights on additives, formulation strategies, and application-specific properties.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e5. Quality Control and Assurance Professionals\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To ensure the quality and performance of polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a guide for analytical methods and testing protocols.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e6. Environmental Scientists and Sustainability Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the environmental impact of polyurethane production and disposal.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For strategies on waste management, recycling, and sustainable practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e7. Health and Safety Officers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To establish safety protocols and ensure compliance with regulations when handling polyurethanes.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidelines on safe practices and material safety data.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e8. Students and Educators\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To learn about polymer science and materials engineering.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a textbook or supplementary resource for coursework and research projects.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e9. Consultants and Industry Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To provide informed advice to companies on polyurethane applications and innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a comprehensive source for current knowledge and trends in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e10. Manufacturers of Polyurethane Products\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To stay updated on the latest developments and best practices in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights into formulation, processing, and application methods.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1. Introduction – definition of terms\u003cbr\u003e2. Historical timeline\u003cbr\u003e3. Raw materials for polyurethane synthesis\u003cbr\u003ea. Isocyanates\u003cbr\u003eb. Polyols\u003cbr\u003ec. Amines\u003cbr\u003ed. Non-isocyanate synthesis components (cyclic carbonates and amines)\u003cbr\u003ee. Solvents\u003cbr\u003ef. Catalysts\u003cbr\u003eg. Blocking agents\u003cbr\u003eh. Other additives\u003cbr\u003e4. Typical methods of synthesis\u003cbr\u003ea. Mechanisms of catalysis\u003cbr\u003eb. Reaction rates\u003cbr\u003ec. Side reactions (allophanates, biurets, carbodiimides, and dimers)\u003cbr\u003e5. Structures of linear and crosslinked polyurethanes \u003cbr\u003e6. Domain morphology\u003cbr\u003e7. Crystalline structure, phase separation, and hydrogen bonding\u003cbr\u003e8. Typical methods of polyurethane analysis\u003cbr\u003e9. Physical-mechanical properties of polyurethanes\u003cbr\u003e10. Interaction with other materials (substrates\u003cbr\u003e11. Polyurethane degradation\u003cbr\u003ea. Thermal\u003cbr\u003eb. UV\u003cbr\u003ec. Chemical\u003cbr\u003e12. Polyurethane stabilization\u003cbr\u003e13. Polyurethane blends and interpenetrating networks\u003cbr\u003e14. Additives used with polyurethanes \u003cbr\u003ea. Plasticizers \u003cbr\u003eb. Pigments \u003cbr\u003ec. Blowing agents\u003cbr\u003ed. Surfactants \u003cbr\u003ee. Adhesion promoters\u003cbr\u003ef. Rheological additives\u003cbr\u003eg. Fillers and nanofillers \u003cbr\u003eh. Flame retardants\u003cbr\u003ei. Antibacterial additives\u003cbr\u003e15. Polyurethane processing\u003cbr\u003ea. Prepolymers processing\u003cbr\u003eb. Storage \u003cbr\u003ec. Metering\u003cbr\u003ed. Mixing \u003cbr\u003e16. Applications, properties, and formulations\u003cbr\u003ea. 3D printing\u003cbr\u003eb. Adhesives and sealants\u003cbr\u003ec. Appliances\u003cbr\u003ed. Artificial leather\u003cbr\u003ee. Automotive\u003cbr\u003ef. Bedding \u003cbr\u003eg. Building and construction\u003cbr\u003eh. Carpet underlay\u003cbr\u003ei. Coatings and paints\u003cbr\u003ej. Composite wood\u003cbr\u003ek. Electrical and electronics\u003cbr\u003el. Fiber and textiles\u003cbr\u003em. Flooring\u003cbr\u003en. Foams \u003cbr\u003eo. Footwear \u003cbr\u003ep. Furniture\u003cbr\u003eq. Marine\u003cbr\u003er. Roofing\u003cbr\u003es. Medical\u003cbr\u003et. Packaging\u003cbr\u003eu. Pharmaceutical \u003cbr\u003ev. Reaction injection molding\u003cbr\u003ew. Seals and gaskets\u003cbr\u003ex. Shape memory\u003cbr\u003ey. Sporting equipment\u003cbr\u003ez. Straps \u003cbr\u003eaa. Tires\u003cbr\u003ebb. Waterproofing\u003cbr\u003e17. Health and safety\u003cbr\u003e18. Waste disposal, processing, and recycling\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp;amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp;amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp;amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp;amp; Sons, PVC Degradation \u0026amp;amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003cbr\u003e\u003c\/p\u003e","published_at":"2025-11-14T09:38:00-05:00","created_at":"2025-08-27T11:55:11-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2026","book","electronics","new","nucleating agent","nucleating agents"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":47159612407965,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":null,"requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-092-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068","options":["Title"],"media":[{"alt":null,"id":32417817723037,"position":1,"preview_image":{"aspect_ratio":0.656,"height":450,"width":295,"src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068"},"aspect_ratio":0.656,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068","width":295}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-092-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublished: May 2026\u003c\/span\u003e\u003cbr\u003ePages: 530\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 80\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe \u003cb\u003eHandbook of Polyurethanes, Polyureas, and Polyisocyanurates\u003c\/b\u003e begins with an \u003cb\u003eintroduction\u003c\/b\u003e defining key terms for understanding these versatile materials' chemistry and applications. Following this, a \u003cb\u003ehistorical timeline\u003c\/b\u003e provides context by tracing the development of polyurethanes from their inception to present-day innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook focuses heavily on the \u003cb\u003eraw materials for polyurethane synthesis\u003c\/b\u003e. It explores various \u003cb\u003eisocyanates\u003c\/b\u003e and \u003cb\u003epolyols\u003c\/b\u003e, detailing their chemical properties and roles in creating diverse polymer structures. The section also discusses \u003cb\u003eamines, solvents, catalysts,\u003c\/b\u003e and \u003cb\u003eadditives\u003c\/b\u003e that enhance the synthesis process, including \u003cb\u003eprepolymers\u003c\/b\u003e, which serve as intermediates in production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe text delves into \u003cb\u003etypical methods of synthesis\u003c\/b\u003e, examining the \u003cb\u003emechanisms of catalysis\u003c\/b\u003e that speed up reactions, factors affecting \u003cb\u003ereaction rates\u003c\/b\u003e, and potential \u003cb\u003eside reactions\u003c\/b\u003e that can occur during polymerization. This leads to a discussion on the \u003cb\u003estructures of linear and crosslinked polyurethanes\u003c\/b\u003e, highlighting how these configurations influence the physical and chemical properties of the final products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eUnderstanding polyurethanes' domain morphology and crystalline structure is crucial, as these factors play a significant role in phase separation and hydrogen bonding, which impact material performance. The handbook also details \u003cb\u003etypical methods for analyzing polyurethanes\u003c\/b\u003e, allowing for assessment of their characteristics and qualities.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe following is a comprehensive review of the physical-mechanical properties of polyurethanes, addressing attributes such as elasticity, tensile strength, and thermal stability. The interactions between polyurethanes and various \u003cb\u003esubstrates\u003c\/b\u003e are also explored, highlighting their compatibility in different applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eDegradation mechanisms, including thermal, UV, and chemical degradation, and strategies for polyurethane stabilization to enhance durability are critically examined.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook discusses the creation of \u003cb\u003epolyurethane blends\u003c\/b\u003e and \u003cb\u003einterpenetrating networks\u003c\/b\u003e, which can combine different material properties for improved performance.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eAn extensive section on \u003cb\u003eadditives\u003c\/b\u003e used with polyurethanes covers a wide range of substances, such as \u003cb\u003eplasticizers\u003c\/b\u003e, \u003cb\u003epigments\u003c\/b\u003e, \u003cb\u003eflame retardants\u003c\/b\u003e, and many others, each contributing to specific attributes in the final product.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe chapter on \u003cb\u003epolyurethane processing\u003c\/b\u003e outlines essential techniques, including \u003cb\u003emetering, mixing,\u003c\/b\u003e and \u003cb\u003estorage\u003c\/b\u003e, which are vital for efficient production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eIn terms of applications, the handbook provides a thorough overview of the myriad uses of polyurethanes, from \u003cb\u003eautomotive parts\u003c\/b\u003e and \u003cb\u003ebedding\u003c\/b\u003e to \u003cb\u003emedical devices\u003c\/b\u003e and \u003cb\u003epackaging\u003c\/b\u003e, emphasizing the properties and formulations unique to each application.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook underscores the importance of health and safety by offering guidelines for safely handling and using polyurethane materials. Finally, it addresses \u003cb\u003ewaste disposal, processing,\u003c\/b\u003e and \u003cb\u003erecycling\u003c\/b\u003e strategies, promoting environmentally responsible practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThis summary encapsulates the core themes and topics of the handbook, providing an overview of what readers can expect from each section. The table of contents also includes concise information about the contents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eHere are some suggestions for potential users of the \"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates\":\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e1. Researchers and Academics\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To gain comprehensive knowledge of polyurethane synthesis, properties, and applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a reference for literature reviews, experimental designs, and foundational understanding in materials science.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e2. Chemists and Material Scientists\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To explore polyurethanes' chemical and physical properties and their raw materials.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidance on material selection, synthesis techniques, and formulation development.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e3. Industrial Engineers and Process Designers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the processing methods and operational parameters for manufacturing polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a resource for optimizing production processes and enhancing product quality.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e4. Product Development Teams\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To develop new polyurethane-based products across various industries (e.g., automotive, construction, medical).\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights on additives, formulation strategies, and application-specific properties.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e5. Quality Control and Assurance Professionals\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To ensure the quality and performance of polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a guide for analytical methods and testing protocols.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e6. Environmental Scientists and Sustainability Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the environmental impact of polyurethane production and disposal.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For strategies on waste management, recycling, and sustainable practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e7. Health and Safety Officers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To establish safety protocols and ensure compliance with regulations when handling polyurethanes.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidelines on safe practices and material safety data.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e8. Students and Educators\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To learn about polymer science and materials engineering.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a textbook or supplementary resource for coursework and research projects.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e9. Consultants and Industry Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To provide informed advice to companies on polyurethane applications and innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a comprehensive source for current knowledge and trends in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e10. Manufacturers of Polyurethane Products\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To stay updated on the latest developments and best practices in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights into formulation, processing, and application methods.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1. Introduction – definition of terms\u003cbr\u003e2. Historical timeline\u003cbr\u003e3. Raw materials for polyurethane synthesis\u003cbr\u003ea. Isocyanates\u003cbr\u003eb. Polyols\u003cbr\u003ec. Amines\u003cbr\u003ed. Non-isocyanate synthesis components (cyclic carbonates and amines)\u003cbr\u003ee. Solvents\u003cbr\u003ef. Catalysts\u003cbr\u003eg. Blocking agents\u003cbr\u003eh. Other additives\u003cbr\u003e4. Typical methods of synthesis\u003cbr\u003ea. Mechanisms of catalysis\u003cbr\u003eb. Reaction rates\u003cbr\u003ec. Side reactions (allophanates, biurets, carbodiimides, and dimers)\u003cbr\u003e5. Structures of linear and crosslinked polyurethanes \u003cbr\u003e6. Domain morphology\u003cbr\u003e7. Crystalline structure, phase separation, and hydrogen bonding\u003cbr\u003e8. Typical methods of polyurethane analysis\u003cbr\u003e9. Physical-mechanical properties of polyurethanes\u003cbr\u003e10. Interaction with other materials (substrates\u003cbr\u003e11. Polyurethane degradation\u003cbr\u003ea. Thermal\u003cbr\u003eb. UV\u003cbr\u003ec. Chemical\u003cbr\u003e12. Polyurethane stabilization\u003cbr\u003e13. Polyurethane blends and interpenetrating networks\u003cbr\u003e14. Additives used with polyurethanes \u003cbr\u003ea. Plasticizers \u003cbr\u003eb. Pigments \u003cbr\u003ec. Blowing agents\u003cbr\u003ed. Surfactants \u003cbr\u003ee. Adhesion promoters\u003cbr\u003ef. Rheological additives\u003cbr\u003eg. Fillers and nanofillers \u003cbr\u003eh. Flame retardants\u003cbr\u003ei. Antibacterial additives\u003cbr\u003e15. Polyurethane processing\u003cbr\u003ea. Prepolymers processing\u003cbr\u003eb. Storage \u003cbr\u003ec. Metering\u003cbr\u003ed. Mixing \u003cbr\u003e16. Applications, properties, and formulations\u003cbr\u003ea. 3D printing\u003cbr\u003eb. Adhesives and sealants\u003cbr\u003ec. Appliances\u003cbr\u003ed. Artificial leather\u003cbr\u003ee. Automotive\u003cbr\u003ef. Bedding \u003cbr\u003eg. Building and construction\u003cbr\u003eh. Carpet underlay\u003cbr\u003ei. Coatings and paints\u003cbr\u003ej. Composite wood\u003cbr\u003ek. Electrical and electronics\u003cbr\u003el. Fiber and textiles\u003cbr\u003em. Flooring\u003cbr\u003en. Foams \u003cbr\u003eo. Footwear \u003cbr\u003ep. Furniture\u003cbr\u003eq. Marine\u003cbr\u003er. Roofing\u003cbr\u003es. Medical\u003cbr\u003et. Packaging\u003cbr\u003eu. Pharmaceutical \u003cbr\u003ev. Reaction injection molding\u003cbr\u003ew. Seals and gaskets\u003cbr\u003ex. Shape memory\u003cbr\u003ey. Sporting equipment\u003cbr\u003ez. Straps \u003cbr\u003eaa. Tires\u003cbr\u003ebb. Waterproofing\u003cbr\u003e17. Health and safety\u003cbr\u003e18. Waste disposal, processing, and recycling\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp;amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp;amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp;amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp;amp; Sons, PVC Degradation \u0026amp;amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003cbr\u003e\u003c\/p\u003e"}