- Grid List
Filter
Block Copolymers in Na...
$261.00
{"id":11242200964,"title":"Block Copolymers in Nanoscience","handle":"978-3-527-31309-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Lazzari, Guojun Liu, S. Lecommandoux \u003cbr\u003eISBN \u003cspan\u003e978-3-527-61056-3\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003epages 447, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAn Introduction to Block Copolymer Applications: State-of-the-art and Future Developments. \u003cbr\u003e\u003cbr\u003e2. Guidelines for Synthesizing Block Copolymers. \u003cbr\u003e\u003cbr\u003e3. Block Copolymer Vesicles. \u003cbr\u003e\u003cbr\u003e4. Block Copolymer Micelles for Drug Delivery in Nanoscience. \u003cbr\u003e\u003cbr\u003e5. Stimuli-responsive Block Copolymer Assemblies. \u003cbr\u003e\u003cbr\u003e6. Self-assembly of Linear Polypeptide-based Block Copolymers. \u003cbr\u003e\u003cbr\u003e7. Synthesis, Self-assembly and Applications of Polyferrocenylsilane (PFS) Block Copolymers. \u003cbr\u003e\u003cbr\u003e8. Supramolecular Block Polymers Containing Metal-Ligand Binding Sites: From Synthesis to Properties. \u003cbr\u003e\u003cbr\u003e9. Methods for the Alignment and the Large-scale Ordering of Block Copolymer Morphologies. \u003cbr\u003e\u003cbr\u003e10. Block Copolymer Nanofibers and Nanotubes. \u003cbr\u003e\u003cbr\u003e11. Nanostructured Carbons from Block Coplymers. \u003cbr\u003e\u003cbr\u003e12. Block Copolymers at Interfaces. \u003cbr\u003e\u003cbr\u003e13. Block Copolymers as Templates for the Generation of Mesostructured Inorganic Materials. \u003cbr\u003e\u003cbr\u003e14. Mesostructured Polymers-Inorganic Hybrid Materials from Blocked Macromolecular Architectures and Nanoparticles. \u003cbr\u003e\u003cbr\u003e15. Block Ionomers for Fuel Cell Application. \u003cbr\u003e\u003cbr\u003e16. Structure, Properties and Applications of Crystallizable ABA and ABC Triblock Copolymers with Hydrogenated Polybutadiene Blocks. \u003cbr\u003e\u003cbr\u003e17. Basic Understanding of Phase Behavior and Structure of Silicone Block Copolymers and Surfactant-Block Copolymer Mixtures. \u003cbr\u003e\u003cbr\u003eSubject Index.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMassimo Lazzari\u003c\/b\u003e received his PhD in Macromolecular Chemistry at the University of Torino (Italy) under the supervision of Prof. O. Chiantore. After a two years postdoctoral work with Prof. K. Hatada at the Osaka University (Japan), where he learned the secrets of anionic polymerisation, in 1998 he became the assistant professor at the University of Torino, working on the characterisation and degradation of complex polymer systems. After several stays at the University of Santiago de Compostela (Spain), he is actually in the Institute of Technological Investigations. His current research interests are focused on the synthesis of self-assembling block copolymers, with a special attention on their use as templates and for the hierarchical self-assembly of metal nanoparticles. Guojun Liu received his PhD. degree from the University of Toronto in 1989. After 8 months as a post-doctoral fellow in the University of Toronto, he joined McGill University for another post-doctoral year. He was appointed assistant professor at the University of Calgary in 1990, promoted to associate professor in 1995 and full professor in 1999. Since 2004 he has been serving the Department of Chemistry at Queen's University as Tier I (senior) Canada Research Chair in Materials Science. He has published more than 100 papers mostly on block copolymer nanomaterials. Physico-chemist of formation, Sebasstien Lecommandoux has integrated the Centre de Recherche Paul Pascal (group of Professor Franz Hardouin, Bordeaux, France) in 1992 to prepare his Master and his Diploma Thesis in Chemistry and Physics (1996) on Liquid Crystal Polymers. Then, he went to the Material Research Laboratory and the Beckman Institute (University of Illinois at Urbana-Champaign, USA), as a Post-Doc in the group of Professor Samuel I. Stupp, and learned the Art of Supramolecular Chemistry from January to December 1998. He joined the Laboratoire de Chimie des Polymeres Organiques (CNRS, University of Bordeaux, France) as Associate Professor in 1998 and became Professor in 2005. He received the Bronze Medal Award from the CNRS in 2004 for the work he did on the self-assembly of polypeptide-based block copolymers. His current research interests mainly focus on macromolecular engineering via block copolymer self-assembly in solution and in bulk, with a special attention on the relationship between nanostructures and biological functions.","published_at":"2017-06-22T21:12:40-04:00","created_at":"2017-06-22T21:12:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","ABA","ABC","block copolymer","book","membranes","mesostructured","nano","nanofibers","nanolithography","nanotubes. nanostructured carbons interfaces","polybutadiene","polymers","silicone","templates","triblock"],"price":26100,"price_min":26100,"price_max":26100,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378308036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Block Copolymers in Nanoscience","public_title":null,"options":["Default Title"],"price":26100,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-61056-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503","options":["Title"],"media":[{"alt":null,"id":353915371613,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Lazzari, Guojun Liu, S. Lecommandoux \u003cbr\u003eISBN \u003cspan\u003e978-3-527-61056-3\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003epages 447, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAn Introduction to Block Copolymer Applications: State-of-the-art and Future Developments. \u003cbr\u003e\u003cbr\u003e2. Guidelines for Synthesizing Block Copolymers. \u003cbr\u003e\u003cbr\u003e3. Block Copolymer Vesicles. \u003cbr\u003e\u003cbr\u003e4. Block Copolymer Micelles for Drug Delivery in Nanoscience. \u003cbr\u003e\u003cbr\u003e5. Stimuli-responsive Block Copolymer Assemblies. \u003cbr\u003e\u003cbr\u003e6. Self-assembly of Linear Polypeptide-based Block Copolymers. \u003cbr\u003e\u003cbr\u003e7. Synthesis, Self-assembly and Applications of Polyferrocenylsilane (PFS) Block Copolymers. \u003cbr\u003e\u003cbr\u003e8. Supramolecular Block Polymers Containing Metal-Ligand Binding Sites: From Synthesis to Properties. \u003cbr\u003e\u003cbr\u003e9. Methods for the Alignment and the Large-scale Ordering of Block Copolymer Morphologies. \u003cbr\u003e\u003cbr\u003e10. Block Copolymer Nanofibers and Nanotubes. \u003cbr\u003e\u003cbr\u003e11. Nanostructured Carbons from Block Coplymers. \u003cbr\u003e\u003cbr\u003e12. Block Copolymers at Interfaces. \u003cbr\u003e\u003cbr\u003e13. Block Copolymers as Templates for the Generation of Mesostructured Inorganic Materials. \u003cbr\u003e\u003cbr\u003e14. Mesostructured Polymers-Inorganic Hybrid Materials from Blocked Macromolecular Architectures and Nanoparticles. \u003cbr\u003e\u003cbr\u003e15. Block Ionomers for Fuel Cell Application. \u003cbr\u003e\u003cbr\u003e16. Structure, Properties and Applications of Crystallizable ABA and ABC Triblock Copolymers with Hydrogenated Polybutadiene Blocks. \u003cbr\u003e\u003cbr\u003e17. Basic Understanding of Phase Behavior and Structure of Silicone Block Copolymers and Surfactant-Block Copolymer Mixtures. \u003cbr\u003e\u003cbr\u003eSubject Index.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMassimo Lazzari\u003c\/b\u003e received his PhD in Macromolecular Chemistry at the University of Torino (Italy) under the supervision of Prof. O. Chiantore. After a two years postdoctoral work with Prof. K. Hatada at the Osaka University (Japan), where he learned the secrets of anionic polymerisation, in 1998 he became the assistant professor at the University of Torino, working on the characterisation and degradation of complex polymer systems. After several stays at the University of Santiago de Compostela (Spain), he is actually in the Institute of Technological Investigations. His current research interests are focused on the synthesis of self-assembling block copolymers, with a special attention on their use as templates and for the hierarchical self-assembly of metal nanoparticles. Guojun Liu received his PhD. degree from the University of Toronto in 1989. After 8 months as a post-doctoral fellow in the University of Toronto, he joined McGill University for another post-doctoral year. He was appointed assistant professor at the University of Calgary in 1990, promoted to associate professor in 1995 and full professor in 1999. Since 2004 he has been serving the Department of Chemistry at Queen's University as Tier I (senior) Canada Research Chair in Materials Science. He has published more than 100 papers mostly on block copolymer nanomaterials. Physico-chemist of formation, Sebasstien Lecommandoux has integrated the Centre de Recherche Paul Pascal (group of Professor Franz Hardouin, Bordeaux, France) in 1992 to prepare his Master and his Diploma Thesis in Chemistry and Physics (1996) on Liquid Crystal Polymers. Then, he went to the Material Research Laboratory and the Beckman Institute (University of Illinois at Urbana-Champaign, USA), as a Post-Doc in the group of Professor Samuel I. Stupp, and learned the Art of Supramolecular Chemistry from January to December 1998. He joined the Laboratoire de Chimie des Polymeres Organiques (CNRS, University of Bordeaux, France) as Associate Professor in 1998 and became Professor in 2005. He received the Bronze Medal Award from the CNRS in 2004 for the work he did on the self-assembly of polypeptide-based block copolymers. His current research interests mainly focus on macromolecular engineering via block copolymer self-assembly in solution and in bulk, with a special attention on the relationship between nanostructures and biological functions."}
Block Copolymers in So...
$256.00
{"id":11242231620,"title":"Block Copolymers in Solution: Fundamentals and Applications","handle":"978-0-470-01557-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ian W. Hamley \u003cbr\u003eISBN \u003cspan\u003e 978-0-470-01697-8\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003epages 300, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis unique text discusses the solution self-assembly of block copolymers and covers all aspects from basic physical chemistry to applications in soft nanotechnology. Recent advances have enabled the preparation of new materials with novel self-assembling structures, functionality and responsiveness and there have also been concomitant advances in theory and modelling.\u003cbr\u003e\u003cbr\u003eThe present text covers the principles of self-assembly in both dilute and concentrated solution, for example micellization and mesophase formation, etc., in chapters 2 and 3 respectively. Chapter 4 covers polyelectrolyte block copolymers - these materials are attracting significant attention from researchers and a solid basis for understanding their physical chemistry is emerging, and this is discussed. The next chapter discusses adsorption of block copolymers from solution at liquid and solid interfaces. The concluding chapter presents a discussion of selected applications, focussing on several important new concepts.\u003cbr\u003e\u003cbr\u003eThe book is aimed at researchers in polymer science as well as industrial scientists involved in the polymer and coatings industries. It will also be of interest to scientists working in soft matter self-assembly and self-organizing polymers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003ePreface. \u003cbr\u003e1. Introduction. \u003cbr\u003eReferences. \u003cbr\u003e2. Neutral Block Copolymers in Dilute Solution. \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Techniques for Studying Micellization. \u003cbr\u003e2.3 Micellization in PEO-based Block Copolymers. \u003cbr\u003e2.4 Micellization in Styrenic Block Copolymers. \u003cbr\u003e2.5 Determination of cmc. \u003cbr\u003e2.6 Thermodynamics of Micellization. \u003cbr\u003e2.7 Micellization and Micelle Dimensions: Theory and Simulation. \u003cbr\u003e2.8 Micelle Dimensions: Comparison Between Experiment and Theory. \u003cbr\u003e2.9 Interaction between Micelles. \u003cbr\u003e2.10 Dynamics of Micellization. \u003cbr\u003e2.11 Dynamic Modes. \u003cbr\u003e2.12 Specific Types of Micelles. \u003cbr\u003e2.13 Micellization in Mixed solvents. \u003cbr\u003e2.14 Mixed micelles. \u003cbr\u003e2.15 Block Copolymer\/Surfactant complexes. \u003cbr\u003e2.16 Complex Morphologies. \u003cbr\u003e2.17 Vesicles. \u003cbr\u003e2.18 Crystallization in Micelles. \u003cbr\u003eReferences. \u003cbr\u003e3. Concentrated Solutions. \u003cbr\u003e3.1 Understanding Phase Diagrams. \u003cbr\u003e3.2 Phase Behaviour of PEO-containing Block Copolymers. \u003cbr\u003e3.3 Gelation. \u003cbr\u003e3.4 Order-Disorder Phase Transition. \u003cbr\u003e3.5 Order-order Phase Transitions. \u003cbr\u003e3.6 Domain Spacing Scaling, and Solvent Distribution profiles. \u003cbr\u003e3.7 Semidilute Block Copolymer Solution Theory. \u003cbr\u003e3.8 Theoretical understanding of Phase Diagrams. \u003cbr\u003e3.9 Flow Alignment. \u003cbr\u003e3.10 Dynamics. \u003cbr\u003eReferences. \u003cbr\u003e4. Polyelectrolyte Block Copolymers. \u003cbr\u003e4.1 Micellization. \u003cbr\u003e4.2 Chain Conformation. \u003cbr\u003e4.3 Theory. \u003cbr\u003e4.4 Polyion Complexes. \u003cbr\u003e4.5 Copolymer-surfactant complexes. \u003cbr\u003e4.6 Complexation with other Molecules. \u003cbr\u003e4.7 Gelation. \u003cbr\u003e4.8 Hierarchical Order in Peptide Block Copolyelectrolyte Solutions. \u003cbr\u003eReferences. \u003cbr\u003e5. Adsorption. \u003cbr\u003e5.1 Introduction. \u003cbr\u003e5.2 Adsorption at the Air-Water Interface. \u003cbr\u003e5.3 Adsorption on Solid Substrates. \u003cbr\u003e5.4 Surface Forces Experiments. \u003cbr\u003e5.5 Modelling Adsorption. \u003cbr\u003eReferences. \u003cbr\u003e6. Applications \u003cbr\u003e6.1 Surfactancy\/Detergency. \u003cbr\u003e6.2 Solubilisation, Emusification and Stabilization. \u003cbr\u003e6.3 Drug Delivery. \u003cbr\u003e6.4 Biodegradable Block Copolymer Micelles. \u003cbr\u003e6.5 Thermoresponsive Micellar Systems. \u003cbr\u003e6.6 Metal-Containing Copolymer Micelles and Nanoreactors. \u003cbr\u003e6.7 Vesicles. \u003cbr\u003e6.8 Separation Media. \u003cbr\u003e6.9 Templating. \u003cbr\u003e6.10 Membranes. \u003cbr\u003e6.11 Other Applications. \u003cbr\u003eReferences. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:17-04:00","created_at":"2017-06-22T21:14:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","adsorption","biodegradable","block","book","copolymer","detergency","drug delivery","emusification","gelation","micellization","phase transition","polymers","solubilisation","solution","stabilization","styrenic","surfactancy","thermoresponsive","wiley"],"price":25600,"price_min":25600,"price_max":25600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378409796,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Block Copolymers in Solution: Fundamentals and Applications","public_title":null,"options":["Default Title"],"price":25600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-01697-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-01557-5.jpg?v=1499189998"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-01557-5.jpg?v=1499189998","options":["Title"],"media":[{"alt":null,"id":353916256349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-01557-5.jpg?v=1499189998"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-01557-5.jpg?v=1499189998","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ian W. Hamley \u003cbr\u003eISBN \u003cspan\u003e 978-0-470-01697-8\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003epages 300, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis unique text discusses the solution self-assembly of block copolymers and covers all aspects from basic physical chemistry to applications in soft nanotechnology. Recent advances have enabled the preparation of new materials with novel self-assembling structures, functionality and responsiveness and there have also been concomitant advances in theory and modelling.\u003cbr\u003e\u003cbr\u003eThe present text covers the principles of self-assembly in both dilute and concentrated solution, for example micellization and mesophase formation, etc., in chapters 2 and 3 respectively. Chapter 4 covers polyelectrolyte block copolymers - these materials are attracting significant attention from researchers and a solid basis for understanding their physical chemistry is emerging, and this is discussed. The next chapter discusses adsorption of block copolymers from solution at liquid and solid interfaces. The concluding chapter presents a discussion of selected applications, focussing on several important new concepts.\u003cbr\u003e\u003cbr\u003eThe book is aimed at researchers in polymer science as well as industrial scientists involved in the polymer and coatings industries. It will also be of interest to scientists working in soft matter self-assembly and self-organizing polymers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003ePreface. \u003cbr\u003e1. Introduction. \u003cbr\u003eReferences. \u003cbr\u003e2. Neutral Block Copolymers in Dilute Solution. \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Techniques for Studying Micellization. \u003cbr\u003e2.3 Micellization in PEO-based Block Copolymers. \u003cbr\u003e2.4 Micellization in Styrenic Block Copolymers. \u003cbr\u003e2.5 Determination of cmc. \u003cbr\u003e2.6 Thermodynamics of Micellization. \u003cbr\u003e2.7 Micellization and Micelle Dimensions: Theory and Simulation. \u003cbr\u003e2.8 Micelle Dimensions: Comparison Between Experiment and Theory. \u003cbr\u003e2.9 Interaction between Micelles. \u003cbr\u003e2.10 Dynamics of Micellization. \u003cbr\u003e2.11 Dynamic Modes. \u003cbr\u003e2.12 Specific Types of Micelles. \u003cbr\u003e2.13 Micellization in Mixed solvents. \u003cbr\u003e2.14 Mixed micelles. \u003cbr\u003e2.15 Block Copolymer\/Surfactant complexes. \u003cbr\u003e2.16 Complex Morphologies. \u003cbr\u003e2.17 Vesicles. \u003cbr\u003e2.18 Crystallization in Micelles. \u003cbr\u003eReferences. \u003cbr\u003e3. Concentrated Solutions. \u003cbr\u003e3.1 Understanding Phase Diagrams. \u003cbr\u003e3.2 Phase Behaviour of PEO-containing Block Copolymers. \u003cbr\u003e3.3 Gelation. \u003cbr\u003e3.4 Order-Disorder Phase Transition. \u003cbr\u003e3.5 Order-order Phase Transitions. \u003cbr\u003e3.6 Domain Spacing Scaling, and Solvent Distribution profiles. \u003cbr\u003e3.7 Semidilute Block Copolymer Solution Theory. \u003cbr\u003e3.8 Theoretical understanding of Phase Diagrams. \u003cbr\u003e3.9 Flow Alignment. \u003cbr\u003e3.10 Dynamics. \u003cbr\u003eReferences. \u003cbr\u003e4. Polyelectrolyte Block Copolymers. \u003cbr\u003e4.1 Micellization. \u003cbr\u003e4.2 Chain Conformation. \u003cbr\u003e4.3 Theory. \u003cbr\u003e4.4 Polyion Complexes. \u003cbr\u003e4.5 Copolymer-surfactant complexes. \u003cbr\u003e4.6 Complexation with other Molecules. \u003cbr\u003e4.7 Gelation. \u003cbr\u003e4.8 Hierarchical Order in Peptide Block Copolyelectrolyte Solutions. \u003cbr\u003eReferences. \u003cbr\u003e5. Adsorption. \u003cbr\u003e5.1 Introduction. \u003cbr\u003e5.2 Adsorption at the Air-Water Interface. \u003cbr\u003e5.3 Adsorption on Solid Substrates. \u003cbr\u003e5.4 Surface Forces Experiments. \u003cbr\u003e5.5 Modelling Adsorption. \u003cbr\u003eReferences. \u003cbr\u003e6. Applications \u003cbr\u003e6.1 Surfactancy\/Detergency. \u003cbr\u003e6.2 Solubilisation, Emusification and Stabilization. \u003cbr\u003e6.3 Drug Delivery. \u003cbr\u003e6.4 Biodegradable Block Copolymer Micelles. \u003cbr\u003e6.5 Thermoresponsive Micellar Systems. \u003cbr\u003e6.6 Metal-Containing Copolymer Micelles and Nanoreactors. \u003cbr\u003e6.7 Vesicles. \u003cbr\u003e6.8 Separation Media. \u003cbr\u003e6.9 Templating. \u003cbr\u003e6.10 Membranes. \u003cbr\u003e6.11 Other Applications. \u003cbr\u003eReferences. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$160.00
{"id":11242236164,"title":"Blowing Agents and Foaming Processes 2001","handle":"978-1-85957-252-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-252-8 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 13th-14th March 2001\u003cbr\u003e\u003cbr\u003ePages: 190, Figures: 245, Tables: 82\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years the markets for foams or expended substrates has grown enormously, this is documented through the high number of patent applications for products and processes which are filed each year. This third, international conference dedicated to the critical role of blowing agents in foamed plastics and rubber assembled major blowing agent manufacturers and suppliers, foaming process providers and academia to present insight into the industrial progress and research for foam generation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of papers\u003c\/strong\u003e\u003cbr\u003eNew Polymeric Foam Technologies \u003cbr\u003eMichael E. Reedy and *Stan Dudek, Reedy International Corporation, USA and *Durrell Components, USA \u003cbr\u003eAdvantages of the Use of Chemical Foaming Agents in Wood-Plastic Composites \u003cbr\u003eGunther Luebke, Clariant Masterbatch GmbH \u0026amp; Co. OHG, Germany \u003cbr\u003eTitanate and Zirconate Coupling Agents in Foamed Polymers \u003cbr\u003eSalvatore J. Monte, Kenrich Petrochemicals, Inc., USA \u003cbr\u003eCompounding Based Rotational Foam Molding of Polyolefin Foams \u003cbr\u003eRemon Pop-Iliev, Ghaus M. Rizvi, and Chul B Park; Microcellular Plastics Manufacturing Laboratory, University of Toronto, Canada \u003cbr\u003eA New Grade of Expandable Microspheres for Foaming Polypropylene \u003cbr\u003eKlas Elfving, Expancel, Sweden \u003cbr\u003eCan User Demands Be Met By Suppliers? \u003cbr\u003eSiebolt Hettinga, Hettinga Technologies, Inc., USA \u003cbr\u003eStrategies for Achieving Fine-celled Low-Density Polypropylene Foams \u003cbr\u003eHani E.Naguib, Chul B. Park and *Achim Hesse, *Ulf Panzer, Norbert Reichelt; Microcellular Plastics Manufacturing Laboratory, University of Toronto, Canada and *Borealis GmbH, Austria \u003cbr\u003eLow Pressure Injection Moulding \u003cbr\u003eHelmut Eckardt, Process and Engineering Department, Battenfeld GmbH, Germany \u003cbr\u003eNew Technology for Foam Injection Moulding with Physical Blowing Agents \u003cbr\u003eW. Michaeli, Sasan Habibi-Naini, IKV, Germany \u003cbr\u003eCase Studies on Gas in Melt Technology (Gimtech) and Coralfoam Technology \u003cbr\u003eBarrie Penny, Pentex Limited, UK \u003cbr\u003eFoaming of Cable Insulation - Some Physical Basics \u003cbr\u003eThomas Reiner and Horst Scheid, Siebe Engineering, Germany \u003cbr\u003eInnovative Approach To Molding Large Structural Parts Using Multi-Nozzle Low Pressure Technology \u003cbr\u003eBrian Read and *Richard Lynch, Horizon Plastics Limited, Canada and *Uniloy Milacron, USA \u003cbr\u003eNew Aspects of Endothermal Blowing Agents in Blow Moulding Applications \u003cbr\u003eRudi France, Inkutec GmbH, Germany \u003cbr\u003eRigid PVC Cellular Extrusion North America and Europe Market and Technology Trends \u003cbr\u003eStephen Quinn, Bayer plc, UK \u003cbr\u003eTechnical and Environmental Acceptance of HFCs as Blowing Agents for XPS Boards \u003cbr\u003eChrister Bratt* and Arnaud Albouy**, *Nordic Foam AB, Sweden and **Atofina, France \u003cbr\u003eSolubility of Simple Alkanes in Polyethylene and Its Effects in Low Density Foam Extrusion \u003cbr\u003eS. T. Lee and Kevin Lee, Sealed Air Corporation, USA \u003cbr\u003eMethylal or Dimethoxymethane as a Blowing Agent for Polyurethane Foams? \u003cbr\u003eMichel Beaujean, Lambiotte et Cie S.A., Belgium \u003cbr\u003eWhat comes After Cyclopentane? \u003cbr\u003eHolger Seifert, Anja Biedermann and Werner Wiegmann, Elastogran, Germany \u003cbr\u003eMolding Technology: Introduction, Applications, and Advantages \u003cbr\u003eDavid Pierick and Robert Janisch, MuCell Molding, Trexel, Inc., and Trexel, Inc., USA \u003cbr\u003eHFC-245fa \u0026amp; HFC-245fa Blends: Blowing Agent Solutions for All Rigid and Integral Skin Foam Applications \u003cbr\u003eDavid Williams and Mary Bogdan, Honeywell, USA \u003cbr\u003eNew Blowing Agents for Insulated Panels \u003cbr\u003eBarrier G. Colvin, IFS Chemicals Limited, UK \u003cbr\u003eThe Effect of Nucleating Agent Particle Size and Specific Surface Area on Foam Morphology: A New Descriptor \u003cbr\u003eDenis Rodrigue 1, Caroline Woelfle 1 and Louis E. Daigneault 2, 1 Université Laval, Canada and 2 IPEX, Canada \u003cbr\u003eModern Polyurethane Machine and Production Line Concepts for Processing Environmentally Compatible Blowing Agents \u003cbr\u003eTerry Armitt, Hennecke GmbH, Germany \u003cbr\u003eHFC Blends for the Production of High Performance XPS Insulating Foams \u003cbr\u003ePierre Dournel (1) and Lothar Zipfel (2), (1) Solvay Research \u0026amp; Technology, Belgium and (2) Solvay Fluor und Derivate GmbH, Germany \u003cbr\u003eOptimization of Insulation Performance by HFC-365mfc \u003cbr\u003eLothar Zipfel (1), Pierre Dournel (2), (1) Solvay Strategic Business Unit Fluor, Solvay Fluor und Derivate GmbH, Germany and (2) Solvay Strategic Business Unit Fluor, Solvay Fluor und Derivate GmbH, Belgium \u003cbr\u003eNew Developments in PET Foam \u003cbr\u003eHussain Al Ghatta, D. Giordano and T. Severini, Sinco Ricerche SpA, Italy \u003cbr\u003eOptimization of Crosslinking and Gas Liberation in Cellular Rubber \u003cbr\u003eKristin Vinje, SINTEF Materials Technology, Norway \u003cbr\u003eFoaming of Film and Sheet from Polypropylene and Polystyrene \u003cbr\u003eUlrich Berghaus, Reifenhaeuser GmbH \u0026amp; Co., Germany\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:31-04:00","created_at":"2017-06-22T21:14:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","blowing agents","book","cable insulation","coupling agents","foaming agents","foams","insulation","p-additives","plastics","polymer","polyolefin foams","titanate","XPS Boards","zirconate"],"price":16000,"price_min":16000,"price_max":16000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378422980,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2001","public_title":null,"options":["Default Title"],"price":16000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-252-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-252-8.jpg?v=1499190052"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-252-8.jpg?v=1499190052","options":["Title"],"media":[{"alt":null,"id":353916485725,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-252-8.jpg?v=1499190052"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-252-8.jpg?v=1499190052","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-252-8 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 13th-14th March 2001\u003cbr\u003e\u003cbr\u003ePages: 190, Figures: 245, Tables: 82\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years the markets for foams or expended substrates has grown enormously, this is documented through the high number of patent applications for products and processes which are filed each year. This third, international conference dedicated to the critical role of blowing agents in foamed plastics and rubber assembled major blowing agent manufacturers and suppliers, foaming process providers and academia to present insight into the industrial progress and research for foam generation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of papers\u003c\/strong\u003e\u003cbr\u003eNew Polymeric Foam Technologies \u003cbr\u003eMichael E. Reedy and *Stan Dudek, Reedy International Corporation, USA and *Durrell Components, USA \u003cbr\u003eAdvantages of the Use of Chemical Foaming Agents in Wood-Plastic Composites \u003cbr\u003eGunther Luebke, Clariant Masterbatch GmbH \u0026amp; Co. OHG, Germany \u003cbr\u003eTitanate and Zirconate Coupling Agents in Foamed Polymers \u003cbr\u003eSalvatore J. Monte, Kenrich Petrochemicals, Inc., USA \u003cbr\u003eCompounding Based Rotational Foam Molding of Polyolefin Foams \u003cbr\u003eRemon Pop-Iliev, Ghaus M. Rizvi, and Chul B Park; Microcellular Plastics Manufacturing Laboratory, University of Toronto, Canada \u003cbr\u003eA New Grade of Expandable Microspheres for Foaming Polypropylene \u003cbr\u003eKlas Elfving, Expancel, Sweden \u003cbr\u003eCan User Demands Be Met By Suppliers? \u003cbr\u003eSiebolt Hettinga, Hettinga Technologies, Inc., USA \u003cbr\u003eStrategies for Achieving Fine-celled Low-Density Polypropylene Foams \u003cbr\u003eHani E.Naguib, Chul B. Park and *Achim Hesse, *Ulf Panzer, Norbert Reichelt; Microcellular Plastics Manufacturing Laboratory, University of Toronto, Canada and *Borealis GmbH, Austria \u003cbr\u003eLow Pressure Injection Moulding \u003cbr\u003eHelmut Eckardt, Process and Engineering Department, Battenfeld GmbH, Germany \u003cbr\u003eNew Technology for Foam Injection Moulding with Physical Blowing Agents \u003cbr\u003eW. Michaeli, Sasan Habibi-Naini, IKV, Germany \u003cbr\u003eCase Studies on Gas in Melt Technology (Gimtech) and Coralfoam Technology \u003cbr\u003eBarrie Penny, Pentex Limited, UK \u003cbr\u003eFoaming of Cable Insulation - Some Physical Basics \u003cbr\u003eThomas Reiner and Horst Scheid, Siebe Engineering, Germany \u003cbr\u003eInnovative Approach To Molding Large Structural Parts Using Multi-Nozzle Low Pressure Technology \u003cbr\u003eBrian Read and *Richard Lynch, Horizon Plastics Limited, Canada and *Uniloy Milacron, USA \u003cbr\u003eNew Aspects of Endothermal Blowing Agents in Blow Moulding Applications \u003cbr\u003eRudi France, Inkutec GmbH, Germany \u003cbr\u003eRigid PVC Cellular Extrusion North America and Europe Market and Technology Trends \u003cbr\u003eStephen Quinn, Bayer plc, UK \u003cbr\u003eTechnical and Environmental Acceptance of HFCs as Blowing Agents for XPS Boards \u003cbr\u003eChrister Bratt* and Arnaud Albouy**, *Nordic Foam AB, Sweden and **Atofina, France \u003cbr\u003eSolubility of Simple Alkanes in Polyethylene and Its Effects in Low Density Foam Extrusion \u003cbr\u003eS. T. Lee and Kevin Lee, Sealed Air Corporation, USA \u003cbr\u003eMethylal or Dimethoxymethane as a Blowing Agent for Polyurethane Foams? \u003cbr\u003eMichel Beaujean, Lambiotte et Cie S.A., Belgium \u003cbr\u003eWhat comes After Cyclopentane? \u003cbr\u003eHolger Seifert, Anja Biedermann and Werner Wiegmann, Elastogran, Germany \u003cbr\u003eMolding Technology: Introduction, Applications, and Advantages \u003cbr\u003eDavid Pierick and Robert Janisch, MuCell Molding, Trexel, Inc., and Trexel, Inc., USA \u003cbr\u003eHFC-245fa \u0026amp; HFC-245fa Blends: Blowing Agent Solutions for All Rigid and Integral Skin Foam Applications \u003cbr\u003eDavid Williams and Mary Bogdan, Honeywell, USA \u003cbr\u003eNew Blowing Agents for Insulated Panels \u003cbr\u003eBarrier G. Colvin, IFS Chemicals Limited, UK \u003cbr\u003eThe Effect of Nucleating Agent Particle Size and Specific Surface Area on Foam Morphology: A New Descriptor \u003cbr\u003eDenis Rodrigue 1, Caroline Woelfle 1 and Louis E. Daigneault 2, 1 Université Laval, Canada and 2 IPEX, Canada \u003cbr\u003eModern Polyurethane Machine and Production Line Concepts for Processing Environmentally Compatible Blowing Agents \u003cbr\u003eTerry Armitt, Hennecke GmbH, Germany \u003cbr\u003eHFC Blends for the Production of High Performance XPS Insulating Foams \u003cbr\u003ePierre Dournel (1) and Lothar Zipfel (2), (1) Solvay Research \u0026amp; Technology, Belgium and (2) Solvay Fluor und Derivate GmbH, Germany \u003cbr\u003eOptimization of Insulation Performance by HFC-365mfc \u003cbr\u003eLothar Zipfel (1), Pierre Dournel (2), (1) Solvay Strategic Business Unit Fluor, Solvay Fluor und Derivate GmbH, Germany and (2) Solvay Strategic Business Unit Fluor, Solvay Fluor und Derivate GmbH, Belgium \u003cbr\u003eNew Developments in PET Foam \u003cbr\u003eHussain Al Ghatta, D. Giordano and T. Severini, Sinco Ricerche SpA, Italy \u003cbr\u003eOptimization of Crosslinking and Gas Liberation in Cellular Rubber \u003cbr\u003eKristin Vinje, SINTEF Materials Technology, Norway \u003cbr\u003eFoaming of Film and Sheet from Polypropylene and Polystyrene \u003cbr\u003eUlrich Berghaus, Reifenhaeuser GmbH \u0026amp; Co., Germany\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$180.00
{"id":11242245252,"title":"Blowing Agents and Foaming Processes 2002","handle":"978-1-85957-315-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Heidelberg, Germany, 27th - 28th May, 2002 \u003cbr\u003eISBN 978-1-85957-315-0 \u003cbr\u003e\u003cbr\u003e250 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFoaming is a large area of the plastics processing industry and the possibilities grow every year through the introduction of new products, processes and systems. The advances in the industry are clearly documented by the high numbers of patent applications for products or processes which are filed every year.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHydrocarbon-Blown Formulations for Appliances and Rigid Panels: Available Solutions for Specific Local Regulations\n\u003cp\u003eChristian Cairati \u0026amp; Davide Lucca, Cannon AFROS SpA, Italy\u003c\/p\u003e\n\u003cp\u003eExtrusion of Thermoplastic Foams with CO2 as a Blowing Agent\u003c\/p\u003e\n\u003cp\u003eRobert Heinz \u0026amp; Johannes Lorenz, IKV Aachen, Germany\u003c\/p\u003e\n\u003cp\u003eDevelopment of New High Temperature Chemical Foaming Agents\u003c\/p\u003e\n\u003cp\u003eGunther Luebke \u0026amp; Marcel Weisner, Clariant Masterbatch GmbH \u0026amp; Co, Germany\u003c\/p\u003e\n\u003cp\u003eEffects of the Die Geometry on the Cell Nulceation of Microcellular PS Foams Blown with CO2\u003c\/p\u003e\n\u003cp\u003eChul Park, University of Toronto, USA\u003c\/p\u003e\n\u003cp\u003eHCF-365mfc Foaming Agent Blends\u003c\/p\u003e\n\u003cp\u003eLothar Zipfel, Solvay Fluor and Derivative GmbH, Germany\u003c\/p\u003e\n\u003cp\u003eEnovateTM 3000 Blowing Agent - A Versatile and Cost Effective Blowing Agent Technology for Rigid Foam\u003c\/p\u003e\n\u003cp\u003eMary Bogdan, Honeywell Specialty Chemicals, USA\u003c\/p\u003e\n\u003cp\u003eLatest Develoment with Structural Foam\u003c\/p\u003e\n\u003cp\u003eHelmut Eckardt, Battenfeld Injection Moulding Technology, Germany\u003c\/p\u003e\n\u003cp\u003ePaper unavailable at time of print\u003c\/p\u003e\n\u003cp\u003eNew Developments in MuCell Microcellular Foam Molding Technology and Commercial Applications\u003c\/p\u003e\n\u003cp\u003eRobert Janisch, Trexel Inc, USA\u003c\/p\u003e\n\u003cp\u003eSimulation of Polyolefine Foam Parameters as Prediction for Cable Production Limits\u003c\/p\u003e\n\u003cp\u003eHorst Scheid, Siebe Engineering, Germany\u003c\/p\u003e\n\u003cp\u003eFoam Extrusion of PS Blown with HFC-134a - Impact on Screw Design and Processing Conditions\u003c\/p\u003e\n\u003cp\u003eRichard Gendron, National Research Council of Canada, USA\u003c\/p\u003e\n\u003cp\u003eFeedblock Technologies for Foam Core Products\u003c\/p\u003e\n\u003cp\u003eJosef Dobrowsky, Cincinnati (CET) Extrusion GmbH, Austria\u003c\/p\u003e\n\u003cp\u003eThe Use of Chemical Blowing Agents in the Rotational Moulding of Plastics\u003c\/p\u003e\n\u003cp\u003eMark Kearns, PPRC Belfast, UK\u003c\/p\u003e\n\u003cp\u003eAn Overview of the Technical Advantages of Physically XL PO Foams\u003c\/p\u003e\n\u003cp\u003eMark Hennessy, Sekisui UK Ltd, UK\u003c\/p\u003e\n\u003cp\u003eCrosslinking of LDPE in the Presence of Polyfunctional Monomers to Modify Matrix Properties and CYCLE times\u003c\/p\u003e\n\u003cp\u003eCoswald Sipaut \u0026amp; Dr Geoff Sims, Umist \/Universiti Sains Malaysia, UK\u003c\/p\u003e\n\u003cp\u003eThe Obtaining of Polyurethanes with Uresa Groups by the Pseudoforpolymer Method\u003c\/p\u003e\n\u003cp\u003eN. I. Koltsov, Chuvash State University, Russia\u003c\/p\u003e\n\u003cp\u003ePaper unavailable at time of print\u003c\/p\u003e\n\u003cp\u003eThe Effect OF Calcium Carbonate Particle Size on Ldpe Foam Morphology\u003c\/p\u003e\n\u003cp\u003eDenis Rodrigue \u0026amp; Ryan Gosselin, University Laval, Canada\u003c\/p\u003e\n\u003cp\u003eA New Low Cost Injection Moulding System that Reduces Product Costs\u003c\/p\u003e\n\u003cp\u003eAnton Hagen \u0026amp; Joseph McRoskey,\u003c\/p\u003e\n\u003cp w:st=\"on\"\u003eSpirax Europe BV, The Netherlands\u003c\/p\u003e\n\u003cp\u003eA Foam Extrusion Process with \"Woodtruder\"\u003c\/p\u003e\n\u003cp\u003eGerhard Folie, Davis Standard GmbH, Germany\u003c\/p\u003e\n\u003cp\u003eImproved Foam Extrusion Productivity - a New Screw Design Concept - Turbo-Screws\u003c\/p\u003e\n\u003cp\u003eDavid Fogarty, Plastics Engineering Associated Licencing, Inc, USA\u003c\/p\u003e\n\u003cp\u003eEffects of Recycling on the Rheological Properties and and Foaming Behaviors of Branched PP\u003c\/p\u003e\n\u003cp\u003eChul Park, University of Toronto, USA\u003c\/p\u003e\n\u003cp\u003eThe Influence of Elongational Properties of the Melt on the Morphology of PES and PPE Cellular Materials\u003c\/p\u003e\n\u003cp\u003eFrank Wöllecke, Universitaet Bayreuth, Germany\u003c\/p\u003e\n\u003cp\u003eInnovative Foaming Technologies\u003c\/p\u003e\n\u003cp\u003eMichael Reedy, Reedy International Corp, USA\u003c\/p\u003e\n\u003cp\u003eMelt Strength Analysis for Extruded Polyolefin Foam Development\u003c\/p\u003e\n\u003cp\u003eShau-Tarng Lee, Sealed Air Corp, USA\u003c\/p\u003e","published_at":"2017-06-22T21:14:59-04:00","created_at":"2017-06-22T21:14:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","extrusion","foaming technologies","foaming. rubber","foams","p-additives","plastics","polymer","polyolefin foam","processing conditions","PS","screw design","structural foam"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378451652,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2002","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-315-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-315-0.jpg?v=1499718354"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-315-0.jpg?v=1499718354","options":["Title"],"media":[{"alt":null,"id":353916944477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-315-0.jpg?v=1499718354"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-315-0.jpg?v=1499718354","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Heidelberg, Germany, 27th - 28th May, 2002 \u003cbr\u003eISBN 978-1-85957-315-0 \u003cbr\u003e\u003cbr\u003e250 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFoaming is a large area of the plastics processing industry and the possibilities grow every year through the introduction of new products, processes and systems. The advances in the industry are clearly documented by the high numbers of patent applications for products or processes which are filed every year.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHydrocarbon-Blown Formulations for Appliances and Rigid Panels: Available Solutions for Specific Local Regulations\n\u003cp\u003eChristian Cairati \u0026amp; Davide Lucca, Cannon AFROS SpA, Italy\u003c\/p\u003e\n\u003cp\u003eExtrusion of Thermoplastic Foams with CO2 as a Blowing Agent\u003c\/p\u003e\n\u003cp\u003eRobert Heinz \u0026amp; Johannes Lorenz, IKV Aachen, Germany\u003c\/p\u003e\n\u003cp\u003eDevelopment of New High Temperature Chemical Foaming Agents\u003c\/p\u003e\n\u003cp\u003eGunther Luebke \u0026amp; Marcel Weisner, Clariant Masterbatch GmbH \u0026amp; Co, Germany\u003c\/p\u003e\n\u003cp\u003eEffects of the Die Geometry on the Cell Nulceation of Microcellular PS Foams Blown with CO2\u003c\/p\u003e\n\u003cp\u003eChul Park, University of Toronto, USA\u003c\/p\u003e\n\u003cp\u003eHCF-365mfc Foaming Agent Blends\u003c\/p\u003e\n\u003cp\u003eLothar Zipfel, Solvay Fluor and Derivative GmbH, Germany\u003c\/p\u003e\n\u003cp\u003eEnovateTM 3000 Blowing Agent - A Versatile and Cost Effective Blowing Agent Technology for Rigid Foam\u003c\/p\u003e\n\u003cp\u003eMary Bogdan, Honeywell Specialty Chemicals, USA\u003c\/p\u003e\n\u003cp\u003eLatest Develoment with Structural Foam\u003c\/p\u003e\n\u003cp\u003eHelmut Eckardt, Battenfeld Injection Moulding Technology, Germany\u003c\/p\u003e\n\u003cp\u003ePaper unavailable at time of print\u003c\/p\u003e\n\u003cp\u003eNew Developments in MuCell Microcellular Foam Molding Technology and Commercial Applications\u003c\/p\u003e\n\u003cp\u003eRobert Janisch, Trexel Inc, USA\u003c\/p\u003e\n\u003cp\u003eSimulation of Polyolefine Foam Parameters as Prediction for Cable Production Limits\u003c\/p\u003e\n\u003cp\u003eHorst Scheid, Siebe Engineering, Germany\u003c\/p\u003e\n\u003cp\u003eFoam Extrusion of PS Blown with HFC-134a - Impact on Screw Design and Processing Conditions\u003c\/p\u003e\n\u003cp\u003eRichard Gendron, National Research Council of Canada, USA\u003c\/p\u003e\n\u003cp\u003eFeedblock Technologies for Foam Core Products\u003c\/p\u003e\n\u003cp\u003eJosef Dobrowsky, Cincinnati (CET) Extrusion GmbH, Austria\u003c\/p\u003e\n\u003cp\u003eThe Use of Chemical Blowing Agents in the Rotational Moulding of Plastics\u003c\/p\u003e\n\u003cp\u003eMark Kearns, PPRC Belfast, UK\u003c\/p\u003e\n\u003cp\u003eAn Overview of the Technical Advantages of Physically XL PO Foams\u003c\/p\u003e\n\u003cp\u003eMark Hennessy, Sekisui UK Ltd, UK\u003c\/p\u003e\n\u003cp\u003eCrosslinking of LDPE in the Presence of Polyfunctional Monomers to Modify Matrix Properties and CYCLE times\u003c\/p\u003e\n\u003cp\u003eCoswald Sipaut \u0026amp; Dr Geoff Sims, Umist \/Universiti Sains Malaysia, UK\u003c\/p\u003e\n\u003cp\u003eThe Obtaining of Polyurethanes with Uresa Groups by the Pseudoforpolymer Method\u003c\/p\u003e\n\u003cp\u003eN. I. Koltsov, Chuvash State University, Russia\u003c\/p\u003e\n\u003cp\u003ePaper unavailable at time of print\u003c\/p\u003e\n\u003cp\u003eThe Effect OF Calcium Carbonate Particle Size on Ldpe Foam Morphology\u003c\/p\u003e\n\u003cp\u003eDenis Rodrigue \u0026amp; Ryan Gosselin, University Laval, Canada\u003c\/p\u003e\n\u003cp\u003eA New Low Cost Injection Moulding System that Reduces Product Costs\u003c\/p\u003e\n\u003cp\u003eAnton Hagen \u0026amp; Joseph McRoskey,\u003c\/p\u003e\n\u003cp w:st=\"on\"\u003eSpirax Europe BV, The Netherlands\u003c\/p\u003e\n\u003cp\u003eA Foam Extrusion Process with \"Woodtruder\"\u003c\/p\u003e\n\u003cp\u003eGerhard Folie, Davis Standard GmbH, Germany\u003c\/p\u003e\n\u003cp\u003eImproved Foam Extrusion Productivity - a New Screw Design Concept - Turbo-Screws\u003c\/p\u003e\n\u003cp\u003eDavid Fogarty, Plastics Engineering Associated Licencing, Inc, USA\u003c\/p\u003e\n\u003cp\u003eEffects of Recycling on the Rheological Properties and and Foaming Behaviors of Branched PP\u003c\/p\u003e\n\u003cp\u003eChul Park, University of Toronto, USA\u003c\/p\u003e\n\u003cp\u003eThe Influence of Elongational Properties of the Melt on the Morphology of PES and PPE Cellular Materials\u003c\/p\u003e\n\u003cp\u003eFrank Wöllecke, Universitaet Bayreuth, Germany\u003c\/p\u003e\n\u003cp\u003eInnovative Foaming Technologies\u003c\/p\u003e\n\u003cp\u003eMichael Reedy, Reedy International Corp, USA\u003c\/p\u003e\n\u003cp\u003eMelt Strength Analysis for Extruded Polyolefin Foam Development\u003c\/p\u003e\n\u003cp\u003eShau-Tarng Lee, Sealed Air Corp, USA\u003c\/p\u003e"}
Blowing Agents and Foa...
$978.00
$180.00
{"id":11242235332,"title":"Blowing Agents and Foaming Processes 2003","handle":"978-1-85957-366-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-366-2 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 19th-20th May 2003\u003cbr\u003e\u003cbr\u003e232 pages\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe fifth Blowing Agents and Foaming Processes Conference was held in Munich, Germany and was dedicated to the critical role of blowing agents in foamed plastics and rubber. \u003cbr\u003e\u003cbr\u003eThe two day international conference brought together major blowing agent manufacturers and suppliers, foaming process providers and academia to present an insight into the latest industrial progress and research for foam generation. \u003cbr\u003e\u003cbr\u003eReports were presented on new injection molding processes, structural foam, micro cellular and extrusion processes. There were also presentations from the more theoretical and academic side, which provide a good overview of the physical properties, effects, performance and functions of blowing agents.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of papers \u003cbr\u003eSESSION 1: BLOWING AGENTS, NEW FOAMING SYSTEMS AND GASES\u003c\/strong\u003e \u003cbr\u003eAzodicarbonamide, One Blowing Agent for One Use? Most Definitely Not!\u003cbr\u003eDr Stephen Quinn, Bayer UK, UK \u003cbr\u003eNew Developments with Expandable Microspheres\u003cbr\u003eDr Klas Elving, Expancel, Sweden \u003cbr\u003eMethylal: A Blowing or Co-Blowing Agent for Polyurethane and Other Foams\u003cbr\u003eDr Michel Beaujean, Lambiotte \u0026amp; Cie S. A., Belgium \u003cbr\u003eEnovateTM 3000 Blowing Agent is a Versatile Blowing Agent for Polyurethane and Polyisocyanurate Foam in the European Construction Industry\u003cbr\u003eMary C Bogdan, Honeywell International, USA \u003cbr\u003eSolkane 365\/227 Blends for Polyurethane Foaming: Skills on Commercial Use and Bulk Handling\u003cbr\u003eDr Lothar Zipfel, SOLVAY Fluor und Derivate, Germany \u003cbr\u003eCell Structure and Properties of Rigid Polyurethane Foams Blown with New Generation Agents\u003cbr\u003eDr Eng Aleksander Prociak, Cracow University of Technology, Poland \u003cbr\u003e\u003cstrong\u003eSESSION 2: FOAM INJECTION MOULDING - DIFFERENT VIEWS AND RESULTS\u003c\/strong\u003e \u003cbr\u003eThermoplastic Structural Foam -Wellknown and New Process\u003cbr\u003eDr Helmut Eckardt, Battenfeld GmbH, Germany \u003cbr\u003eFoam Injection Moulding with Chemical Blowing Agents\u003cbr\u003eMr Robert Benker, Geobra Brandstatter GmbH \u0026amp; Co Kg, Germany \u003cbr\u003eInvestigation on Foam Injection Moulding with a Special Injection Moulding Nozzle\u003cbr\u003eDipl Ing Sasan Habibi-Naini, IKV - Institut für Kunststoffverarbeitung, Germany \u003cbr\u003ePhysical Foaming with ErgoCell - Machine Technology, Benefits, Limits, Economic Efficiency\u003cbr\u003eDr Rolf Sauthof, Demag Ergotec GmbH, Germany \u003cbr\u003eNew Developments in Mucell Markets\u003cbr\u003eDr Hartmut Traut, Trexel GmbH, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 3: EXTRUDED FOAMED THERMOPLASTICS\u003c\/strong\u003e \u003cbr\u003eFoam Extrusion of PS Blown with a Mixture of HFC-134a and Isopropanol\u003cbr\u003eDr Richard Gendron, Conseil National de Recherches\/ National Research Council Canada, Canada \u003cbr\u003eOverview and Marketing Aspects of the Extrusion Foam Business\u003cbr\u003eReiner Bunnenberg \u0026amp; Dröge Berthold, SMSFolientechnik GmbH \u0026amp; Co Kg, Austria \u003cbr\u003eFoam Extrusion of Polypropylene Foams - New Developments and Applications\u003cbr\u003eDr Ing Dirk Kropp, Polymer-Tec GmbH, Germany \u003cbr\u003eNew Demands for Foam Extrusion Technology when using CO2 as Direct Gased Foaming Agents\u003cbr\u003eDr Frank van Lueck, SMS Foam Technology, Austria \u003cbr\u003e\u003cstrong\u003eSESSION 4: NEW ASPECTS ON EXTRUSION AND EXTRUDED SUBSTRATES\u003c\/strong\u003e \u003cbr\u003ePP Blends with Tailored Foamability and Mechanical Properties\u003cbr\u003eDr Norbert Reichelt, Borealis GmbH, Austria \u003cbr\u003eThe Effect of Nucleating Agents on Polypropylene Foam Morphology\u003cbr\u003eDr Denis Rodrigue, Université Laval, Canada \u003cbr\u003eEvaluation of HFC-245fa as an Alternative Blowing Agent for Extruded Thermoplastic Foams\u003cbr\u003eDr Caroline Vachon, Conseil National de Recherches\/ National Research Council Canada, Canada \u003cbr\u003eExtrusion for Microcellular Foams\u003cbr\u003eDipl Ing Johannes Lorenz, IKV - Institut für Kunststoffverarbeitung, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 5: THEORECTICAL AND PRACTICAL EXPERIENCE OF FOAMS AND RELATED RESULTS\u003c\/strong\u003e \u003cbr\u003eDensity and Open Cell Effects on PE Foam Modulus\u003cbr\u003eDr Shau-Tarng Lee, Sealed Air Corporation, USA \u003cbr\u003eThe Role of Extensional Rheology in the Screening Phase of the Development of New Closed Cell Foams\u003cbr\u003eDr Frank Woellecke, Universität Bayreuth, Germany \u003cbr\u003eTrans-1,2-Dichloroethylene\/Pentanes Coblown Foams for Improved Fire Performance\u003cbr\u003eDr Laurent Caron, Atofina Chemicals Inc, France \u003cbr\u003eStabilization of Polyolefin Foams during Ageing\u003cbr\u003eDr Chung Poo Park, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:28-04:00","created_at":"2017-06-22T21:14:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","blends","blowing agents","book","closed cell","foam extrusion","foamed plastics","injection moulding","molding","nozzle","p-additives","polymer","rheology"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":97800,"compare_at_price_min":97800,"compare_at_price_max":97800,"compare_at_price_varies":false,"variants":[{"id":43378418116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2003","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":97800,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-366-2.jpg?v=1499720317"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-366-2.jpg?v=1499720317","options":["Title"],"media":[{"alt":null,"id":353916977245,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-366-2.jpg?v=1499720317"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-366-2.jpg?v=1499720317","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-366-2 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 19th-20th May 2003\u003cbr\u003e\u003cbr\u003e232 pages\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe fifth Blowing Agents and Foaming Processes Conference was held in Munich, Germany and was dedicated to the critical role of blowing agents in foamed plastics and rubber. \u003cbr\u003e\u003cbr\u003eThe two day international conference brought together major blowing agent manufacturers and suppliers, foaming process providers and academia to present an insight into the latest industrial progress and research for foam generation. \u003cbr\u003e\u003cbr\u003eReports were presented on new injection molding processes, structural foam, micro cellular and extrusion processes. There were also presentations from the more theoretical and academic side, which provide a good overview of the physical properties, effects, performance and functions of blowing agents.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of papers \u003cbr\u003eSESSION 1: BLOWING AGENTS, NEW FOAMING SYSTEMS AND GASES\u003c\/strong\u003e \u003cbr\u003eAzodicarbonamide, One Blowing Agent for One Use? Most Definitely Not!\u003cbr\u003eDr Stephen Quinn, Bayer UK, UK \u003cbr\u003eNew Developments with Expandable Microspheres\u003cbr\u003eDr Klas Elving, Expancel, Sweden \u003cbr\u003eMethylal: A Blowing or Co-Blowing Agent for Polyurethane and Other Foams\u003cbr\u003eDr Michel Beaujean, Lambiotte \u0026amp; Cie S. A., Belgium \u003cbr\u003eEnovateTM 3000 Blowing Agent is a Versatile Blowing Agent for Polyurethane and Polyisocyanurate Foam in the European Construction Industry\u003cbr\u003eMary C Bogdan, Honeywell International, USA \u003cbr\u003eSolkane 365\/227 Blends for Polyurethane Foaming: Skills on Commercial Use and Bulk Handling\u003cbr\u003eDr Lothar Zipfel, SOLVAY Fluor und Derivate, Germany \u003cbr\u003eCell Structure and Properties of Rigid Polyurethane Foams Blown with New Generation Agents\u003cbr\u003eDr Eng Aleksander Prociak, Cracow University of Technology, Poland \u003cbr\u003e\u003cstrong\u003eSESSION 2: FOAM INJECTION MOULDING - DIFFERENT VIEWS AND RESULTS\u003c\/strong\u003e \u003cbr\u003eThermoplastic Structural Foam -Wellknown and New Process\u003cbr\u003eDr Helmut Eckardt, Battenfeld GmbH, Germany \u003cbr\u003eFoam Injection Moulding with Chemical Blowing Agents\u003cbr\u003eMr Robert Benker, Geobra Brandstatter GmbH \u0026amp; Co Kg, Germany \u003cbr\u003eInvestigation on Foam Injection Moulding with a Special Injection Moulding Nozzle\u003cbr\u003eDipl Ing Sasan Habibi-Naini, IKV - Institut für Kunststoffverarbeitung, Germany \u003cbr\u003ePhysical Foaming with ErgoCell - Machine Technology, Benefits, Limits, Economic Efficiency\u003cbr\u003eDr Rolf Sauthof, Demag Ergotec GmbH, Germany \u003cbr\u003eNew Developments in Mucell Markets\u003cbr\u003eDr Hartmut Traut, Trexel GmbH, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 3: EXTRUDED FOAMED THERMOPLASTICS\u003c\/strong\u003e \u003cbr\u003eFoam Extrusion of PS Blown with a Mixture of HFC-134a and Isopropanol\u003cbr\u003eDr Richard Gendron, Conseil National de Recherches\/ National Research Council Canada, Canada \u003cbr\u003eOverview and Marketing Aspects of the Extrusion Foam Business\u003cbr\u003eReiner Bunnenberg \u0026amp; Dröge Berthold, SMSFolientechnik GmbH \u0026amp; Co Kg, Austria \u003cbr\u003eFoam Extrusion of Polypropylene Foams - New Developments and Applications\u003cbr\u003eDr Ing Dirk Kropp, Polymer-Tec GmbH, Germany \u003cbr\u003eNew Demands for Foam Extrusion Technology when using CO2 as Direct Gased Foaming Agents\u003cbr\u003eDr Frank van Lueck, SMS Foam Technology, Austria \u003cbr\u003e\u003cstrong\u003eSESSION 4: NEW ASPECTS ON EXTRUSION AND EXTRUDED SUBSTRATES\u003c\/strong\u003e \u003cbr\u003ePP Blends with Tailored Foamability and Mechanical Properties\u003cbr\u003eDr Norbert Reichelt, Borealis GmbH, Austria \u003cbr\u003eThe Effect of Nucleating Agents on Polypropylene Foam Morphology\u003cbr\u003eDr Denis Rodrigue, Université Laval, Canada \u003cbr\u003eEvaluation of HFC-245fa as an Alternative Blowing Agent for Extruded Thermoplastic Foams\u003cbr\u003eDr Caroline Vachon, Conseil National de Recherches\/ National Research Council Canada, Canada \u003cbr\u003eExtrusion for Microcellular Foams\u003cbr\u003eDipl Ing Johannes Lorenz, IKV - Institut für Kunststoffverarbeitung, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 5: THEORECTICAL AND PRACTICAL EXPERIENCE OF FOAMS AND RELATED RESULTS\u003c\/strong\u003e \u003cbr\u003eDensity and Open Cell Effects on PE Foam Modulus\u003cbr\u003eDr Shau-Tarng Lee, Sealed Air Corporation, USA \u003cbr\u003eThe Role of Extensional Rheology in the Screening Phase of the Development of New Closed Cell Foams\u003cbr\u003eDr Frank Woellecke, Universität Bayreuth, Germany \u003cbr\u003eTrans-1,2-Dichloroethylene\/Pentanes Coblown Foams for Improved Fire Performance\u003cbr\u003eDr Laurent Caron, Atofina Chemicals Inc, France \u003cbr\u003eStabilization of Polyolefin Foams during Ageing\u003cbr\u003eDr Chung Poo Park, USA\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$180.00
{"id":11242235396,"title":"Blowing Agents and Foaming Processes 2004","handle":"978-1-85957-447-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-447-8 \u003cbr\u003e\u003cbr\u003eHamburg, Germany, 10th-11th May 2004\u003cbr\u003e\u003cbr\u003epages 214\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis sixth international conference dedicated to the critical role of blowing agents in foamed plastics and rubber aimed to present an insight into the latest industrial progress and research for foam generation. \u003cbr\u003e\u003cbr\u003eThe conference offered a comprehensive review of recent academic developments, results and future possibilities, foaming agents and blowing gases and foam processes such as microcellular technology, direct gassing processes and related gases.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 1: BLOWING AGENTS AND GASES: NEW DEVELOPMENTS AND VIEWS\u003c\/strong\u003e \u003cbr\u003eThe Right Chemical Foaming Agent for Your Application\u003cbr\u003eMarcel Wiesner, Clariant Masterbatch GmbH, Germany \u003cbr\u003eChemical Blowing Agents as Versatile Additives for Injection Moulding\u003cbr\u003eLars Wahlen, Lehmann \u0026amp; Voss \u0026amp; Co., Germany \u003cbr\u003eFlammable Blowing Agents, Design and Storage Considerations\u003cbr\u003eDennis Jones, BOC, UK \u003cbr\u003eSolkane 365mfc for Rigid PU Foams: Application Status and Future Perspective\u003cbr\u003eLothar Zipfel, Solvay Fluor und Derivate, Germany \u003cbr\u003eFoam Development by using the Melt Elongational Properties as a Key Factor\u003cbr\u003eDieter Langenfelder, Basell Bayreuth Chemie GmbH,Germany\u003cbr\u003e+++ PAPER UNAVAILABLE AT TIME OF PRINT +++ \u003cbr\u003e\u003cstrong\u003eSESSION 2: FOAM INJECTION MOULDING – PROCESSES AND LATEST RESULTS\u003c\/strong\u003e \u003cbr\u003eOptifoam™ - The Flexible Solution for Foam Injection Molding\u003cbr\u003eSasan Habibi-Naini, Sulzer Chemtech AG, Switzerland \u003cbr\u003eWhy Structural Foam? Advantages, Process Technology and Applications\u003cbr\u003eHelmut Eckardt, Battenfeld GmbH, Germany \u003cbr\u003eThe Mucell ® -Technology - Characteristics with In-Mold-Decorating and Insert Moulding\u003cbr\u003eHartmut Traut, Trexel GmbH, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 3: BASIC RESULTS ON PU FOAMS\u003c\/strong\u003e \u003cbr\u003eThermal Conductivity of Polyurethane Foams at Different Temperatures\u003cbr\u003eAleksander Prociak, Cracow University of Technology, Poland \u003cbr\u003eAnalysis of Polyurethane Foam Processing and Surface Texture\u003cbr\u003eAhmad Majdi Abdul Rani, Loughborough University, UK \u003cbr\u003e\u003cstrong\u003eSESSION 4: EXTRUDED FOAM PLASTICS – MACHINERY AND PRODUCTS\u003c\/strong\u003e \u003cbr\u003eKEYNOTE PRESENTATION - Resin Evolution for Thermoplastic Foam Extrusion\u003cbr\u003eShau Tarng Lee, Sealed Air Corporation, USA \u003cbr\u003eNew Challenges and Solutions for Foam Extrusion\u003cbr\u003eThomas Liebe \u0026amp; Berthold Dröge, SMS Folientechnik GmbH, Austria \u003cbr\u003eAssessment of the Foamability of Polymers on the Basis of their Biaxial Stress\/Strain Behaviour\u003cbr\u003eHolger Schumacher, IKV - RWTH Aachen, Germany \u003cbr\u003eDevelopments in Strandfoam Technology\u003cbr\u003eJean-Francois Koenig, Dow Chemical Co, Germany \u003cbr\u003eTwin Screw Extruders in Foam Extrusion\u003cbr\u003eMatthias Reimker, Berstorff GmbH, Germany \u003cbr\u003eCurrent Trends and Products for the XPS Industry\u003cbr\u003eJoachim Greis, Nova Chemicals Deutschland GmbH, Germany \u003cbr\u003eSoft Polypropylene Foams\u003cbr\u003eManfred Stadlbauer, Borealis GmbH, Austria \u003cbr\u003e\u003cstrong\u003eSESSION 5: NEW RESULTS AND ASPECTS ON DIFFERENT SUBSTRATES SUCH AS PVC, SILICONE, ELASTOMERS AND RUBBER\u003c\/strong\u003e \u003cbr\u003eRigid PVC Foam: Formulation for Sustainability\u003cbr\u003eNoreen L. Thomas, Loughborough University, UK \u003cbr\u003eSoft Materials with Fine Cells using Chemical Blowing Agents\u003cbr\u003eRemco Willemse, Sekisui Alveo BV, The Netherlands \u003cbr\u003eNew Technology to Produce Silicone Sponge without Chemical Blowing Agents or Volatile Organics\u003cbr\u003eErnst Gerlach, Dow Corning GmbH, Germany \u003cbr\u003eA New Method for the Characterisation of Sponge Rubber Compound\u003cbr\u003eArndt Kremers, IKV - RWTH Aachen, Germany\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:29-04:00","created_at":"2017-06-22T21:14:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","blowing agents","book","elastomers","foams","injection molding","moulding","p-additives","polymer","polypropylene","polyurethane","PVC","rigid PU foams","rubber","silicone","silicone sponge"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378418180,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2004","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-447-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-447-8.jpg?v=1499720269"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-447-8.jpg?v=1499720269","options":["Title"],"media":[{"alt":null,"id":353917108317,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-447-8.jpg?v=1499720269"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-447-8.jpg?v=1499720269","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-447-8 \u003cbr\u003e\u003cbr\u003eHamburg, Germany, 10th-11th May 2004\u003cbr\u003e\u003cbr\u003epages 214\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis sixth international conference dedicated to the critical role of blowing agents in foamed plastics and rubber aimed to present an insight into the latest industrial progress and research for foam generation. \u003cbr\u003e\u003cbr\u003eThe conference offered a comprehensive review of recent academic developments, results and future possibilities, foaming agents and blowing gases and foam processes such as microcellular technology, direct gassing processes and related gases.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 1: BLOWING AGENTS AND GASES: NEW DEVELOPMENTS AND VIEWS\u003c\/strong\u003e \u003cbr\u003eThe Right Chemical Foaming Agent for Your Application\u003cbr\u003eMarcel Wiesner, Clariant Masterbatch GmbH, Germany \u003cbr\u003eChemical Blowing Agents as Versatile Additives for Injection Moulding\u003cbr\u003eLars Wahlen, Lehmann \u0026amp; Voss \u0026amp; Co., Germany \u003cbr\u003eFlammable Blowing Agents, Design and Storage Considerations\u003cbr\u003eDennis Jones, BOC, UK \u003cbr\u003eSolkane 365mfc for Rigid PU Foams: Application Status and Future Perspective\u003cbr\u003eLothar Zipfel, Solvay Fluor und Derivate, Germany \u003cbr\u003eFoam Development by using the Melt Elongational Properties as a Key Factor\u003cbr\u003eDieter Langenfelder, Basell Bayreuth Chemie GmbH,Germany\u003cbr\u003e+++ PAPER UNAVAILABLE AT TIME OF PRINT +++ \u003cbr\u003e\u003cstrong\u003eSESSION 2: FOAM INJECTION MOULDING – PROCESSES AND LATEST RESULTS\u003c\/strong\u003e \u003cbr\u003eOptifoam™ - The Flexible Solution for Foam Injection Molding\u003cbr\u003eSasan Habibi-Naini, Sulzer Chemtech AG, Switzerland \u003cbr\u003eWhy Structural Foam? Advantages, Process Technology and Applications\u003cbr\u003eHelmut Eckardt, Battenfeld GmbH, Germany \u003cbr\u003eThe Mucell ® -Technology - Characteristics with In-Mold-Decorating and Insert Moulding\u003cbr\u003eHartmut Traut, Trexel GmbH, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 3: BASIC RESULTS ON PU FOAMS\u003c\/strong\u003e \u003cbr\u003eThermal Conductivity of Polyurethane Foams at Different Temperatures\u003cbr\u003eAleksander Prociak, Cracow University of Technology, Poland \u003cbr\u003eAnalysis of Polyurethane Foam Processing and Surface Texture\u003cbr\u003eAhmad Majdi Abdul Rani, Loughborough University, UK \u003cbr\u003e\u003cstrong\u003eSESSION 4: EXTRUDED FOAM PLASTICS – MACHINERY AND PRODUCTS\u003c\/strong\u003e \u003cbr\u003eKEYNOTE PRESENTATION - Resin Evolution for Thermoplastic Foam Extrusion\u003cbr\u003eShau Tarng Lee, Sealed Air Corporation, USA \u003cbr\u003eNew Challenges and Solutions for Foam Extrusion\u003cbr\u003eThomas Liebe \u0026amp; Berthold Dröge, SMS Folientechnik GmbH, Austria \u003cbr\u003eAssessment of the Foamability of Polymers on the Basis of their Biaxial Stress\/Strain Behaviour\u003cbr\u003eHolger Schumacher, IKV - RWTH Aachen, Germany \u003cbr\u003eDevelopments in Strandfoam Technology\u003cbr\u003eJean-Francois Koenig, Dow Chemical Co, Germany \u003cbr\u003eTwin Screw Extruders in Foam Extrusion\u003cbr\u003eMatthias Reimker, Berstorff GmbH, Germany \u003cbr\u003eCurrent Trends and Products for the XPS Industry\u003cbr\u003eJoachim Greis, Nova Chemicals Deutschland GmbH, Germany \u003cbr\u003eSoft Polypropylene Foams\u003cbr\u003eManfred Stadlbauer, Borealis GmbH, Austria \u003cbr\u003e\u003cstrong\u003eSESSION 5: NEW RESULTS AND ASPECTS ON DIFFERENT SUBSTRATES SUCH AS PVC, SILICONE, ELASTOMERS AND RUBBER\u003c\/strong\u003e \u003cbr\u003eRigid PVC Foam: Formulation for Sustainability\u003cbr\u003eNoreen L. Thomas, Loughborough University, UK \u003cbr\u003eSoft Materials with Fine Cells using Chemical Blowing Agents\u003cbr\u003eRemco Willemse, Sekisui Alveo BV, The Netherlands \u003cbr\u003eNew Technology to Produce Silicone Sponge without Chemical Blowing Agents or Volatile Organics\u003cbr\u003eErnst Gerlach, Dow Corning GmbH, Germany \u003cbr\u003eA New Method for the Characterisation of Sponge Rubber Compound\u003cbr\u003eArndt Kremers, IKV - RWTH Aachen, Germany\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$180.00
{"id":11242231172,"title":"Blowing Agents and Foaming Processes 2007","handle":"978-1-84735-015-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003eAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-015-2 \u003cbr\u003e\u003cbr\u003e\u003cb\u003eFrankfurt, Germany, 22-23 May 2007\u003c\/b\u003e\u003ch5\u003eSummary\u003c\/h5\u003eThe conference was dedicated to the critical role of blowing agents in foamed plastics and rubber. Foamed materials are being enhanced to replace dense solid polymers, reducing weight and costs. Chemical and environmental legislation is constantly changing and the foam industry is adapting to meet demands. The proceedings include papers from industry leaders such as BASF AG, Solvay, 3M Europe, Zotefoams plc and Trexel GmbH and will appeal to those involved in the formulation and application of blowing agents and techniques to produce expanded or foamed polymer substrates.\u003ch5\u003eTable of Contents\u003c\/h5\u003e\u003cb\u003eSESSION 1. BLOWING AGENTS \u0026amp; BLOWING GASES \u003c\/b\u003e\u003cp\u003ePaper 1 Properties and applications of chemical blowing agents \u003cbr\u003eDr. Lars Wahlen, Lehmann \u0026amp; Voss \u0026amp; Co. KG, Germany\u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 2 Pentane-environmental and regulatory considerations\u003c\/b\u003e \u003cbr\u003eK. Kannah, NOVA Innovene, UK \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 3 Optimisation of pentane blown PU systems with Solkane 365mfc\u003c\/b\u003e \u003cbr\u003eMichael Marhold \u0026amp; Christopher Meurer Solvay Fluor GmbH, Germany \u003c\/p\u003e\u003cb\u003eSESSION 2. POLYURETHANE AND CROSSLINKED FOAMS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 4 Properties of polyurethane foams modified with natural oil-based polyols \u003cbr\u003eDr. Eng. Aleksander Prociak, Cracow University of Technology, Poland \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 5 Fluoro-olefine additives to reduce thermal conductivity of rigid foams\u003c\/b\u003e \u003cbr\u003eRudi Van San \u0026amp; F Govaerts, 3M Belgium NV, Belgium \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 6 Novel low density foam development from the nitrogen autoclave process\u003c\/b\u003e \u003cbr\u003eDr. Neil Witten, Dr. Paul Jacobs \u0026amp; Jennifer Petit, Zotefoams plc, UK \u003c\/p\u003e\u003cb\u003eSESSION 3. BIODEGRADABLE FOAMS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 7 Development and characterisation of porous PLGA 85 \/ 15 scaffold for tissue engineering applications \u003cbr\u003eH.E. Naguib, J.K.Perron, J. Daka \u0026amp; A. Chawla, University of Toronto, Canada \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 8 Engineering of foamed structures of biomedical application\u003c\/b\u003e \u003cbr\u003ePaolo Netti, Ernesto Di Maio, Salvatore Iannace, \u0026amp; Aurelio Salerno, University of Naples, Italy \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 9 Ultrasonic characterisation and sensors: PLA crystallisation\u003c\/b\u003e \u003cbr\u003eJ. Tatibouët, J. Reignier \u0026amp; R. Gendron, National Research centre, Canada \u003c\/p\u003e\u003cb\u003eSESSION 4. INJECTION MOULDING \/ STRUCTURAL FOAM TECHNOLOGY - 1 \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 10 New trends in structural foam technology – chemical and physical foaming \u003cbr\u003eHelmut Eckardt, Battenfeld GmbH, Germany \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 11 The effect of mould temperature on morphology of injection moulded HDPE structural foams\u003c\/b\u003e \u003cbr\u003eProf. Denis Rodrigue, Simon Leduc \u0026amp; Carlos Tovar-Cisneros, Université Laval, Quebec, Canada \u0026amp; Rubén González-Núñez, Universidad de Guadalajara, Mexico \u003c\/p\u003e\u003cb\u003eSESSION 4. INJECTION MOULDING \/ STRUCTURAL FOAM TECHNOLOGY - 2 \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 12 Achievement of uniform cell structure and high void fraction in advanced structural molding \u003cbr\u003eProf Chul Park, John W S Lee, Jing Wong \u0026amp; Guoliang Tao, University of Toronto, Canada \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 13 Analysis and optimization of part properties in foam injection moulding\u003c\/b\u003e \u003cbr\u003eDip-Ing. Axel Cramer, IKV, Institute for Plastic Processing, Germany \u003c\/p\u003e\u003cb\u003eSESSION 5. INJECTION MOULDING \/ MICROCELLULAR TECHNOLOGY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 14 Innovative foam solutions for polymer materials \u003cbr\u003eDr Sasan Habibi-Naini \u0026amp; C. Schlummer, Sulzer, Switzerlandf \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 15 Vibrationction moulded using the McCell® microcellular foaming process\u003c\/b\u003e \u003cbr\u003eUwe Kolshorn, Petr Janik \u0026amp; Levi Kishbaugh, Trexel GmbH, Germany \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 16 The challenge of foam injection moulding-possibilities to improve surface appearance, foam morphology and mechanical properties\u003c\/b\u003e \u003cbr\u003eAndreas. N. J. Spörrer \u0026amp; Volker Altstädt, University of Bayreuth, Germany \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 17 Analysis of mechanical response of rigid thermoplastic foams\u003c\/b\u003e \u003cbr\u003eMsc. ME. Laura Florez, IKV, Institute for Plastics Processing, Germany \u003c\/p\u003e\u003cb\u003eSESSION 6. EXTRUSION TECHNOLOGY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 18 New Foams for current market trends \u003cbr\u003eTimothy Francis, Jan Sandler \u0026amp; Erik Wassner, BASF AG, Germany \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 19 Impact of approximating the pressure drop profile on foaming simulation\u003c\/b\u003e \u003cbr\u003eSiu Ning Leung, Anson S. T. Wong \u0026amp; Gary Y. G. Liu, University of Toronto, Canada \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 20 Further developments in extrusion technologies for foamed PVC products\u003c\/b\u003e \u003cbr\u003eJosef Dobrowsky, CET (Cincinnati Extrusion GmbH), Austria \u003c\/p\u003e\u003cb\u003eSESSION 7. NEW STUDIES ON RESINS AND FOAMING PROCESSES \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 21 The polycarbonate microfoams produced by gas counter pressure and precision mould opening \u003cbr\u003eDipl. –Ing. Hendrik Kirschling \u0026amp; A. K. Bledzki, Institute für Werkstofftechnik, University of Kassel, Germany \u0026amp; W. Pitscheneder \u0026amp; P. Egger, Engel Austria GmbH, Austria \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 22 Foaming of polymer blends – chance and challenge\u003c\/b\u003e \u003cbr\u003eHolger Ruckdäschel, Volker Altstädt \u0026amp; Axel H. E. Müller, University of Bayreuth, Germany\u003c\/p\u003e","published_at":"2017-06-22T21:14:16-04:00","created_at":"2017-06-22T21:14:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additives","application","biodegradable","biomedical","blowing agents","blowing gases","fluoro-olefine","foams","HDPE","injection","microcellular","molding","morphology","moulding","polyurethane","rigid foams","structural foams","thermal conductivity","vibrationction"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378404100,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2007","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":null,"requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-015-2.jpg?v=1499211295"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-015-2.jpg?v=1499211295","options":["Title"],"media":[{"alt":null,"id":353963999325,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-015-2.jpg?v=1499211295"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-015-2.jpg?v=1499211295","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003eAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-015-2 \u003cbr\u003e\u003cbr\u003e\u003cb\u003eFrankfurt, Germany, 22-23 May 2007\u003c\/b\u003e\u003ch5\u003eSummary\u003c\/h5\u003eThe conference was dedicated to the critical role of blowing agents in foamed plastics and rubber. Foamed materials are being enhanced to replace dense solid polymers, reducing weight and costs. Chemical and environmental legislation is constantly changing and the foam industry is adapting to meet demands. The proceedings include papers from industry leaders such as BASF AG, Solvay, 3M Europe, Zotefoams plc and Trexel GmbH and will appeal to those involved in the formulation and application of blowing agents and techniques to produce expanded or foamed polymer substrates.\u003ch5\u003eTable of Contents\u003c\/h5\u003e\u003cb\u003eSESSION 1. BLOWING AGENTS \u0026amp; BLOWING GASES \u003c\/b\u003e\u003cp\u003ePaper 1 Properties and applications of chemical blowing agents \u003cbr\u003eDr. Lars Wahlen, Lehmann \u0026amp; Voss \u0026amp; Co. KG, Germany\u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 2 Pentane-environmental and regulatory considerations\u003c\/b\u003e \u003cbr\u003eK. Kannah, NOVA Innovene, UK \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 3 Optimisation of pentane blown PU systems with Solkane 365mfc\u003c\/b\u003e \u003cbr\u003eMichael Marhold \u0026amp; Christopher Meurer Solvay Fluor GmbH, Germany \u003c\/p\u003e\u003cb\u003eSESSION 2. POLYURETHANE AND CROSSLINKED FOAMS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 4 Properties of polyurethane foams modified with natural oil-based polyols \u003cbr\u003eDr. Eng. Aleksander Prociak, Cracow University of Technology, Poland \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 5 Fluoro-olefine additives to reduce thermal conductivity of rigid foams\u003c\/b\u003e \u003cbr\u003eRudi Van San \u0026amp; F Govaerts, 3M Belgium NV, Belgium \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 6 Novel low density foam development from the nitrogen autoclave process\u003c\/b\u003e \u003cbr\u003eDr. Neil Witten, Dr. Paul Jacobs \u0026amp; Jennifer Petit, Zotefoams plc, UK \u003c\/p\u003e\u003cb\u003eSESSION 3. BIODEGRADABLE FOAMS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 7 Development and characterisation of porous PLGA 85 \/ 15 scaffold for tissue engineering applications \u003cbr\u003eH.E. Naguib, J.K.Perron, J. Daka \u0026amp; A. Chawla, University of Toronto, Canada \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 8 Engineering of foamed structures of biomedical application\u003c\/b\u003e \u003cbr\u003ePaolo Netti, Ernesto Di Maio, Salvatore Iannace, \u0026amp; Aurelio Salerno, University of Naples, Italy \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 9 Ultrasonic characterisation and sensors: PLA crystallisation\u003c\/b\u003e \u003cbr\u003eJ. Tatibouët, J. Reignier \u0026amp; R. Gendron, National Research centre, Canada \u003c\/p\u003e\u003cb\u003eSESSION 4. INJECTION MOULDING \/ STRUCTURAL FOAM TECHNOLOGY - 1 \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 10 New trends in structural foam technology – chemical and physical foaming \u003cbr\u003eHelmut Eckardt, Battenfeld GmbH, Germany \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 11 The effect of mould temperature on morphology of injection moulded HDPE structural foams\u003c\/b\u003e \u003cbr\u003eProf. Denis Rodrigue, Simon Leduc \u0026amp; Carlos Tovar-Cisneros, Université Laval, Quebec, Canada \u0026amp; Rubén González-Núñez, Universidad de Guadalajara, Mexico \u003c\/p\u003e\u003cb\u003eSESSION 4. INJECTION MOULDING \/ STRUCTURAL FOAM TECHNOLOGY - 2 \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 12 Achievement of uniform cell structure and high void fraction in advanced structural molding \u003cbr\u003eProf Chul Park, John W S Lee, Jing Wong \u0026amp; Guoliang Tao, University of Toronto, Canada \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 13 Analysis and optimization of part properties in foam injection moulding\u003c\/b\u003e \u003cbr\u003eDip-Ing. Axel Cramer, IKV, Institute for Plastic Processing, Germany \u003c\/p\u003e\u003cb\u003eSESSION 5. INJECTION MOULDING \/ MICROCELLULAR TECHNOLOGY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 14 Innovative foam solutions for polymer materials \u003cbr\u003eDr Sasan Habibi-Naini \u0026amp; C. Schlummer, Sulzer, Switzerlandf \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 15 Vibrationction moulded using the McCell® microcellular foaming process\u003c\/b\u003e \u003cbr\u003eUwe Kolshorn, Petr Janik \u0026amp; Levi Kishbaugh, Trexel GmbH, Germany \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 16 The challenge of foam injection moulding-possibilities to improve surface appearance, foam morphology and mechanical properties\u003c\/b\u003e \u003cbr\u003eAndreas. N. J. Spörrer \u0026amp; Volker Altstädt, University of Bayreuth, Germany \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 17 Analysis of mechanical response of rigid thermoplastic foams\u003c\/b\u003e \u003cbr\u003eMsc. ME. Laura Florez, IKV, Institute for Plastics Processing, Germany \u003c\/p\u003e\u003cb\u003eSESSION 6. EXTRUSION TECHNOLOGY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 18 New Foams for current market trends \u003cbr\u003eTimothy Francis, Jan Sandler \u0026amp; Erik Wassner, BASF AG, Germany \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 19 Impact of approximating the pressure drop profile on foaming simulation\u003c\/b\u003e \u003cbr\u003eSiu Ning Leung, Anson S. T. Wong \u0026amp; Gary Y. G. Liu, University of Toronto, Canada \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 20 Further developments in extrusion technologies for foamed PVC products\u003c\/b\u003e \u003cbr\u003eJosef Dobrowsky, CET (Cincinnati Extrusion GmbH), Austria \u003c\/p\u003e\u003cb\u003eSESSION 7. NEW STUDIES ON RESINS AND FOAMING PROCESSES \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\u003cp\u003ePaper 21 The polycarbonate microfoams produced by gas counter pressure and precision mould opening \u003cbr\u003eDipl. –Ing. Hendrik Kirschling \u0026amp; A. K. Bledzki, Institute für Werkstofftechnik, University of Kassel, Germany \u0026amp; W. Pitscheneder \u0026amp; P. Egger, Engel Austria GmbH, Austria \u003c\/p\u003e\u003cp\u003e\u003cb\u003ePaper 22 Foaming of polymer blends – chance and challenge\u003c\/b\u003e \u003cbr\u003eHolger Ruckdäschel, Volker Altstädt \u0026amp; Axel H. E. Müller, University of Bayreuth, Germany\u003c\/p\u003e"}
Blowing Agents and Foa...
$135.00
{"id":11242236612,"title":"Blowing Agents and Foaming Processes 2008","handle":"978-1-84735-071-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-071-8 \u003cbr\u003e\u003cbr\u003ePapers: 23\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNow in its tenth year Blowing Agents and Foaming Processes 2008 has become firmly established in the plastics community as the meeting place for processors, material suppliers, academics and end users to exchange ideas and keep up to date with developments in this fast growing niche of the polymer sector.\u003cbr\u003e\u003cbr\u003eRecent changes in the foam blowing industry have been largely driven by environmental legislation - whether concerns over consumer safety, atmospheric protection or solid waste disposal and recycling. In their primary applications in consumer products, (such as cushioning for furniture and automobiles, thermal insulation for construction and packaging) polymer foams are being continually enhanced to replace dense solid polymers, reducing weight and costs. Indeed strict energy regulations in most European countries have boosted the use of polymer foams in building and construction, automotive and aerospace sectors where foamed plastics are recognised for their performance and processing advantages as well as the obvious cost and weight savings. Nevertheless providing environmentally sound and cost effective foam solutions continues to be a constant challenge.\u003cbr\u003e\u003cbr\u003eBlowing Agents and Foaming Processes 2008 was dedicated to the critical role of blowing agents in foamed plastics and rubber and included, amongst other things, commercial polymeric foams and their applications, their technologies and future industry trends.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 BLOWING AGENTS \/ BLOWING GASES AND SPECIALITIES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 1 Foaming of biodegradable plastics in packaging applications\u003cbr\u003eJan Erik Wegner \u0026amp; Micro Gröseling, Clariant Masterbatches (Deutschland GmbH), Germany\u003cbr\u003e\u003cbr\u003ePaper 2 Environmental advantages of pentane and NIK blends\u003cbr\u003eDennis Jones \u0026amp; John Murphy, The BOC Group Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming of an immiscible blend system using organic liquids as blowing agents\u003cbr\u003ePeter Gutmann, Klaus Hildebrandt, Volker Altstädt \u0026amp; Axel H E Müller, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 4 Properties of thermoplastics foamed with EXPANCEL® expandable microspheres\u003cbr\u003eAnna Gärd \u0026amp; Lena Jönsson, Eka Chemicals EXPANCEL, Sweden\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2 GASES AND POLYURETHANE FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 5 Investigation of new low GWP blowing agents for rigid polyurethane foams\u003cbr\u003eDr Laurent Abbas, Arkema, France; Ben Chen, Joseph Costa, Philippe Bonnet \u0026amp; Maher Elsheik, Arkema Inc, USA\u003cbr\u003e\u003cbr\u003ePaper 6 Update on the development of FEA-1100, a novel foam expansion agent for polyurethane foams\u003cbr\u003eDr Mark L Robin, Gary Loh \u0026amp; Joseph A Creazzo, DuPont Fluoroproducts, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 NEW STUDIES ON RESINS AND FOAMING PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 7 Trends in polymer foam research\u003cbr\u003eDr Holger Ruckdäschel, Roland Hingmann, Klaus Han, Jan K W Sandler, Erik Wassner \u0026amp; Timothy Francis, BASF SE, Germany\u003cbr\u003e\u003cbr\u003ePaper 8 Sandwich structures with a functionally graded syntactic foam core: Free vibration analysis\u003cbr\u003eOmid Rahmani \u0026amp; S M R Khalili, K N Toosi University of Technology, Iran\u003cbr\u003e\u003cbr\u003ePaper 9 Compression molding of polyethylene foams under a temperature gradient: Morphology and properties\u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Lavel University, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 NANO-STRUCTURES - DIFFERENT ASPECTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose\u003cbr\u003eLaetitia Urbanczyk, Jean-M ichel Thomassin, Michael Alexandre, Christine Jérôme \u0026amp; Christophe Detrembleur, University of Liège, Belgium; Isabelle Huynen, Université Catholique de Louvain, Belgium\u003cbr\u003e\u003cbr\u003ePaper 11 The fundamental issues about the effect of nano-particles on the foaming behavior of nanocomposites\u003cbr\u003eProf Chul B Park, Wentao Zhai, Siu N Leung, Lilac Wang \u0026amp; Takashi Kuboki, University of Toronto,Canada\u003cbr\u003e\u003cbr\u003ePaper 12 The added value of high melt strength polyolefins in practice\u003cbr\u003eLeon Nelissen, SABIC Europe, The Netherlands\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5 FOAM INJECTION MOULDING TECHNOLOGY\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 13 Smooth foam and smooth surface - a contradiction?\u003cbr\u003eHelmut Eckardt, Wittman Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 14 Large structural foam parts and multi-nozzle low pressure machines\u003cbr\u003eBrian Read, Horizon Plastics Ltd, Canada\u003cbr\u003e\u003cbr\u003ePaper 15 Influence of organic additives on foam morphology of injection-moulded i-polypropylene\u003cbr\u003eMarieluise Stumpf, Andreas Spörrer, Hans-Werner Schmidt \u0026amp; Volker Alstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical properties of structural LDPE foams compared with those of conventional nonstructural LDPE foams\u003cbr\u003eJ Escudero, M A Rodriguez-Perez, E Solórzano \u0026amp; J A de Saja, University Valladoid, Spain\u003cbr\u003e\u003cbr\u003ePaper 17 Improving the impact behaviour of structural foams\u003cbr\u003eLaura Flórez, Prof Dr Ing Dr Ing E h Walter Michaeli, Dominik Obeloer \u0026amp; Markus Brinkmann, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 18 A new process for the injection moulding of foamed parts with physical blowing agents\u003cbr\u003eProf Dr-Ing Dr-Ing E h Walter Michaeli \u0026amp; Dominik Obeloer, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 19 Implementation of the MuCell® process in commercial applications\u003cbr\u003eDr Hartmut Traut, Levi Kishbaugh \u0026amp; Uwe Kolshorn, Trexel, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6 EXTRUSION: NEW FINDINGS AND RESULTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 20 New high-melt-strength polypropylene by reactive extrusion\u003cbr\u003eDr Ir André H Hogt \u0026amp; Wim K Frijlink, AkzoNobel Polymer Chemicals, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7 MICROCELLULAR FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Technyl®XCell; nylon grades offering best aesthetics and performances for microcellular processing (MuCell®).\u003cbr\u003eDr Gerard Bradley, Rhodia Research \u0026amp; Technologies, France\u003cbr\u003e\u003cbr\u003ePaper 22 Fabrication and characterization of halogen-free flame retardant polyolefin foams with cell sizes in the microcellular range\u003cbr\u003eSilvia Román-Lorza, J Sabadell \u0026amp; J J García-Ruiz, Fundación Centro Tecnológico de Miranda de Ebro (CTME), Spain; M A Rodriguez-Perez \u0026amp; J A de Saja Sáez, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 23 Influence of different blowing agents and injection moulding processing parameters on the properties of microcellular polycarbonate\u003cbr\u003eDipl-Ing Martin Rohleder, A K Bledzki \u0026amp; H Kirschling, University of Kassel, Germany\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:32-04:00","created_at":"2017-06-22T21:14:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","acrylic polymers","applications","Blowing agents","book","foams","p-additives","polymer"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423492,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2008","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-071-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-071-8.jpg?v=1499211476"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-071-8.jpg?v=1499211476","options":["Title"],"media":[{"alt":null,"id":353964687453,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-071-8.jpg?v=1499211476"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-071-8.jpg?v=1499211476","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-071-8 \u003cbr\u003e\u003cbr\u003ePapers: 23\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNow in its tenth year Blowing Agents and Foaming Processes 2008 has become firmly established in the plastics community as the meeting place for processors, material suppliers, academics and end users to exchange ideas and keep up to date with developments in this fast growing niche of the polymer sector.\u003cbr\u003e\u003cbr\u003eRecent changes in the foam blowing industry have been largely driven by environmental legislation - whether concerns over consumer safety, atmospheric protection or solid waste disposal and recycling. In their primary applications in consumer products, (such as cushioning for furniture and automobiles, thermal insulation for construction and packaging) polymer foams are being continually enhanced to replace dense solid polymers, reducing weight and costs. Indeed strict energy regulations in most European countries have boosted the use of polymer foams in building and construction, automotive and aerospace sectors where foamed plastics are recognised for their performance and processing advantages as well as the obvious cost and weight savings. Nevertheless providing environmentally sound and cost effective foam solutions continues to be a constant challenge.\u003cbr\u003e\u003cbr\u003eBlowing Agents and Foaming Processes 2008 was dedicated to the critical role of blowing agents in foamed plastics and rubber and included, amongst other things, commercial polymeric foams and their applications, their technologies and future industry trends.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 BLOWING AGENTS \/ BLOWING GASES AND SPECIALITIES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 1 Foaming of biodegradable plastics in packaging applications\u003cbr\u003eJan Erik Wegner \u0026amp; Micro Gröseling, Clariant Masterbatches (Deutschland GmbH), Germany\u003cbr\u003e\u003cbr\u003ePaper 2 Environmental advantages of pentane and NIK blends\u003cbr\u003eDennis Jones \u0026amp; John Murphy, The BOC Group Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming of an immiscible blend system using organic liquids as blowing agents\u003cbr\u003ePeter Gutmann, Klaus Hildebrandt, Volker Altstädt \u0026amp; Axel H E Müller, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 4 Properties of thermoplastics foamed with EXPANCEL® expandable microspheres\u003cbr\u003eAnna Gärd \u0026amp; Lena Jönsson, Eka Chemicals EXPANCEL, Sweden\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2 GASES AND POLYURETHANE FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 5 Investigation of new low GWP blowing agents for rigid polyurethane foams\u003cbr\u003eDr Laurent Abbas, Arkema, France; Ben Chen, Joseph Costa, Philippe Bonnet \u0026amp; Maher Elsheik, Arkema Inc, USA\u003cbr\u003e\u003cbr\u003ePaper 6 Update on the development of FEA-1100, a novel foam expansion agent for polyurethane foams\u003cbr\u003eDr Mark L Robin, Gary Loh \u0026amp; Joseph A Creazzo, DuPont Fluoroproducts, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 NEW STUDIES ON RESINS AND FOAMING PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 7 Trends in polymer foam research\u003cbr\u003eDr Holger Ruckdäschel, Roland Hingmann, Klaus Han, Jan K W Sandler, Erik Wassner \u0026amp; Timothy Francis, BASF SE, Germany\u003cbr\u003e\u003cbr\u003ePaper 8 Sandwich structures with a functionally graded syntactic foam core: Free vibration analysis\u003cbr\u003eOmid Rahmani \u0026amp; S M R Khalili, K N Toosi University of Technology, Iran\u003cbr\u003e\u003cbr\u003ePaper 9 Compression molding of polyethylene foams under a temperature gradient: Morphology and properties\u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Lavel University, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 NANO-STRUCTURES - DIFFERENT ASPECTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose\u003cbr\u003eLaetitia Urbanczyk, Jean-M ichel Thomassin, Michael Alexandre, Christine Jérôme \u0026amp; Christophe Detrembleur, University of Liège, Belgium; Isabelle Huynen, Université Catholique de Louvain, Belgium\u003cbr\u003e\u003cbr\u003ePaper 11 The fundamental issues about the effect of nano-particles on the foaming behavior of nanocomposites\u003cbr\u003eProf Chul B Park, Wentao Zhai, Siu N Leung, Lilac Wang \u0026amp; Takashi Kuboki, University of Toronto,Canada\u003cbr\u003e\u003cbr\u003ePaper 12 The added value of high melt strength polyolefins in practice\u003cbr\u003eLeon Nelissen, SABIC Europe, The Netherlands\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5 FOAM INJECTION MOULDING TECHNOLOGY\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 13 Smooth foam and smooth surface - a contradiction?\u003cbr\u003eHelmut Eckardt, Wittman Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 14 Large structural foam parts and multi-nozzle low pressure machines\u003cbr\u003eBrian Read, Horizon Plastics Ltd, Canada\u003cbr\u003e\u003cbr\u003ePaper 15 Influence of organic additives on foam morphology of injection-moulded i-polypropylene\u003cbr\u003eMarieluise Stumpf, Andreas Spörrer, Hans-Werner Schmidt \u0026amp; Volker Alstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical properties of structural LDPE foams compared with those of conventional nonstructural LDPE foams\u003cbr\u003eJ Escudero, M A Rodriguez-Perez, E Solórzano \u0026amp; J A de Saja, University Valladoid, Spain\u003cbr\u003e\u003cbr\u003ePaper 17 Improving the impact behaviour of structural foams\u003cbr\u003eLaura Flórez, Prof Dr Ing Dr Ing E h Walter Michaeli, Dominik Obeloer \u0026amp; Markus Brinkmann, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 18 A new process for the injection moulding of foamed parts with physical blowing agents\u003cbr\u003eProf Dr-Ing Dr-Ing E h Walter Michaeli \u0026amp; Dominik Obeloer, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 19 Implementation of the MuCell® process in commercial applications\u003cbr\u003eDr Hartmut Traut, Levi Kishbaugh \u0026amp; Uwe Kolshorn, Trexel, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6 EXTRUSION: NEW FINDINGS AND RESULTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 20 New high-melt-strength polypropylene by reactive extrusion\u003cbr\u003eDr Ir André H Hogt \u0026amp; Wim K Frijlink, AkzoNobel Polymer Chemicals, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7 MICROCELLULAR FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Technyl®XCell; nylon grades offering best aesthetics and performances for microcellular processing (MuCell®).\u003cbr\u003eDr Gerard Bradley, Rhodia Research \u0026amp; Technologies, France\u003cbr\u003e\u003cbr\u003ePaper 22 Fabrication and characterization of halogen-free flame retardant polyolefin foams with cell sizes in the microcellular range\u003cbr\u003eSilvia Román-Lorza, J Sabadell \u0026amp; J J García-Ruiz, Fundación Centro Tecnológico de Miranda de Ebro (CTME), Spain; M A Rodriguez-Perez \u0026amp; J A de Saja Sáez, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 23 Influence of different blowing agents and injection moulding processing parameters on the properties of microcellular polycarbonate\u003cbr\u003eDipl-Ing Martin Rohleder, A K Bledzki \u0026amp; H Kirschling, University of Kassel, Germany\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$180.00
{"id":11242236676,"title":"Blowing Agents and Foaming Processes 2009","handle":"978-1-84735-392-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-392-4 \u003cbr\u003e\u003cbr\u003e23 papers\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlowing Agents and Foaming Processes 2009, Conference Proceedings\u003cbr\u003e\u003cbr\u003eFoamed substances are now being sourced as an alternative substance for applications that previously had an established material. Blowing agents or blowing gases are excellent 'fillers' and have the dual benefits of saving material and reducing weight, the latter minimising shipping and other related expenses. Today there are numerous solutions on offer - new methods, technology, processes and additives, all of which will be looked at during this conference.\u003cbr\u003e\u003cbr\u003eBlowing Agents and Foaming Processes, 2009 is a well established conference and the only event world-wide offering such a prestigious range of academic, practical and industrial papers. All technical papers presented at this event are included in the proceedings and focus on; blowing agents and gases specialities, nano structures, foam injection moulding, new extrusion findings and microcellular foams.\u003cbr\u003e\u003cbr\u003e All technical papers presented at the Conference are inlcuded in the Conference Proceedings\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 BLOWING AGENTS \/ BLOWING GASES AND SPECIALITIES\u003cbr\u003e\u003cbr\u003e \u003c\/strong\u003ePaper 1 Foaming of biodegradable plastics in packaging applications\u003cbr\u003eJan Erik Wegner \u0026amp; Micro Gröseling, Clariant Masterbatches (Deutschland GmbH), Germany\u003cbr\u003e\u003cbr\u003ePaper 2 Environmental advantages of pentane and NIK blend\u003cbr\u003eDennis Jones \u0026amp; John Murphy, The BOC Group Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming of an immiscible blend system using organic liquids as blowing agents\u003cbr\u003ePeter Gutmann, Klaus Hildebrandt, Volker Altstädt \u0026amp; Axel H E Müller, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 4 Properties of thermoplastics foamed with EXPANCEL® expandable microspheres\u003cbr\u003eAnna Gärd \u0026amp; Lena Jönsson, Eka Chemicals EXPANCEL, Sweden\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2 GASES AND POLYURETHANE FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 5 Investigation of new low GWP blowing agents for rigid polyurethane foams\u003cbr\u003eDr Laurent Abbas, Arkema, France; Ben Chen, Joseph Costa, Philippe Bonnet \u0026amp; Maher Elsheik,Arkema Inc, USA\u003cbr\u003e\u003cbr\u003e Paper 6 Update on the development of FEA-1100, a novel foam expansion agent for polyurethane foams\u003cbr\u003eDr Mark L Robin, Gary Loh \u0026amp; Joseph A Creazzo, DuPont Fluoroproducts, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 NEW STUDIES ON RESINS AND FOAMING PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 7 Trends in polymer foam research\u003cbr\u003eDr Holger Ruckdäschel, Roland Hingmann, Klaus Han, Jan K W Sandler, Erik Wassner \u0026amp; Timothy Francis, BASF SE, Germany\u003cbr\u003e\u003cbr\u003ePaper 8 Sandwich structures with a functionally graded syntactic foam core: Free vibration analysis\u003cbr\u003eOmid Rahmani \u0026amp; S M R Khalili, K N Toosi University of Technology, Iran\u003cbr\u003e\u003cbr\u003ePaper 9 Compression molding of polyethylene foams under a temperature gradient: Morphology and properties\u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Lavel University, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 NANO-STRUCTURES - DIFFERENT ASPECTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose\u003cbr\u003eLaetitia Urbanczyk, Jean-M ichel Thomassin, Michael Alexandre, Christine Jérôme \u0026amp; Christophe Detrembleur, University of Liège, Belgium; Isabelle Huynen, Université Catholique de Louvain, Belgium\u003cbr\u003e\u003cbr\u003ePaper 11 The fundamental issues about the effect of nano-particles on the foaming behavior of nanocomposites\u003cbr\u003eProf Chul B Park, Wentao Zhai, Siu N Leung, Lilac Wang \u0026amp; Takashi Kuboki, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003ePaper 12 The added value of high melt strength polyolefins in practice\u003cbr\u003eLeon Nelissen, SABIC Europe, The Netherlands\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5 FOAM INJECTION MOULDING TECHNOLOGY\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 13 Smooth foam and smooth surface - a contradiction?\u003cbr\u003eHelmut Eckardt, Wittman Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 14 Large structural foam parts and multi-nozzle low pressure machines\u003cbr\u003eBrian Read, Horizon Plastics Ltd, Canada\u003cbr\u003e\u003cbr\u003ePaper 15 Influence of organic additives on foam morphology of injection-moulded i-polypropylene\u003cbr\u003eMarieluise Stumpf, Andreas Spörrer, Hans-Werner Schmidt \u0026amp; Volker Alstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical properties of structural LDPE foams compared with those of conventional non-structural LDPE foams\u003cbr\u003eJ Escudero, M A Rodriguez-Perez, E Solórzano \u0026amp; J A de Saja, University Valladoid, Spain\u003cbr\u003e\u003cbr\u003ePaper 17 Improving the impact behaviour of structural foams\u003cbr\u003eLaura Flórez, Prof Dr Ing Dr Ing E h Walter Michaeli, Dominik Obeloer \u0026amp; Markus Brinkmann, RWTH\u003cbr\u003eAachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 18 A new process for the injection moulding of foamed parts with physical blowing agents\u003cbr\u003eProf Dr-Ing Dr-Ing E h Walter Michaeli \u0026amp; Dominik Obeloer, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003e Paper 19 Implementation of the MuCell® process in commercial applications\u003cbr\u003eDr Hartmut Traut, Levi Kishbaugh \u0026amp; Uwe Kolshorn, Trexel, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6 EXTRUSION: NEW FINDINGS AND RESULTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 20 New high-melt-strength polypropylene by reactive extrusion\u003cbr\u003eDr Ir André H Hogt \u0026amp; Wim K Frijlink, AkzoNobel Polymer Chemicals, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7 MICROCELLULAR FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Technyl®XCell; nylon grades offering best aesthetics and performances for microcellular processing (MuCell®).\u003cbr\u003eDr Gerard Bradley, Rhodia Research \u0026amp; Technologies, France\u003cbr\u003e\u003cbr\u003ePaper 22 Fabrication and characterization of halogen-free flame retardant polyolefin foams with cell sizes in the microcellular range\u003cbr\u003eSilvia Román-Lorza, J Sabadell \u0026amp; J J García-Ruiz, Fundación Centro Tecnológico de Miranda de Ebro (CTME), Spain; M A Rodriguez-Perez \u0026amp; J A de Saja Sáez, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 23 Influence of different blowing agents and injection moulding processing parameters on the properties of microcellular polycarbonate\u003cbr\u003eDipl-Ing Martin Rohleder, A K Bledzki \u0026amp; H Kirschling, University of Kassel, Germany\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:33-04:00","created_at":"2017-06-22T21:14:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","agents","biodegradable","blowing","book","environment","foaming","injection moulding","LDPE","molding","nanotechnology","p-additives","polymer","rigid polyurethane","thermoplastics"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423556,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2009","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-392-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-392-4.jpg?v=1499211689"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-392-4.jpg?v=1499211689","options":["Title"],"media":[{"alt":null,"id":353965736029,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-392-4.jpg?v=1499211689"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-392-4.jpg?v=1499211689","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-392-4 \u003cbr\u003e\u003cbr\u003e23 papers\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlowing Agents and Foaming Processes 2009, Conference Proceedings\u003cbr\u003e\u003cbr\u003eFoamed substances are now being sourced as an alternative substance for applications that previously had an established material. Blowing agents or blowing gases are excellent 'fillers' and have the dual benefits of saving material and reducing weight, the latter minimising shipping and other related expenses. Today there are numerous solutions on offer - new methods, technology, processes and additives, all of which will be looked at during this conference.\u003cbr\u003e\u003cbr\u003eBlowing Agents and Foaming Processes, 2009 is a well established conference and the only event world-wide offering such a prestigious range of academic, practical and industrial papers. All technical papers presented at this event are included in the proceedings and focus on; blowing agents and gases specialities, nano structures, foam injection moulding, new extrusion findings and microcellular foams.\u003cbr\u003e\u003cbr\u003e All technical papers presented at the Conference are inlcuded in the Conference Proceedings\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 BLOWING AGENTS \/ BLOWING GASES AND SPECIALITIES\u003cbr\u003e\u003cbr\u003e \u003c\/strong\u003ePaper 1 Foaming of biodegradable plastics in packaging applications\u003cbr\u003eJan Erik Wegner \u0026amp; Micro Gröseling, Clariant Masterbatches (Deutschland GmbH), Germany\u003cbr\u003e\u003cbr\u003ePaper 2 Environmental advantages of pentane and NIK blend\u003cbr\u003eDennis Jones \u0026amp; John Murphy, The BOC Group Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming of an immiscible blend system using organic liquids as blowing agents\u003cbr\u003ePeter Gutmann, Klaus Hildebrandt, Volker Altstädt \u0026amp; Axel H E Müller, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 4 Properties of thermoplastics foamed with EXPANCEL® expandable microspheres\u003cbr\u003eAnna Gärd \u0026amp; Lena Jönsson, Eka Chemicals EXPANCEL, Sweden\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2 GASES AND POLYURETHANE FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 5 Investigation of new low GWP blowing agents for rigid polyurethane foams\u003cbr\u003eDr Laurent Abbas, Arkema, France; Ben Chen, Joseph Costa, Philippe Bonnet \u0026amp; Maher Elsheik,Arkema Inc, USA\u003cbr\u003e\u003cbr\u003e Paper 6 Update on the development of FEA-1100, a novel foam expansion agent for polyurethane foams\u003cbr\u003eDr Mark L Robin, Gary Loh \u0026amp; Joseph A Creazzo, DuPont Fluoroproducts, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 NEW STUDIES ON RESINS AND FOAMING PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 7 Trends in polymer foam research\u003cbr\u003eDr Holger Ruckdäschel, Roland Hingmann, Klaus Han, Jan K W Sandler, Erik Wassner \u0026amp; Timothy Francis, BASF SE, Germany\u003cbr\u003e\u003cbr\u003ePaper 8 Sandwich structures with a functionally graded syntactic foam core: Free vibration analysis\u003cbr\u003eOmid Rahmani \u0026amp; S M R Khalili, K N Toosi University of Technology, Iran\u003cbr\u003e\u003cbr\u003ePaper 9 Compression molding of polyethylene foams under a temperature gradient: Morphology and properties\u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Lavel University, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 NANO-STRUCTURES - DIFFERENT ASPECTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose\u003cbr\u003eLaetitia Urbanczyk, Jean-M ichel Thomassin, Michael Alexandre, Christine Jérôme \u0026amp; Christophe Detrembleur, University of Liège, Belgium; Isabelle Huynen, Université Catholique de Louvain, Belgium\u003cbr\u003e\u003cbr\u003ePaper 11 The fundamental issues about the effect of nano-particles on the foaming behavior of nanocomposites\u003cbr\u003eProf Chul B Park, Wentao Zhai, Siu N Leung, Lilac Wang \u0026amp; Takashi Kuboki, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003ePaper 12 The added value of high melt strength polyolefins in practice\u003cbr\u003eLeon Nelissen, SABIC Europe, The Netherlands\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5 FOAM INJECTION MOULDING TECHNOLOGY\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 13 Smooth foam and smooth surface - a contradiction?\u003cbr\u003eHelmut Eckardt, Wittman Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 14 Large structural foam parts and multi-nozzle low pressure machines\u003cbr\u003eBrian Read, Horizon Plastics Ltd, Canada\u003cbr\u003e\u003cbr\u003ePaper 15 Influence of organic additives on foam morphology of injection-moulded i-polypropylene\u003cbr\u003eMarieluise Stumpf, Andreas Spörrer, Hans-Werner Schmidt \u0026amp; Volker Alstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical properties of structural LDPE foams compared with those of conventional non-structural LDPE foams\u003cbr\u003eJ Escudero, M A Rodriguez-Perez, E Solórzano \u0026amp; J A de Saja, University Valladoid, Spain\u003cbr\u003e\u003cbr\u003ePaper 17 Improving the impact behaviour of structural foams\u003cbr\u003eLaura Flórez, Prof Dr Ing Dr Ing E h Walter Michaeli, Dominik Obeloer \u0026amp; Markus Brinkmann, RWTH\u003cbr\u003eAachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 18 A new process for the injection moulding of foamed parts with physical blowing agents\u003cbr\u003eProf Dr-Ing Dr-Ing E h Walter Michaeli \u0026amp; Dominik Obeloer, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003e Paper 19 Implementation of the MuCell® process in commercial applications\u003cbr\u003eDr Hartmut Traut, Levi Kishbaugh \u0026amp; Uwe Kolshorn, Trexel, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6 EXTRUSION: NEW FINDINGS AND RESULTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 20 New high-melt-strength polypropylene by reactive extrusion\u003cbr\u003eDr Ir André H Hogt \u0026amp; Wim K Frijlink, AkzoNobel Polymer Chemicals, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7 MICROCELLULAR FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Technyl®XCell; nylon grades offering best aesthetics and performances for microcellular processing (MuCell®).\u003cbr\u003eDr Gerard Bradley, Rhodia Research \u0026amp; Technologies, France\u003cbr\u003e\u003cbr\u003ePaper 22 Fabrication and characterization of halogen-free flame retardant polyolefin foams with cell sizes in the microcellular range\u003cbr\u003eSilvia Román-Lorza, J Sabadell \u0026amp; J J García-Ruiz, Fundación Centro Tecnológico de Miranda de Ebro (CTME), Spain; M A Rodriguez-Perez \u0026amp; J A de Saja Sáez, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 23 Influence of different blowing agents and injection moulding processing parameters on the properties of microcellular polycarbonate\u003cbr\u003eDipl-Ing Martin Rohleder, A K Bledzki \u0026amp; H Kirschling, University of Kassel, Germany\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$125.00
{"id":11242237124,"title":"Blowing Agents and Foaming Processes 2010","handle":"978-1-84735-495-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-495-2 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe 12th international Blowing Agents \u0026amp; Foaming Processes conference was developed to once again showcase the latest academic and industrial research shaping the future for so many industry applications. \u003cbr\u003e\u003cbr\u003eAside from the industries with a long-established connection to polymeric foams, a growing market is being driven by the current economic climate. End users are now sourcing innovative ways to keep costs down, identifying new materials, sources and material alternatives. Foamed substrates often represent cost effective alternatives with the dual benefits of saving material and reducing weight - the latter minimising shipping and other related expenses. As a result, new applications have been made commercially viable by the ongoing improvements in the mechanical performance of foamed materials. \u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which include developments in chemical and physical foaming, new applications, novel processes, nano and standard substrates, particle foams as well as the industry's response to environmental legislation.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSession 1: Blowing Agents and Blowing Gases\u003cbr\u003e\u003c\/strong\u003ePaper 1 A novel procedure to analyse the foamability of thermoplastic forms using in-situ optical expandometry and X-ray radioscopy \u003cbr\u003eDr Eusebio Solórzano Quijano, Prof M A Rodriguez-Perez, J Pinto \u0026amp; J A de Saja, University of Valladolid, Spain and F Garcia-Moreno, Institute of Applied Materials, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 2 HFO-1234ze(E) and HBA-2: Advancements in low GWP blowing agents\u003cbr\u003e\u003cbr\u003eJ M Bowman, PE, Honeywell International, USA \u0026amp; Mary Bogan, Honeywell International, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming selected thermoplastics under microwave irradiation\u003cbr\u003e\u003cbr\u003eDr Aleksander Prociak, T Sterzyñski, D Bogdal, S Michaowski \u0026amp; D Safian, University of Cracow, Poland\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 4 The supercritical state paradigm in thermoplastic foaming\u003cbr\u003e\u003cbr\u003eRichard Gendron, Michel F Champagne, Jacques Tatibouët \u0026amp; Hongbo Li, Industrial Materials Institute, National Research Council of Canada, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 5 Further development of GWP foam expansion agent with improved insulating performance vs commercially available options today \u003cbr\u003eGary Loh, Joseph A Creazzo \u0026amp; Mark L Robin, DuPont Company, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 6 Investigation of new low GWP blowing agents for rigid polyurethane foams \u003cbr\u003eLaurent Abbas, Arkema, France \u0026amp; Ben Chen, Joseph Costa \u0026amp; Philippe Bonnet, Arkema, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSession 2: Injection Moulding Efforts\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 7 Case Study: solution with structural foam\u003cbr\u003e\u003cbr\u003eBrian Read, Horizon Plastics International Inc, Canada +++ paper unavailable +++\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 8 Structural foam compared to other injection moulding processes\u003cbr\u003e\u003cbr\u003eHelmut Eckardt, Wittmann Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 9 Using in mold pressure and temperature sensors to monitor the microcellular foaming process\u003cbr\u003e\u003cbr\u003eLevi Kishbaugh, Trexel GmbH, Germany \u0026amp; Mark Berry, PPD Tech LLC, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Possibilities of microcellular injection moulding with polycarbonate\u003cbr\u003e\u003cbr\u003eDipl-Ing Martin Rohleder, Prof A K Bledzki \u0026amp; Dr H Kirschling,Universität Kassel, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSession 3: Extrusion New Aspects and Results\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Physical foaming line for standard and high performance plastics\u003cbr\u003eJoachim Meyke \u0026amp; Matthias Reimker, KraussMaffei Berstorff GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 12 Investigation of the corrugation in foam sheet extrusion\u003cbr\u003e\u003cbr\u003eDipl Ing Tilo Hildebrand \u0026amp; Prof Dr Ing E h Walter Michaeli, IKV Institute for Plastics Processing at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 13 The innovation potential of polymer foams\u003cbr\u003e\u003cbr\u003eHolger Ruckdäschel, Eric Wassner, Jan Sandler \u0026amp; Klaus Hahn, BASF, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 14 Blowing agent emission from styrofoam extruded polystyrene foams –\u003cbr\u003eA simplified model to estimate the residual blowing agent \u003cbr\u003eDr Chau V Vo \u0026amp; Friedhelm Bunge, DOW Europe GmbH, Germany \u0026amp; Simon P Lee, Dow Chemical, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 15 Retrofitting conventional extrusion lines for physical foaming\u003cbr\u003e\u003cbr\u003eChristian Schlummer \u0026amp; Frank Neubauer, Sulzer Chemtech Ltd, Switzerland\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 16 Improving the foaming behaviour of linear polypropylene-based TPO by introducing nanoclay \u003cbr\u003eProf Chul Park \u0026amp; Dr Wentao Zhai, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSession 4: Special Processes and Techniques\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 17 Polyethylene foams produced under a temperature gradient with Expancel® Microspheres and blends thereof \u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Université Laval, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 18 Foaming of polypropylene by using both chemical and physical blowing agents – A comparative study of the structure and physical properties\u003cbr\u003e\u003cbr\u003eCristina Saiz Arroyo, Prof MA Rodriguez-Perez \u0026amp; J A de Saja, University of Valladolid \u0026amp; M Antunes \u0026amp; J I Velasco, Universitat Politècnica de Catalunya, Spain\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 19 Flexible elastomeric foam insulations – a permanent challenge for the foam manufacturer \u003cbr\u003eDr Jürgen Weidinger, Armacell International Holding GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSession 5: Particle Foams\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 20\u003cbr\u003eExpanded Polypropylene, a low density manufacturing and applications\u003cbr\u003e\u003cbr\u003eBert Suffis,, JSP, France +++paper unavailable +++\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Correlations between density and bead size on the dynamic mechanical behaviour of polystyrene bead foams\u003cbr\u003e\u003cbr\u003eDipl-Chem Marieluise Stumpf, Frank Fischer \u0026amp; Volker Altstädt, Universität Bayreuth, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSession 6: Detailed Efforts on Nano Techniques and Ageing\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 22 Poly(styrene-co-acrylonitrile) foaming with supercritical CO2 : Influence of nanoclay on the foam morphology and flammability\u003cbr\u003e\u003cbr\u003eLaetitia Urbanczyk, Serge Bourbigot, Christophe Detrembleur, Christine Jérôme, Phong Minh Tran \u0026amp; Michael Alexandre, University of Liège, Belgium\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 23 Myths and facts surrounding long term aging of foam insulation\u003cbr\u003e\u003cbr\u003eJohn Murphy, Foam Supplies, Inc, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:34-04:00","created_at":"2017-06-22T21:14:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","expansion","foam","p-additives","polyurethane"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378424644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2010","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-495-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-495-2.jpg?v=1499191755"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-495-2.jpg?v=1499191755","options":["Title"],"media":[{"alt":null,"id":353917599837,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-495-2.jpg?v=1499191755"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-495-2.jpg?v=1499191755","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-495-2 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe 12th international Blowing Agents \u0026amp; Foaming Processes conference was developed to once again showcase the latest academic and industrial research shaping the future for so many industry applications. \u003cbr\u003e\u003cbr\u003eAside from the industries with a long-established connection to polymeric foams, a growing market is being driven by the current economic climate. End users are now sourcing innovative ways to keep costs down, identifying new materials, sources and material alternatives. Foamed substrates often represent cost effective alternatives with the dual benefits of saving material and reducing weight - the latter minimising shipping and other related expenses. As a result, new applications have been made commercially viable by the ongoing improvements in the mechanical performance of foamed materials. \u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which include developments in chemical and physical foaming, new applications, novel processes, nano and standard substrates, particle foams as well as the industry's response to environmental legislation.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSession 1: Blowing Agents and Blowing Gases\u003cbr\u003e\u003c\/strong\u003ePaper 1 A novel procedure to analyse the foamability of thermoplastic forms using in-situ optical expandometry and X-ray radioscopy \u003cbr\u003eDr Eusebio Solórzano Quijano, Prof M A Rodriguez-Perez, J Pinto \u0026amp; J A de Saja, University of Valladolid, Spain and F Garcia-Moreno, Institute of Applied Materials, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 2 HFO-1234ze(E) and HBA-2: Advancements in low GWP blowing agents\u003cbr\u003e\u003cbr\u003eJ M Bowman, PE, Honeywell International, USA \u0026amp; Mary Bogan, Honeywell International, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming selected thermoplastics under microwave irradiation\u003cbr\u003e\u003cbr\u003eDr Aleksander Prociak, T Sterzyñski, D Bogdal, S Michaowski \u0026amp; D Safian, University of Cracow, Poland\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 4 The supercritical state paradigm in thermoplastic foaming\u003cbr\u003e\u003cbr\u003eRichard Gendron, Michel F Champagne, Jacques Tatibouët \u0026amp; Hongbo Li, Industrial Materials Institute, National Research Council of Canada, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 5 Further development of GWP foam expansion agent with improved insulating performance vs commercially available options today \u003cbr\u003eGary Loh, Joseph A Creazzo \u0026amp; Mark L Robin, DuPont Company, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 6 Investigation of new low GWP blowing agents for rigid polyurethane foams \u003cbr\u003eLaurent Abbas, Arkema, France \u0026amp; Ben Chen, Joseph Costa \u0026amp; Philippe Bonnet, Arkema, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSession 2: Injection Moulding Efforts\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 7 Case Study: solution with structural foam\u003cbr\u003e\u003cbr\u003eBrian Read, Horizon Plastics International Inc, Canada +++ paper unavailable +++\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 8 Structural foam compared to other injection moulding processes\u003cbr\u003e\u003cbr\u003eHelmut Eckardt, Wittmann Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 9 Using in mold pressure and temperature sensors to monitor the microcellular foaming process\u003cbr\u003e\u003cbr\u003eLevi Kishbaugh, Trexel GmbH, Germany \u0026amp; Mark Berry, PPD Tech LLC, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Possibilities of microcellular injection moulding with polycarbonate\u003cbr\u003e\u003cbr\u003eDipl-Ing Martin Rohleder, Prof A K Bledzki \u0026amp; Dr H Kirschling,Universität Kassel, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSession 3: Extrusion New Aspects and Results\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Physical foaming line for standard and high performance plastics\u003cbr\u003eJoachim Meyke \u0026amp; Matthias Reimker, KraussMaffei Berstorff GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 12 Investigation of the corrugation in foam sheet extrusion\u003cbr\u003e\u003cbr\u003eDipl Ing Tilo Hildebrand \u0026amp; Prof Dr Ing E h Walter Michaeli, IKV Institute for Plastics Processing at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 13 The innovation potential of polymer foams\u003cbr\u003e\u003cbr\u003eHolger Ruckdäschel, Eric Wassner, Jan Sandler \u0026amp; Klaus Hahn, BASF, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 14 Blowing agent emission from styrofoam extruded polystyrene foams –\u003cbr\u003eA simplified model to estimate the residual blowing agent \u003cbr\u003eDr Chau V Vo \u0026amp; Friedhelm Bunge, DOW Europe GmbH, Germany \u0026amp; Simon P Lee, Dow Chemical, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 15 Retrofitting conventional extrusion lines for physical foaming\u003cbr\u003e\u003cbr\u003eChristian Schlummer \u0026amp; Frank Neubauer, Sulzer Chemtech Ltd, Switzerland\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 16 Improving the foaming behaviour of linear polypropylene-based TPO by introducing nanoclay \u003cbr\u003eProf Chul Park \u0026amp; Dr Wentao Zhai, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSession 4: Special Processes and Techniques\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 17 Polyethylene foams produced under a temperature gradient with Expancel® Microspheres and blends thereof \u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Université Laval, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 18 Foaming of polypropylene by using both chemical and physical blowing agents – A comparative study of the structure and physical properties\u003cbr\u003e\u003cbr\u003eCristina Saiz Arroyo, Prof MA Rodriguez-Perez \u0026amp; J A de Saja, University of Valladolid \u0026amp; M Antunes \u0026amp; J I Velasco, Universitat Politècnica de Catalunya, Spain\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 19 Flexible elastomeric foam insulations – a permanent challenge for the foam manufacturer \u003cbr\u003eDr Jürgen Weidinger, Armacell International Holding GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSession 5: Particle Foams\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 20\u003cbr\u003eExpanded Polypropylene, a low density manufacturing and applications\u003cbr\u003e\u003cbr\u003eBert Suffis,, JSP, France +++paper unavailable +++\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Correlations between density and bead size on the dynamic mechanical behaviour of polystyrene bead foams\u003cbr\u003e\u003cbr\u003eDipl-Chem Marieluise Stumpf, Frank Fischer \u0026amp; Volker Altstädt, Universität Bayreuth, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSession 6: Detailed Efforts on Nano Techniques and Ageing\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 22 Poly(styrene-co-acrylonitrile) foaming with supercritical CO2 : Influence of nanoclay on the foam morphology and flammability\u003cbr\u003e\u003cbr\u003eLaetitia Urbanczyk, Serge Bourbigot, Christophe Detrembleur, Christine Jérôme, Phong Minh Tran \u0026amp; Michael Alexandre, University of Liège, Belgium\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 23 Myths and facts surrounding long term aging of foam insulation\u003cbr\u003e\u003cbr\u003eJohn Murphy, Foam Supplies, Inc, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$165.00
{"id":11242251396,"title":"Blowing Agents and Foaming Processes 2011","handle":"9781847356314","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 9781847356314 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlowing Agents \u0026amp; Foaming Processes conference returned for the thirteenth consecutive year to highlight the academic and commercial developments in current and new polymeric foam applications. As the only conference to be tailored to the specific needs of the polymeric foam industry, this was a not-to-be-missed opportunity to hear the latest thinking and best practice in new materials selection and processing technologies. These proceedings cover all the presentations from the conference, bringing you up-to-date on how to find cost-effective alternatives to traditional choices by discussing the numerous solutions on offer - including new materials, resins, technology, processes, and additives.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:19-04:00","created_at":"2017-06-22T21:15:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","blowing","book","foaming","p-additives","polymer","polymeric foam"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378478788,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356314","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356314.jpg?v=1499720064"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356314.jpg?v=1499720064","options":["Title"],"media":[{"alt":null,"id":353917665373,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356314.jpg?v=1499720064"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356314.jpg?v=1499720064","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 9781847356314 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlowing Agents \u0026amp; Foaming Processes conference returned for the thirteenth consecutive year to highlight the academic and commercial developments in current and new polymeric foam applications. As the only conference to be tailored to the specific needs of the polymeric foam industry, this was a not-to-be-missed opportunity to hear the latest thinking and best practice in new materials selection and processing technologies. These proceedings cover all the presentations from the conference, bringing you up-to-date on how to find cost-effective alternatives to traditional choices by discussing the numerous solutions on offer - including new materials, resins, technology, processes, and additives.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$165.00
{"id":11242250372,"title":"Blowing Agents and Foaming Processes 2013","handle":"9781909030428","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 9781909030428 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nToday there are numerous solutions on offer – new methods, resins, technology, processes, and additives and it seems that demand for higher performance and lower costs is set to once again drive technical developments in polymeric foams.\u003cbr\u003e\u003cbr\u003eThose involved in the manufacture of blowing agents, PU foam insulation and packaging, foam extrusion and equipment manufacturer were able to hear, discuss and understand the ways in which they can continue to develop and grow within the market and how our leading panel of speakers addressed such topics and issues.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from Smithers Rapra’s fifteenth internationally renowned Blowing Agents and Foaming Processes conference.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: CHEMICAL AND PHYSICAL FOAMING BASICS\u003cbr\u003ePaper 1\u003cbr\u003eChemical foaming agents in thermoplastics and thermosets\u003cbr\u003eDr Thomas Mergenhagen, Tramaco GmbH, Germany\u003cbr\u003ePaper 2\u003cbr\u003eChemical foaming of thermoplastic seals at ambient pressure\u003cbr\u003eMatthias Gössi \u0026amp; Jürgen Finter, Sika Technology AG, Zürich\/Switzerland\u003cbr\u003ePaper 3\u003cbr\u003eA zero ODP and low GWP foam expansion agent\u003cbr\u003eClaus-Peter Keller, Dupont de Nemours (Deutschland) GmbH, Germany, Gary Loh, Joseph A. Creazzo, Mark L. Robin, PhD \u0026amp; Saadat A. Ata, DuPont Company, USA\u003cbr\u003ePaper 4\u003cbr\u003eShelf life evaluation of PU rigid spray foams\u003cbr\u003eDavid Modray, Foam Supplies, Inc, USA\u003cbr\u003e??\u003cbr\u003eSESSION 2: CURED SYSTEMS (PUR AND SILICONE)\u003cbr\u003ePaper 5\u003cbr\u003eFoaming process and cellular structure analyses of bio-based flexible polyurethane foams\u003cbr\u003ePiotr Rojek \u0026amp; Aleksander Prociak,, Cracow University of Technology, Poland\u003cbr\u003ePaper 6\u003cbr\u003eFoaming of silicone rubber with physical blowing agents in an extrusion process\u003cbr\u003eDipl.-Gyml. Sarah Sitz, Prof. Dr.-Ing. Christian Hopmann, Elena Göbel \u0026amp; Margareta Merke, Institut für Kunststoffverarbeitung (IKV) an der RWTH Aachen, Germany\u003cbr\u003ePaper 7\u003cbr\u003eSilicone foams: how to expand the fastest crosslinking elastomer\u003cbr\u003e??Dr. Jürgen Weidinger, M+S Silicon GmbH \u0026amp; Co.KG, Germany - paper unavailable at time of print SESSION 3: POLYMERS AND PROCESSES\u003cbr\u003e?Paper 8\u003cbr\u003eSustainability in foam created by rheological analysis and LDPE foam resins\u003cbr\u003eJohn Krist \u0026amp; Emanuel van der Ven, SABIC Europe, The Netherlands\u003cbr\u003ePaper 9 \u003cbr\u003eRetrofit concepts for foam extrusion with heat exchangers\u003cbr\u003eChristian Schlummer, Promix Solutions AG, Switzerland\u003cbr\u003ePaper 10\u003cbr\u003eFoams and wood composite foams produced by rotomoulding\u003cbr\u003eAlexandre Raymond \u0026amp; Denis Rodrigue, Université Laval, Canada\u003cbr\u003e?\u003cbr\u003eSESSION 4: INJECTION MOULDING\u003cbr\u003ePaper 11 \u003cbr\u003eMolding large foamed plastic parts\u003cbr\u003eBrian Read, Horizon Plastics International Inc, Canada\u003cbr\u003ePaper 12 \u003cbr\u003eA mould filling simulation and validation data for microcellular foaming\u003cbr\u003eLevi Kishbaugh, Trexel Inc, USA \u0026amp; Anthony Yang, Lloyd Shiu, Dan Chang, Moldex3D Presenter: Martin Jacobi, Trexel GmbH, Germany\u003cbr\u003e?Paper 13 \u003cbr\u003eLight-weight potential of fiber reinforced foams\u003cbr\u003eDipl.-Ing Alexander Roch, Fraunhofer Institute for Chemical Technology ICT,Germany\u003cbr\u003e\u003cbr\u003eSESSION 5: EXTRUSION DIRECT GASSING TRENDS AND MARKETS\u003cbr\u003ePaper 14\u003cbr\u003eTrends and potential of advanced insulating foams\u003cbr\u003eDr.-Ing. Maria-Kristin Sommer, P. Gutmann, C. Schröder, R. Hingmann, C. Däschlein, A. Löffler, BASF SE, Germany\u003cbr\u003ePaper 15\u003cbr\u003eNew class of brominated polymeric flame retardants for use in polystyrene foams\u003cbr\u003eHeli Hollnagel2, Inken Beulich2*, J. Chris Bloom1, John W. Davis1, Bruce King1, Shari Kram1, Christine Lukas3, Ted Morgan1, Bill Stobby1 1The Dow Chemical Company, USA,2 Dow Europe GmbH, Switzerland,3Dow Chemicals UK Limited, United Kingdom\u003cbr\u003ePaper 16\u003cbr\u003eJapanese market situation for EPS and EPP: differences with European market\u003cbr\u003eHiroshi Fujiwara \u0026amp; Hidekazu Ohara, KANEKA Corp., Japan\u003cbr\u003e???\u003cbr\u003eSESSION 6: EXTRUSION DG NEW FINDINGS\u003cbr\u003ePaper 17\u003cbr\u003eMorphology, mechanical properties, and thermoforming behaviour of extrusion foamed organic cellulose ester\u003cbr\u003eS. Hendriks1, T. Hildebrand2, C. Hopmann1, S. Kabasci3, H.-J. Radusch4, F. van Lück5, S. Zepnik3,4 1Institute of Plastics Processing (IKV), RWTH Aachen University, Aachen, Germany\u003cbr\u003e2Selit Dämmtechnik GmbH, Erbes-Büdesheim, Germany. 3Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, Germany. 4Martin Luther University Halle-Wittenberg, Centre of Engineering Sciences, Chair Polymer Technology, Halle (Saale), Germany 5Inde Plastik Betriebsgesellschaft mbH, Aldenhoven, Germany\u003cbr\u003ePaper 18 \u003cbr\u003eContinuous polymer foam extrusion with a physical blowing agent in the solid state\u003cbr\u003eDipl.-Ing Sven Hendriks \u0026amp; Daniel Sander, IKV - Institut für Kunststoffverarbeitung, Germany\u003cbr\u003ePaper 19 \u003cbr\u003eIn-line rheology of gas-loaded polymer melts – The key for understanding the foaming process\u003cbr\u003eT. Köppl, D. Raps, V. Altstädt, University of Bayreuth, Germany\u003cbr\u003ePaper 20\u003cbr\u003eEffects of crystallinity on the foaming behaviours of extruded polypropylene blown with CO2\u003cbr\u003eAlireza Tabatabaei, M. Reza Barzegari, Mohammadreza Nofar, and Chul. B Park, University of Toronto, Canada\u003cbr\u003e????\u003cbr\u003eSESSION 7: NANOFILLERS IN FOAMED EXTRUDED SUBSTRATES\u003cbr\u003ePaper 21 \u003cbr\u003eAdditives with strong thermodynamic affinity for supercritical carbon dioxide: effect on continuous foam processing\u003cbr\u003eAli Rizvi, Alireza Tabatabaei, Reza Barzegari and Chul B. Park, University of Toronto, Canada\u003cbr\u003ePaper 22 \u003cbr\u003eInfluence of carbon-based nanoparticles on the thermal conductivity of extruded polystyrene foams Chimezie Okolieocha, Thomas Köppl, Sabrina Kerling, Volker Altstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003eSESSION 8: NEW FINDINGS AND R\u0026amp;D WORK\u003cbr\u003ePaper 23 \u003cbr\u003ePossibilities and challenges of extrusion of foamed products at pilot plant level\u003cbr\u003eDr Ana Espert Bernia, Aimplas, Spain\u003cbr\u003ePaper 24 \u003cbr\u003eFatigue of sandwich composites and the impact on lightweight applications\u003cbr\u003eLars Massueger, Jean-Francois Koenig, Alain Sagnard \u0026amp; Fabio D’Ottaviano, DOW Europe GmbH, Switzerland","published_at":"2017-06-22T21:15:16-04:00","created_at":"2017-06-22T21:15:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","blowing agents","book","foaming agents","p-additives","polymer","polymeric foams"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378471492,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2013","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781909030428","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781909030428.jpg?v=1499192634"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030428.jpg?v=1499192634","options":["Title"],"media":[{"alt":null,"id":353918320733,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030428.jpg?v=1499192634"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030428.jpg?v=1499192634","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 9781909030428 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nToday there are numerous solutions on offer – new methods, resins, technology, processes, and additives and it seems that demand for higher performance and lower costs is set to once again drive technical developments in polymeric foams.\u003cbr\u003e\u003cbr\u003eThose involved in the manufacture of blowing agents, PU foam insulation and packaging, foam extrusion and equipment manufacturer were able to hear, discuss and understand the ways in which they can continue to develop and grow within the market and how our leading panel of speakers addressed such topics and issues.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from Smithers Rapra’s fifteenth internationally renowned Blowing Agents and Foaming Processes conference.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: CHEMICAL AND PHYSICAL FOAMING BASICS\u003cbr\u003ePaper 1\u003cbr\u003eChemical foaming agents in thermoplastics and thermosets\u003cbr\u003eDr Thomas Mergenhagen, Tramaco GmbH, Germany\u003cbr\u003ePaper 2\u003cbr\u003eChemical foaming of thermoplastic seals at ambient pressure\u003cbr\u003eMatthias Gössi \u0026amp; Jürgen Finter, Sika Technology AG, Zürich\/Switzerland\u003cbr\u003ePaper 3\u003cbr\u003eA zero ODP and low GWP foam expansion agent\u003cbr\u003eClaus-Peter Keller, Dupont de Nemours (Deutschland) GmbH, Germany, Gary Loh, Joseph A. Creazzo, Mark L. Robin, PhD \u0026amp; Saadat A. Ata, DuPont Company, USA\u003cbr\u003ePaper 4\u003cbr\u003eShelf life evaluation of PU rigid spray foams\u003cbr\u003eDavid Modray, Foam Supplies, Inc, USA\u003cbr\u003e??\u003cbr\u003eSESSION 2: CURED SYSTEMS (PUR AND SILICONE)\u003cbr\u003ePaper 5\u003cbr\u003eFoaming process and cellular structure analyses of bio-based flexible polyurethane foams\u003cbr\u003ePiotr Rojek \u0026amp; Aleksander Prociak,, Cracow University of Technology, Poland\u003cbr\u003ePaper 6\u003cbr\u003eFoaming of silicone rubber with physical blowing agents in an extrusion process\u003cbr\u003eDipl.-Gyml. Sarah Sitz, Prof. Dr.-Ing. Christian Hopmann, Elena Göbel \u0026amp; Margareta Merke, Institut für Kunststoffverarbeitung (IKV) an der RWTH Aachen, Germany\u003cbr\u003ePaper 7\u003cbr\u003eSilicone foams: how to expand the fastest crosslinking elastomer\u003cbr\u003e??Dr. Jürgen Weidinger, M+S Silicon GmbH \u0026amp; Co.KG, Germany - paper unavailable at time of print SESSION 3: POLYMERS AND PROCESSES\u003cbr\u003e?Paper 8\u003cbr\u003eSustainability in foam created by rheological analysis and LDPE foam resins\u003cbr\u003eJohn Krist \u0026amp; Emanuel van der Ven, SABIC Europe, The Netherlands\u003cbr\u003ePaper 9 \u003cbr\u003eRetrofit concepts for foam extrusion with heat exchangers\u003cbr\u003eChristian Schlummer, Promix Solutions AG, Switzerland\u003cbr\u003ePaper 10\u003cbr\u003eFoams and wood composite foams produced by rotomoulding\u003cbr\u003eAlexandre Raymond \u0026amp; Denis Rodrigue, Université Laval, Canada\u003cbr\u003e?\u003cbr\u003eSESSION 4: INJECTION MOULDING\u003cbr\u003ePaper 11 \u003cbr\u003eMolding large foamed plastic parts\u003cbr\u003eBrian Read, Horizon Plastics International Inc, Canada\u003cbr\u003ePaper 12 \u003cbr\u003eA mould filling simulation and validation data for microcellular foaming\u003cbr\u003eLevi Kishbaugh, Trexel Inc, USA \u0026amp; Anthony Yang, Lloyd Shiu, Dan Chang, Moldex3D Presenter: Martin Jacobi, Trexel GmbH, Germany\u003cbr\u003e?Paper 13 \u003cbr\u003eLight-weight potential of fiber reinforced foams\u003cbr\u003eDipl.-Ing Alexander Roch, Fraunhofer Institute for Chemical Technology ICT,Germany\u003cbr\u003e\u003cbr\u003eSESSION 5: EXTRUSION DIRECT GASSING TRENDS AND MARKETS\u003cbr\u003ePaper 14\u003cbr\u003eTrends and potential of advanced insulating foams\u003cbr\u003eDr.-Ing. Maria-Kristin Sommer, P. Gutmann, C. Schröder, R. Hingmann, C. Däschlein, A. Löffler, BASF SE, Germany\u003cbr\u003ePaper 15\u003cbr\u003eNew class of brominated polymeric flame retardants for use in polystyrene foams\u003cbr\u003eHeli Hollnagel2, Inken Beulich2*, J. Chris Bloom1, John W. Davis1, Bruce King1, Shari Kram1, Christine Lukas3, Ted Morgan1, Bill Stobby1 1The Dow Chemical Company, USA,2 Dow Europe GmbH, Switzerland,3Dow Chemicals UK Limited, United Kingdom\u003cbr\u003ePaper 16\u003cbr\u003eJapanese market situation for EPS and EPP: differences with European market\u003cbr\u003eHiroshi Fujiwara \u0026amp; Hidekazu Ohara, KANEKA Corp., Japan\u003cbr\u003e???\u003cbr\u003eSESSION 6: EXTRUSION DG NEW FINDINGS\u003cbr\u003ePaper 17\u003cbr\u003eMorphology, mechanical properties, and thermoforming behaviour of extrusion foamed organic cellulose ester\u003cbr\u003eS. Hendriks1, T. Hildebrand2, C. Hopmann1, S. Kabasci3, H.-J. Radusch4, F. van Lück5, S. Zepnik3,4 1Institute of Plastics Processing (IKV), RWTH Aachen University, Aachen, Germany\u003cbr\u003e2Selit Dämmtechnik GmbH, Erbes-Büdesheim, Germany. 3Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, Germany. 4Martin Luther University Halle-Wittenberg, Centre of Engineering Sciences, Chair Polymer Technology, Halle (Saale), Germany 5Inde Plastik Betriebsgesellschaft mbH, Aldenhoven, Germany\u003cbr\u003ePaper 18 \u003cbr\u003eContinuous polymer foam extrusion with a physical blowing agent in the solid state\u003cbr\u003eDipl.-Ing Sven Hendriks \u0026amp; Daniel Sander, IKV - Institut für Kunststoffverarbeitung, Germany\u003cbr\u003ePaper 19 \u003cbr\u003eIn-line rheology of gas-loaded polymer melts – The key for understanding the foaming process\u003cbr\u003eT. Köppl, D. Raps, V. Altstädt, University of Bayreuth, Germany\u003cbr\u003ePaper 20\u003cbr\u003eEffects of crystallinity on the foaming behaviours of extruded polypropylene blown with CO2\u003cbr\u003eAlireza Tabatabaei, M. Reza Barzegari, Mohammadreza Nofar, and Chul. B Park, University of Toronto, Canada\u003cbr\u003e????\u003cbr\u003eSESSION 7: NANOFILLERS IN FOAMED EXTRUDED SUBSTRATES\u003cbr\u003ePaper 21 \u003cbr\u003eAdditives with strong thermodynamic affinity for supercritical carbon dioxide: effect on continuous foam processing\u003cbr\u003eAli Rizvi, Alireza Tabatabaei, Reza Barzegari and Chul B. Park, University of Toronto, Canada\u003cbr\u003ePaper 22 \u003cbr\u003eInfluence of carbon-based nanoparticles on the thermal conductivity of extruded polystyrene foams Chimezie Okolieocha, Thomas Köppl, Sabrina Kerling, Volker Altstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003eSESSION 8: NEW FINDINGS AND R\u0026amp;D WORK\u003cbr\u003ePaper 23 \u003cbr\u003ePossibilities and challenges of extrusion of foamed products at pilot plant level\u003cbr\u003eDr Ana Espert Bernia, Aimplas, Spain\u003cbr\u003ePaper 24 \u003cbr\u003eFatigue of sandwich composites and the impact on lightweight applications\u003cbr\u003eLars Massueger, Jean-Francois Koenig, Alain Sagnard \u0026amp; Fabio D’Ottaviano, DOW Europe GmbH, Switzerland"}
Blowing Agents for Pol...
$120.00
{"id":11242215940,"title":"Blowing Agents for Polyurethane Foams","handle":"978-1-85957-321-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. S.N. Singh, Huntsman Polyurethanes \u003cbr\u003eISBN 978-1-85957-321-1 \u003cbr\u003e\u003cbr\u003epages 104\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe polyurethane foam industry was radically shaken up by the discovery, in the mid 1980s, that certain chlorofluorocarbons (CFCs) used as blowing agents can damage the environment. Hydrochlorofluorocarbons (HCFCs) were developed as replacements, but they are now scheduled to be phased out as they also have ozone depleting potential. \u003cbr\u003e\u003cbr\u003eGlobal agreements have been introduced such as the Montreal Protocol and the Kyoto Protocol, which severely limit the use of many blowing agents. Global warming, ozone depleting potential, atmospheric lifetime and volatile organic compounds are the primary environmental issues with any blowing agent, and there are other factors to consider such as long-term breakdown products, halogen-free nature and acidification potential. \u003cbr\u003e\u003cbr\u003eBlowing agents must also satisfy the requirements of the marketplace including cost, flammability, compatibility with materials of construction, and safe and economic manufacturing processes. \u003cbr\u003e\u003cbr\u003eEach application for foams has its own specifications, for example, low flammability, low toxicity, load bearing capability and cushioning effects. The long-term stability of the foam structure and the insulating properties of the foam are also key. The blowing agent used in polyurethane has a critical effect on these attributes. Insulation is affected by the gas phase thermal conductivity of the blowing agent. Stability is affected by several properties, such as the solubility of the agent in the polymer and the diffusion rate compared with air. \u003cbr\u003e\u003cbr\u003eThis review discusses the legal requirements and property specifications for blowing agents in different applications. It highlights the effects of changing blowing agents including the need for reformulation. Many new polyols, isocyanates and surfactants are being developed to overcome problems. Similarly, new equipment is being produced, for example, to cope with the flammability issues surrounding the use of hydrocarbon blowing agents, such as pentane. \u003cbr\u003e\u003cbr\u003eEach type of blowing agent is described. Key environmental and physical properties are listed, together with advantages and limitations. Foams are described by types and by applications. The review also describes, briefly, the current state of the market and which new blowing agents are likely to be used in each sector. The developments by many different companies are outlined.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Blowing Agents up to the mid 1980s \u003cbr\u003e1.2 The Montreal Protocol and Other Regulations \u003cbr\u003e2 Blowing Agents - Considerations Since the mid 1980s \u003cbr\u003e\u003cbr\u003e2.1 Environmental Considerations \u003cbr\u003e2.2 Feasibility Considerations \u003cbr\u003e2.3 Performance Considerations \u003cbr\u003e3 Alternative Blowing Agents \u003cbr\u003e\u003cbr\u003e3.1 Hydrochloroflurocarbons (HCFCs) \u003cbr\u003e3.2 Hydrofluorocarbons (HFCs) \u003cbr\u003e3.3 Hydrocarbons (HCs) \u003cbr\u003e3.4 Other Physical Blowing Agents \u003cbr\u003e3.5 Chemical Blowing Agents \u003cbr\u003e4 Blowing Agents for Low Density Rigid Foam \u003cbr\u003e\u003cbr\u003e4.1 Specific Performance Criteria \u003cbr\u003e4.2 General Developments \u003cbr\u003e4.2.1 Reducing Consumption of CFC-11 \u003cbr\u003e4.2.2 Liquid HCFCs \u003cbr\u003e4.2.3 Liquid HFCs \u003cbr\u003e4.2.4 Low Boiling Blowing Agents (LBBA) \u003cbr\u003e4.2.5 Degradation Products of HCFCs and HFCs \u003cbr\u003e4.2.6 Liquid Hydrocarbons \u003cbr\u003e4.2.7 Blends of Blowing Agents \u003cbr\u003e4.2.8 All CO2 Blown \u003cbr\u003e4.2.9 Partially Open Cell Foam \u003cbr\u003e4.2.10 Thermal Conductivity Improvement Technology \u003cbr\u003e4.2.11 Thermal Conductivity Ageing of Foam \u003cbr\u003e4.2.12 Dimensional Stability of Foam \u003cbr\u003e\u003cbr\u003e4.3 Blowing Agent Technology by End Use Market \u003cbr\u003e4.3.1 Household Refrigerators and Freezers \u003cbr\u003e4.3.2 Water Heaters and Other Appliances \u003cbr\u003e4.3.3 Flexible Faced Laminates (Boardstock) \u003cbr\u003e4.3.4 Rigid Faced Laminates \u003cbr\u003e4.3.5 Entry and Garage Doors \u003cbr\u003e4.3.6 Slabstock \u003cbr\u003e4.3.7 Spray \u003cbr\u003e4.3.8 Pipe Insulation \u003cbr\u003e4.3.9 One Component Foam (OCF) \u003cbr\u003e4.3.10 Marine Flotation \u003cbr\u003e4.3.11 Miscellaneous Applications \u003cbr\u003e5 Blowing Agents for Low Density Flexible Foam \u003cbr\u003e\u003cbr\u003e5.1 Specific Performance Criteria \u003cbr\u003e5.2 Blowing Agent by Manufacturing Process \u003cbr\u003e5.2.1 Continuous Slabstock \u003cbr\u003e5.2.2 Discontinuous Slabstock \u003cbr\u003e5.2.3 Moulded Foam \u003cbr\u003e6 High Density Foams and Elastomers \u003cbr\u003e\u003cbr\u003e6.1 Specific Performance Criteria \u003cbr\u003e6.2 Flexible Integral Skin Foam \u003cbr\u003e6.2.1 Low ODP Technology \u003cbr\u003e6.2.2 Zero ODP Technology \u003cbr\u003e\u003cbr\u003e6.3 Rigid Integral Skin Foam \u003cbr\u003e6.4 Semi-Rigid Foam \u003cbr\u003e6.5 Microcellular Elastomers\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr Singh is a leading expert on blowing agents, formulation and long-term stability of polyurethane foams, and has a collection of publications including patents. He is currently a Development Associate with Huntsman Polyurethanes (formerly ICI Polyurethanes).","published_at":"2017-06-22T21:13:28-04:00","created_at":"2017-06-22T21:13:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","blends","blowing agents","book","environmental issues","foam formulation","foams","microcellular","p-additives","polymer","polymers","polyurethane","rigid","semi-rigid foam"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378355908,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents for Polyurethane Foams","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-321-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-321-1.jpg?v=1499202493"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-321-1.jpg?v=1499202493","options":["Title"],"media":[{"alt":null,"id":353925005405,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-321-1.jpg?v=1499202493"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-321-1.jpg?v=1499202493","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. S.N. Singh, Huntsman Polyurethanes \u003cbr\u003eISBN 978-1-85957-321-1 \u003cbr\u003e\u003cbr\u003epages 104\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe polyurethane foam industry was radically shaken up by the discovery, in the mid 1980s, that certain chlorofluorocarbons (CFCs) used as blowing agents can damage the environment. Hydrochlorofluorocarbons (HCFCs) were developed as replacements, but they are now scheduled to be phased out as they also have ozone depleting potential. \u003cbr\u003e\u003cbr\u003eGlobal agreements have been introduced such as the Montreal Protocol and the Kyoto Protocol, which severely limit the use of many blowing agents. Global warming, ozone depleting potential, atmospheric lifetime and volatile organic compounds are the primary environmental issues with any blowing agent, and there are other factors to consider such as long-term breakdown products, halogen-free nature and acidification potential. \u003cbr\u003e\u003cbr\u003eBlowing agents must also satisfy the requirements of the marketplace including cost, flammability, compatibility with materials of construction, and safe and economic manufacturing processes. \u003cbr\u003e\u003cbr\u003eEach application for foams has its own specifications, for example, low flammability, low toxicity, load bearing capability and cushioning effects. The long-term stability of the foam structure and the insulating properties of the foam are also key. The blowing agent used in polyurethane has a critical effect on these attributes. Insulation is affected by the gas phase thermal conductivity of the blowing agent. Stability is affected by several properties, such as the solubility of the agent in the polymer and the diffusion rate compared with air. \u003cbr\u003e\u003cbr\u003eThis review discusses the legal requirements and property specifications for blowing agents in different applications. It highlights the effects of changing blowing agents including the need for reformulation. Many new polyols, isocyanates and surfactants are being developed to overcome problems. Similarly, new equipment is being produced, for example, to cope with the flammability issues surrounding the use of hydrocarbon blowing agents, such as pentane. \u003cbr\u003e\u003cbr\u003eEach type of blowing agent is described. Key environmental and physical properties are listed, together with advantages and limitations. Foams are described by types and by applications. The review also describes, briefly, the current state of the market and which new blowing agents are likely to be used in each sector. The developments by many different companies are outlined.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Blowing Agents up to the mid 1980s \u003cbr\u003e1.2 The Montreal Protocol and Other Regulations \u003cbr\u003e2 Blowing Agents - Considerations Since the mid 1980s \u003cbr\u003e\u003cbr\u003e2.1 Environmental Considerations \u003cbr\u003e2.2 Feasibility Considerations \u003cbr\u003e2.3 Performance Considerations \u003cbr\u003e3 Alternative Blowing Agents \u003cbr\u003e\u003cbr\u003e3.1 Hydrochloroflurocarbons (HCFCs) \u003cbr\u003e3.2 Hydrofluorocarbons (HFCs) \u003cbr\u003e3.3 Hydrocarbons (HCs) \u003cbr\u003e3.4 Other Physical Blowing Agents \u003cbr\u003e3.5 Chemical Blowing Agents \u003cbr\u003e4 Blowing Agents for Low Density Rigid Foam \u003cbr\u003e\u003cbr\u003e4.1 Specific Performance Criteria \u003cbr\u003e4.2 General Developments \u003cbr\u003e4.2.1 Reducing Consumption of CFC-11 \u003cbr\u003e4.2.2 Liquid HCFCs \u003cbr\u003e4.2.3 Liquid HFCs \u003cbr\u003e4.2.4 Low Boiling Blowing Agents (LBBA) \u003cbr\u003e4.2.5 Degradation Products of HCFCs and HFCs \u003cbr\u003e4.2.6 Liquid Hydrocarbons \u003cbr\u003e4.2.7 Blends of Blowing Agents \u003cbr\u003e4.2.8 All CO2 Blown \u003cbr\u003e4.2.9 Partially Open Cell Foam \u003cbr\u003e4.2.10 Thermal Conductivity Improvement Technology \u003cbr\u003e4.2.11 Thermal Conductivity Ageing of Foam \u003cbr\u003e4.2.12 Dimensional Stability of Foam \u003cbr\u003e\u003cbr\u003e4.3 Blowing Agent Technology by End Use Market \u003cbr\u003e4.3.1 Household Refrigerators and Freezers \u003cbr\u003e4.3.2 Water Heaters and Other Appliances \u003cbr\u003e4.3.3 Flexible Faced Laminates (Boardstock) \u003cbr\u003e4.3.4 Rigid Faced Laminates \u003cbr\u003e4.3.5 Entry and Garage Doors \u003cbr\u003e4.3.6 Slabstock \u003cbr\u003e4.3.7 Spray \u003cbr\u003e4.3.8 Pipe Insulation \u003cbr\u003e4.3.9 One Component Foam (OCF) \u003cbr\u003e4.3.10 Marine Flotation \u003cbr\u003e4.3.11 Miscellaneous Applications \u003cbr\u003e5 Blowing Agents for Low Density Flexible Foam \u003cbr\u003e\u003cbr\u003e5.1 Specific Performance Criteria \u003cbr\u003e5.2 Blowing Agent by Manufacturing Process \u003cbr\u003e5.2.1 Continuous Slabstock \u003cbr\u003e5.2.2 Discontinuous Slabstock \u003cbr\u003e5.2.3 Moulded Foam \u003cbr\u003e6 High Density Foams and Elastomers \u003cbr\u003e\u003cbr\u003e6.1 Specific Performance Criteria \u003cbr\u003e6.2 Flexible Integral Skin Foam \u003cbr\u003e6.2.1 Low ODP Technology \u003cbr\u003e6.2.2 Zero ODP Technology \u003cbr\u003e\u003cbr\u003e6.3 Rigid Integral Skin Foam \u003cbr\u003e6.4 Semi-Rigid Foam \u003cbr\u003e6.5 Microcellular Elastomers\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr Singh is a leading expert on blowing agents, formulation and long-term stability of polyurethane foams, and has a collection of publications including patents. He is currently a Development Associate with Huntsman Polyurethanes (formerly ICI Polyurethanes)."}
Bonding Elastomers: A ...
$153.00
{"id":11242239556,"title":"Bonding Elastomers: A Review of Adhesives and Processes","handle":"978-1-85957-495-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G. Polaski, J. Means, B. Stull, P. Warren, K. Allen, D. Mowrey and B. Carney, Lord Corporation \u003cbr\u003eISBN 978-1-85957-495-9 \u003cbr\u003e\u003cbr\u003ePages 150\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review has been written as a practical approach to bonding various kinds of elastomers to substrates such as steel and plastics, as used in the manufacture of diverse products such as rubber covered rolls, urethane fork lift wheels, rubber lining for chemical storage or solid rocket motors, engine bushes and mounts, seals for transmissions, electrical power connectors and military tank track pads. \u003cbr\u003e\u003cbr\u003eThere are over 20 kinds of elastomeric polymer each having unique physical and chemical resistance characteristics. Through compounding, a given elastomer’s performance can be enhanced but no single elastomer can be compounded to meet all applications. In the same manner, no single adhesive can provide the needed levels of adhesion and environmental resistance to all polymers. Even when bonding a particular elastomer, the adhesive of choice can vary depending upon the compounding of the rubber including the cure system, the environmental application of the bonded assembly, the substrate to which the rubber is going to be bonded, the moulding method and the geometry of the part. Other factors affecting adhesive selection might include colour, conductivity, and means of application. \u003cbr\u003e\u003cbr\u003eThis review is based on the authors' years of experience working closely with end-use customers and offers a thorough overview of how to successfully bond rubber to a given substrate in the manufacture of quality rubber engineered components: \u003cbr\u003e\u003cbr\u003esubstrate preparation selection of adhesive adhesive preparation adhesive application moulding conditions testing and bond failure analysis future trends \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Forward \u003cbr\u003e2 Introduction\u003cbr\u003e2.1 The Process\u003cbr\u003e2.2 Primers\u003cbr\u003e2.3 Adhesives\u003cbr\u003e2.4 Environmental Concerns \u003cbr\u003e3 Adhesive Application\u003cbr\u003e3.1 Surface Preparation\u003cbr\u003e3.2 Adhesive Selection\u003cbr\u003e3.3 Adhesive Preparation\u003cbr\u003e3.4 Adhesive Application\u003cbr\u003e3.5 Film Thickness\u003cbr\u003e3.6 Drying\u003cbr\u003e3.7 Storage \u003cbr\u003e4 Moulding\u003cbr\u003e4.1 Methods of Mould Bonding\u003cbr\u003e4.2 Sweeping (Flow)\u003cbr\u003e4.3 Pre-bake Resistance\u003cbr\u003e4.4 Mould Release\u003cbr\u003e4.5 Demoulding \u003cbr\u003e5 Environmentally Preferred Adhesives\u003cbr\u003e5.1 Adhesive Description\u003cbr\u003e5.2 Formulations\u003cbr\u003e5.3 Application\u003cbr\u003e5.4 Rubber Formulations\u003cbr\u003e5.5 Testing\u003cbr\u003e5.5.1 Bond Performance\u003cbr\u003e5.5.2 Primary Adhesion\u003cbr\u003e5.5.3 Sweep\u003cbr\u003e5.5.4 Hot Tear\u003cbr\u003e5.5.5 Salt Spray\u003cbr\u003e5.6 Results\u003cbr\u003e5.7 Summary \u003cbr\u003e6 Aqueous Adhesives\u003cbr\u003e6.1 Aqueous versus Solvent Based Adhesives\u003cbr\u003e6.2 Experimental\u003cbr\u003e6.3 Results and Discussion\u003cbr\u003e6.4 Summary \u003cbr\u003e7 Troubleshooting\u003cbr\u003e7.1 Types of Failures\u003cbr\u003e7.1.1 Rubber Failure\u003cbr\u003e7.1.2 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.1.3 Cement-to Metal (CM) Failure\u003cbr\u003e7.1.4 Other Failures\u003cbr\u003e7.2 Failure Analysis\u003cbr\u003e7.2.1 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.2.2 Cement-to-Metal Failure\u003cbr\u003e7.3 Surface Analysis Techniques\u003cbr\u003e7.4 Root Cause\u003cbr\u003e7.5 Summary \u003cbr\u003e8 Testing \u003cbr\u003e9 Markets\u003cbr\u003e9.1 Bonding Rubber Rolls\u003cbr\u003e9.1.1 Core Preparation\u003cbr\u003e9.1.2 The Adhesive System Selection Process\u003cbr\u003e9.1.3 Handling, Mixing, and Application Processes\u003cbr\u003e9.1.4 Rubber Lay-Up and Curing\u003cbr\u003e9.1.5 Troubleshooting\u003cbr\u003e9.2 Bonding Urethane's\u003cbr\u003e9.2.1 Bonding Applications\u003cbr\u003e9.2.2 Adhesive System Selection\u003cbr\u003e9.2.3 Adhesive Application\u003cbr\u003e9.3 Thermoplastic Elastomer Bonding\u003cbr\u003e9.3.1 Bonding Applications\u003cbr\u003e9.3.2 Bonding Methods\u003cbr\u003e9.3.3 Adhesive Selection (for Use in Injection Moulding)\u003cbr\u003e9.3.4 Application\u003cbr\u003e9.3.5 Pre-Baking Adhesive Coated Parts Prior to Moulding\u003cbr\u003e9.3.6 Injection Moulding\u003cbr\u003e9.3.7 Checking Bond Adhesion\u003cbr\u003e9.3.8 Bond Performance\u003cbr\u003e9.4 Rubber Lining\u003cbr\u003e9.4.1 Surface Preparation\u003cbr\u003e9.4.2 Rubber Lining\u003cbr\u003e9.4.3 Rubber and the Cure System\u003cbr\u003e9.4.4 Primers\/Adhesives\/Tack Coats\u003cbr\u003e9.4.5 Adhesive Handling\u003cbr\u003e9.4.6 Application\u003cbr\u003e9.4.7 Quality Control\u003cbr\u003e9.4.8 Summary\u003cbr\u003e9.5 Adhesives for Seals and Gaskets\u003cbr\u003e9.5.1 Adhesive and Coating Selections\u003cbr\u003e9.5.2 Summary\u003cbr\u003e9.6 Adhesives for Automotive Weatherstripping\u003cbr\u003e9.6.1 Metal Profile Carriers\u003cbr\u003e9.6.2 Elastomeric Sealing Surfaces\u003cbr\u003e9.6.3 Extrusion Process\u003cbr\u003e9.6.4 Performance Testing\u003cbr\u003e9.6.5 Summary \u003cbr\u003e10 Future Trends in Rubber-to-Metal Bonding \u003cbr\u003eAbbreviations\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","adhesives","book","chemical","electrical properties","film thickness","gaskets","mechanical","mold release","molding","moulding","p-applications","poly","polyethylene","rheological","rubber","seals","thermal properties"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432900,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Bonding Elastomers: A Review of Adhesives and Processes","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-495-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579","options":["Title"],"media":[{"alt":null,"id":353925038173,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G. Polaski, J. Means, B. Stull, P. Warren, K. Allen, D. Mowrey and B. Carney, Lord Corporation \u003cbr\u003eISBN 978-1-85957-495-9 \u003cbr\u003e\u003cbr\u003ePages 150\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review has been written as a practical approach to bonding various kinds of elastomers to substrates such as steel and plastics, as used in the manufacture of diverse products such as rubber covered rolls, urethane fork lift wheels, rubber lining for chemical storage or solid rocket motors, engine bushes and mounts, seals for transmissions, electrical power connectors and military tank track pads. \u003cbr\u003e\u003cbr\u003eThere are over 20 kinds of elastomeric polymer each having unique physical and chemical resistance characteristics. Through compounding, a given elastomer’s performance can be enhanced but no single elastomer can be compounded to meet all applications. In the same manner, no single adhesive can provide the needed levels of adhesion and environmental resistance to all polymers. Even when bonding a particular elastomer, the adhesive of choice can vary depending upon the compounding of the rubber including the cure system, the environmental application of the bonded assembly, the substrate to which the rubber is going to be bonded, the moulding method and the geometry of the part. Other factors affecting adhesive selection might include colour, conductivity, and means of application. \u003cbr\u003e\u003cbr\u003eThis review is based on the authors' years of experience working closely with end-use customers and offers a thorough overview of how to successfully bond rubber to a given substrate in the manufacture of quality rubber engineered components: \u003cbr\u003e\u003cbr\u003esubstrate preparation selection of adhesive adhesive preparation adhesive application moulding conditions testing and bond failure analysis future trends \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Forward \u003cbr\u003e2 Introduction\u003cbr\u003e2.1 The Process\u003cbr\u003e2.2 Primers\u003cbr\u003e2.3 Adhesives\u003cbr\u003e2.4 Environmental Concerns \u003cbr\u003e3 Adhesive Application\u003cbr\u003e3.1 Surface Preparation\u003cbr\u003e3.2 Adhesive Selection\u003cbr\u003e3.3 Adhesive Preparation\u003cbr\u003e3.4 Adhesive Application\u003cbr\u003e3.5 Film Thickness\u003cbr\u003e3.6 Drying\u003cbr\u003e3.7 Storage \u003cbr\u003e4 Moulding\u003cbr\u003e4.1 Methods of Mould Bonding\u003cbr\u003e4.2 Sweeping (Flow)\u003cbr\u003e4.3 Pre-bake Resistance\u003cbr\u003e4.4 Mould Release\u003cbr\u003e4.5 Demoulding \u003cbr\u003e5 Environmentally Preferred Adhesives\u003cbr\u003e5.1 Adhesive Description\u003cbr\u003e5.2 Formulations\u003cbr\u003e5.3 Application\u003cbr\u003e5.4 Rubber Formulations\u003cbr\u003e5.5 Testing\u003cbr\u003e5.5.1 Bond Performance\u003cbr\u003e5.5.2 Primary Adhesion\u003cbr\u003e5.5.3 Sweep\u003cbr\u003e5.5.4 Hot Tear\u003cbr\u003e5.5.5 Salt Spray\u003cbr\u003e5.6 Results\u003cbr\u003e5.7 Summary \u003cbr\u003e6 Aqueous Adhesives\u003cbr\u003e6.1 Aqueous versus Solvent Based Adhesives\u003cbr\u003e6.2 Experimental\u003cbr\u003e6.3 Results and Discussion\u003cbr\u003e6.4 Summary \u003cbr\u003e7 Troubleshooting\u003cbr\u003e7.1 Types of Failures\u003cbr\u003e7.1.1 Rubber Failure\u003cbr\u003e7.1.2 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.1.3 Cement-to Metal (CM) Failure\u003cbr\u003e7.1.4 Other Failures\u003cbr\u003e7.2 Failure Analysis\u003cbr\u003e7.2.1 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.2.2 Cement-to-Metal Failure\u003cbr\u003e7.3 Surface Analysis Techniques\u003cbr\u003e7.4 Root Cause\u003cbr\u003e7.5 Summary \u003cbr\u003e8 Testing \u003cbr\u003e9 Markets\u003cbr\u003e9.1 Bonding Rubber Rolls\u003cbr\u003e9.1.1 Core Preparation\u003cbr\u003e9.1.2 The Adhesive System Selection Process\u003cbr\u003e9.1.3 Handling, Mixing, and Application Processes\u003cbr\u003e9.1.4 Rubber Lay-Up and Curing\u003cbr\u003e9.1.5 Troubleshooting\u003cbr\u003e9.2 Bonding Urethane's\u003cbr\u003e9.2.1 Bonding Applications\u003cbr\u003e9.2.2 Adhesive System Selection\u003cbr\u003e9.2.3 Adhesive Application\u003cbr\u003e9.3 Thermoplastic Elastomer Bonding\u003cbr\u003e9.3.1 Bonding Applications\u003cbr\u003e9.3.2 Bonding Methods\u003cbr\u003e9.3.3 Adhesive Selection (for Use in Injection Moulding)\u003cbr\u003e9.3.4 Application\u003cbr\u003e9.3.5 Pre-Baking Adhesive Coated Parts Prior to Moulding\u003cbr\u003e9.3.6 Injection Moulding\u003cbr\u003e9.3.7 Checking Bond Adhesion\u003cbr\u003e9.3.8 Bond Performance\u003cbr\u003e9.4 Rubber Lining\u003cbr\u003e9.4.1 Surface Preparation\u003cbr\u003e9.4.2 Rubber Lining\u003cbr\u003e9.4.3 Rubber and the Cure System\u003cbr\u003e9.4.4 Primers\/Adhesives\/Tack Coats\u003cbr\u003e9.4.5 Adhesive Handling\u003cbr\u003e9.4.6 Application\u003cbr\u003e9.4.7 Quality Control\u003cbr\u003e9.4.8 Summary\u003cbr\u003e9.5 Adhesives for Seals and Gaskets\u003cbr\u003e9.5.1 Adhesive and Coating Selections\u003cbr\u003e9.5.2 Summary\u003cbr\u003e9.6 Adhesives for Automotive Weatherstripping\u003cbr\u003e9.6.1 Metal Profile Carriers\u003cbr\u003e9.6.2 Elastomeric Sealing Surfaces\u003cbr\u003e9.6.3 Extrusion Process\u003cbr\u003e9.6.4 Performance Testing\u003cbr\u003e9.6.5 Summary \u003cbr\u003e10 Future Trends in Rubber-to-Metal Bonding \u003cbr\u003eAbbreviations\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e"}
Bottles, Preforms and ...
$149.00
{"id":11242203908,"title":"Bottles, Preforms and Closures, 2nd Edition - A Design Guide for PET Packaging","handle":"978-1-4377-3526-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ottmar Brandau \u003cbr\u003eISBN 978-1-4377-3526-0 \u003cbr\u003e\u003cbr\u003e180 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book is a thoroughly practical handbook that provides engineers and managers with the toolkit to improve production and engineering aspects in their own businesses - saving money, increasing output and improving competitiveness by adopting new technologies.\u003c\/p\u003e\n\u003cp\u003eIn this book, Brandau covers the engineering aspects of bottle production and the relevant production processes (focusing on blow molding), along with plant layout and organization and production management. \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart One: PET Preforms (Ottmar Brandau, Dr. Laura Martin):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Manufacture and States of PET;\u003cbr\u003e\u003cbr\u003e3 Behaviour in the Blow Mould; 4 Manufacture of PET Preforms;\u003cbr\u003e\u003cbr\u003e5 Preform Design Methodology;\u003cbr\u003e\u003cbr\u003e6 Preform Design Examples;\u003cbr\u003e\u003cbr\u003ePart 2: PET Beverage Bottles (Dr. Christian DeTrois, Thomas Steinbauer):\u003cbr\u003e\u003cbr\u003e1 From the First Idea to the Finished Bottle;\u003cbr\u003e\u003cbr\u003e2 Determination of Bottle Properties;\u003cbr\u003e\u003cbr\u003e3 Generating the First Design in CAD;\u003cbr\u003e\u003cbr\u003e4 From Shape to Fully-Fledged Design for a Safe Process;\u003cbr\u003e\u003cbr\u003e5 Verification of the 3D Design through FE Simulation;\u003cbr\u003e\u003cbr\u003e6 Selection of the Mould Concept to Meet Customer-Specific Criteria;\u003cbr\u003e\u003cbr\u003e7 Mould Design and Mould Manufacture;\u003cbr\u003e\u003cbr\u003e8 Mould Trials and Examination of Sample Bottles;\u003cbr\u003e\u003cbr\u003ePart 3 Closures for PET Bottles (Ottmar Brandau, Romeo Corvaglia):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Neck Finishes for Various Bottle Types;\u003cbr\u003e\u003cbr\u003e3 Closure Types;\u003cbr\u003e\u003cbr\u003e4 Tamper Evident Bands;\u003cbr\u003e\u003cbr\u003e5 Resins;\u003cbr\u003e\u003cbr\u003e6 Manufacturing Methods;\u003cbr\u003e\u003cbr\u003e7 Economic Guidelines;\u003cbr\u003e\u003cbr\u003e8 Test Procedures;\u003cbr\u003e\u003cbr\u003e9 Process Control during Injection Moulding; Light-weigh caps, new standards\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eOttmar Brandau\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eOB Plastics Consulting, Ontario, Canada\u003c\/div\u003e\n\u003cdiv\u003ePresident, OB Plastics Consulting, Ontario, Canada Process troubleshooting and training of plant and office personnel. Formerly VP Operations, Magic North America (Packaging \u0026amp; Containers). Member of the Omnexus (SpecialChem Plastics \u0026amp; Elastomers) Expert Team.\u003c\/div\u003e","published_at":"2017-06-22T21:12:49-04:00","created_at":"2017-06-22T21:12:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","blow molding","book","bottles","fault analysis","p-applications","packaging","PET","PET packaging","plastics processing","polymer","troubleshooting"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316740,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Bottles, Preforms and Closures, 2nd Edition - A Design Guide for PET Packaging","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-3526-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204","options":["Title"],"media":[{"alt":null,"id":353925529693,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ottmar Brandau \u003cbr\u003eISBN 978-1-4377-3526-0 \u003cbr\u003e\u003cbr\u003e180 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book is a thoroughly practical handbook that provides engineers and managers with the toolkit to improve production and engineering aspects in their own businesses - saving money, increasing output and improving competitiveness by adopting new technologies.\u003c\/p\u003e\n\u003cp\u003eIn this book, Brandau covers the engineering aspects of bottle production and the relevant production processes (focusing on blow molding), along with plant layout and organization and production management. \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart One: PET Preforms (Ottmar Brandau, Dr. Laura Martin):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Manufacture and States of PET;\u003cbr\u003e\u003cbr\u003e3 Behaviour in the Blow Mould; 4 Manufacture of PET Preforms;\u003cbr\u003e\u003cbr\u003e5 Preform Design Methodology;\u003cbr\u003e\u003cbr\u003e6 Preform Design Examples;\u003cbr\u003e\u003cbr\u003ePart 2: PET Beverage Bottles (Dr. Christian DeTrois, Thomas Steinbauer):\u003cbr\u003e\u003cbr\u003e1 From the First Idea to the Finished Bottle;\u003cbr\u003e\u003cbr\u003e2 Determination of Bottle Properties;\u003cbr\u003e\u003cbr\u003e3 Generating the First Design in CAD;\u003cbr\u003e\u003cbr\u003e4 From Shape to Fully-Fledged Design for a Safe Process;\u003cbr\u003e\u003cbr\u003e5 Verification of the 3D Design through FE Simulation;\u003cbr\u003e\u003cbr\u003e6 Selection of the Mould Concept to Meet Customer-Specific Criteria;\u003cbr\u003e\u003cbr\u003e7 Mould Design and Mould Manufacture;\u003cbr\u003e\u003cbr\u003e8 Mould Trials and Examination of Sample Bottles;\u003cbr\u003e\u003cbr\u003ePart 3 Closures for PET Bottles (Ottmar Brandau, Romeo Corvaglia):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Neck Finishes for Various Bottle Types;\u003cbr\u003e\u003cbr\u003e3 Closure Types;\u003cbr\u003e\u003cbr\u003e4 Tamper Evident Bands;\u003cbr\u003e\u003cbr\u003e5 Resins;\u003cbr\u003e\u003cbr\u003e6 Manufacturing Methods;\u003cbr\u003e\u003cbr\u003e7 Economic Guidelines;\u003cbr\u003e\u003cbr\u003e8 Test Procedures;\u003cbr\u003e\u003cbr\u003e9 Process Control during Injection Moulding; Light-weigh caps, new standards\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eOttmar Brandau\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eOB Plastics Consulting, Ontario, Canada\u003c\/div\u003e\n\u003cdiv\u003ePresident, OB Plastics Consulting, Ontario, Canada Process troubleshooting and training of plant and office personnel. Formerly VP Operations, Magic North America (Packaging \u0026amp; Containers). Member of the Omnexus (SpecialChem Plastics \u0026amp; Elastomers) Expert Team.\u003c\/div\u003e"}
Carbon Nanotubes for B...
$159.00
{"id":11242233924,"title":"Carbon Nanotubes for Biomedical Applications","handle":"978-3-642-14801-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Klingeler, Rüdiger; Sim, Robert B. (Eds.) \u003cbr\u003eISBN 978-3-642-14801-9 \u003cbr\u003e\u003cbr\u003e1st Edition., 2011, XX, 280 p. 38 illus. in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003ePart I Fundamental: Synthesis of Multifunctional Nanomaterials and their Potential for Medical Application\u003c\/p\u003e\n\u003cp\u003e1. Physical Properties of Carbon Nanotubes for Therapeutic Application\u003c\/p\u003e\n\u003cp\u003e2. Carbon Nanotubes in Regenerative Medicine\u003c\/p\u003e\n\u003cp\u003e3. Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase\u003c\/p\u003e\n\u003cp\u003e4. Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery\u003c\/p\u003e\n\u003cp\u003ePart II Magnetically Functionalised Carbon Nanotubes for Medical Diagnosis and Therapy\u003c\/p\u003e\n\u003cp\u003e5. Magnetic Nanoparticles for Diagnosis and Medical Therapy\u003c\/p\u003e\n\u003cp\u003e6. Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors\u003c\/p\u003e\n\u003cp\u003e6. Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003ePart III Interaction with Biological Systems\u003c\/p\u003e\n\u003cp\u003e7. Exploring Carbon Nanotubes and Their Interaction with Cells Using Atomic Force Microscopy\u003c\/p\u003e\n\u003cp\u003e8. Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003e9. Recognition of Carbon Nanotubes by Human Innate Immune System\u003c\/p\u003e\n\u003cp\u003e10. Toxicity and Environmental Impact of Carbon Nanotubes \u003c\/p\u003e\n\u003cp\u003ePart IV Towards Targeted Chemotherapy and Gene Delivery\u003c\/p\u003e\n\u003cp\u003e11. Carbon Nanotubes Loaded with Anticancer Drugs: A Platform for Multimodal Cancer Treatment\u003c\/p\u003e\n\u003cp\u003e12. Carbon Nanotubes Filled with Carboplatin: Towards Supported Delivery of Chemotherapeutic Agents\u003c\/p\u003e\n\u003cp\u003e13. Functionalized Carbon Nanotubes for Gene Biodeloivery \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:24-04:00","created_at":"2017-06-22T21:14:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biocompatibility","biomedical application","book","cellular uptake","intracellular distribution","nano","nantubes","NMR-active substances","toxicity"],"price":15900,"price_min":15900,"price_max":15900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378414596,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Carbon Nanotubes for Biomedical Applications","public_title":null,"options":["Default Title"],"price":15900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-642-14801-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975","options":["Title"],"media":[{"alt":null,"id":353925562461,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Klingeler, Rüdiger; Sim, Robert B. (Eds.) \u003cbr\u003eISBN 978-3-642-14801-9 \u003cbr\u003e\u003cbr\u003e1st Edition., 2011, XX, 280 p. 38 illus. in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003ePart I Fundamental: Synthesis of Multifunctional Nanomaterials and their Potential for Medical Application\u003c\/p\u003e\n\u003cp\u003e1. Physical Properties of Carbon Nanotubes for Therapeutic Application\u003c\/p\u003e\n\u003cp\u003e2. Carbon Nanotubes in Regenerative Medicine\u003c\/p\u003e\n\u003cp\u003e3. Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase\u003c\/p\u003e\n\u003cp\u003e4. Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery\u003c\/p\u003e\n\u003cp\u003ePart II Magnetically Functionalised Carbon Nanotubes for Medical Diagnosis and Therapy\u003c\/p\u003e\n\u003cp\u003e5. Magnetic Nanoparticles for Diagnosis and Medical Therapy\u003c\/p\u003e\n\u003cp\u003e6. Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors\u003c\/p\u003e\n\u003cp\u003e6. Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003ePart III Interaction with Biological Systems\u003c\/p\u003e\n\u003cp\u003e7. Exploring Carbon Nanotubes and Their Interaction with Cells Using Atomic Force Microscopy\u003c\/p\u003e\n\u003cp\u003e8. Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003e9. Recognition of Carbon Nanotubes by Human Innate Immune System\u003c\/p\u003e\n\u003cp\u003e10. Toxicity and Environmental Impact of Carbon Nanotubes \u003c\/p\u003e\n\u003cp\u003ePart IV Towards Targeted Chemotherapy and Gene Delivery\u003c\/p\u003e\n\u003cp\u003e11. Carbon Nanotubes Loaded with Anticancer Drugs: A Platform for Multimodal Cancer Treatment\u003c\/p\u003e\n\u003cp\u003e12. Carbon Nanotubes Filled with Carboplatin: Towards Supported Delivery of Chemotherapeutic Agents\u003c\/p\u003e\n\u003cp\u003e13. Functionalized Carbon Nanotubes for Gene Biodeloivery \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Carbon Nanotubes for P...
$189.00
{"id":11242224964,"title":"Carbon Nanotubes for Polymer Reinforcement","handle":"978-1-4398262-1-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peng-Cheng Ma, Jang-Kyo Kim \u003cbr\u003eISBN 978-1-4398262-1-8 \u003cbr\u003e\u003cbr\u003ePages: 224 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDiscovered in the twentieth century, carbon nanotubes (CNT) were an integral part of science and industry by the beginning of the twenty first century, revolutionizing chemistry, physics, and materials science. More recent advances in carbon nanotube production methods have resulted in a tremendous push to incorporate CNTs into polymer matrices. Although many advances have been made, two major obstacles continue unresolved: the enhancement of interfacial adhesion between CNTs and polymer matrix, and the improvement of dispersion of CNTs in polymers. \u003cbr\u003e\u003cbr\u003eBoth substantial original contributors to the field, the authors present Carbon Nanotubes for Polymer Reinforcement, the first monograph on various conventional and innovative techniques to disperse and functionalize carbon nanotubes for polymer reinforcement, elegantly explaining the basic sciences and technologies involved in those processes. Topics covered include:\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eUse of CNTs in fabricating novel polymer composites\u003c\/li\u003e\n\u003cli\u003ePrinciples and mechanisms behind CNT dispersion and functionalization\u003c\/li\u003e\n\u003cli\u003eMethods for the functionalization and dispersion of CNTs in polymer matrices\u003c\/li\u003e\n\u003cli\u003eEffects of CNTs on functional and mechanical properties of polymer composites\u003c\/li\u003e\n\u003cli\u003eOptimization of CNT\/polymer nanocomposite fabrication\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eCarbon Nanotubes for Polymer Reinforcement is a comprehensive treatment and critical review of the new class of polymer nanocomposites, and points to areas of future developments. Composites engineers, scientists, researchers, and students will find the basic knowledge and technical results contained herein informative and useful references for their work, whether for advanced research or for design and manufacture of such composites.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Introduction to carbon nanotubes (CNTs)\u003cbr\u003e1.2 Properties of CNTs\u003cbr\u003e1.2.1 Structure properties\u003cbr\u003e1.2.2 Mechanical properties\u003cbr\u003e1.2.3 Electrical\/electronic properties\u003cbr\u003e1.2.4 Thermal properties\u003cbr\u003e1.2.5 Optical properties\u003cbr\u003e1.2.6 Magnetic properties\u003cbr\u003e1.2.7 Defects on CNTs\u003cbr\u003e1.2.8 Others\u003cbr\u003e1.3 Characterization of CNTs\u003cbr\u003e1.3.1 Structure and morphological characterization of CNTs\u003cbr\u003e1.3.2 Characterization of surface functionalities on CNTs\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e2. Dispersion of CNTs\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Dispersion behavior of CNTs\u003cbr\u003e2.2.1 Dispersion and distribution of CNTs\u003cbr\u003e2.2.2 Surface interactions between CNTs\u003cbr\u003e2.2.3 Aggregation and solubility of CNTs\u003cbr\u003e2.3 Techniques for CNT dispersion\u003cbr\u003e2.3.1 Theoretical analysis on CNT dispersion\u003cbr\u003e2.3.2 Ultrasonication\u003cbr\u003e2.3.3 High speed shear mixing\u003cbr\u003e2.3.4 Calendering\u003cbr\u003e2.3.5 Extrusion\u003cbr\u003e2.3.6 Other techniques\u003cbr\u003e2.4 Characterization of CNT dispersion\u003cbr\u003e2.4.1 Principles on the characterization of CNT dispersion\u003cbr\u003e2.4.2 Microscopic method (Optical and confocal microscopy, SEM, TEM)\u003cbr\u003e2.4.3 Light method (Particle size analyzer, fluorescent method, UV-Vis)\u003cbr\u003e2.4.4 Physical method (Zeta potential)\u003cbr\u003e2.4.5 Qualitative and quantitative evaluation of CNT dispersion\u003cbr\u003e2.5 Dispersion of CNTs in liquid media\u003cbr\u003e2.5.1 Dispersion of CNTs in organic solvents\u003cbr\u003e2.5.2 Dispersion of CNTs in polymers\u003cbr\u003e2.5.3 CNT interactions with biomolecules (DNA, protein, enzyme)\u003cbr\u003e2.6 CNT dispersion using surfactant\u003cbr\u003e2.6.1 Role of surfactant in CNT dispersion\u003cbr\u003e2.6.2 Nonionic surfactant-assisted CNT dispersion\u003cbr\u003e2.6.3 Ionic surfactant-assisted CNT dispersion\u003cbr\u003e2.6.4 Cationic surfactant-assisted CNT dispersion\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e3. Functionalization of CNTs\u003cbr\u003e3.1 Chemistry of CNTs\u003cbr\u003e3.2 Covalent Functionalization of CNTs\u003cbr\u003e3.2.1 Direct side wall functionalization\u003cbr\u003e3.2.2 Defect functionalization\u003cbr\u003e3.3 Non-covalent functionalization of CNTs\u003cbr\u003e3.3.1 Polymer wrapping\u003cbr\u003e3.3.2 Surfactant adsorption\u003cbr\u003e3.3.3 Endohedral method\u003cbr\u003e3.4 CNT functionalization in different phases\u003cbr\u003e3.4.1 CNT functionalization in solid phase (Mechanochemical method)\u003cbr\u003e3.4.2 CNT functionalization in liquid phase (Covalent and non-covalent methods)\u003cbr\u003e3.4.3 CNT functionalization in gas phase (including UV\/03, plasma and halogenations,such as F, Cl and Br)\u003cbr\u003e\u003cbr\u003e3.5 Effects of functionalization on the properties of CNTs\u003cbr\u003e3.5.1 Dispersibility of CNTs\u003cbr\u003e3.5.2 Mechanical properties\u003cbr\u003e3.5.3 Electrical\/electronic properties\u003cbr\u003e3.5.4 Thermal properties\u003cbr\u003e3.5.5 Optical properties\u003cbr\u003e3.5.6 Others\u003cbr\u003e3.6 Metal nanoparticle\/CNT nanohybrids\u003cbr\u003e3.6.1 Fabrication\u003cbr\u003e3.6.2 Applications\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e4. CNT\/Polymer Nanocomposites\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fabrication of CNT\/polymer composites\u003cbr\u003e4.2.1 Solution mixing\u003cbr\u003e4.2.2 Melt blending\u003cbr\u003e4.2.3 In-situ polymerization\u003cbr\u003e4.2.4 Latex technology\u003cbr\u003e4.2.5 Pulverization method\u003cbr\u003e4.2.6 Coagulation spinning method\u003cbr\u003e4.2.7 Others\u003cbr\u003e4.3 Effects of functionalization on the properties of CNT\/polymer nanocomposites\u003cbr\u003e4.3.1 Mechanical properties\u003cbr\u003e4.3.2 Electrical properties\u003cbr\u003e4.3.3 Thermal properties and flammability\u003cbr\u003e4.3.4 Optical properties\u003cbr\u003e4.3.5 Magnetic properties\u003cbr\u003e4.3.6 Ageing properties\u003cbr\u003e4.3.7 Damping properties\u003cbr\u003e4.3.8 Others\u003cbr\u003e4.4 Control of CNT\/polymer interface\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e5. Application of CNT\/Polymer Nanocomposites\u003cbr\u003e5.1 Structural application of CNT \/polymer nanocomposites\u003cbr\u003e5.2 Functional application of CNT\/polymer nanocomposites\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eAppendices\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nPeng-Cheng Ma is currently a Visiting Scholar at the Hong Kong University of Science and Technology. Jang-Kyo Kim is a tenured Professor, Associate Dean of Engineering, and Director of the Nanoscience and Technology Program at the Hong Kong University of Science and Technology.","published_at":"2017-06-22T21:13:57-04:00","created_at":"2017-06-22T21:13:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","carbon nanotubes","CNTs","dispersion","functionalization","nano","polymer nancomposites","properties","structure"],"price":18900,"price_min":18900,"price_max":18900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378390276,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Carbon Nanotubes for Polymer Reinforcement","public_title":null,"options":["Default Title"],"price":18900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4398262-1-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398262-1-8.jpg?v=1499202744"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398262-1-8.jpg?v=1499202744","options":["Title"],"media":[{"alt":null,"id":353925660765,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398262-1-8.jpg?v=1499202744"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398262-1-8.jpg?v=1499202744","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peng-Cheng Ma, Jang-Kyo Kim \u003cbr\u003eISBN 978-1-4398262-1-8 \u003cbr\u003e\u003cbr\u003ePages: 224 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDiscovered in the twentieth century, carbon nanotubes (CNT) were an integral part of science and industry by the beginning of the twenty first century, revolutionizing chemistry, physics, and materials science. More recent advances in carbon nanotube production methods have resulted in a tremendous push to incorporate CNTs into polymer matrices. Although many advances have been made, two major obstacles continue unresolved: the enhancement of interfacial adhesion between CNTs and polymer matrix, and the improvement of dispersion of CNTs in polymers. \u003cbr\u003e\u003cbr\u003eBoth substantial original contributors to the field, the authors present Carbon Nanotubes for Polymer Reinforcement, the first monograph on various conventional and innovative techniques to disperse and functionalize carbon nanotubes for polymer reinforcement, elegantly explaining the basic sciences and technologies involved in those processes. Topics covered include:\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eUse of CNTs in fabricating novel polymer composites\u003c\/li\u003e\n\u003cli\u003ePrinciples and mechanisms behind CNT dispersion and functionalization\u003c\/li\u003e\n\u003cli\u003eMethods for the functionalization and dispersion of CNTs in polymer matrices\u003c\/li\u003e\n\u003cli\u003eEffects of CNTs on functional and mechanical properties of polymer composites\u003c\/li\u003e\n\u003cli\u003eOptimization of CNT\/polymer nanocomposite fabrication\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eCarbon Nanotubes for Polymer Reinforcement is a comprehensive treatment and critical review of the new class of polymer nanocomposites, and points to areas of future developments. Composites engineers, scientists, researchers, and students will find the basic knowledge and technical results contained herein informative and useful references for their work, whether for advanced research or for design and manufacture of such composites.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Introduction to carbon nanotubes (CNTs)\u003cbr\u003e1.2 Properties of CNTs\u003cbr\u003e1.2.1 Structure properties\u003cbr\u003e1.2.2 Mechanical properties\u003cbr\u003e1.2.3 Electrical\/electronic properties\u003cbr\u003e1.2.4 Thermal properties\u003cbr\u003e1.2.5 Optical properties\u003cbr\u003e1.2.6 Magnetic properties\u003cbr\u003e1.2.7 Defects on CNTs\u003cbr\u003e1.2.8 Others\u003cbr\u003e1.3 Characterization of CNTs\u003cbr\u003e1.3.1 Structure and morphological characterization of CNTs\u003cbr\u003e1.3.2 Characterization of surface functionalities on CNTs\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e2. Dispersion of CNTs\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Dispersion behavior of CNTs\u003cbr\u003e2.2.1 Dispersion and distribution of CNTs\u003cbr\u003e2.2.2 Surface interactions between CNTs\u003cbr\u003e2.2.3 Aggregation and solubility of CNTs\u003cbr\u003e2.3 Techniques for CNT dispersion\u003cbr\u003e2.3.1 Theoretical analysis on CNT dispersion\u003cbr\u003e2.3.2 Ultrasonication\u003cbr\u003e2.3.3 High speed shear mixing\u003cbr\u003e2.3.4 Calendering\u003cbr\u003e2.3.5 Extrusion\u003cbr\u003e2.3.6 Other techniques\u003cbr\u003e2.4 Characterization of CNT dispersion\u003cbr\u003e2.4.1 Principles on the characterization of CNT dispersion\u003cbr\u003e2.4.2 Microscopic method (Optical and confocal microscopy, SEM, TEM)\u003cbr\u003e2.4.3 Light method (Particle size analyzer, fluorescent method, UV-Vis)\u003cbr\u003e2.4.4 Physical method (Zeta potential)\u003cbr\u003e2.4.5 Qualitative and quantitative evaluation of CNT dispersion\u003cbr\u003e2.5 Dispersion of CNTs in liquid media\u003cbr\u003e2.5.1 Dispersion of CNTs in organic solvents\u003cbr\u003e2.5.2 Dispersion of CNTs in polymers\u003cbr\u003e2.5.3 CNT interactions with biomolecules (DNA, protein, enzyme)\u003cbr\u003e2.6 CNT dispersion using surfactant\u003cbr\u003e2.6.1 Role of surfactant in CNT dispersion\u003cbr\u003e2.6.2 Nonionic surfactant-assisted CNT dispersion\u003cbr\u003e2.6.3 Ionic surfactant-assisted CNT dispersion\u003cbr\u003e2.6.4 Cationic surfactant-assisted CNT dispersion\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e3. Functionalization of CNTs\u003cbr\u003e3.1 Chemistry of CNTs\u003cbr\u003e3.2 Covalent Functionalization of CNTs\u003cbr\u003e3.2.1 Direct side wall functionalization\u003cbr\u003e3.2.2 Defect functionalization\u003cbr\u003e3.3 Non-covalent functionalization of CNTs\u003cbr\u003e3.3.1 Polymer wrapping\u003cbr\u003e3.3.2 Surfactant adsorption\u003cbr\u003e3.3.3 Endohedral method\u003cbr\u003e3.4 CNT functionalization in different phases\u003cbr\u003e3.4.1 CNT functionalization in solid phase (Mechanochemical method)\u003cbr\u003e3.4.2 CNT functionalization in liquid phase (Covalent and non-covalent methods)\u003cbr\u003e3.4.3 CNT functionalization in gas phase (including UV\/03, plasma and halogenations,such as F, Cl and Br)\u003cbr\u003e\u003cbr\u003e3.5 Effects of functionalization on the properties of CNTs\u003cbr\u003e3.5.1 Dispersibility of CNTs\u003cbr\u003e3.5.2 Mechanical properties\u003cbr\u003e3.5.3 Electrical\/electronic properties\u003cbr\u003e3.5.4 Thermal properties\u003cbr\u003e3.5.5 Optical properties\u003cbr\u003e3.5.6 Others\u003cbr\u003e3.6 Metal nanoparticle\/CNT nanohybrids\u003cbr\u003e3.6.1 Fabrication\u003cbr\u003e3.6.2 Applications\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e4. CNT\/Polymer Nanocomposites\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fabrication of CNT\/polymer composites\u003cbr\u003e4.2.1 Solution mixing\u003cbr\u003e4.2.2 Melt blending\u003cbr\u003e4.2.3 In-situ polymerization\u003cbr\u003e4.2.4 Latex technology\u003cbr\u003e4.2.5 Pulverization method\u003cbr\u003e4.2.6 Coagulation spinning method\u003cbr\u003e4.2.7 Others\u003cbr\u003e4.3 Effects of functionalization on the properties of CNT\/polymer nanocomposites\u003cbr\u003e4.3.1 Mechanical properties\u003cbr\u003e4.3.2 Electrical properties\u003cbr\u003e4.3.3 Thermal properties and flammability\u003cbr\u003e4.3.4 Optical properties\u003cbr\u003e4.3.5 Magnetic properties\u003cbr\u003e4.3.6 Ageing properties\u003cbr\u003e4.3.7 Damping properties\u003cbr\u003e4.3.8 Others\u003cbr\u003e4.4 Control of CNT\/polymer interface\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e5. Application of CNT\/Polymer Nanocomposites\u003cbr\u003e5.1 Structural application of CNT \/polymer nanocomposites\u003cbr\u003e5.2 Functional application of CNT\/polymer nanocomposites\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eAppendices\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nPeng-Cheng Ma is currently a Visiting Scholar at the Hong Kong University of Science and Technology. Jang-Kyo Kim is a tenured Professor, Associate Dean of Engineering, and Director of the Nanoscience and Technology Program at the Hong Kong University of Science and Technology."}
Cellular Polymers III
$60.00
{"id":11242247172,"title":"Cellular Polymers III","handle":"978-1-85957-038-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-038-8 \u003cbr\u003e\u003cbr\u003e25 papers, softbound\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe material covers all aspects of elastomeric and rigid foams including: Thermal performance of insulating foams; Analysis of fire gases; The progress of CFC-free foams; Recycling and waste management; Gas transfer; Novel additives and synthesis techniques; Manufacturing developments for a range of foamed materials; Impact properties.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Papers: \u003cbr\u003e\u003cbr\u003eUse of the Distributed Parameter Continuum (DIPAC) Model for Estimating the Long Term Thermal Performance of Insulating Foams, Mark T. Bomberg and Mavinkal K Kumaran, National Research Council, Canada \u003cbr\u003e\u003cbr\u003eDevelopment of a Method tor Measuring Radial Creep of District Heating Pipes, H. D. Smidt, Danish Technological Institute, Denmark and L. Amby, Logstor Ror A\/S, Denmark \u003cbr\u003e\u003cbr\u003eUse of FTIR to Analyze Fire Gases from Burning Polyurethane Foams, K.T. Paul, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eCFC-free Thermal Insulation Foams, C.W.F. Yu, D.R. Crump and D. Gardiner, Building Research Establishment, UK \u003cbr\u003e\u003cbr\u003eA Review of Life Cycle Assessment - A Tool for Measuring the Environmental Impact of Cellular Polymers, Dr David Heath, ICI Engineering Technology, UK and Dr. Vanja Markovic, ICI Polyurethanes\/ISOPA, Belgium \u003cbr\u003e\u003cbr\u003e\"CFC-Free\" The Scope of the Achievement so far, P. Ashford, Caleb Management Services, UK \u003cbr\u003e\u003cbr\u003eThe Future of Foam Plastic Insulation in the Light of Climate Chance Legislation, J.G. Abbott, Dow Europe SA., Switzerland \u003cbr\u003e\u003cbr\u003eProcess by which Controls on Chemicals are Introduced into European Community Legislation, J. Neill, European Commission, Belgium \u003cbr\u003e\u003cbr\u003eUtilization of Polymeric Isocyanate Based Binders in Recycling of Automotive Shredder Fluff, K.C. Frisch, A. Sendijarevic, V. Sendijarevic and D. Klempner, University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003eRecovery and Recycling of Polyurethane Foams, E. Weigand, Bayer AG, Germany \u003cbr\u003e\u003cbr\u003eWaste Management of EPS in Europe, T. van Dorp, Shell Chemicals Europe, UK \u003cbr\u003e\u003cbr\u003eRecovery of Value from Waste: The Government View, P. Coombs, Department of Trade and Industry, UK \u003cbr\u003e\u003cbr\u003eCell Structure Development in Compression Molded, Crosslinked Polyethylene and Ethylene-Vinyl Acetate Foam, G.L.A. Sims and C. Khunniteekool, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eThe Influence of Low Molecular Additives on Gas Transport Properties in Polyethylene Films and Foams, W P Nauta and R.H.B. Bouma, University of Twente, J.E.F. Arnauts and H. M. Steuten, DSM Research, The Netherlands \u003cbr\u003e\u003cbr\u003ePolyether Triols,Tetrahydrofurame-Alkyleneoxides Copolymers for Flexible Polyurethane Foams, M. Ionescu, I. Mihalache, V. Zugravu and S. Mihai, Institute of Chemical Research, Romania \u003cbr\u003e\u003cbr\u003eSolubility and Nucleation Phenomena in Rigid PU Foam Expansion by Low Boiling Blowing Agents; a Modelling Approach, Henri J.M. Gruenbauer, Dow Benelux NV, The Netherlands \u003cbr\u003e\u003cbr\u003eLiquid Crystalline Polyurethanes: Synthesis, Properties and Application, B. Szczepaniak and P. Penczek, Industrial Chemistry Research Institute, A. Wolinska-Grabczyk, Institute of Coal Chemistry, and K.C. Frisch University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003ePolyurethane Reactions According to Computational Chemistry, Nelson Malwitz, Sealed Air Corporation, USA \u003cbr\u003e\u003cbr\u003eRigid PVC Foams: A New Twist to an Old Technology, K. Redford, L.T. Hoydal, A. Stori, and K.H. Holm, SINTEF, Norway, A. Jorgensen and J. Grovdal, Dynoplast AS, Norway \u003cbr\u003e\u003cbr\u003eA Solid State Semi-Continuous Process to Make PET Foam Sheets, V. Kumar, University of Washington Seattle, USA and H. G. Schirmer, W. R. Grace Co., USA \u003cbr\u003e\u003cbr\u003eThe CarDio(TM) Process: Industrial Production Experiences, Carlo Florentini, Cannon Afros, Italy, Max Taverna, Cannon Communications, Italy, Barry Collings, Cannon, USA, Tony Griffiths, Cannon Viking, Italy \u003cbr\u003e\u003cbr\u003eThe Manufacture of Flexible Polyurethane Foams by the Variable Pressure Process V.P.F., J. B. Blackwell and G. Buckley, Beamech Group Limited, UK \u003cbr\u003e\u003cbr\u003eThe Balance of Formulation, Processing Conditions in the Manufacture of Crosslinked Polyethylene Foam, G.L.A. Sims and W. Sirithongtaworn, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eInteraction between Microstructure and Mechanical Properties of Flexible Polyurethane Foams, J. M. Williams and J. H. Beynon, University of Leicester, UK \u003cbr\u003e\u003cbr\u003eAnalysis of Impact of Two-Layer Foams, and Evaluation of Body Protectors, A. Gilchrist and N.J. Mills, University of Birmingham, UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:06-04:00","created_at":"2017-06-22T21:15:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","additives","book","foam","impact properties","insulation","p-structural","polymer","polyurethane foams","recycling"],"price":6000,"price_min":6000,"price_max":6000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378463108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Cellular Polymers III","public_title":null,"options":["Default Title"],"price":6000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420","options":["Title"],"media":[{"alt":null,"id":353968488541,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-038-8 \u003cbr\u003e\u003cbr\u003e25 papers, softbound\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe material covers all aspects of elastomeric and rigid foams including: Thermal performance of insulating foams; Analysis of fire gases; The progress of CFC-free foams; Recycling and waste management; Gas transfer; Novel additives and synthesis techniques; Manufacturing developments for a range of foamed materials; Impact properties.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Papers: \u003cbr\u003e\u003cbr\u003eUse of the Distributed Parameter Continuum (DIPAC) Model for Estimating the Long Term Thermal Performance of Insulating Foams, Mark T. Bomberg and Mavinkal K Kumaran, National Research Council, Canada \u003cbr\u003e\u003cbr\u003eDevelopment of a Method tor Measuring Radial Creep of District Heating Pipes, H. D. Smidt, Danish Technological Institute, Denmark and L. Amby, Logstor Ror A\/S, Denmark \u003cbr\u003e\u003cbr\u003eUse of FTIR to Analyze Fire Gases from Burning Polyurethane Foams, K.T. Paul, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eCFC-free Thermal Insulation Foams, C.W.F. Yu, D.R. Crump and D. Gardiner, Building Research Establishment, UK \u003cbr\u003e\u003cbr\u003eA Review of Life Cycle Assessment - A Tool for Measuring the Environmental Impact of Cellular Polymers, Dr David Heath, ICI Engineering Technology, UK and Dr. Vanja Markovic, ICI Polyurethanes\/ISOPA, Belgium \u003cbr\u003e\u003cbr\u003e\"CFC-Free\" The Scope of the Achievement so far, P. Ashford, Caleb Management Services, UK \u003cbr\u003e\u003cbr\u003eThe Future of Foam Plastic Insulation in the Light of Climate Chance Legislation, J.G. Abbott, Dow Europe SA., Switzerland \u003cbr\u003e\u003cbr\u003eProcess by which Controls on Chemicals are Introduced into European Community Legislation, J. Neill, European Commission, Belgium \u003cbr\u003e\u003cbr\u003eUtilization of Polymeric Isocyanate Based Binders in Recycling of Automotive Shredder Fluff, K.C. Frisch, A. Sendijarevic, V. Sendijarevic and D. Klempner, University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003eRecovery and Recycling of Polyurethane Foams, E. Weigand, Bayer AG, Germany \u003cbr\u003e\u003cbr\u003eWaste Management of EPS in Europe, T. van Dorp, Shell Chemicals Europe, UK \u003cbr\u003e\u003cbr\u003eRecovery of Value from Waste: The Government View, P. Coombs, Department of Trade and Industry, UK \u003cbr\u003e\u003cbr\u003eCell Structure Development in Compression Molded, Crosslinked Polyethylene and Ethylene-Vinyl Acetate Foam, G.L.A. Sims and C. Khunniteekool, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eThe Influence of Low Molecular Additives on Gas Transport Properties in Polyethylene Films and Foams, W P Nauta and R.H.B. Bouma, University of Twente, J.E.F. Arnauts and H. M. Steuten, DSM Research, The Netherlands \u003cbr\u003e\u003cbr\u003ePolyether Triols,Tetrahydrofurame-Alkyleneoxides Copolymers for Flexible Polyurethane Foams, M. Ionescu, I. Mihalache, V. Zugravu and S. Mihai, Institute of Chemical Research, Romania \u003cbr\u003e\u003cbr\u003eSolubility and Nucleation Phenomena in Rigid PU Foam Expansion by Low Boiling Blowing Agents; a Modelling Approach, Henri J.M. Gruenbauer, Dow Benelux NV, The Netherlands \u003cbr\u003e\u003cbr\u003eLiquid Crystalline Polyurethanes: Synthesis, Properties and Application, B. Szczepaniak and P. Penczek, Industrial Chemistry Research Institute, A. Wolinska-Grabczyk, Institute of Coal Chemistry, and K.C. Frisch University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003ePolyurethane Reactions According to Computational Chemistry, Nelson Malwitz, Sealed Air Corporation, USA \u003cbr\u003e\u003cbr\u003eRigid PVC Foams: A New Twist to an Old Technology, K. Redford, L.T. Hoydal, A. Stori, and K.H. Holm, SINTEF, Norway, A. Jorgensen and J. Grovdal, Dynoplast AS, Norway \u003cbr\u003e\u003cbr\u003eA Solid State Semi-Continuous Process to Make PET Foam Sheets, V. Kumar, University of Washington Seattle, USA and H. G. Schirmer, W. R. Grace Co., USA \u003cbr\u003e\u003cbr\u003eThe CarDio(TM) Process: Industrial Production Experiences, Carlo Florentini, Cannon Afros, Italy, Max Taverna, Cannon Communications, Italy, Barry Collings, Cannon, USA, Tony Griffiths, Cannon Viking, Italy \u003cbr\u003e\u003cbr\u003eThe Manufacture of Flexible Polyurethane Foams by the Variable Pressure Process V.P.F., J. B. Blackwell and G. Buckley, Beamech Group Limited, UK \u003cbr\u003e\u003cbr\u003eThe Balance of Formulation, Processing Conditions in the Manufacture of Crosslinked Polyethylene Foam, G.L.A. Sims and W. Sirithongtaworn, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eInteraction between Microstructure and Mechanical Properties of Flexible Polyurethane Foams, J. M. Williams and J. H. Beynon, University of Leicester, UK \u003cbr\u003e\u003cbr\u003eAnalysis of Impact of Two-Layer Foams, and Evaluation of Body Protectors, A. Gilchrist and N.J. Mills, University of Birmingham, UK\u003cbr\u003e\u003cbr\u003e"}
Chain Mobility and Pro...
$325.00
{"id":4534943449181,"title":"Chain Mobility and Progress in Medicine, Pharmaceutical, and Polymer Science and Technology","handle":"chain-mobility-and-progress-in-medicine-pharmaceutical-and-polymer-science-and-technology","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eTitle of series: Impact of Award\u003cbr\u003eISBN 978-1-927885-65-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages 236+vi\u003cbr\u003eFigures 66\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eChain movement, chain mobility, segmental mobility, segmental dynamics, chain orientation are the primary subjects of this monograph having utmost importance in polymer science and technology, medicine, pharmaceutical, and many other applications. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eNobel Prize committee awarded in 1991 Nobel Prize in Physics to Pierre-Gilles de Gennes of Collège de France \"for discovering that methods developed for studying order phenomena in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers\". “de Gennes’ models of polymer-chain motion” show “that a certain typical segment of a chain can move as if it were free, even in more concentrated solutions.” “The reptation model described the serpentine motion of a polymer chain within a “tangle” of surrounding polymer chains.”\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003cspan\u003eThe book goes far beyond the analysis of the effect of the Nobel Prize on how we interpret movement within materials today and how our present perception affects many aspects of science.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe introductory chapter defines principle terms and their semantics, followed by an introduction to Nobel Laureate and Award Justification and analysis of published materials until today. It is followed by the analysis of the effect of Nobel Prize on the frequency of publication of research papers and patents on the subject chain mobility.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains discussion of different mechanisms used for description and interpretation of results of chain motion of macromolecular substances, such as bead-chain, bond fluctuation, Brill transition, chain diffusion, chain orientation, chemo-responsive, coarse-grained, fluorescence blob, intra- vs. inter-chain, light activated, magnetic-activated, microwave, rod chain, Rouse, shape memory, slip-link, strain-induced, tube models which today form fabric of scientific explanation of applicable facts.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e will discuss conditions or, in other words, parameters under which chains move, including activation energy, annealing, chain absorption, chain scission, compaction pressure, configuration, confinement dimensions, crosslinks, crystallization, dynamic ratio, electrostatic interaction, entanglements, free surface, free volume, glass transition temperature, hydrophilicity, interaction length, interface layer, layer thickness, microstructure, miscible and immiscible blends, molecular weight, nanoparticles, packing density, presence of low molecular compounds (e.g., plasticizers, solvents), pressure, relaxation time, rotational motion, segmental dynamics, side chains, temperature, and time of chain movement. All these parameters are essential determinants of chain movement and their impact id discussed in separate sections of this chapter. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e includes information on the effect of chain movement on properties of materials, such as chain alignment, chain orientation, creation of free volume, crystallization, dimensional stability, formation of porous structures, ionic transport, mechanical properties, polymer blends, polymer redistribution, proton transfer, release rate of low molecular compounds, reinforcement, self-healing, sound attenuation, steric hindrance, storage modulus, swelling, thermal expansion, thermal stability, and wear. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eSeveral significant analytical methods have been briefly discussed in \u003cstrong\u003eChapter 6\u003c\/strong\u003e, including atomic force microscopy, \u003cem\u003ein situ\u003c\/em\u003e synchrotron X-ray, NMR imaging, NMR mouse, NMR solid-state, positron annihilation spectroscopy, SAXS, and WAXD in relation to their relevance for chain mobility studies. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 7\u003c\/strong\u003e contains information on significant contributions on chain mobility for 50 polymers. The polymers selected comprise about 25% of all polymers included in Handbook of Polymers, which means that chain mobility was important subject of studies in both theoretical and practical applications.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eAll above concepts, findings, and applications are narrated in a simple to understand language stripped of disciplinary slang which makes the book accessible to those interested in medicine, pharmacy, and polymer sciences. This book gives numerous examples on how to apply these findings in the development of cutting-edge products.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction. Nobel Prize Justification for Pierre-Gilles de Gennes\u003cbr\u003e2 Analysis of existing publications \u003cbr\u003e3 Mechanisms of chain motion of macromolecular substances\u003cbr\u003e4 Parameters (conditions) of chain movement\u003cbr\u003e5 The effect of chain movement on the properties of materials\u003cbr\u003e6 Significant analytical methods of study\u003cbr\u003e7 Chain mobility in different polymers \u003cbr\u003e8 Comparison of justification of Nobel Prize by the selection committee with actual results of research reported\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:04:06-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","polymers"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943825883229,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Chain Mobility and Progress in Medicine, Pharmaceutical, and Polymer Science and Technology","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-65-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885659-Case.png?v=1581109992"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885659-Case.png?v=1581109992","options":["Title"],"media":[{"alt":null,"id":6968050581597,"position":1,"preview_image":{"aspect_ratio":0.642,"height":450,"width":289,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885659-Case.png?v=1581109992"},"aspect_ratio":0.642,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885659-Case.png?v=1581109992","width":289}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eTitle of series: Impact of Award\u003cbr\u003eISBN 978-1-927885-65-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages 236+vi\u003cbr\u003eFigures 66\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eChain movement, chain mobility, segmental mobility, segmental dynamics, chain orientation are the primary subjects of this monograph having utmost importance in polymer science and technology, medicine, pharmaceutical, and many other applications. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eNobel Prize committee awarded in 1991 Nobel Prize in Physics to Pierre-Gilles de Gennes of Collège de France \"for discovering that methods developed for studying order phenomena in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers\". “de Gennes’ models of polymer-chain motion” show “that a certain typical segment of a chain can move as if it were free, even in more concentrated solutions.” “The reptation model described the serpentine motion of a polymer chain within a “tangle” of surrounding polymer chains.”\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003cspan\u003eThe book goes far beyond the analysis of the effect of the Nobel Prize on how we interpret movement within materials today and how our present perception affects many aspects of science.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe introductory chapter defines principle terms and their semantics, followed by an introduction to Nobel Laureate and Award Justification and analysis of published materials until today. It is followed by the analysis of the effect of Nobel Prize on the frequency of publication of research papers and patents on the subject chain mobility.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains discussion of different mechanisms used for description and interpretation of results of chain motion of macromolecular substances, such as bead-chain, bond fluctuation, Brill transition, chain diffusion, chain orientation, chemo-responsive, coarse-grained, fluorescence blob, intra- vs. inter-chain, light activated, magnetic-activated, microwave, rod chain, Rouse, shape memory, slip-link, strain-induced, tube models which today form fabric of scientific explanation of applicable facts.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e will discuss conditions or, in other words, parameters under which chains move, including activation energy, annealing, chain absorption, chain scission, compaction pressure, configuration, confinement dimensions, crosslinks, crystallization, dynamic ratio, electrostatic interaction, entanglements, free surface, free volume, glass transition temperature, hydrophilicity, interaction length, interface layer, layer thickness, microstructure, miscible and immiscible blends, molecular weight, nanoparticles, packing density, presence of low molecular compounds (e.g., plasticizers, solvents), pressure, relaxation time, rotational motion, segmental dynamics, side chains, temperature, and time of chain movement. All these parameters are essential determinants of chain movement and their impact id discussed in separate sections of this chapter. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e includes information on the effect of chain movement on properties of materials, such as chain alignment, chain orientation, creation of free volume, crystallization, dimensional stability, formation of porous structures, ionic transport, mechanical properties, polymer blends, polymer redistribution, proton transfer, release rate of low molecular compounds, reinforcement, self-healing, sound attenuation, steric hindrance, storage modulus, swelling, thermal expansion, thermal stability, and wear. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eSeveral significant analytical methods have been briefly discussed in \u003cstrong\u003eChapter 6\u003c\/strong\u003e, including atomic force microscopy, \u003cem\u003ein situ\u003c\/em\u003e synchrotron X-ray, NMR imaging, NMR mouse, NMR solid-state, positron annihilation spectroscopy, SAXS, and WAXD in relation to their relevance for chain mobility studies. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 7\u003c\/strong\u003e contains information on significant contributions on chain mobility for 50 polymers. The polymers selected comprise about 25% of all polymers included in Handbook of Polymers, which means that chain mobility was important subject of studies in both theoretical and practical applications.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eAll above concepts, findings, and applications are narrated in a simple to understand language stripped of disciplinary slang which makes the book accessible to those interested in medicine, pharmacy, and polymer sciences. This book gives numerous examples on how to apply these findings in the development of cutting-edge products.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction. Nobel Prize Justification for Pierre-Gilles de Gennes\u003cbr\u003e2 Analysis of existing publications \u003cbr\u003e3 Mechanisms of chain motion of macromolecular substances\u003cbr\u003e4 Parameters (conditions) of chain movement\u003cbr\u003e5 The effect of chain movement on the properties of materials\u003cbr\u003e6 Significant analytical methods of study\u003cbr\u003e7 Chain mobility in different polymers \u003cbr\u003e8 Comparison of justification of Nobel Prize by the selection committee with actual results of research reported\u003cbr\u003e\u003cbr\u003e"}
Characterisation of Po...
$185.00
{"id":11242248516,"title":"Characterisation of Polymers, Volume 1","handle":"978-1-84735-123-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R.Crompton \u003cbr\u003eISBN 978-1-84735-123-4 \u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is intended to be a complete compendium of the types of methodology that have evolved for the determination of the chemical composition of polymers. \u003cbr\u003e\u003cbr\u003eVolume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different monomer units occur in copolymers. The techniques available for composition determination of homopolymers and copolymers and other recent modern techniques such as X-ray photoelectron spectroscopy, atomic force microscopy, microthermal analysis and scanning electron microscopy and energy dispersive analysis using X-rays are also included. The structure and microstructure of polymers, copolymers and rubbers are dealt with in Volume 2. More detailed aspects, such as sequencing of monomer units in copolymers, end-group analysis, tacticity and stereochemical determinations, are also dealt with in this subsequent volume. \u003cbr\u003e\u003cbr\u003eThis book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. The book should be of great interest to all those engaged in the subject in the industry, university research.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e\u003cbr\u003e\u003cb\u003e1. Determination of Metals\u003c\/b\u003e \u003cbr\u003e1.1 Destructive Techniques \u003cbr\u003e1.1.1 Atomic Absorption Spectrometry \u003cbr\u003e1.1.2 Graphite Furnace Atomic Absorption Spectrometry \u003cbr\u003e1.1.3 Atom Trapping Technique \u003cbr\u003e1.1.4 Vapour Generation Atomic Absorption Spectrometry \u003cbr\u003e1.1.5 Zeeman Atomic Absorption Spectrometry \u003cbr\u003e1.1.6 Inductively Coupled Plasma Atomic Emission Spectrometry \u003cbr\u003e1.1.7 Hybrid Inductively Coupled Plasma Techniques \u003cbr\u003e1.1.8 Inductively Coupled Plasma Optical Emission Spectrometry–Mass Spectrometry \u003cbr\u003e1.1.9 Pre-concentration Atomic Absorption Spectrometry Techniques \u003cbr\u003e1.1.10 Microprocessors \u003cbr\u003e1.1.11 Autosamplers \u003cbr\u003e1.1.12 Applications: Atomic Absorption Spectrometric Determination of Metals \u003cbr\u003e1.1.13 Visible and UV Spectroscopy \u003cbr\u003e1.1.14 Polarography and Voltammetry \u003cbr\u003e1.1.15 Ion Chromatography \u003cbr\u003e1.2 Non-destructive Methods \u003cbr\u003e1.2.1 X-ray Fluorescence Spectrometry \u003cbr\u003e1.2.2 Neutron Activation Analysis \u003cbr\u003eMethod 1.1 Determination of Traces of Cadmium, Chromium, Copper, Iron, Lead, Manganese, Nickel, and Zinc in Polymers. Ashing – Atomic Absorption Spectrometry \u003cbr\u003eMethod 1.2 Determination of Traces of Arsenic in Acrylic Fibres Containing Antimony Trioxide Fire Retardant Agent. Acid Digestion, Atomic Absorption Spectrometry \u003cbr\u003eMethod 1.3 Determination of Vanadium Catalyst Residues in Ethylene-propylene Rubber. Ashing – spectrophotometric Procedure \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2. Determination of Non-metallic Elements\u003c\/b\u003e \u003cbr\u003e2.1 Halogens \u003cbr\u003e2.1.1 Combustion Methods \u003cbr\u003e2.1.2 Oxygen Flask Combustion \u003cbr\u003e2.1.3 Alkali Fusion Methods \u003cbr\u003e2.1.4 Physical Methods for Determining Halogens \u003cbr\u003e2.2 Sulfur \u003cbr\u003e2.2.1 Combustion Methods \u003cbr\u003e2.2.2 Sodium Peroxide Fusion \u003cbr\u003e2.2.3 Oxygen Flask Combustion \u003cbr\u003e2.3 Phosphorus \u003cbr\u003e2.3.1 Acid Digestion \u003cbr\u003e2.3.2 Oxygen Flask Combustion \u003cbr\u003e2.4 Nitrogen \u003cbr\u003e2.4.1 Combustion Methods \u003cbr\u003e2.4.2 Acid Digestion \u003cbr\u003e2.4.3 Physical Method for the Determination of Total Nitrogen \u003cbr\u003e2.5 Silica \u003cbr\u003e2.6 Boron \u003cbr\u003e2.7 Total Organic Carbon \u003cbr\u003e2.8 Total Sulfur\/Total Halogen \u003cbr\u003e2.9 Nitrogen, Carbon, and Sulfur \u003cbr\u003e2.10 Carbon, Hydrogen, and Nitrogen \u003cbr\u003e2.11 Oxygen Flask Combustion: Ion Chromatography \u003cbr\u003e2.12 X-ray Fluorescence Spectroscopy \u003cbr\u003e2.13 Thermogravimetric Analysis \u003cbr\u003eMethod 2.1 Determination of Chlorine in Polymers Containing Chloride and Sulfur and\/or Phosphorus and\/or Fluorine. Oxygen Flask Combustion – Mercurimetric Titration \u003cbr\u003eMethod 2.2 Determination of Chlorine in Chlorobutyl and Other Chlorine Containing Polymers. Oxygen Flask Combustion – Turbidimetry \u003cbr\u003eMethod 2.3 Determination of Up to 80% Chlorine, Bromine and Iodine in Polymers. Oxygen Flask Combustion – Titration \u003cbr\u003eMethod 2.4 Determination of Fluorine in Fluorinated Polymers. Oxygen Flask Combustion - Spectrophotometric Procedure \u003cbr\u003eMethod 2.5 Determination of Traces of Chlorine in Polyalkenes and Polyalkene Copolymers. Sodium Carbonate Fusion – Titration Procedure \u003cbr\u003eMethod 2.6 Determination of Macro-amounts of Sulfur in Polymers. Sodium Peroxide Fusion - Titration Procedure \u003cbr\u003eMethod 2.7 Determination of Sulfur in Polymers. Oxygen Flask Combustion – Titration Procedure \u003cbr\u003eMethod 2.8 Determination of Sulfur in Polymers. Oxygen Flask Combustion – Photometric Titration Procedure \u003cbr\u003eMethod 2.9 Micro Determination of Phosphorus in Polymers. Acid Digestion – Spectrophotometric Method \u003cbr\u003eMethod 2.10 Determination of Low Levels of Phosphorus in Polymers. Oxygen Flask Combustion – Spectrophotometric Method \u003cbr\u003eMethod 2.11 Determination of 2-13% Phosphorus in Polymers. Oxygen Flask Combustion – Spectrophotometric Method \u003cbr\u003eMethod 2.12 Determination of Between 0.002% and 75% Organic Nitrogen in Polymers. Kjeldahl Digestion – Spectrometric Indophenol Blue Method \u003cbr\u003eMethod 2.13 Determination of 1 to 90% Organic Nitrogen in Polymers. Kjeldahl Digestion – Boric Acid Titration Method \u003cbr\u003eMethod 2.14 Qualitative Detection of Elements in Polymers. Oxygen Flask Combustion \u003cbr\u003e\u003cbr\u003e\u003cb\u003e3. Determination of Functional Groups in Polymers\u003c\/b\u003e \u003cbr\u003e3.1 Hydroxy Groups \u003cbr\u003e3.1.1 Acetylation and Phthalation Procedures \u003cbr\u003e3.1.2 Spectrophotometric Methods \u003cbr\u003e3.1.3 Nuclear Magnetic Resonance Spectrometry \u003cbr\u003e3.1.4 Infrared Spectroscopy \u003cbr\u003e3.1.5 Direct Injection Enthalpimetry \u003cbr\u003e3.1.6 Kinetic Method – Primary and Secondary Hydroxyl Groups \u003cbr\u003e3.1.7 Miscellaneous Techniques \u003cbr\u003e3.2 Carboxyl Groups \u003cbr\u003e3.2.1 Titration Method \u003cbr\u003e3.2.2 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.2.3 Pyrolysis Gas Chromatography – Mass Spectrometry \u003cbr\u003e3.2.4 Infrared Spectroscopy \u003cbr\u003e3.2.5 Miscellaneous \u003cbr\u003e3.3 Carbonyl Groups \u003cbr\u003e3.4 Ester Groups \u003cbr\u003e3.4.1 Saponification Methods \u003cbr\u003e3.4.2 Zeisel Hydriodic Acid Reduction Methods \u003cbr\u003e3.4.3 Pyrolysis Gas Chromatography \u003cbr\u003e3.4.4 Infrared Spectroscopy \u003cbr\u003e3.4.5 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.4.6 Gas Chromatography \u003cbr\u003e3.4.7 Isotope Dilution Method \u003cbr\u003e3.6 Alkoxy Groups \u003cbr\u003e3.6.1 Infrared Spectroscopy \u003cbr\u003e3.6.2 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.6.3 Miscellaneous Methods \u003cbr\u003e3.7 Oxyalkylene Groups \u003cbr\u003e3.7.1 Cleavage – Gas Chromatography \u003cbr\u003e3.7.2 Pyrolysis Gas Chromatography \u003cbr\u003e3.7.3 Infrared Spectroscopy \u003cbr\u003e3.7.4 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.8 Anhydride Groups \u003cbr\u003e3.9 Total Unsaturation \u003cbr\u003e3.9.1 Hydrogenation Methods \u003cbr\u003e3.9.2 Halogenation Methods \u003cbr\u003e3.9.3 Iodine Monochloride Procedures \u003cbr\u003e3.9.4 Infrared Spectroscopy \u003cbr\u003e3.9.5 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.9.6 Pyrolysis Gas Chromatography \u003cbr\u003e3.10 Ethylene Glycol, 1,4-Butane Diol, Terephthalic Acid and Isophthalic Acid Repeat Units in Terylene \u003cbr\u003e3.11 Oxirane Rings \u003cbr\u003e3.12 Amino Groups \u003cbr\u003e3.13 Amido and Imido Groups \u003cbr\u003e3.13.1 Alkali Fusion Reaction Gas Chromatography \u003cbr\u003e3.14 Nitrile Groups \u003cbr\u003e3.14.1 Determination of Bound Nitrile Groups in Styrene – Acrylonitrile Copolymers \u003cbr\u003e3.15 Nitric Ester Groups \u003cbr\u003e3.16 Silicon Functions \u003cbr\u003eMethod 3.1 Determination of Hydroxyl Groups in Polyethylene Glycol. Silation – Spectrophotometry \u003cbr\u003eMethod 3.2 Determination of Hydroxyl Number of Glycerol-Alkylene Oxide Polyethers and Butane, 1,4-Diol Adipic Acid Polyesters. Direct Injection Enthalpimetry \u003cbr\u003eMethod 3.3 Determination of Primary and Secondary Hydroxyl Groups in Ethylene Oxide Tipped Glycerol-Propylene Oxide Condensates. \u003cbr\u003eMethod 3.4 Determination of Compositional Analysis of Methylmethacrylate - Methacrylic Acid Copolymers. Fourier Transform 13C-NMR Spectroscopy \u003cbr\u003eMethod 3.5 Identification of Acrylic Acid and Methacrylic Acid in Acrylic Copolymers. Propylation - Pyrolysis - Gas Chromatography \u003cbr\u003eMethod 3.6 Determination of Amino Groups in Aromatic Polyamides, Polyimides and Polyamides-imides. Potassium Hydroxide Fusion Gas Chromatography \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4.Monomer Ratios in Copolymers\u003c\/b\u003e \u003cbr\u003e4.1 Olefinic Copolymers \u003cbr\u003e4.1.1 Ethylene-propylene \u003cbr\u003e4.2 Pyrolysis Gas Chromatography \u003cbr\u003e4.2.1 Pyrolysis – Infrared Spectroscopy \u003cbr\u003e4.2.2 Ethylene – Butane-1 Copolymers \u003cbr\u003e4.2.3 Ethylene – Hexane-1 \u003cbr\u003e4.2.4 Other Olefin Polymers \u003cbr\u003e4.2.5 Ethylene – Vinyl Acetate Copolymers \u003cbr\u003e4.3 Vinyl Chloride Copolymers \u003cbr\u003e4.3.1 Vinyl Chloride – Vinyl Acetate \u003cbr\u003e4.3.2 Vinylidene Chloride – Vinyl Chloride \u003cbr\u003e4.4 Styrene Copolymers \u003cbr\u003e4.4.1 Styrene Acrylate and Styrene Methacrylate \u003cbr\u003e4.4.2 Styrene – Methacrylate and Styrene – Methyl Methacrylate Copolymers \u003cbr\u003e4.4.3 Styrene Acrylic Acid Copolymer NMR Spectroscopy \u003cbr\u003e4.4.4 Styrene Methacrylate Copolymers, NMR Spectroscopy \u003cbr\u003e4.4.5 Styrene-n-butyl Acrylate Copolymers \u003cbr\u003e4.4.6 Styrene Methacrylate Copolymers \u003cbr\u003e4.4.7 Miscellaneous Styrene Copolymers \u003cbr\u003e4.4.8 Vinyl Acetate – Methyl Acrylate NMR Spectroscopy \u003cbr\u003e4.5 Butadiene-based Polymers \u003cbr\u003e4.5.1 Styrene Butadiene and Polybutadiene \u003cbr\u003e4.6 Styrene-butadiene-acrylonitrile \u003cbr\u003e4.7 Vinylidene Chloride – Methacrylonitrile and Vinylidene Chloride Cyanovinylacetate Copolymers \u003cbr\u003e4.8 Acrylonitrile-cis (or Trans) Penta-1,3-diene \u003cbr\u003e4.9 Hexafluoropropylene – Vinylidene Fluoride \u003cbr\u003e4.9.1 19F-NMR \u003cbr\u003e4.9.2 Pyrolysis – Gas Chromatography \u003cbr\u003e4.10 Ethylene Glycol Terephthalic Acid, Ethylene Glycol Hydroxyl Benzoic Acid \u003cbr\u003e4.11 Ethylene Oxide Copolymers \u003cbr\u003e4.11.1 Ethylene Oxide – Propylene Oxide \u003cbr\u003e4.11.2 Ethylene Oxide – Polyacetal \u003cbr\u003e4.12 Maleic Anhydride Copolymers \u003cbr\u003e4.13 Acrylamide – Methacryloyl Oxyethyl Ammonium Chloride and Acrylamid – Acyloxyethyl Ammonium Chloride \u003cbr\u003e\u003cbr\u003e\u003cb\u003e5. Analysis of Homopolymers\u003c\/b\u003e \u003cbr\u003e5.1 Infrared Spectroscopy \u003cbr\u003e5.1.1 Determination of Low Concentrations of Methyl Groups in Polyethylene \u003cbr\u003e5.1.2 Bond Rupture in HDPE \u003cbr\u003e5.2 Fourier Transform Infrared (FTIR) Spectroscopy \u003cbr\u003e5.2.1 Instrumentation \u003cbr\u003e5.3 Fourier Transform Raman Spectroscopy \u003cbr\u003e5.3.1 Theory \u003cbr\u003e5.3.2 Applications \u003cbr\u003e5.4 Mass Spectrometry \u003cbr\u003e5.4.1 Time-of-Flight Secondary Ion Mass Spectrometry \u003cbr\u003e5.4.2 Tandem Mass Spectrometry \u003cbr\u003e5.4.3 Matrix Assisted Laser Desorption\/Ionisation Mass Spectrometry \u003cbr\u003e5.4.4 Fourier Transform Ion Cyclotron Mass Spectrometry \u003cbr\u003e5.4.5 Fast Atom Bombardment Mass Spectrometry \u003cbr\u003e5.5 Gross Polarisation Magic Angle Spinning 13C and 15N \u003cbr\u003e5.5.1 Solid State Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e5.6 Gas Chromatography – Mass Spectrometry \u003cbr\u003e5.7 Proton Magnetic Resonance Spectroscopy \u003cbr\u003e5.8 Electron Spin Resonance Spectroscopy \u003cbr\u003e5.9 Infrared Spectra \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6. Analysis of Copolymers\u003c\/b\u003e \u003cbr\u003e6.1 Infrared Spectroscopy \u003cbr\u003e6.2 Fourier Transform Infrared Spectroscopy \u003cbr\u003e6.3 Raman Spectroscopy \u003cbr\u003e6.4 Mass Spectrometry \u003cbr\u003e6.4.1 Radio Frequency Glow Discharge Mass Spectrometry \u003cbr\u003e6.4.2 Fast Atom Bombardment Mass Spectrometry \u003cbr\u003e6.4.3 Laser Desorption – Ion Mobility Spectrometry \u003cbr\u003e6.4.4 Gas Chromatography – Mass Spectrometry \u003cbr\u003e6.4.5 Matrix-assisted Laser Desorption\/Ionisation (MALDI) Mass Spectrometry \u003cbr\u003e6.5 NMR and Proton Magenetic Resonance Spectroscopy \u003cbr\u003e6.6 Pyrolysis Techniques \u003cbr\u003e6.7 Other Techniques \u003cbr\u003e\u003cbr\u003e\u003cb\u003e7. X-Ray Photoelectron Spectroscopy\u003c\/b\u003e \u003cbr\u003e7.1 Bulk Polymer Structural Studies \u003cbr\u003e7.2 Adhesion Studies \u003cbr\u003e7.3 Carbon Black Studies \u003cbr\u003e7.4 Particle Identification \u003cbr\u003e7.5 Pyrolysis Studies \u003cbr\u003e7.6 Surface Studies \u003cbr\u003e7.7 Applications in Which Only XPS is Used \u003cbr\u003e7.8 Applications in Which Both XPS and ToF-SIMS are Used \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8. Atomic Force Microscopy and Microthermal Analysis\u003c\/b\u003e \u003cbr\u003e8.1 Atomic Force Microscopy \u003cbr\u003e8.1.1 Polymer Characterisation Studies and Polymer Structure \u003cbr\u003e8.1.2 Morphology \u003cbr\u003e8.1.3 Surface Defects \u003cbr\u003e8.1.4 Adhesion Studies \u003cbr\u003e8.1.5 Polydispersivity \u003cbr\u003e8.1.6 Sub-surface Particle Studies \u003cbr\u003e8.1.7 Size of Nanostructures \u003cbr\u003e8.1.8 Visualisation of Molecular Chains \u003cbr\u003e8.1.9 Compositional Mapping \u003cbr\u003e8.1.10 Surface Roughness \u003cbr\u003e8.1.11 Microphase Separation \u003cbr\u003e8.1.12 Phase Transition \u003cbr\u003e8.1.13 Shrinkage \u003cbr\u003e8.2 Microthermal Analysis \u003cbr\u003e8.2.1 Morphology \u003cbr\u003e8.2.2 Topography \u003cbr\u003e8.2.3 Glass Transition \u003cbr\u003e8.2.4 Depth Profiling Studies \u003cbr\u003e8.2.5 Phase Separation Studies \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9. Multiple Technique Polymer Studies\u003c\/b\u003e \u003cbr\u003e9.1 FTIR – Nuclear Magnetic Resonance (NMR) Spectroscopy \u003cbr\u003e9.2 Other Technique Combinations \u003cbr\u003e\u003cbr\u003e\u003cb\u003e10. Scanning Electron Microscopy and Energy Dispersive Analysis Using X-rays\u003c\/b\u003e \u003cbr\u003e\u003cbr\u003eAppendix 1. Instument Suppliers \u003cbr\u003eAppendix 2. Suppliers of Flammability Properties Instruments \u003cbr\u003eAppendix 3. Address of Suppliers \u003cbr\u003eAbbreviations \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:09-04:00","created_at":"2017-06-22T21:15:09-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","analysis","Atomic Force Microscopy","book","cadmium","chromatography","Chromium","copolymers","Copper","destructive techniques","Determination of metals","determination of non-metallic elements","functional groups","hompolymers","Iron","Lead","Manganese","material","Microthermal Analysis","monomer ratios in copolymers","Nickel","NMR","Polarography","spectrometry","voltammetry","X-ray photoelectron spectroscopy","Zinc"],"price":18500,"price_min":18500,"price_max":22500,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":44462707268,"title":"Hardcover","option1":"Hardcover","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Characterisation of Polymers, Volume 1 - Hardcover","public_title":"Hardcover","options":["Hardcover"],"price":22500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-123-4","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":43378467524,"title":"Softcover","option1":"Softcover","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Characterisation of Polymers, Volume 1 - Softcover","public_title":"Softcover","options":["Softcover"],"price":18500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-123-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-123-4.jpg?v=1499718276"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-123-4.jpg?v=1499718276","options":["Cover"],"media":[{"alt":null,"id":353925890141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-123-4.jpg?v=1499718276"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-123-4.jpg?v=1499718276","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R.Crompton \u003cbr\u003eISBN 978-1-84735-123-4 \u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is intended to be a complete compendium of the types of methodology that have evolved for the determination of the chemical composition of polymers. \u003cbr\u003e\u003cbr\u003eVolume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different monomer units occur in copolymers. The techniques available for composition determination of homopolymers and copolymers and other recent modern techniques such as X-ray photoelectron spectroscopy, atomic force microscopy, microthermal analysis and scanning electron microscopy and energy dispersive analysis using X-rays are also included. The structure and microstructure of polymers, copolymers and rubbers are dealt with in Volume 2. More detailed aspects, such as sequencing of monomer units in copolymers, end-group analysis, tacticity and stereochemical determinations, are also dealt with in this subsequent volume. \u003cbr\u003e\u003cbr\u003eThis book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. The book should be of great interest to all those engaged in the subject in the industry, university research.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e\u003cbr\u003e\u003cb\u003e1. Determination of Metals\u003c\/b\u003e \u003cbr\u003e1.1 Destructive Techniques \u003cbr\u003e1.1.1 Atomic Absorption Spectrometry \u003cbr\u003e1.1.2 Graphite Furnace Atomic Absorption Spectrometry \u003cbr\u003e1.1.3 Atom Trapping Technique \u003cbr\u003e1.1.4 Vapour Generation Atomic Absorption Spectrometry \u003cbr\u003e1.1.5 Zeeman Atomic Absorption Spectrometry \u003cbr\u003e1.1.6 Inductively Coupled Plasma Atomic Emission Spectrometry \u003cbr\u003e1.1.7 Hybrid Inductively Coupled Plasma Techniques \u003cbr\u003e1.1.8 Inductively Coupled Plasma Optical Emission Spectrometry–Mass Spectrometry \u003cbr\u003e1.1.9 Pre-concentration Atomic Absorption Spectrometry Techniques \u003cbr\u003e1.1.10 Microprocessors \u003cbr\u003e1.1.11 Autosamplers \u003cbr\u003e1.1.12 Applications: Atomic Absorption Spectrometric Determination of Metals \u003cbr\u003e1.1.13 Visible and UV Spectroscopy \u003cbr\u003e1.1.14 Polarography and Voltammetry \u003cbr\u003e1.1.15 Ion Chromatography \u003cbr\u003e1.2 Non-destructive Methods \u003cbr\u003e1.2.1 X-ray Fluorescence Spectrometry \u003cbr\u003e1.2.2 Neutron Activation Analysis \u003cbr\u003eMethod 1.1 Determination of Traces of Cadmium, Chromium, Copper, Iron, Lead, Manganese, Nickel, and Zinc in Polymers. Ashing – Atomic Absorption Spectrometry \u003cbr\u003eMethod 1.2 Determination of Traces of Arsenic in Acrylic Fibres Containing Antimony Trioxide Fire Retardant Agent. Acid Digestion, Atomic Absorption Spectrometry \u003cbr\u003eMethod 1.3 Determination of Vanadium Catalyst Residues in Ethylene-propylene Rubber. Ashing – spectrophotometric Procedure \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2. Determination of Non-metallic Elements\u003c\/b\u003e \u003cbr\u003e2.1 Halogens \u003cbr\u003e2.1.1 Combustion Methods \u003cbr\u003e2.1.2 Oxygen Flask Combustion \u003cbr\u003e2.1.3 Alkali Fusion Methods \u003cbr\u003e2.1.4 Physical Methods for Determining Halogens \u003cbr\u003e2.2 Sulfur \u003cbr\u003e2.2.1 Combustion Methods \u003cbr\u003e2.2.2 Sodium Peroxide Fusion \u003cbr\u003e2.2.3 Oxygen Flask Combustion \u003cbr\u003e2.3 Phosphorus \u003cbr\u003e2.3.1 Acid Digestion \u003cbr\u003e2.3.2 Oxygen Flask Combustion \u003cbr\u003e2.4 Nitrogen \u003cbr\u003e2.4.1 Combustion Methods \u003cbr\u003e2.4.2 Acid Digestion \u003cbr\u003e2.4.3 Physical Method for the Determination of Total Nitrogen \u003cbr\u003e2.5 Silica \u003cbr\u003e2.6 Boron \u003cbr\u003e2.7 Total Organic Carbon \u003cbr\u003e2.8 Total Sulfur\/Total Halogen \u003cbr\u003e2.9 Nitrogen, Carbon, and Sulfur \u003cbr\u003e2.10 Carbon, Hydrogen, and Nitrogen \u003cbr\u003e2.11 Oxygen Flask Combustion: Ion Chromatography \u003cbr\u003e2.12 X-ray Fluorescence Spectroscopy \u003cbr\u003e2.13 Thermogravimetric Analysis \u003cbr\u003eMethod 2.1 Determination of Chlorine in Polymers Containing Chloride and Sulfur and\/or Phosphorus and\/or Fluorine. Oxygen Flask Combustion – Mercurimetric Titration \u003cbr\u003eMethod 2.2 Determination of Chlorine in Chlorobutyl and Other Chlorine Containing Polymers. Oxygen Flask Combustion – Turbidimetry \u003cbr\u003eMethod 2.3 Determination of Up to 80% Chlorine, Bromine and Iodine in Polymers. Oxygen Flask Combustion – Titration \u003cbr\u003eMethod 2.4 Determination of Fluorine in Fluorinated Polymers. Oxygen Flask Combustion - Spectrophotometric Procedure \u003cbr\u003eMethod 2.5 Determination of Traces of Chlorine in Polyalkenes and Polyalkene Copolymers. Sodium Carbonate Fusion – Titration Procedure \u003cbr\u003eMethod 2.6 Determination of Macro-amounts of Sulfur in Polymers. Sodium Peroxide Fusion - Titration Procedure \u003cbr\u003eMethod 2.7 Determination of Sulfur in Polymers. Oxygen Flask Combustion – Titration Procedure \u003cbr\u003eMethod 2.8 Determination of Sulfur in Polymers. Oxygen Flask Combustion – Photometric Titration Procedure \u003cbr\u003eMethod 2.9 Micro Determination of Phosphorus in Polymers. Acid Digestion – Spectrophotometric Method \u003cbr\u003eMethod 2.10 Determination of Low Levels of Phosphorus in Polymers. Oxygen Flask Combustion – Spectrophotometric Method \u003cbr\u003eMethod 2.11 Determination of 2-13% Phosphorus in Polymers. Oxygen Flask Combustion – Spectrophotometric Method \u003cbr\u003eMethod 2.12 Determination of Between 0.002% and 75% Organic Nitrogen in Polymers. Kjeldahl Digestion – Spectrometric Indophenol Blue Method \u003cbr\u003eMethod 2.13 Determination of 1 to 90% Organic Nitrogen in Polymers. Kjeldahl Digestion – Boric Acid Titration Method \u003cbr\u003eMethod 2.14 Qualitative Detection of Elements in Polymers. Oxygen Flask Combustion \u003cbr\u003e\u003cbr\u003e\u003cb\u003e3. Determination of Functional Groups in Polymers\u003c\/b\u003e \u003cbr\u003e3.1 Hydroxy Groups \u003cbr\u003e3.1.1 Acetylation and Phthalation Procedures \u003cbr\u003e3.1.2 Spectrophotometric Methods \u003cbr\u003e3.1.3 Nuclear Magnetic Resonance Spectrometry \u003cbr\u003e3.1.4 Infrared Spectroscopy \u003cbr\u003e3.1.5 Direct Injection Enthalpimetry \u003cbr\u003e3.1.6 Kinetic Method – Primary and Secondary Hydroxyl Groups \u003cbr\u003e3.1.7 Miscellaneous Techniques \u003cbr\u003e3.2 Carboxyl Groups \u003cbr\u003e3.2.1 Titration Method \u003cbr\u003e3.2.2 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.2.3 Pyrolysis Gas Chromatography – Mass Spectrometry \u003cbr\u003e3.2.4 Infrared Spectroscopy \u003cbr\u003e3.2.5 Miscellaneous \u003cbr\u003e3.3 Carbonyl Groups \u003cbr\u003e3.4 Ester Groups \u003cbr\u003e3.4.1 Saponification Methods \u003cbr\u003e3.4.2 Zeisel Hydriodic Acid Reduction Methods \u003cbr\u003e3.4.3 Pyrolysis Gas Chromatography \u003cbr\u003e3.4.4 Infrared Spectroscopy \u003cbr\u003e3.4.5 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.4.6 Gas Chromatography \u003cbr\u003e3.4.7 Isotope Dilution Method \u003cbr\u003e3.6 Alkoxy Groups \u003cbr\u003e3.6.1 Infrared Spectroscopy \u003cbr\u003e3.6.2 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.6.3 Miscellaneous Methods \u003cbr\u003e3.7 Oxyalkylene Groups \u003cbr\u003e3.7.1 Cleavage – Gas Chromatography \u003cbr\u003e3.7.2 Pyrolysis Gas Chromatography \u003cbr\u003e3.7.3 Infrared Spectroscopy \u003cbr\u003e3.7.4 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.8 Anhydride Groups \u003cbr\u003e3.9 Total Unsaturation \u003cbr\u003e3.9.1 Hydrogenation Methods \u003cbr\u003e3.9.2 Halogenation Methods \u003cbr\u003e3.9.3 Iodine Monochloride Procedures \u003cbr\u003e3.9.4 Infrared Spectroscopy \u003cbr\u003e3.9.5 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.9.6 Pyrolysis Gas Chromatography \u003cbr\u003e3.10 Ethylene Glycol, 1,4-Butane Diol, Terephthalic Acid and Isophthalic Acid Repeat Units in Terylene \u003cbr\u003e3.11 Oxirane Rings \u003cbr\u003e3.12 Amino Groups \u003cbr\u003e3.13 Amido and Imido Groups \u003cbr\u003e3.13.1 Alkali Fusion Reaction Gas Chromatography \u003cbr\u003e3.14 Nitrile Groups \u003cbr\u003e3.14.1 Determination of Bound Nitrile Groups in Styrene – Acrylonitrile Copolymers \u003cbr\u003e3.15 Nitric Ester Groups \u003cbr\u003e3.16 Silicon Functions \u003cbr\u003eMethod 3.1 Determination of Hydroxyl Groups in Polyethylene Glycol. Silation – Spectrophotometry \u003cbr\u003eMethod 3.2 Determination of Hydroxyl Number of Glycerol-Alkylene Oxide Polyethers and Butane, 1,4-Diol Adipic Acid Polyesters. Direct Injection Enthalpimetry \u003cbr\u003eMethod 3.3 Determination of Primary and Secondary Hydroxyl Groups in Ethylene Oxide Tipped Glycerol-Propylene Oxide Condensates. \u003cbr\u003eMethod 3.4 Determination of Compositional Analysis of Methylmethacrylate - Methacrylic Acid Copolymers. Fourier Transform 13C-NMR Spectroscopy \u003cbr\u003eMethod 3.5 Identification of Acrylic Acid and Methacrylic Acid in Acrylic Copolymers. Propylation - Pyrolysis - Gas Chromatography \u003cbr\u003eMethod 3.6 Determination of Amino Groups in Aromatic Polyamides, Polyimides and Polyamides-imides. Potassium Hydroxide Fusion Gas Chromatography \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4.Monomer Ratios in Copolymers\u003c\/b\u003e \u003cbr\u003e4.1 Olefinic Copolymers \u003cbr\u003e4.1.1 Ethylene-propylene \u003cbr\u003e4.2 Pyrolysis Gas Chromatography \u003cbr\u003e4.2.1 Pyrolysis – Infrared Spectroscopy \u003cbr\u003e4.2.2 Ethylene – Butane-1 Copolymers \u003cbr\u003e4.2.3 Ethylene – Hexane-1 \u003cbr\u003e4.2.4 Other Olefin Polymers \u003cbr\u003e4.2.5 Ethylene – Vinyl Acetate Copolymers \u003cbr\u003e4.3 Vinyl Chloride Copolymers \u003cbr\u003e4.3.1 Vinyl Chloride – Vinyl Acetate \u003cbr\u003e4.3.2 Vinylidene Chloride – Vinyl Chloride \u003cbr\u003e4.4 Styrene Copolymers \u003cbr\u003e4.4.1 Styrene Acrylate and Styrene Methacrylate \u003cbr\u003e4.4.2 Styrene – Methacrylate and Styrene – Methyl Methacrylate Copolymers \u003cbr\u003e4.4.3 Styrene Acrylic Acid Copolymer NMR Spectroscopy \u003cbr\u003e4.4.4 Styrene Methacrylate Copolymers, NMR Spectroscopy \u003cbr\u003e4.4.5 Styrene-n-butyl Acrylate Copolymers \u003cbr\u003e4.4.6 Styrene Methacrylate Copolymers \u003cbr\u003e4.4.7 Miscellaneous Styrene Copolymers \u003cbr\u003e4.4.8 Vinyl Acetate – Methyl Acrylate NMR Spectroscopy \u003cbr\u003e4.5 Butadiene-based Polymers \u003cbr\u003e4.5.1 Styrene Butadiene and Polybutadiene \u003cbr\u003e4.6 Styrene-butadiene-acrylonitrile \u003cbr\u003e4.7 Vinylidene Chloride – Methacrylonitrile and Vinylidene Chloride Cyanovinylacetate Copolymers \u003cbr\u003e4.8 Acrylonitrile-cis (or Trans) Penta-1,3-diene \u003cbr\u003e4.9 Hexafluoropropylene – Vinylidene Fluoride \u003cbr\u003e4.9.1 19F-NMR \u003cbr\u003e4.9.2 Pyrolysis – Gas Chromatography \u003cbr\u003e4.10 Ethylene Glycol Terephthalic Acid, Ethylene Glycol Hydroxyl Benzoic Acid \u003cbr\u003e4.11 Ethylene Oxide Copolymers \u003cbr\u003e4.11.1 Ethylene Oxide – Propylene Oxide \u003cbr\u003e4.11.2 Ethylene Oxide – Polyacetal \u003cbr\u003e4.12 Maleic Anhydride Copolymers \u003cbr\u003e4.13 Acrylamide – Methacryloyl Oxyethyl Ammonium Chloride and Acrylamid – Acyloxyethyl Ammonium Chloride \u003cbr\u003e\u003cbr\u003e\u003cb\u003e5. Analysis of Homopolymers\u003c\/b\u003e \u003cbr\u003e5.1 Infrared Spectroscopy \u003cbr\u003e5.1.1 Determination of Low Concentrations of Methyl Groups in Polyethylene \u003cbr\u003e5.1.2 Bond Rupture in HDPE \u003cbr\u003e5.2 Fourier Transform Infrared (FTIR) Spectroscopy \u003cbr\u003e5.2.1 Instrumentation \u003cbr\u003e5.3 Fourier Transform Raman Spectroscopy \u003cbr\u003e5.3.1 Theory \u003cbr\u003e5.3.2 Applications \u003cbr\u003e5.4 Mass Spectrometry \u003cbr\u003e5.4.1 Time-of-Flight Secondary Ion Mass Spectrometry \u003cbr\u003e5.4.2 Tandem Mass Spectrometry \u003cbr\u003e5.4.3 Matrix Assisted Laser Desorption\/Ionisation Mass Spectrometry \u003cbr\u003e5.4.4 Fourier Transform Ion Cyclotron Mass Spectrometry \u003cbr\u003e5.4.5 Fast Atom Bombardment Mass Spectrometry \u003cbr\u003e5.5 Gross Polarisation Magic Angle Spinning 13C and 15N \u003cbr\u003e5.5.1 Solid State Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e5.6 Gas Chromatography – Mass Spectrometry \u003cbr\u003e5.7 Proton Magnetic Resonance Spectroscopy \u003cbr\u003e5.8 Electron Spin Resonance Spectroscopy \u003cbr\u003e5.9 Infrared Spectra \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6. Analysis of Copolymers\u003c\/b\u003e \u003cbr\u003e6.1 Infrared Spectroscopy \u003cbr\u003e6.2 Fourier Transform Infrared Spectroscopy \u003cbr\u003e6.3 Raman Spectroscopy \u003cbr\u003e6.4 Mass Spectrometry \u003cbr\u003e6.4.1 Radio Frequency Glow Discharge Mass Spectrometry \u003cbr\u003e6.4.2 Fast Atom Bombardment Mass Spectrometry \u003cbr\u003e6.4.3 Laser Desorption – Ion Mobility Spectrometry \u003cbr\u003e6.4.4 Gas Chromatography – Mass Spectrometry \u003cbr\u003e6.4.5 Matrix-assisted Laser Desorption\/Ionisation (MALDI) Mass Spectrometry \u003cbr\u003e6.5 NMR and Proton Magenetic Resonance Spectroscopy \u003cbr\u003e6.6 Pyrolysis Techniques \u003cbr\u003e6.7 Other Techniques \u003cbr\u003e\u003cbr\u003e\u003cb\u003e7. X-Ray Photoelectron Spectroscopy\u003c\/b\u003e \u003cbr\u003e7.1 Bulk Polymer Structural Studies \u003cbr\u003e7.2 Adhesion Studies \u003cbr\u003e7.3 Carbon Black Studies \u003cbr\u003e7.4 Particle Identification \u003cbr\u003e7.5 Pyrolysis Studies \u003cbr\u003e7.6 Surface Studies \u003cbr\u003e7.7 Applications in Which Only XPS is Used \u003cbr\u003e7.8 Applications in Which Both XPS and ToF-SIMS are Used \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8. Atomic Force Microscopy and Microthermal Analysis\u003c\/b\u003e \u003cbr\u003e8.1 Atomic Force Microscopy \u003cbr\u003e8.1.1 Polymer Characterisation Studies and Polymer Structure \u003cbr\u003e8.1.2 Morphology \u003cbr\u003e8.1.3 Surface Defects \u003cbr\u003e8.1.4 Adhesion Studies \u003cbr\u003e8.1.5 Polydispersivity \u003cbr\u003e8.1.6 Sub-surface Particle Studies \u003cbr\u003e8.1.7 Size of Nanostructures \u003cbr\u003e8.1.8 Visualisation of Molecular Chains \u003cbr\u003e8.1.9 Compositional Mapping \u003cbr\u003e8.1.10 Surface Roughness \u003cbr\u003e8.1.11 Microphase Separation \u003cbr\u003e8.1.12 Phase Transition \u003cbr\u003e8.1.13 Shrinkage \u003cbr\u003e8.2 Microthermal Analysis \u003cbr\u003e8.2.1 Morphology \u003cbr\u003e8.2.2 Topography \u003cbr\u003e8.2.3 Glass Transition \u003cbr\u003e8.2.4 Depth Profiling Studies \u003cbr\u003e8.2.5 Phase Separation Studies \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9. Multiple Technique Polymer Studies\u003c\/b\u003e \u003cbr\u003e9.1 FTIR – Nuclear Magnetic Resonance (NMR) Spectroscopy \u003cbr\u003e9.2 Other Technique Combinations \u003cbr\u003e\u003cbr\u003e\u003cb\u003e10. Scanning Electron Microscopy and Energy Dispersive Analysis Using X-rays\u003c\/b\u003e \u003cbr\u003e\u003cbr\u003eAppendix 1. Instument Suppliers \u003cbr\u003eAppendix 2. Suppliers of Flammability Properties Instruments \u003cbr\u003eAppendix 3. Address of Suppliers \u003cbr\u003eAbbreviations \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e"}