- Grid List
Filter
Ageing of Rubber - Acc...
$210.00
{"id":11242242052,"title":"Ageing of Rubber - Accelerated Weathering \u0026 Ozone Test Results","handle":"978-1-85957-264-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown, T. Butler, and S.W. Hawley \u003cbr\u003eISBN 978-1-85957-264-1 \u003cbr\u003e\u003cbr\u003ePages: 192, Figures: 204, Tables: 84\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report is an output from the Weathering of Elastomers and Sealants project, which forms part of the UK government's Department of Trade and Industry's Degradation of Materials in Aggressive Environments Program. \u003cbr\u003eA long-term natural ageing program was started in 1958 when 19 rubber compounds were exposed at 3 locations. The final sets of test pieces were withdrawn in 1998 giving a total of 40 years of natural ageing.\u003cbr\u003eThe results of the physical tests carried out at intervals over the period were published in 2000 by Rapra in 'Natural Ageing of Rubber\/Changes in Physical Properties over 40 Years'. \u003cbr\u003eThe 19 compounds were re-mixed in 1999-2000 in order that accelerated ageing tests could be carried out for direct comparison with the results from natural ageing. The formulations had been selected to\u003cbr\u003erepresent those used in a wide range of applications, including general purpose and 'good ageing' grades. Remarkably, most of these formulations are still representative of compounds being specified today. A\u003cbr\u003etotal of 20 new compounds were also mixed to represent polymers not available in 1958 and to reflect changes in compounding practice. Ten of these materials were formulations directly nominated by industry\u003cbr\u003ecovering materials of current interest to particular companies. \u003cbr\u003eThis report details the results of the artificial weathering and ozone exposure tests and makes comparisons with the results after natural ageing. \u003cbr\u003eThe following properties were selected for monitoring the artificial weathering exposures: \u003cbr\u003eTensile strength \u003cbr\u003eElongation at break \u003cbr\u003eStress at 100% elongation \u003cbr\u003eStress at 300% elongation \u003cbr\u003eMicrohardness \u003cbr\u003eThese properties correspond to properties monitored in the natural ageing program. \u003cbr\u003eThe results of all these tests are presented graphically in this report, allowing the rate of deterioration of properties and the influence of the environment to be clearly seen. Properties after the accelerated ageing\u003cbr\u003eare also tabulated, with calculations of percentage change. \u003cbr\u003eThe information contained in this report will prove invaluable to anyone specifying or supplying rubber materials or components.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction.\u003cbr\u003e2. Materials \u003cbr\u003e2.1 Original Materials\u003cbr\u003e2.2 New Materials\u003cbr\u003e3. Preparation of Test Pieces\u003cbr\u003e4. Physical Tests\u003cbr\u003e5. Exposure of Test Pieces\u003cbr\u003e5.1 Weathering\u003cbr\u003e5.2 Ozone Exposure\u003cbr\u003e6. Weathering Results (Appendix 2)\u003cbr\u003e6.1 Presentation\u003cbr\u003e6.2 Uncertainty\u003cbr\u003e6.3 Interpretation of results\u003cbr\u003e7. Ozone Results (Appendix 3)\u003cbr\u003e8. Discussion\u003cbr\u003e8.1 Weathering\u003cbr\u003e8.1.1 General\u003cbr\u003e8.1.2 Hardness\u003cbr\u003e8.1.3 Modulus\u003cbr\u003e8.1.4 Tensile Strength\u003cbr\u003e8.1.5 Elongation at Break\u003cbr\u003e8.1.6 Effect of Temperature\u003cbr\u003e8.2 Ozone\u003cbr\u003e9. Conclusions\u003cbr\u003eReferences \u003cbr\u003eAppendix 1 - Compound Details \u003cbr\u003eAppendix 2 - Weathering Results\u003cbr\u003eCompound A - Natural Rubber - Standard\u003cbr\u003eCompound B - Natural Rubber - Good Ageing\u003cbr\u003eCompound C - Natural Rubber - Mineral Filler Loaded \u003cbr\u003eCompound D - Natural Rubber - Mineral Filler (Heavy Loaded)\u003cbr\u003eCompound E - Styrene Butadiene Rubber - General Purpose\u003cbr\u003eCompound F - Styrene Butadiene Rubber - Good Ageing\u003cbr\u003eCompound G - Styrene Butadiene Rubber - General Purpose\u003cbr\u003eCompound H - Styrene Butadiene Rubber - Good Ageing\u003cbr\u003eCompound J - Butyl Rubber - General Purpose\u003cbr\u003eCompound K - Butyl Rubber - Good Ageing\u003cbr\u003eCompound L - Polychloroprene - General Purpose\u003cbr\u003eCompound M - Polychloroprene - Natural Ageing\u003cbr\u003eCompound N - Polychloroprene - Heat Ageing\u003cbr\u003eCompound P - Nitrite Rubber - General Purpose\u003cbr\u003eCompound R - Polychloroprene - Good Ageing\u003cbr\u003eCompound S - Miscellaneous - Acrylate Rubber\u003cbr\u003eCompound T - Miscellaneous - Chlorosulphonated Polyethylene\u003cbr\u003eCompound W - Miscellaneous - Polysulphide Rubber\u003cbr\u003eCompound X - Miscellaneous - Silicone Rubber\u003cbr\u003eNew Compounds\u003cbr\u003eCompound N1 - FVMQ\u003cbr\u003eCompound N2 - HNBR\u003cbr\u003eCompound N3 - Epoxidised Natural\u003cbr\u003eCompound N4 - Chlorinated Polyethylene\u003cbr\u003eCompound NS - Fluorocarbon\u003cbr\u003eCompound N6 - Exxpro\u003cbr\u003eCompound N7 - Epichlorohydrin\u003cbr\u003eCompound N8 - EPDM\u003cbr\u003eCompound N9 - EVA\u003cbr\u003eCompound N10 - PU\u003cbr\u003eParticipant's Compounds\u003cbr\u003eCompound P1\u003cbr\u003eCompound P3\u003cbr\u003eCompound P4\u003cbr\u003eCompound P5\u003cbr\u003eCompound P6\u003cbr\u003eCompound P7\u003cbr\u003eCompound PB\u003cbr\u003eCompound P9\u003cbr\u003eCompound P10\u003cbr\u003eAppendix 3 - Ozone Results\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:50-04:00","created_at":"2017-06-22T21:14:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","ageing","elongation","natural rubber","ozone exposure","polymers","r-testing","rubber","tensile strength","weathering"],"price":21000,"price_min":21000,"price_max":21000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443012,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Ageing of Rubber - Accelerated Weathering \u0026 Ozone Test Results","public_title":null,"options":["Default Title"],"price":21000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-264-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-264-1.jpg?v=1498187015"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-264-1.jpg?v=1498187015","options":["Title"],"media":[{"alt":null,"id":350147641437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-264-1.jpg?v=1498187015"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-264-1.jpg?v=1498187015","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown, T. Butler, and S.W. Hawley \u003cbr\u003eISBN 978-1-85957-264-1 \u003cbr\u003e\u003cbr\u003ePages: 192, Figures: 204, Tables: 84\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report is an output from the Weathering of Elastomers and Sealants project, which forms part of the UK government's Department of Trade and Industry's Degradation of Materials in Aggressive Environments Program. \u003cbr\u003eA long-term natural ageing program was started in 1958 when 19 rubber compounds were exposed at 3 locations. The final sets of test pieces were withdrawn in 1998 giving a total of 40 years of natural ageing.\u003cbr\u003eThe results of the physical tests carried out at intervals over the period were published in 2000 by Rapra in 'Natural Ageing of Rubber\/Changes in Physical Properties over 40 Years'. \u003cbr\u003eThe 19 compounds were re-mixed in 1999-2000 in order that accelerated ageing tests could be carried out for direct comparison with the results from natural ageing. The formulations had been selected to\u003cbr\u003erepresent those used in a wide range of applications, including general purpose and 'good ageing' grades. Remarkably, most of these formulations are still representative of compounds being specified today. A\u003cbr\u003etotal of 20 new compounds were also mixed to represent polymers not available in 1958 and to reflect changes in compounding practice. Ten of these materials were formulations directly nominated by industry\u003cbr\u003ecovering materials of current interest to particular companies. \u003cbr\u003eThis report details the results of the artificial weathering and ozone exposure tests and makes comparisons with the results after natural ageing. \u003cbr\u003eThe following properties were selected for monitoring the artificial weathering exposures: \u003cbr\u003eTensile strength \u003cbr\u003eElongation at break \u003cbr\u003eStress at 100% elongation \u003cbr\u003eStress at 300% elongation \u003cbr\u003eMicrohardness \u003cbr\u003eThese properties correspond to properties monitored in the natural ageing program. \u003cbr\u003eThe results of all these tests are presented graphically in this report, allowing the rate of deterioration of properties and the influence of the environment to be clearly seen. Properties after the accelerated ageing\u003cbr\u003eare also tabulated, with calculations of percentage change. \u003cbr\u003eThe information contained in this report will prove invaluable to anyone specifying or supplying rubber materials or components.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction.\u003cbr\u003e2. Materials \u003cbr\u003e2.1 Original Materials\u003cbr\u003e2.2 New Materials\u003cbr\u003e3. Preparation of Test Pieces\u003cbr\u003e4. Physical Tests\u003cbr\u003e5. Exposure of Test Pieces\u003cbr\u003e5.1 Weathering\u003cbr\u003e5.2 Ozone Exposure\u003cbr\u003e6. Weathering Results (Appendix 2)\u003cbr\u003e6.1 Presentation\u003cbr\u003e6.2 Uncertainty\u003cbr\u003e6.3 Interpretation of results\u003cbr\u003e7. Ozone Results (Appendix 3)\u003cbr\u003e8. Discussion\u003cbr\u003e8.1 Weathering\u003cbr\u003e8.1.1 General\u003cbr\u003e8.1.2 Hardness\u003cbr\u003e8.1.3 Modulus\u003cbr\u003e8.1.4 Tensile Strength\u003cbr\u003e8.1.5 Elongation at Break\u003cbr\u003e8.1.6 Effect of Temperature\u003cbr\u003e8.2 Ozone\u003cbr\u003e9. Conclusions\u003cbr\u003eReferences \u003cbr\u003eAppendix 1 - Compound Details \u003cbr\u003eAppendix 2 - Weathering Results\u003cbr\u003eCompound A - Natural Rubber - Standard\u003cbr\u003eCompound B - Natural Rubber - Good Ageing\u003cbr\u003eCompound C - Natural Rubber - Mineral Filler Loaded \u003cbr\u003eCompound D - Natural Rubber - Mineral Filler (Heavy Loaded)\u003cbr\u003eCompound E - Styrene Butadiene Rubber - General Purpose\u003cbr\u003eCompound F - Styrene Butadiene Rubber - Good Ageing\u003cbr\u003eCompound G - Styrene Butadiene Rubber - General Purpose\u003cbr\u003eCompound H - Styrene Butadiene Rubber - Good Ageing\u003cbr\u003eCompound J - Butyl Rubber - General Purpose\u003cbr\u003eCompound K - Butyl Rubber - Good Ageing\u003cbr\u003eCompound L - Polychloroprene - General Purpose\u003cbr\u003eCompound M - Polychloroprene - Natural Ageing\u003cbr\u003eCompound N - Polychloroprene - Heat Ageing\u003cbr\u003eCompound P - Nitrite Rubber - General Purpose\u003cbr\u003eCompound R - Polychloroprene - Good Ageing\u003cbr\u003eCompound S - Miscellaneous - Acrylate Rubber\u003cbr\u003eCompound T - Miscellaneous - Chlorosulphonated Polyethylene\u003cbr\u003eCompound W - Miscellaneous - Polysulphide Rubber\u003cbr\u003eCompound X - Miscellaneous - Silicone Rubber\u003cbr\u003eNew Compounds\u003cbr\u003eCompound N1 - FVMQ\u003cbr\u003eCompound N2 - HNBR\u003cbr\u003eCompound N3 - Epoxidised Natural\u003cbr\u003eCompound N4 - Chlorinated Polyethylene\u003cbr\u003eCompound NS - Fluorocarbon\u003cbr\u003eCompound N6 - Exxpro\u003cbr\u003eCompound N7 - Epichlorohydrin\u003cbr\u003eCompound N8 - EPDM\u003cbr\u003eCompound N9 - EVA\u003cbr\u003eCompound N10 - PU\u003cbr\u003eParticipant's Compounds\u003cbr\u003eCompound P1\u003cbr\u003eCompound P3\u003cbr\u003eCompound P4\u003cbr\u003eCompound P5\u003cbr\u003eCompound P6\u003cbr\u003eCompound P7\u003cbr\u003eCompound PB\u003cbr\u003eCompound P9\u003cbr\u003eCompound P10\u003cbr\u003eAppendix 3 - Ozone Results\u003cbr\u003e\u003cbr\u003e"}
Air Monitoring in the ...
$126.00
{"id":11242214276,"title":"Air Monitoring in the Rubber and Plastics Industries","handle":"978-1-85957-374-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: B.G. Willoughby \u003cbr\u003eISBN 978-1-85957-374-7 \u003cbr\u003e\u003cbr\u003epages 250\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHealth, safety, and the environment are key driving factors in the industry in the 21st Century. Monitoring of exposure to chemicals in the workplace and in emissions from factories is used to calculate exposure to possible chemical toxins including carcinogens. Other factors must also be considered in chemical monitoring, such as the actual risk of harm and possible areas of high exposure, such as when opening ovens or dealing with equipment problems, situations where a build-up of the chemical can occur in an enclosed environment. \u003cbr\u003e\u003cbr\u003eDifferent types of monitoring equipment and ways of monitoring are available. For example, static monitoring can be carried out in one place over a period of time, or a recorder can be placed on an employee near to the breathing zone to measure individual exposure to chemicals. There are many factors which can lead to inaccurate interpretation of results from using equipment which does not distinguish between critical chemicals or which is not sufficiently sensitive, to not taking into account local factors such as employee's smoking habits. \u003cbr\u003e\u003cbr\u003eTo measure a chemical in air, it must first be trapped in some way and the trapped sample analysed. There are different methods of trapping from simple grab sampling of air to the use of filters, absorbents, and adsorbents. The trapped sample must be analysed and a variety of methods are available. Chemicals present at low levels can still be toxic. The aim is to choose a method that is capable of measuring across the range of exposure levels of concern. Government bodies such as NIOSH and OSHA in the USA and the HSE in the UK have published approved methods for specific chemical species. \u003cbr\u003e\u003cbr\u003eThere are many chemicals in use in the rubber and plastics industries from the monomers polymerised to form plastics and rubbers, to the additives used to enhance the polymer properties. In addition, other potentially hazardous substances are formed by reactions between these base chemicals and with air. The formation of suspected carcinogenic nitrosamine compounds by some rubber formulations is a case in point. \u003cbr\u003e\u003cbr\u003eThis book examines the types of chemicals found in the polymer industry and the potential hazards. It goes on to explain the common chemical reactions of concern to health and safety. Monitoring methods are described in some detail together with their limitations. This is essentially a practical book giving a background to the chemistry of the polymer industry and chemical monitoring methods. It will be of use to workers and managers across the industry in explaining what should be done and why. It will be of particular interest to occupational health and environmental monitoring specialists.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 What to Look for – What’s There at the Start\u003c\/b\u003e\u003cbr\u003e1.1 Risk Assessment\u003cbr\u003e1.2 Hazards from Ingredients\u003cbr\u003e1.2.1 Accelerators and Activators\u003cbr\u003e1.2.2 Antioxidants and Antiozonants\u003cbr\u003e1.2.3 Blowing Agents\u003cbr\u003e1.2.4 Colourants\u003cbr\u003e1.2.5 Crosslinking Agents\u003cbr\u003e1.2.6 Fillers\u003cbr\u003e1.2.7 Flame Retardants\u003cbr\u003e1.2.8 Heat Stabilisers\u003cbr\u003e1.2.9 Monomers\u003cbr\u003e1.2.10 Plasticisers\u003cbr\u003e1.2.11 Retarders\u003cbr\u003e1.2.12 Solvents\u003cbr\u003e1.3 Likelihood of Exposure\u003cbr\u003e1.3.1 Dusts (Airborne Particulates)\u003cbr\u003e1.3.2 What is Dust?\u003cbr\u003e1.3.3 How Does Dust Originate?\u003cbr\u003e1.3.4 Airborne Vapours\u003cbr\u003e1.3.5 Vapour Generation from Liquids \u003cbr\u003e\u003cb\u003e2 What to Look for – What’s Created During Processing\u003c\/b\u003e\u003cbr\u003e2.1 Thermal Breakdown\u003cbr\u003e2.1.1 Thermal Degradation of Polymers\u003cbr\u003e2.1.2 Thermal Decomposition of Peroxides\u003cbr\u003e2.1.3 Thermal Decomposition of Blowing Agents\u003cbr\u003e2.1.4 Thermal Decomposition of Flame Retardants\u003cbr\u003e2.2 Thermo-Oxidative Breakdown\u003cbr\u003e2.2.1 Thermo-Oxidative Degradation of Polymers\u003cbr\u003e2.2.2 Side-Chain Oxidation of Organo-Nitrogen Compounds\u003cbr\u003e2.3 Crosslinking of Rubbers – Vulcanisation\u003cbr\u003e2.3.1 Peroxide Crosslinking\u003cbr\u003e2.3.2 Sulfur Crosslinking\u003cbr\u003e2.3.3 Amines and Delayed Action Cures\u003cbr\u003e2.3.4 Nitrosamines\u003cbr\u003e2.4 Hazards from Volatile By-Products\u003cbr\u003e2.4.1 Aldehydes\u003cbr\u003e2.4.2 Aliphatic Amines\u003cbr\u003e2.4.3 Ammonia, CAS: 7664-41-7\u003cbr\u003e2.4.4 Aniline, CAS: 626-38-0\u003cbr\u003e2.4.5 Benzene, CAS: 71-43-2\u003cbr\u003e2.4.6 Biphenyl, CAS: 92-52-4\u003cbr\u003e2.4.7 tert-Butanol (2-methylpropan-2-ol), CAS: 75-65-0\u003cbr\u003e2.4.8 Carbon Disulfide, CAS: 75-15-0\u003cbr\u003e2.4.9 Carbon Monoxide, CAS: 630-08-0\u003cbr\u003e2.4.10 Chlorobenzene, CAS: 108-90-7\u003cbr\u003e2.4.11 Hydrogen Halides\u003cbr\u003e2.4.12 Ketones\u003cbr\u003e2.4.13 a-Methylstyrene (2-phenylpropene), CAS: 98-83-9\u003cbr\u003e2.4.14 N-Nitrosamines\u003cbr\u003e2.4.15 Ozone, CAS: 10028-15-6\u003cbr\u003e2.4.16 2,2´,4,4´-Tetrachlorobiphenyl, CAS: 2437-79-8\u003cbr\u003e2.4.17 Tetramethylsuccinonitrile, CAS: 3333-52-6\u003cbr\u003e2.5 Likelihood of Exposure\u003cbr\u003e2.5.1 Catalytic Effects\u003cbr\u003e2.5.2 Residence Times \u003cbr\u003e\u003cb\u003e3 Air Monitoring Strategies\u003c\/b\u003e\u003cbr\u003e3.1 Concentration Profiling and Leak Detection\u003cbr\u003e3.2 Personal Exposure Monitoring\u003cbr\u003e3.3 Compliance with Legislation\u003cbr\u003e3.4 Monitoring the Performance of Engineering Controls\u003cbr\u003e3.4.1 Capture Efficiency\u003cbr\u003e3.4.2 Transport Efficiency\u003cbr\u003e3.4.3 Static Pressure\u003cbr\u003e3.4.4 Velocity Pressure\u003cbr\u003e3.4.5 Total Air Flow – Determination of Mean Velocity within a Duct\u003cbr\u003e3.4.6 Volume Air Flow from Mean Velocity \u003cbr\u003e\u003cb\u003e4 Indirect Methods – Trapping Species from Air\u003c\/b\u003e\u003cbr\u003e4.1 Types of Airborne Pollutant\u003cbr\u003e4.2 Whole Air Samples – Grab Sampling\u003cbr\u003e4.3 Total Particulates Trapping\u003cbr\u003e4.3.1 Inertia Trapping\u003cbr\u003e4.3.2 Flow Rate Considerations\u003cbr\u003e4.3.3 Filter Types\u003cbr\u003e4.3.4 Handling Fibrous Filters\u003cbr\u003e4.4 Sampling for Total Inhalable Particulates\u003cbr\u003e4.5 Sampling for Respirable Particulates\u003cbr\u003e4.6 Sampling in Ducts and Stacks – Isokinetic Sampling\u003cbr\u003e4.7 Static Samplers\u003cbr\u003e4.8 Gas and Vapour Trapping\u003cbr\u003e4.8.1 Adsorption Trapping\u003cbr\u003e4.8.2 Absorption Trapping\u003cbr\u003e4.9 Portable Battery Pumps\u003cbr\u003e4.9.1 Flow Rate Adjustment\u003cbr\u003e4.9.2 Setting the Flow Rate\u003cbr\u003e4.9.3 Battery Characteristics\u003cbr\u003e4.10 Sampling and Sampling Records\u003cbr\u003e4.10.1 Sampling Records\u003cbr\u003e4.10.2 Field and Media Blanks\u003cbr\u003e4.10.3 Sample Transfer and Storage \u003cbr\u003e\u003cb\u003e5 Indirect Methods – Laboratory Analysis\u003c\/b\u003e\u003cbr\u003e5.1 Overview of Chromatographic Techniques\u003cbr\u003e5.1.1 Principles of Chromatography\u003cbr\u003e5.1.2 Component Identification\u003cbr\u003e5.1.3 Quantification\u003cbr\u003e5.2 Gas Chromatography (GC)\u003cbr\u003e5.2.1 The Basics\u003cbr\u003e5.2.2 GC Carrier Gas\u003cbr\u003e5.2.3 Sample Introduction for GC – Liquid Samples\u003cbr\u003e5.2.4 Split Injection for Capillary GC\u003cbr\u003e5.2.5 Splitless Injection for Capillary GC\u003cbr\u003e5.2.6 Cool-on-Column Injection\u003cbr\u003e5.2.7 Sample Introduction for GC – Gaseous Samples\u003cbr\u003e5.2.8 Columns and Ovens\u003cbr\u003e5.2.9 Support Phases\u003cbr\u003e5.2.10 Stationary Phases\u003cbr\u003e5.2.11 Detectors\u003cbr\u003e5.2.12 Instrumental Conditions\u003cbr\u003e5.3 High Performance Liquid Chromatography (HPLC)\u003cbr\u003e5.3.1 The Basics\u003cbr\u003e5.3.2 Gradient Elution\u003cbr\u003e5.3.3 Column Packing Material\u003cbr\u003e5.3.4 Choice of Mobile Phase\u003cbr\u003e5.3.5 Detectors\u003cbr\u003e5.3.6 Sample Introduction\u003cbr\u003e5.3.7 Instrumental Conditions\u003cbr\u003e5.4 Ion Chromatography\u003cbr\u003e5.5 Overview of Spectroscopic Techniques\u003cbr\u003e5.5.1 Mechanics of Measurement\u003cbr\u003e5.6 Flame Emission Spectroscopy (FES)\u003cbr\u003e5.7 Atomic Absorption Spectroscopy (AA)\u003cbr\u003e5.8 Inductively-Coupled Plasma Emission Spectroscopy (ICP)\u003cbr\u003e5.9 Ultraviolet Spectroscopy\u003cbr\u003e5.9.1 UV Fluorescence\u003cbr\u003e5.10 X-Ray Fluorescence Spectroscopy (XRF)\u003cbr\u003e5.11 X-Ray Diffraction (XRD)\u003cbr\u003e5.12 Overview of Gravimetric Analysis\u003cbr\u003e5.12.1 The Balance\u003cbr\u003e5.12.2 Analytical Sensitivity\u003cbr\u003e5.12.3 Cyclohexane Extraction \u003cbr\u003e\u003cb\u003e6 Indirect Methods – Data Analysis\u003c\/b\u003e\u003cbr\u003e6.1 Data Available\u003cbr\u003e6.1.1 Pumped Sampling\u003cbr\u003e6.1.2 Diffusion Sampling\u003cbr\u003e6.1.3 Laboratory Analysis\u003cbr\u003e6.2 Calculation of an Airborne Concentration\u003cbr\u003e6.2.1 Units of Concentration – mg\/m3 and ppm\u003cbr\u003e6.2.2 Use of ppm in Diffusive Sample Uptake Rates\u003cbr\u003e6.2.3 Isocyanate Concentrations\u003cbr\u003e6.3 Desorption Efficiency\u003cbr\u003e6.4 Exposure Limits\u003cbr\u003e6.4.1 UK Limits\u003cbr\u003e6.4.2 US Limits\u003cbr\u003e6.4.3 German Limits\u003cbr\u003e6.4.4 Rubber Process Dust and Rubber Fume – UK Limits\u003cbr\u003e6.4.5 N-Nitrosamines – German Limits\u003cbr\u003e6.5 Time-Weighted Average (TWA) Exposures\u003cbr\u003e6.5.1 Sampling Only During Working Periods\u003cbr\u003e6.5.2 Sampling During Both Working Periods and Breaks\u003cbr\u003e6.5.3 Assumptions\u003cbr\u003e6.6 Exposure Records\u003cbr\u003e6.7 Emission Limits\u003cbr\u003e6.7.1 UK Legislation\u003cbr\u003e6.7.2 US Legislation \u003cbr\u003e\u003cb\u003e7 Direct Methods\u003c\/b\u003e\u003cbr\u003e7.1 Colorimetric Methods\u003cbr\u003e7.1.1 Detector Tubes: Short-Term Measurements\u003cbr\u003e7.1.2 Detector Tubes: Long-Term Measurements\u003cbr\u003e7.1.3 Colorimetric Filters and Badge Samplers\u003cbr\u003e7.1.4 Paper Tape Monitors\u003cbr\u003e7.2 Beam Attenuation or Deflection Devices\u003cbr\u003e7.2.1 Infrared Absorbance (IR)\u003cbr\u003e7.2.2 Ultraviolet and Visible Absorbance (UV-VIS)\u003cbr\u003e7.2.3 Beta-Ray Attenuation\u003cbr\u003e7.2.4 Light Attenuating Photometers\u003cbr\u003e7.2.5 Light Scattering\u003cbr\u003e7.3 Ionisation and Luminescent Detectors\u003cbr\u003e7.3.1 Flame Ionisation Detectors (FID)\u003cbr\u003e7.3.2Photo-Ionisation Detectors (PID)\u003cbr\u003e7.3.3 Chemiluminescent Detectors \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAppendix I: Units and Conversions\u003cbr\u003eAppendix II: Methods for Determination of Hazardous Substances (MDHS), UK Health and Safety Executive\u003cbr\u003eAppendix III: NIOSH and OSHA Monitoring Methods - Representative Examples\u003cbr\u003eAppendix IV: Promulgated Test Methods from the US Environmental Protection Agency - Representative Examples\u003cbr\u003eCAS Number Index\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Bryan Willoughby is a renowned polymer chemist. He has conducted the risk assessment and monitoring exercises in the UK, USA, and Continental Europe. He developed the method for rubber fume monitoring now used by the UK Health and Safety Executive. He has also published extensively on the topic of emissions from curing rubber and moulding plastic. Bryan has served on the Board of Directors of the British Institute of Occupational Hygiene and is a Fellow of the Royal Society of Chemistry, a member of the Faculty of Occupational Hygiene and the IOM, and an affiliate of the Rubber Division of the American Chemical Society.","published_at":"2017-06-22T21:13:22-04:00","created_at":"2017-06-22T21:13:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","air monitoring","book","emissions","environment","hazardous substances","health","plastics","risk assessment","rubber","rubber formulary","safety"],"price":12600,"price_min":12600,"price_max":12600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378351364,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Air Monitoring in the Rubber and Plastics Industries","public_title":null,"options":["Default Title"],"price":12600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-374-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-374-7.jpg?v=1498187058"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-374-7.jpg?v=1498187058","options":["Title"],"media":[{"alt":null,"id":350147674205,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-374-7.jpg?v=1498187058"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-374-7.jpg?v=1498187058","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: B.G. Willoughby \u003cbr\u003eISBN 978-1-85957-374-7 \u003cbr\u003e\u003cbr\u003epages 250\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHealth, safety, and the environment are key driving factors in the industry in the 21st Century. Monitoring of exposure to chemicals in the workplace and in emissions from factories is used to calculate exposure to possible chemical toxins including carcinogens. Other factors must also be considered in chemical monitoring, such as the actual risk of harm and possible areas of high exposure, such as when opening ovens or dealing with equipment problems, situations where a build-up of the chemical can occur in an enclosed environment. \u003cbr\u003e\u003cbr\u003eDifferent types of monitoring equipment and ways of monitoring are available. For example, static monitoring can be carried out in one place over a period of time, or a recorder can be placed on an employee near to the breathing zone to measure individual exposure to chemicals. There are many factors which can lead to inaccurate interpretation of results from using equipment which does not distinguish between critical chemicals or which is not sufficiently sensitive, to not taking into account local factors such as employee's smoking habits. \u003cbr\u003e\u003cbr\u003eTo measure a chemical in air, it must first be trapped in some way and the trapped sample analysed. There are different methods of trapping from simple grab sampling of air to the use of filters, absorbents, and adsorbents. The trapped sample must be analysed and a variety of methods are available. Chemicals present at low levels can still be toxic. The aim is to choose a method that is capable of measuring across the range of exposure levels of concern. Government bodies such as NIOSH and OSHA in the USA and the HSE in the UK have published approved methods for specific chemical species. \u003cbr\u003e\u003cbr\u003eThere are many chemicals in use in the rubber and plastics industries from the monomers polymerised to form plastics and rubbers, to the additives used to enhance the polymer properties. In addition, other potentially hazardous substances are formed by reactions between these base chemicals and with air. The formation of suspected carcinogenic nitrosamine compounds by some rubber formulations is a case in point. \u003cbr\u003e\u003cbr\u003eThis book examines the types of chemicals found in the polymer industry and the potential hazards. It goes on to explain the common chemical reactions of concern to health and safety. Monitoring methods are described in some detail together with their limitations. This is essentially a practical book giving a background to the chemistry of the polymer industry and chemical monitoring methods. It will be of use to workers and managers across the industry in explaining what should be done and why. It will be of particular interest to occupational health and environmental monitoring specialists.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 What to Look for – What’s There at the Start\u003c\/b\u003e\u003cbr\u003e1.1 Risk Assessment\u003cbr\u003e1.2 Hazards from Ingredients\u003cbr\u003e1.2.1 Accelerators and Activators\u003cbr\u003e1.2.2 Antioxidants and Antiozonants\u003cbr\u003e1.2.3 Blowing Agents\u003cbr\u003e1.2.4 Colourants\u003cbr\u003e1.2.5 Crosslinking Agents\u003cbr\u003e1.2.6 Fillers\u003cbr\u003e1.2.7 Flame Retardants\u003cbr\u003e1.2.8 Heat Stabilisers\u003cbr\u003e1.2.9 Monomers\u003cbr\u003e1.2.10 Plasticisers\u003cbr\u003e1.2.11 Retarders\u003cbr\u003e1.2.12 Solvents\u003cbr\u003e1.3 Likelihood of Exposure\u003cbr\u003e1.3.1 Dusts (Airborne Particulates)\u003cbr\u003e1.3.2 What is Dust?\u003cbr\u003e1.3.3 How Does Dust Originate?\u003cbr\u003e1.3.4 Airborne Vapours\u003cbr\u003e1.3.5 Vapour Generation from Liquids \u003cbr\u003e\u003cb\u003e2 What to Look for – What’s Created During Processing\u003c\/b\u003e\u003cbr\u003e2.1 Thermal Breakdown\u003cbr\u003e2.1.1 Thermal Degradation of Polymers\u003cbr\u003e2.1.2 Thermal Decomposition of Peroxides\u003cbr\u003e2.1.3 Thermal Decomposition of Blowing Agents\u003cbr\u003e2.1.4 Thermal Decomposition of Flame Retardants\u003cbr\u003e2.2 Thermo-Oxidative Breakdown\u003cbr\u003e2.2.1 Thermo-Oxidative Degradation of Polymers\u003cbr\u003e2.2.2 Side-Chain Oxidation of Organo-Nitrogen Compounds\u003cbr\u003e2.3 Crosslinking of Rubbers – Vulcanisation\u003cbr\u003e2.3.1 Peroxide Crosslinking\u003cbr\u003e2.3.2 Sulfur Crosslinking\u003cbr\u003e2.3.3 Amines and Delayed Action Cures\u003cbr\u003e2.3.4 Nitrosamines\u003cbr\u003e2.4 Hazards from Volatile By-Products\u003cbr\u003e2.4.1 Aldehydes\u003cbr\u003e2.4.2 Aliphatic Amines\u003cbr\u003e2.4.3 Ammonia, CAS: 7664-41-7\u003cbr\u003e2.4.4 Aniline, CAS: 626-38-0\u003cbr\u003e2.4.5 Benzene, CAS: 71-43-2\u003cbr\u003e2.4.6 Biphenyl, CAS: 92-52-4\u003cbr\u003e2.4.7 tert-Butanol (2-methylpropan-2-ol), CAS: 75-65-0\u003cbr\u003e2.4.8 Carbon Disulfide, CAS: 75-15-0\u003cbr\u003e2.4.9 Carbon Monoxide, CAS: 630-08-0\u003cbr\u003e2.4.10 Chlorobenzene, CAS: 108-90-7\u003cbr\u003e2.4.11 Hydrogen Halides\u003cbr\u003e2.4.12 Ketones\u003cbr\u003e2.4.13 a-Methylstyrene (2-phenylpropene), CAS: 98-83-9\u003cbr\u003e2.4.14 N-Nitrosamines\u003cbr\u003e2.4.15 Ozone, CAS: 10028-15-6\u003cbr\u003e2.4.16 2,2´,4,4´-Tetrachlorobiphenyl, CAS: 2437-79-8\u003cbr\u003e2.4.17 Tetramethylsuccinonitrile, CAS: 3333-52-6\u003cbr\u003e2.5 Likelihood of Exposure\u003cbr\u003e2.5.1 Catalytic Effects\u003cbr\u003e2.5.2 Residence Times \u003cbr\u003e\u003cb\u003e3 Air Monitoring Strategies\u003c\/b\u003e\u003cbr\u003e3.1 Concentration Profiling and Leak Detection\u003cbr\u003e3.2 Personal Exposure Monitoring\u003cbr\u003e3.3 Compliance with Legislation\u003cbr\u003e3.4 Monitoring the Performance of Engineering Controls\u003cbr\u003e3.4.1 Capture Efficiency\u003cbr\u003e3.4.2 Transport Efficiency\u003cbr\u003e3.4.3 Static Pressure\u003cbr\u003e3.4.4 Velocity Pressure\u003cbr\u003e3.4.5 Total Air Flow – Determination of Mean Velocity within a Duct\u003cbr\u003e3.4.6 Volume Air Flow from Mean Velocity \u003cbr\u003e\u003cb\u003e4 Indirect Methods – Trapping Species from Air\u003c\/b\u003e\u003cbr\u003e4.1 Types of Airborne Pollutant\u003cbr\u003e4.2 Whole Air Samples – Grab Sampling\u003cbr\u003e4.3 Total Particulates Trapping\u003cbr\u003e4.3.1 Inertia Trapping\u003cbr\u003e4.3.2 Flow Rate Considerations\u003cbr\u003e4.3.3 Filter Types\u003cbr\u003e4.3.4 Handling Fibrous Filters\u003cbr\u003e4.4 Sampling for Total Inhalable Particulates\u003cbr\u003e4.5 Sampling for Respirable Particulates\u003cbr\u003e4.6 Sampling in Ducts and Stacks – Isokinetic Sampling\u003cbr\u003e4.7 Static Samplers\u003cbr\u003e4.8 Gas and Vapour Trapping\u003cbr\u003e4.8.1 Adsorption Trapping\u003cbr\u003e4.8.2 Absorption Trapping\u003cbr\u003e4.9 Portable Battery Pumps\u003cbr\u003e4.9.1 Flow Rate Adjustment\u003cbr\u003e4.9.2 Setting the Flow Rate\u003cbr\u003e4.9.3 Battery Characteristics\u003cbr\u003e4.10 Sampling and Sampling Records\u003cbr\u003e4.10.1 Sampling Records\u003cbr\u003e4.10.2 Field and Media Blanks\u003cbr\u003e4.10.3 Sample Transfer and Storage \u003cbr\u003e\u003cb\u003e5 Indirect Methods – Laboratory Analysis\u003c\/b\u003e\u003cbr\u003e5.1 Overview of Chromatographic Techniques\u003cbr\u003e5.1.1 Principles of Chromatography\u003cbr\u003e5.1.2 Component Identification\u003cbr\u003e5.1.3 Quantification\u003cbr\u003e5.2 Gas Chromatography (GC)\u003cbr\u003e5.2.1 The Basics\u003cbr\u003e5.2.2 GC Carrier Gas\u003cbr\u003e5.2.3 Sample Introduction for GC – Liquid Samples\u003cbr\u003e5.2.4 Split Injection for Capillary GC\u003cbr\u003e5.2.5 Splitless Injection for Capillary GC\u003cbr\u003e5.2.6 Cool-on-Column Injection\u003cbr\u003e5.2.7 Sample Introduction for GC – Gaseous Samples\u003cbr\u003e5.2.8 Columns and Ovens\u003cbr\u003e5.2.9 Support Phases\u003cbr\u003e5.2.10 Stationary Phases\u003cbr\u003e5.2.11 Detectors\u003cbr\u003e5.2.12 Instrumental Conditions\u003cbr\u003e5.3 High Performance Liquid Chromatography (HPLC)\u003cbr\u003e5.3.1 The Basics\u003cbr\u003e5.3.2 Gradient Elution\u003cbr\u003e5.3.3 Column Packing Material\u003cbr\u003e5.3.4 Choice of Mobile Phase\u003cbr\u003e5.3.5 Detectors\u003cbr\u003e5.3.6 Sample Introduction\u003cbr\u003e5.3.7 Instrumental Conditions\u003cbr\u003e5.4 Ion Chromatography\u003cbr\u003e5.5 Overview of Spectroscopic Techniques\u003cbr\u003e5.5.1 Mechanics of Measurement\u003cbr\u003e5.6 Flame Emission Spectroscopy (FES)\u003cbr\u003e5.7 Atomic Absorption Spectroscopy (AA)\u003cbr\u003e5.8 Inductively-Coupled Plasma Emission Spectroscopy (ICP)\u003cbr\u003e5.9 Ultraviolet Spectroscopy\u003cbr\u003e5.9.1 UV Fluorescence\u003cbr\u003e5.10 X-Ray Fluorescence Spectroscopy (XRF)\u003cbr\u003e5.11 X-Ray Diffraction (XRD)\u003cbr\u003e5.12 Overview of Gravimetric Analysis\u003cbr\u003e5.12.1 The Balance\u003cbr\u003e5.12.2 Analytical Sensitivity\u003cbr\u003e5.12.3 Cyclohexane Extraction \u003cbr\u003e\u003cb\u003e6 Indirect Methods – Data Analysis\u003c\/b\u003e\u003cbr\u003e6.1 Data Available\u003cbr\u003e6.1.1 Pumped Sampling\u003cbr\u003e6.1.2 Diffusion Sampling\u003cbr\u003e6.1.3 Laboratory Analysis\u003cbr\u003e6.2 Calculation of an Airborne Concentration\u003cbr\u003e6.2.1 Units of Concentration – mg\/m3 and ppm\u003cbr\u003e6.2.2 Use of ppm in Diffusive Sample Uptake Rates\u003cbr\u003e6.2.3 Isocyanate Concentrations\u003cbr\u003e6.3 Desorption Efficiency\u003cbr\u003e6.4 Exposure Limits\u003cbr\u003e6.4.1 UK Limits\u003cbr\u003e6.4.2 US Limits\u003cbr\u003e6.4.3 German Limits\u003cbr\u003e6.4.4 Rubber Process Dust and Rubber Fume – UK Limits\u003cbr\u003e6.4.5 N-Nitrosamines – German Limits\u003cbr\u003e6.5 Time-Weighted Average (TWA) Exposures\u003cbr\u003e6.5.1 Sampling Only During Working Periods\u003cbr\u003e6.5.2 Sampling During Both Working Periods and Breaks\u003cbr\u003e6.5.3 Assumptions\u003cbr\u003e6.6 Exposure Records\u003cbr\u003e6.7 Emission Limits\u003cbr\u003e6.7.1 UK Legislation\u003cbr\u003e6.7.2 US Legislation \u003cbr\u003e\u003cb\u003e7 Direct Methods\u003c\/b\u003e\u003cbr\u003e7.1 Colorimetric Methods\u003cbr\u003e7.1.1 Detector Tubes: Short-Term Measurements\u003cbr\u003e7.1.2 Detector Tubes: Long-Term Measurements\u003cbr\u003e7.1.3 Colorimetric Filters and Badge Samplers\u003cbr\u003e7.1.4 Paper Tape Monitors\u003cbr\u003e7.2 Beam Attenuation or Deflection Devices\u003cbr\u003e7.2.1 Infrared Absorbance (IR)\u003cbr\u003e7.2.2 Ultraviolet and Visible Absorbance (UV-VIS)\u003cbr\u003e7.2.3 Beta-Ray Attenuation\u003cbr\u003e7.2.4 Light Attenuating Photometers\u003cbr\u003e7.2.5 Light Scattering\u003cbr\u003e7.3 Ionisation and Luminescent Detectors\u003cbr\u003e7.3.1 Flame Ionisation Detectors (FID)\u003cbr\u003e7.3.2Photo-Ionisation Detectors (PID)\u003cbr\u003e7.3.3 Chemiluminescent Detectors \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAppendix I: Units and Conversions\u003cbr\u003eAppendix II: Methods for Determination of Hazardous Substances (MDHS), UK Health and Safety Executive\u003cbr\u003eAppendix III: NIOSH and OSHA Monitoring Methods - Representative Examples\u003cbr\u003eAppendix IV: Promulgated Test Methods from the US Environmental Protection Agency - Representative Examples\u003cbr\u003eCAS Number Index\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Bryan Willoughby is a renowned polymer chemist. He has conducted the risk assessment and monitoring exercises in the UK, USA, and Continental Europe. He developed the method for rubber fume monitoring now used by the UK Health and Safety Executive. He has also published extensively on the topic of emissions from curing rubber and moulding plastic. Bryan has served on the Board of Directors of the British Institute of Occupational Hygiene and is a Fellow of the Royal Society of Chemistry, a member of the Faculty of Occupational Hygiene and the IOM, and an affiliate of the Rubber Division of the American Chemical Society."}
Analysis of Thermoset ...
$125.00
{"id":11242215300,"title":"Analysis of Thermoset Materials, Precursors and Products.","handle":"978-1-85957-390-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. M.J. Forrest \u003cbr\u003eISBN 978-1-85957-390-7 \u003cbr\u003e\u003cbr\u003epages 160\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermosets comprise around 25% of world plastic consumption. The use of thermosets dates back over 100 years to the advent of phenolics. Today, a large range of different reactive chemicals is used in the synthesis of these resins. Common thermoset systems include phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, resorcinol-formaldehyde, epoxy, polyurethane, polyalkyd, silicone, polyester, acrylic, furan, and polyimide. \u003cbr\u003e\u003cbr\u003eA variety of additives are found in thermosets. Plasticizer-type compounds are used to promote the flow of high viscosity compounds such as epoxy resins. Particulate fillers are used to reduce cost or improve properties and fibrous materials for increased strength and rigidity. Other additives include anti-degradants, curing agents (hardeners and accelerators), flame retardants and lubricants. \u003cbr\u003e\u003cbr\u003eThermosets are used in a wide range of applications from moldings and composites to adhesives. Analysis of thermosets is carried out to determine the reasons for failure, for quality control, to measure residual monomer, to detect contaminants, to monitor the extent of cure and for deformulation. Materials based on thermosets present the analyst with considerable challenges due to their complexity and the wide range of polymer types and additives available. The author of this review has many years of experience in the Polymer Analysis division at Rapra Technology Limited. He has a practical understanding of the usefulness and feasibility of the many techniques on offer to the chemist. \u003cbr\u003e\u003cbr\u003eWet chemistry techniques were mainly used historically. One example is the spectrophotometric titration of epoxy groups using a halogen acid and 2,4-dinitrobenzene sulfonate as the chromophore. \u003cbr\u003e\u003cbr\u003eSpectroscopic techniques include infrared spectroscopy, ultraviolet, nuclear magnetic resonance, atomic absorption, X-ray fluorescence and Raman spectroscopy. \u003cbr\u003e\u003cbr\u003eChromatographic techniques include gas chromatography-mass spectrometry, HPLC, liquid chromatography-mass spectrometry, gel permeation chromatography, thin layer chromatography and supercritical fluid chromatography. \u003cbr\u003e\u003cbr\u003eThermal techniques used to analyze thermosets include differential scanning calorimetry, dynamic mechanical thermal analysis, thermal mechanical analysis, thermogravimetric analysis and dielectric analysis. \u003cbr\u003e\u003cbr\u003eThere are many other analytical techniques covered in this review, which describes their specific uses and even set up details for some analytical techniques. The references at the end of the report describe many specific instances of the analysis of thermoset materials published over the last 10 years. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e\u003cbr\u003e2. Thermoset Products \u003cbr\u003e2.1 Thermoset Polymer Systems \u003cbr\u003e2.2 Basic Chemistry \u003cbr\u003e2.3 Additives Used in Thermosets \u003cbr\u003e2.3.1 Organic Modifiers \u003cbr\u003e2.3.2 Fillers \u003cbr\u003e2.3.3 Antidegradants\/Stabilisers \u003cbr\u003e2.3.4 Curing Species (e.g., Hardeners and Accelerators) \u003cbr\u003e2.3.5 Flame Retardants \u003cbr\u003e2.3.6 Lubricants \u003cbr\u003e2.3.7 Miscellaneous Additives \u003cbr\u003e\u003cbr\u003e3. Overview of Analytical Techniques \u003cbr\u003e3.1 Wet Chemistry Techniques \u003cbr\u003e3.2 Spectroscopic Techniques \u003cbr\u003e3.2.1 Infrared Spectroscopy (IR) \u003cbr\u003e3.2.2 Ultraviolet Light Spectroscopy (UV) \u003cbr\u003e3.2.3 Nuclear Magnetic Resonance Spectroscopy (NMR) \u003cbr\u003e3.2.4 Atomic Absorption Spectroscopy (AAS) \u003cbr\u003e3.2.5 X-Ray Fluorescence Spectroscopy (XRF) \u003cbr\u003e3.2.6 Raman Spectroscopy \u003cbr\u003e3.3 Chromatographic Techniques \u003cbr\u003e3.3.1 Gas Chromatography-Mass Spectrometry (GC-MS) \u003cbr\u003e3.3.2 Gas Chromatography (GC) \u003cbr\u003e3.3.3 High Performance Liquid Chromatography (HPLC) \u003cbr\u003e3.3.4 Liquid Chromatography-Mass Spectroscopy (LC-MS) \u003cbr\u003e3.3.5 Gel Permeation Chromatography (GPC) \u003cbr\u003e3.3.6 Thin Layer Chromatography (TLC) \u003cbr\u003e3.3.7 Supercritical Fluid Chromatography (SFC) \u003cbr\u003e3.4 Thermal Techniques \u003cbr\u003e3.4.1 Differential Scanning Calorimetry (DSC) \u003cbr\u003e3.4.2 Dynamic Mechanical Thermal Analysis (DMTA) \u003cbr\u003e3.4.3 Thermal Mechanical Analysis (TMA) \u003cbr\u003e3.4.4 Thermogravimetric Analysis (TGA) \u003cbr\u003e3.4.5 Dielectric Analysis (DEA) \u003cbr\u003e3.5 Elemental Techniques \u003cbr\u003e3.6 Microscopy Techniques \u003cbr\u003e3.7 Miscellaneous Techniques \u003cbr\u003e\u003cbr\u003e4. Characterisation of Thermoset Polymers and their Precursors \u003cbr\u003e4.1 Determination of the Molecular Weight of Thermoset Precursors and the Separation of their Oligomers \u003cbr\u003e4.1.1 Gel Permeation Chromatography \u003cbr\u003e4.1.2 Liquid Chromatography Techniques \u003cbr\u003e4.1.3 Epoxy Resins \u003cbr\u003e4.1.4 Polyurethane \u003cbr\u003e4.1.5 Microbore-GPC \u003cbr\u003e4.1.6 Other Techniques \u003cbr\u003e4.2 Polymer Type and Microstructure \u003cbr\u003e4.2.1 Infrared Spectroscopy \u003cbr\u003e4.2.2 NMR Spectroscopy \u003cbr\u003e4.2.3 Identifying Functional Groups \u003cbr\u003e4.2.4 Pyrolysis Gas Chromatography \u003cbr\u003e4.2.5 Thermal Analysis Techniques \u003cbr\u003e\u003cbr\u003e5. Determination of Organic Modifiers and Fillers in Thermoset Products \u003cbr\u003e5.1 Determination of Organic Modifiers \u003cbr\u003e5.2 Determination of Fillers \u003cbr\u003e5.2.1 Particulate Fillers \u003cbr\u003e5.2.2 Fibrous Fillers \u003cbr\u003e\u003cbr\u003e6. Determination of Functional Additives in Thermoset Products \u003cbr\u003e6.1 Antidegradants \u003cbr\u003e6.2 Flow Promoters and Flexibilisers \u003cbr\u003e6.3 Pigments \u003cbr\u003e6.4 Blowing Agents \u003cbr\u003e6.5 Flame Retardants \u003cbr\u003e6.6 Curing Systems \u003cbr\u003e\u003cbr\u003e7. Cure Behavior Studies \u003cbr\u003e7.1 Dielectric Analysis \u003cbr\u003e7.2 Differential Scanning Calorimetry \u003cbr\u003e7.3 Dynamic Mechanical Thermal Analysis\/Dynamic Mechanical Analysis \u003cbr\u003e7.4 Thermal Mechanical Analysis \u003cbr\u003e7.5 Scanning Vibrating Needle Curemeter \u003cbr\u003e7.6 Chromatography Techniques \u003cbr\u003e7.7 Spectroscopy Techniques \u003cbr\u003e7.8 Thermally Stimulated Depolarisation \u003cbr\u003e7.9 Wet Chemistry Techniques \u003cbr\u003e\u003cbr\u003e8. Surface Analysis of Thermosets \u003cbr\u003e8.1 X-Ray Photoelectron Spectroscopy (XPS) \u003cbr\u003e8.2 Laser Induced Mass Analysis (LIMA) \u003cbr\u003e8.3 Secondary Ion Mass Spectroscopy (SIMS) \u003cbr\u003e\u003cbr\u003e9. Failure Diagnosis \u003cbr\u003e9.1 Compositional Problems \u003cbr\u003e9.2 Heat Ageing \u003cbr\u003e9.3 Contamination Problems \u003cbr\u003e9.3.1 Solid Contaminants \u003cbr\u003e9.3.2 Liquid Contaminants \u003cbr\u003e9.4 Odor and Emissions Problems \u003cbr\u003e\u003cbr\u003e10.Conclusion\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest has worked in the Polymer Analysis Section at Rapra for fifteen years. He is currently a Principal Consultant, a position he has held for the past four years. He has experience in the analysis of a wide variety of polymers and polymer products using an extensive range of techniques. He is one of the main contacts at Rapra for consultancy and research projects that involve polymer analysis techniques and procedures.","published_at":"2017-06-22T21:13:25-04:00","created_at":"2017-06-22T21:13:25-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","acrylic","book","calorimetry","chromatography","epoxy","furan","melamine-formaldehyde","p-testing","phenol-formaldehyde","polyalkyd","polyester","polyimide","polymer","polyurethane","resorcinol-formaldehyde","silicone","spectroscopy","thermoset systems","thermosets","urea-formaldehyde"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354948,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Analysis of Thermoset Materials, Precursors and Products.","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-390-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-390-7.jpg?v=1498187164"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-390-7.jpg?v=1498187164","options":["Title"],"media":[{"alt":null,"id":350147838045,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-390-7.jpg?v=1498187164"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-390-7.jpg?v=1498187164","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. M.J. Forrest \u003cbr\u003eISBN 978-1-85957-390-7 \u003cbr\u003e\u003cbr\u003epages 160\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermosets comprise around 25% of world plastic consumption. The use of thermosets dates back over 100 years to the advent of phenolics. Today, a large range of different reactive chemicals is used in the synthesis of these resins. Common thermoset systems include phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, resorcinol-formaldehyde, epoxy, polyurethane, polyalkyd, silicone, polyester, acrylic, furan, and polyimide. \u003cbr\u003e\u003cbr\u003eA variety of additives are found in thermosets. Plasticizer-type compounds are used to promote the flow of high viscosity compounds such as epoxy resins. Particulate fillers are used to reduce cost or improve properties and fibrous materials for increased strength and rigidity. Other additives include anti-degradants, curing agents (hardeners and accelerators), flame retardants and lubricants. \u003cbr\u003e\u003cbr\u003eThermosets are used in a wide range of applications from moldings and composites to adhesives. Analysis of thermosets is carried out to determine the reasons for failure, for quality control, to measure residual monomer, to detect contaminants, to monitor the extent of cure and for deformulation. Materials based on thermosets present the analyst with considerable challenges due to their complexity and the wide range of polymer types and additives available. The author of this review has many years of experience in the Polymer Analysis division at Rapra Technology Limited. He has a practical understanding of the usefulness and feasibility of the many techniques on offer to the chemist. \u003cbr\u003e\u003cbr\u003eWet chemistry techniques were mainly used historically. One example is the spectrophotometric titration of epoxy groups using a halogen acid and 2,4-dinitrobenzene sulfonate as the chromophore. \u003cbr\u003e\u003cbr\u003eSpectroscopic techniques include infrared spectroscopy, ultraviolet, nuclear magnetic resonance, atomic absorption, X-ray fluorescence and Raman spectroscopy. \u003cbr\u003e\u003cbr\u003eChromatographic techniques include gas chromatography-mass spectrometry, HPLC, liquid chromatography-mass spectrometry, gel permeation chromatography, thin layer chromatography and supercritical fluid chromatography. \u003cbr\u003e\u003cbr\u003eThermal techniques used to analyze thermosets include differential scanning calorimetry, dynamic mechanical thermal analysis, thermal mechanical analysis, thermogravimetric analysis and dielectric analysis. \u003cbr\u003e\u003cbr\u003eThere are many other analytical techniques covered in this review, which describes their specific uses and even set up details for some analytical techniques. The references at the end of the report describe many specific instances of the analysis of thermoset materials published over the last 10 years. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e\u003cbr\u003e2. Thermoset Products \u003cbr\u003e2.1 Thermoset Polymer Systems \u003cbr\u003e2.2 Basic Chemistry \u003cbr\u003e2.3 Additives Used in Thermosets \u003cbr\u003e2.3.1 Organic Modifiers \u003cbr\u003e2.3.2 Fillers \u003cbr\u003e2.3.3 Antidegradants\/Stabilisers \u003cbr\u003e2.3.4 Curing Species (e.g., Hardeners and Accelerators) \u003cbr\u003e2.3.5 Flame Retardants \u003cbr\u003e2.3.6 Lubricants \u003cbr\u003e2.3.7 Miscellaneous Additives \u003cbr\u003e\u003cbr\u003e3. Overview of Analytical Techniques \u003cbr\u003e3.1 Wet Chemistry Techniques \u003cbr\u003e3.2 Spectroscopic Techniques \u003cbr\u003e3.2.1 Infrared Spectroscopy (IR) \u003cbr\u003e3.2.2 Ultraviolet Light Spectroscopy (UV) \u003cbr\u003e3.2.3 Nuclear Magnetic Resonance Spectroscopy (NMR) \u003cbr\u003e3.2.4 Atomic Absorption Spectroscopy (AAS) \u003cbr\u003e3.2.5 X-Ray Fluorescence Spectroscopy (XRF) \u003cbr\u003e3.2.6 Raman Spectroscopy \u003cbr\u003e3.3 Chromatographic Techniques \u003cbr\u003e3.3.1 Gas Chromatography-Mass Spectrometry (GC-MS) \u003cbr\u003e3.3.2 Gas Chromatography (GC) \u003cbr\u003e3.3.3 High Performance Liquid Chromatography (HPLC) \u003cbr\u003e3.3.4 Liquid Chromatography-Mass Spectroscopy (LC-MS) \u003cbr\u003e3.3.5 Gel Permeation Chromatography (GPC) \u003cbr\u003e3.3.6 Thin Layer Chromatography (TLC) \u003cbr\u003e3.3.7 Supercritical Fluid Chromatography (SFC) \u003cbr\u003e3.4 Thermal Techniques \u003cbr\u003e3.4.1 Differential Scanning Calorimetry (DSC) \u003cbr\u003e3.4.2 Dynamic Mechanical Thermal Analysis (DMTA) \u003cbr\u003e3.4.3 Thermal Mechanical Analysis (TMA) \u003cbr\u003e3.4.4 Thermogravimetric Analysis (TGA) \u003cbr\u003e3.4.5 Dielectric Analysis (DEA) \u003cbr\u003e3.5 Elemental Techniques \u003cbr\u003e3.6 Microscopy Techniques \u003cbr\u003e3.7 Miscellaneous Techniques \u003cbr\u003e\u003cbr\u003e4. Characterisation of Thermoset Polymers and their Precursors \u003cbr\u003e4.1 Determination of the Molecular Weight of Thermoset Precursors and the Separation of their Oligomers \u003cbr\u003e4.1.1 Gel Permeation Chromatography \u003cbr\u003e4.1.2 Liquid Chromatography Techniques \u003cbr\u003e4.1.3 Epoxy Resins \u003cbr\u003e4.1.4 Polyurethane \u003cbr\u003e4.1.5 Microbore-GPC \u003cbr\u003e4.1.6 Other Techniques \u003cbr\u003e4.2 Polymer Type and Microstructure \u003cbr\u003e4.2.1 Infrared Spectroscopy \u003cbr\u003e4.2.2 NMR Spectroscopy \u003cbr\u003e4.2.3 Identifying Functional Groups \u003cbr\u003e4.2.4 Pyrolysis Gas Chromatography \u003cbr\u003e4.2.5 Thermal Analysis Techniques \u003cbr\u003e\u003cbr\u003e5. Determination of Organic Modifiers and Fillers in Thermoset Products \u003cbr\u003e5.1 Determination of Organic Modifiers \u003cbr\u003e5.2 Determination of Fillers \u003cbr\u003e5.2.1 Particulate Fillers \u003cbr\u003e5.2.2 Fibrous Fillers \u003cbr\u003e\u003cbr\u003e6. Determination of Functional Additives in Thermoset Products \u003cbr\u003e6.1 Antidegradants \u003cbr\u003e6.2 Flow Promoters and Flexibilisers \u003cbr\u003e6.3 Pigments \u003cbr\u003e6.4 Blowing Agents \u003cbr\u003e6.5 Flame Retardants \u003cbr\u003e6.6 Curing Systems \u003cbr\u003e\u003cbr\u003e7. Cure Behavior Studies \u003cbr\u003e7.1 Dielectric Analysis \u003cbr\u003e7.2 Differential Scanning Calorimetry \u003cbr\u003e7.3 Dynamic Mechanical Thermal Analysis\/Dynamic Mechanical Analysis \u003cbr\u003e7.4 Thermal Mechanical Analysis \u003cbr\u003e7.5 Scanning Vibrating Needle Curemeter \u003cbr\u003e7.6 Chromatography Techniques \u003cbr\u003e7.7 Spectroscopy Techniques \u003cbr\u003e7.8 Thermally Stimulated Depolarisation \u003cbr\u003e7.9 Wet Chemistry Techniques \u003cbr\u003e\u003cbr\u003e8. Surface Analysis of Thermosets \u003cbr\u003e8.1 X-Ray Photoelectron Spectroscopy (XPS) \u003cbr\u003e8.2 Laser Induced Mass Analysis (LIMA) \u003cbr\u003e8.3 Secondary Ion Mass Spectroscopy (SIMS) \u003cbr\u003e\u003cbr\u003e9. Failure Diagnosis \u003cbr\u003e9.1 Compositional Problems \u003cbr\u003e9.2 Heat Ageing \u003cbr\u003e9.3 Contamination Problems \u003cbr\u003e9.3.1 Solid Contaminants \u003cbr\u003e9.3.2 Liquid Contaminants \u003cbr\u003e9.4 Odor and Emissions Problems \u003cbr\u003e\u003cbr\u003e10.Conclusion\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest has worked in the Polymer Analysis Section at Rapra for fifteen years. He is currently a Principal Consultant, a position he has held for the past four years. He has experience in the analysis of a wide variety of polymers and polymer products using an extensive range of techniques. He is one of the main contacts at Rapra for consultancy and research projects that involve polymer analysis techniques and procedures."}
Antifouling Paint Bioc...
$330.00
{"id":11242246724,"title":"Antifouling Paint Biocides","handle":"978-3-540-31404-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Konstantinou, Ioannis K. (Ed.) \u003cbr\u003eISBN 978-3-540-31404-2 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e266 p., Hardcover\u003c\/p\u003e\n\u003cp\u003eThis item usually ships in 3-4 weeks.\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis volume describes the state-of-the-art advances regarding antifouling paint biocides and provides a thorough evaluation of research and information on major topics such as occurrence and levels, environmental fate, analytical techniques and methods for the monitoring and control, environmental modeling, ecotoxicological effects and risk assessment placing emphasis on the knowledge acquired over the last 10 years. The contamination of the aquatic environment by antifouling compounds has been a topic of increasing importance during the last few years.\u003cbr\u003eThe major classes of antifouling active biocides are discussed including the old-fashioned organotin compounds, the modern organic booster biocides and the promising naturally occurring antifoulant products. Therefore, the reader will get a balanced view of this developing field. Chapters were written by leading experts in their field who critically surveyed all the major areas of progress. This volume is an important resource and can constitute a good grounding in the field of antifouling paint biocides.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nJ.W. Readman: Development, Occurrence, and Regulation of Antifouling Paint Biocides: Historical Review and Future Trends.- I. Omae: Chemistry and Fate of Organotin Antifouling Biocides in the Environment.- C. Brunori, I. Ipolyi, P. Massanisso, R. Morabito: New Trends in Sample Preparation Methods for the Determination of Organotin Compounds in Marine Matrices.- K. Fent: Worldwide Occurrence and Effects of Organotin Antifouling Paints in the Aquatic Environment.- B. van Hattum, A. Baart, J. Boon: Emission Estimation and Chemical Fate Modelling of Antifoulants.- A. Aguera, M.D. Hernado, A. Fernandez-Alba, D. Barcelo: Evaluation of Antifouling Booster Biocides in Marine Water and Sediments based on Mass Spectrometric Techniques.- N. Voulvoulis: Antifouling Paint Booster Biocides: Occurrence and Partitioning in Water and Sediments.- V.A. Sakkas, I.K. Konstantinou, T.A. Albanis: Photochemical Fate of Organic Booster Biocides in the Aquatic Environment.- H. Okamura, H. Mieno: Present Status of the Antifouling Systems in Japan: TBT Substitutes in Japan.- H. Yamada: Toxicity and Preliminary Risk Assessment of Alternative Antifouling Biocides to Aquatic Organisms.- I. Omae: General Aspects of Natural Products Antifoulants in the Environment","published_at":"2017-06-22T21:15:04-04:00","created_at":"2017-06-22T21:15:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","antifouling agents","Biocides","biostabilizer","Biostabilizers","book","organotin compounds","p-additives","Paint","polymer","TBT","Tertiary Butyl Tin","water pollution"],"price":33000,"price_min":33000,"price_max":33000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378458500,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Antifouling Paint Biocides","public_title":null,"options":["Default Title"],"price":33000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-31404-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-31404-2.jpg?v=1498187278"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-31404-2.jpg?v=1498187278","options":["Title"],"media":[{"alt":null,"id":350148264029,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-31404-2.jpg?v=1498187278"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-31404-2.jpg?v=1498187278","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Konstantinou, Ioannis K. (Ed.) \u003cbr\u003eISBN 978-3-540-31404-2 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e266 p., Hardcover\u003c\/p\u003e\n\u003cp\u003eThis item usually ships in 3-4 weeks.\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis volume describes the state-of-the-art advances regarding antifouling paint biocides and provides a thorough evaluation of research and information on major topics such as occurrence and levels, environmental fate, analytical techniques and methods for the monitoring and control, environmental modeling, ecotoxicological effects and risk assessment placing emphasis on the knowledge acquired over the last 10 years. The contamination of the aquatic environment by antifouling compounds has been a topic of increasing importance during the last few years.\u003cbr\u003eThe major classes of antifouling active biocides are discussed including the old-fashioned organotin compounds, the modern organic booster biocides and the promising naturally occurring antifoulant products. Therefore, the reader will get a balanced view of this developing field. Chapters were written by leading experts in their field who critically surveyed all the major areas of progress. This volume is an important resource and can constitute a good grounding in the field of antifouling paint biocides.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nJ.W. Readman: Development, Occurrence, and Regulation of Antifouling Paint Biocides: Historical Review and Future Trends.- I. Omae: Chemistry and Fate of Organotin Antifouling Biocides in the Environment.- C. Brunori, I. Ipolyi, P. Massanisso, R. Morabito: New Trends in Sample Preparation Methods for the Determination of Organotin Compounds in Marine Matrices.- K. Fent: Worldwide Occurrence and Effects of Organotin Antifouling Paints in the Aquatic Environment.- B. van Hattum, A. Baart, J. Boon: Emission Estimation and Chemical Fate Modelling of Antifoulants.- A. Aguera, M.D. Hernado, A. Fernandez-Alba, D. Barcelo: Evaluation of Antifouling Booster Biocides in Marine Water and Sediments based on Mass Spectrometric Techniques.- N. Voulvoulis: Antifouling Paint Booster Biocides: Occurrence and Partitioning in Water and Sediments.- V.A. Sakkas, I.K. Konstantinou, T.A. Albanis: Photochemical Fate of Organic Booster Biocides in the Aquatic Environment.- H. Okamura, H. Mieno: Present Status of the Antifouling Systems in Japan: TBT Substitutes in Japan.- H. Yamada: Toxicity and Preliminary Risk Assessment of Alternative Antifouling Biocides to Aquatic Organisms.- I. Omae: General Aspects of Natural Products Antifoulants in the Environment"}
Antistatics Database, ...
$250.00
{"id":11242221828,"title":"Antistatics Database, 2nd Edition","handle":"978-1895198-59-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1895198-59-1 \u003cbr\u003e\u003cbr\u003eNumber of antistatics: 827\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDuring the time since the first edition in 2007, many changes occurred in the market resulting in the elimination of a large number of additives and introduction of new products. These changes are recorded in the database, which contains an actual range of used compounds. The Antistatics Database is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; Performance. Information on the selected additive can be accessed by clicking on any of the above tabs. The database has 130 data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains an additive name and its chemical structure (if it is a single compound disclosed by the manufacturer). The data can be viewed on screen and printed in a predefined format.\u003cbr\u003e\u003cbr\u003eIn General information section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonym, Acronym, Empirical formula, Molecular weight, Chemical category, Mixture, Product contents, Moisture content, Silicone content, and EC number\u003cbr\u003e\u003cbr\u003ePhysical properties section contains data on State, Odor, Color (Gardner and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine value, Particle diameter, Particle length, Surface area (BET), Refractive index, Specific gravity, Density, Bulk density, Vapor density, Vapor pressure, pH, Saponification value, Acidity, Viscosity, Kinematic viscosity, Melt index, Surface tension, Solubility in water and solvents, Thermal expansion coefficient, Heat of combustion, Specific heat, Thermal conductivity, Volatility, Volume resistivity, Surface resistivity, Surface resistance, Static decay time, Dielectric constant, Ash contents, Mold shrinkage, Impact strength, Tensile strength, Tensile elongation, Tensile modulus, Flexural strength, Flexural modulus, Drying time, Drying temperature\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on Flash point, Flash point method, Autoignition temperature, Explosive LEL, Explosive UEL, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Food law approvals, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat LC50, Skin irritation, Eye irritation (human), Ingestion, First aid: eyes, skin, and inhalation, Chronic effects, Carcinogenicity, Mutagenicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA)\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biological Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Fathead minnow, and Daphnia magna), Partition coefficients (log Koc, log Kow) \u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Recommended for polymers, Recommended for products, Features \u0026amp; benefits, Processing methods, Additive application method, Recommended dosage, Davies scale, Concentration of active ingredients, Carrier resin\u003cbr\u003e\u003cbr\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search permits finding antistatics by typing the first letter or two of their name which moves list to the location of a searched compound. Antistatics can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual antistatics, antistatics can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of antistatics for which data exist for the selected property. The antistatics properties can be viewed on the screen and used for evaluation of its suitability for the chosen task or its selection for application as well as for comparison with other products. \u003cbr\u003e\u003cbr\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer with Pentium processor (or other processors of similar speed) having a screen with the resolution of at least 600 by 800 operating under Windows NT or higher (including Windows 8). The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of antistatics. The database is an excellent companion to the Handbook of Antistatics because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003cbr\u003e\u003cbr\u003eAn overview of nanotechnology that encompasses scientific, technological, economic and social issues – investigating the potential of nanotechnology to transform whole sectors of industry from healthcare to energy. Jeremy Ramsden provides a blueprint for those involved in the commercialization of nanotechnology. \u003cbr\u003e\u003cbr\u003eIn \u003cb\u003eApplied Nanotechnology\u003c\/b\u003e Professor Ramsden takes an integrated approach to the scientific, commercial and social aspects of nanotechnology, exploring:\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe relationship between nanotechnology and innovation\u003c\/li\u003e\n\u003cli\u003eThe changing economics and business models required to commercialize innovations in nanotechnology\u003c\/li\u003e\n\u003cli\u003eProduct design challenges - investigated through case studies\u003c\/li\u003e\n\u003cli\u003eApplications in various sectors, including composite materials, energy, and agriculture\u003c\/li\u003e\n\u003cli\u003eThe role of government in promoting nanotechnology\u003c\/li\u003e\n\u003cli\u003eThe potential future of molecular self-assembly in industrial production\u003c\/li\u003e\n\u003cli\u003eThe ethics and social implications of nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAs well as providing business models and practical examples of the innovation process, this book offers a vision of the role of nanotechnology in confronting the challenges facing humanity, from healthcare to climate change.\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:48-04:00","created_at":"2017-06-22T21:13:48-04:00","vendor":"Chemtec Publishing","type":"CD","tags":["2013","ACGIH","acidity","additives","antistatic","BET","biodegradation","biological oxygen demand","boiling point","carcinogenicity","cd","CD-ROM","cloud point","color","conductive","database","density","dropping point","ecological properties","eye","freezing point","Gardner","general information","health","inhalatiom","iodine value","irritation","knematic viscosity","melt index","melting point","mutagenicity","nanotechnology","NIOSH","odor","OSH","particle hardness","particles size","pH","physical properties","Platinum-cobalt scales","polymer additives","pour point","refractive index","safety","saponification value","skin","solubility","solvents","specific gravity","surface area","surface tension","teratogenicity","theoretical oxygen demand","thermal expansion","vapor pressure","viscosity","water"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374916,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Antistatics Database, 2nd Edition","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-59-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-59-1.jpg?v=1498187315"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-59-1.jpg?v=1498187315","options":["Title"],"media":[{"alt":null,"id":350148395101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-59-1.jpg?v=1498187315"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-59-1.jpg?v=1498187315","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1895198-59-1 \u003cbr\u003e\u003cbr\u003eNumber of antistatics: 827\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDuring the time since the first edition in 2007, many changes occurred in the market resulting in the elimination of a large number of additives and introduction of new products. These changes are recorded in the database, which contains an actual range of used compounds. The Antistatics Database is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; Performance. Information on the selected additive can be accessed by clicking on any of the above tabs. The database has 130 data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains an additive name and its chemical structure (if it is a single compound disclosed by the manufacturer). The data can be viewed on screen and printed in a predefined format.\u003cbr\u003e\u003cbr\u003eIn General information section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonym, Acronym, Empirical formula, Molecular weight, Chemical category, Mixture, Product contents, Moisture content, Silicone content, and EC number\u003cbr\u003e\u003cbr\u003ePhysical properties section contains data on State, Odor, Color (Gardner and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine value, Particle diameter, Particle length, Surface area (BET), Refractive index, Specific gravity, Density, Bulk density, Vapor density, Vapor pressure, pH, Saponification value, Acidity, Viscosity, Kinematic viscosity, Melt index, Surface tension, Solubility in water and solvents, Thermal expansion coefficient, Heat of combustion, Specific heat, Thermal conductivity, Volatility, Volume resistivity, Surface resistivity, Surface resistance, Static decay time, Dielectric constant, Ash contents, Mold shrinkage, Impact strength, Tensile strength, Tensile elongation, Tensile modulus, Flexural strength, Flexural modulus, Drying time, Drying temperature\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on Flash point, Flash point method, Autoignition temperature, Explosive LEL, Explosive UEL, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Food law approvals, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat LC50, Skin irritation, Eye irritation (human), Ingestion, First aid: eyes, skin, and inhalation, Chronic effects, Carcinogenicity, Mutagenicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA)\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biological Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Fathead minnow, and Daphnia magna), Partition coefficients (log Koc, log Kow) \u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Recommended for polymers, Recommended for products, Features \u0026amp; benefits, Processing methods, Additive application method, Recommended dosage, Davies scale, Concentration of active ingredients, Carrier resin\u003cbr\u003e\u003cbr\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search permits finding antistatics by typing the first letter or two of their name which moves list to the location of a searched compound. Antistatics can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual antistatics, antistatics can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of antistatics for which data exist for the selected property. The antistatics properties can be viewed on the screen and used for evaluation of its suitability for the chosen task or its selection for application as well as for comparison with other products. \u003cbr\u003e\u003cbr\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer with Pentium processor (or other processors of similar speed) having a screen with the resolution of at least 600 by 800 operating under Windows NT or higher (including Windows 8). The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of antistatics. The database is an excellent companion to the Handbook of Antistatics because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003cbr\u003e\u003cbr\u003eAn overview of nanotechnology that encompasses scientific, technological, economic and social issues – investigating the potential of nanotechnology to transform whole sectors of industry from healthcare to energy. Jeremy Ramsden provides a blueprint for those involved in the commercialization of nanotechnology. \u003cbr\u003e\u003cbr\u003eIn \u003cb\u003eApplied Nanotechnology\u003c\/b\u003e Professor Ramsden takes an integrated approach to the scientific, commercial and social aspects of nanotechnology, exploring:\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe relationship between nanotechnology and innovation\u003c\/li\u003e\n\u003cli\u003eThe changing economics and business models required to commercialize innovations in nanotechnology\u003c\/li\u003e\n\u003cli\u003eProduct design challenges - investigated through case studies\u003c\/li\u003e\n\u003cli\u003eApplications in various sectors, including composite materials, energy, and agriculture\u003c\/li\u003e\n\u003cli\u003eThe role of government in promoting nanotechnology\u003c\/li\u003e\n\u003cli\u003eThe potential future of molecular self-assembly in industrial production\u003c\/li\u003e\n\u003cli\u003eThe ethics and social implications of nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAs well as providing business models and practical examples of the innovation process, this book offers a vision of the role of nanotechnology in confronting the challenges facing humanity, from healthcare to climate change.\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Application of Textile...
$180.00
{"id":11242213892,"title":"Application of Textiles in Rubber (The)","handle":"978-1-85957-277-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.B. Wootton \u003cbr\u003eISBN 978-1-85957-277-1 \u003cbr\u003e\u003cbr\u003epages 248\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is written in a very readable style. It starts by describing the history of the use of textiles in rubber composites and progresses through the technology of yarn production to the details of fabric construction. The five core fabric materials used in rubber reinforcement are covered, i.e., cotton, rayon, polyester, nylon, and aramid. Adhesion of fabrics to the rubber matrix is discussed and tests for measuring adhesion are described. \u003cbr\u003e\u003cbr\u003eIn the second half of the book, specific applications of fabrics in rubber are described in detail: conveyor belting, hose, power transmission belting and coated fabrics in structural applications. There are also short sections on applications such as hovercraft skirts, air brake chamber diaphragms, and snowmobile tracks.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHistorical Background \u003cbr\u003eProduction and Properties of Textile Yarns \u003cbr\u003eYarn and Cord Processes \u003cbr\u003eFabric Formation and Design of Fabrics \u003cbr\u003eHeat-Setting and Adhesive Treatments \u003cbr\u003eBasic Rubber Compounding and Composite Assembly \u003cbr\u003eAssessment of Adhesion \u003cbr\u003eConveyor Belting \u003cbr\u003eHose \u003cbr\u003ePower Transmission Belts \u003cbr\u003eApplications of Coated Fabrics \u003cbr\u003eMiscellaneous Applications of Textiles in Rubber \u003cbr\u003eAbbreviations \u0026amp; Acronyms \u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Wootton has many years of experience as a technical expert working for the rubber industry and subsequently the textile industry. In his most recent post, he worked as Technical Services Manager for Milliken Industrials Limited, producing industrial fabrics for polymer reinforcement. He has written and lectured on the topics of textile reinforcement and adhesion. This book is a revised version of the well-known 'Textile Reinforcement of Elastomers' published over twenty years ago and edited by David Wootton and W.C. Wake.","published_at":"2017-06-22T21:13:20-04:00","created_at":"2017-06-22T21:13:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","adhesion","book","coated fabrics","compounding","cord","r-formulation","rubber","rubber reinforcement","textiles","yarns"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350916,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Application of Textiles in Rubber (The)","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-277-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355","options":["Title"],"media":[{"alt":null,"id":350148722781,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.B. Wootton \u003cbr\u003eISBN 978-1-85957-277-1 \u003cbr\u003e\u003cbr\u003epages 248\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is written in a very readable style. It starts by describing the history of the use of textiles in rubber composites and progresses through the technology of yarn production to the details of fabric construction. The five core fabric materials used in rubber reinforcement are covered, i.e., cotton, rayon, polyester, nylon, and aramid. Adhesion of fabrics to the rubber matrix is discussed and tests for measuring adhesion are described. \u003cbr\u003e\u003cbr\u003eIn the second half of the book, specific applications of fabrics in rubber are described in detail: conveyor belting, hose, power transmission belting and coated fabrics in structural applications. There are also short sections on applications such as hovercraft skirts, air brake chamber diaphragms, and snowmobile tracks.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHistorical Background \u003cbr\u003eProduction and Properties of Textile Yarns \u003cbr\u003eYarn and Cord Processes \u003cbr\u003eFabric Formation and Design of Fabrics \u003cbr\u003eHeat-Setting and Adhesive Treatments \u003cbr\u003eBasic Rubber Compounding and Composite Assembly \u003cbr\u003eAssessment of Adhesion \u003cbr\u003eConveyor Belting \u003cbr\u003eHose \u003cbr\u003ePower Transmission Belts \u003cbr\u003eApplications of Coated Fabrics \u003cbr\u003eMiscellaneous Applications of Textiles in Rubber \u003cbr\u003eAbbreviations \u0026amp; Acronyms \u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Wootton has many years of experience as a technical expert working for the rubber industry and subsequently the textile industry. In his most recent post, he worked as Technical Services Manager for Milliken Industrials Limited, producing industrial fabrics for polymer reinforcement. He has written and lectured on the topics of textile reinforcement and adhesion. This book is a revised version of the well-known 'Textile Reinforcement of Elastomers' published over twenty years ago and edited by David Wootton and W.C. Wake."}
Applications of Polyme...
$250.00
{"id":11242240964,"title":"Applications of Polymers in Drug Delivery","handle":"9781847358516","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","book","delivery system","drug absorption","drug delivery","gastric drug delivery","mucaodhesive drug delivery","ocular drug delivery","oral drug delivery","p-applications","patch delivery system","polymer","polymeric system","r-formulation","transdermal drug delivery"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436164,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applications of Polymers in Drug Delivery","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847358516","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","options":["Title"],"media":[{"alt":null,"id":350156095581,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex"}
Applied Nanotechnology...
$155.00
{"id":11242226308,"title":"Applied Nanotechnology 2nd Ed","handle":"978-1455731893","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jeremy Ramsden \u003cbr\u003eISBN 978-1455731893 \u003cbr\u003e\u003cbr\u003eHardbound, 240 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn overview of nanotechnology that encompasses scientific, technological, economic and social issues – investigating the potential of nanotechnology to transform whole sectors of industry from healthcare to energy. Jeremy Ramsden provides a blueprint for those involved in the commercialization of nanotechnology. \u003cbr\u003e\u003cbr\u003eIn \u003cb\u003eApplied Nanotechnology\u003c\/b\u003e Professor Ramsden takes an integrated approach to the scientific, commercial and social aspects of nanotechnology, exploring:\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe relationship between nanotechnology and innovation\u003c\/li\u003e\n\u003cli\u003eThe changing economics and business models required to commercialize innovations in nanotechnology\u003c\/li\u003e\n\u003cli\u003eProduct design challenges - investigated through case studies\u003c\/li\u003e\n\u003cli\u003eApplications in various sectors, including composite materials, energy, and agriculture\u003c\/li\u003e\n\u003cli\u003eThe role of government in promoting nanotechnology\u003c\/li\u003e\n\u003cli\u003eThe potential future of molecular self-assembly in industrial production\u003c\/li\u003e\n\u003cli\u003eThe ethics and social implications of nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAs well as providing business models and practical examples of the innovation process, this book offers a vision of the role of nanotechnology in confronting the challenges facing humanity, from healthcare to climate change.\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I Technology Basics\u003cbr\u003e\u003cbr\u003e1. What is nanotechnology?\u003cbr\u003e\u003cbr\u003e2. Science, technology, and wealth\u003cbr\u003e\u003cbr\u003e3. Innovation\u003cbr\u003e\u003cbr\u003e4. Why nanotechnology?\u003cbr\u003e\u003cbr\u003ePart II Nanotechnology Products\u003cbr\u003e\u003cbr\u003e5. The nanotechnology business\u003cbr\u003e\u003cbr\u003e6. Miscellaneous applications\u003cbr\u003e\u003cbr\u003e7. Information technologies\u003cbr\u003e\u003cbr\u003e8. Applications to health\u003cbr\u003e\u003cbr\u003ePart III Organizing Nanotechnology Business\u003cbr\u003e\u003cbr\u003e9. The business environment\u003cbr\u003e\u003cbr\u003e10. Assessing demand for nanotechnology\u003cbr\u003e\u003cbr\u003e11. Design of nanotechnology products\u003cbr\u003e\u003cbr\u003ePart IV Wide and Long-Term Issues\u003cbr\u003e\u003cbr\u003e12. The future of nanotechnology\u003cbr\u003e\u003cbr\u003e13. Grand challenges\u003cbr\u003e\u003cbr\u003e14. Ethics and nanotechnology\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Jeremy Ramsden graduated (Natural Sciences) from Cambridge University and obtained his doctorate from the Ecole Polytechnique Federale in Lausanne. He was appointed as Professor of Nanotechnology at Cranfield University in 2002, becoming additionally Director of Research for Bionanotechnology at Cranfield University?s Kitakyushu campus in 2003.","published_at":"2017-06-22T21:14:01-04:00","created_at":"2017-06-22T21:14:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","appilcation","biotechnology","book","MEMS","micro- and nanotechnology","nano"],"price":15500,"price_min":15500,"price_max":15500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391940,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applied Nanotechnology 2nd Ed","public_title":null,"options":["Default Title"],"price":15500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1455731893","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1455731893.jpg?v=1498190869"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1455731893.jpg?v=1498190869","options":["Title"],"media":[{"alt":null,"id":350156292189,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1455731893.jpg?v=1498190869"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1455731893.jpg?v=1498190869","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jeremy Ramsden \u003cbr\u003eISBN 978-1455731893 \u003cbr\u003e\u003cbr\u003eHardbound, 240 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn overview of nanotechnology that encompasses scientific, technological, economic and social issues – investigating the potential of nanotechnology to transform whole sectors of industry from healthcare to energy. Jeremy Ramsden provides a blueprint for those involved in the commercialization of nanotechnology. \u003cbr\u003e\u003cbr\u003eIn \u003cb\u003eApplied Nanotechnology\u003c\/b\u003e Professor Ramsden takes an integrated approach to the scientific, commercial and social aspects of nanotechnology, exploring:\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe relationship between nanotechnology and innovation\u003c\/li\u003e\n\u003cli\u003eThe changing economics and business models required to commercialize innovations in nanotechnology\u003c\/li\u003e\n\u003cli\u003eProduct design challenges - investigated through case studies\u003c\/li\u003e\n\u003cli\u003eApplications in various sectors, including composite materials, energy, and agriculture\u003c\/li\u003e\n\u003cli\u003eThe role of government in promoting nanotechnology\u003c\/li\u003e\n\u003cli\u003eThe potential future of molecular self-assembly in industrial production\u003c\/li\u003e\n\u003cli\u003eThe ethics and social implications of nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAs well as providing business models and practical examples of the innovation process, this book offers a vision of the role of nanotechnology in confronting the challenges facing humanity, from healthcare to climate change.\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I Technology Basics\u003cbr\u003e\u003cbr\u003e1. What is nanotechnology?\u003cbr\u003e\u003cbr\u003e2. Science, technology, and wealth\u003cbr\u003e\u003cbr\u003e3. Innovation\u003cbr\u003e\u003cbr\u003e4. Why nanotechnology?\u003cbr\u003e\u003cbr\u003ePart II Nanotechnology Products\u003cbr\u003e\u003cbr\u003e5. The nanotechnology business\u003cbr\u003e\u003cbr\u003e6. Miscellaneous applications\u003cbr\u003e\u003cbr\u003e7. Information technologies\u003cbr\u003e\u003cbr\u003e8. Applications to health\u003cbr\u003e\u003cbr\u003ePart III Organizing Nanotechnology Business\u003cbr\u003e\u003cbr\u003e9. The business environment\u003cbr\u003e\u003cbr\u003e10. Assessing demand for nanotechnology\u003cbr\u003e\u003cbr\u003e11. Design of nanotechnology products\u003cbr\u003e\u003cbr\u003ePart IV Wide and Long-Term Issues\u003cbr\u003e\u003cbr\u003e12. The future of nanotechnology\u003cbr\u003e\u003cbr\u003e13. Grand challenges\u003cbr\u003e\u003cbr\u003e14. Ethics and nanotechnology\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Jeremy Ramsden graduated (Natural Sciences) from Cambridge University and obtained his doctorate from the Ecole Polytechnique Federale in Lausanne. He was appointed as Professor of Nanotechnology at Cranfield University in 2002, becoming additionally Director of Research for Bionanotechnology at Cranfield University?s Kitakyushu campus in 2003."}
Applied Plastics Engin...
$265.00
{"id":11242218436,"title":"Applied Plastics Engineering Handbook - Processing and Materials","handle":"978-1-4377-3514-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Myer Kutz \u003cbr\u003eISBN 978-1-4377-3514-7 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e574 pages, 1st. Edition\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe expert contributors to this new handbook demystify new technologies and materials and present the fundamentals of plastics engineering for optimal engineering and business decisions.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cli\u003e• Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don’t teach you in school, and experienced practitioners evaluating new technologies or getting up to speed on a new field.\u003c\/li\u003e\n\u003cli\u003eThe depth and detail of the coverage of new developments enable engineers and managers to gain knowledge of, and evaluate, new technologies and materials in key growth areas such as biomaterials and nanotechnology.\u003c\/li\u003e\n\u003cli\u003eThis highly practical handbook is set apart from other references in the field, is written by engineers for an audience of engineers and providing a wealth of real-world examples, best practice guidance, and rules-of-thumb.\u003c\/li\u003e\n\u003cli\u003e\u003cb\u003eQuotes\u003c\/b\u003e\u003c\/li\u003e\n\u003cli\u003eAn authoritative source of practical advice for engineers, providing authoritative guidance from experts that will lead to cost savings and process improvements. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained along with techniques for testing, measuring, enhancing and analyzing them. Materials and additives are described as well as their characteristics and effects. The technologies and machinery used in processing operations are covered with reference to product design. And recent developments in a cross-section of applications demonstrate in a pragmatic way, the opportunities as well as the limitations of plastics.\"--Biospace.com\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I Plastics Engineering: Basic Fundamentals (7 chapters)\u003cbr\u003e\u003cbr\u003eIntroduction to Plastics Engineering (sections 1-4 and 6-8 of old Chapter 22, The Plastics Industry)\u003cbr\u003e\u003cbr\u003eElectrical Properties\u003cbr\u003e\u003cbr\u003eMechanical Properties\u003cbr\u003e\u003cbr\u003eTesting of Plastics\u003cbr\u003e\u003cbr\u003eTesting and Instrumental Analysis for the plastics processing industry: key technologies\u003cbr\u003e\u003cbr\u003ePlastics Processing (sections 5 of old Chapter 22, The Plastics Industry)\u003cbr\u003e\u003cbr\u003eAdditives for Plastics\u003cbr\u003e\u003cbr\u003ePart II Plastics Engineering: New Developments\u003cbr\u003e\u003cbr\u003ePlastics Materials (9 chapters)\u003cbr\u003e\u003cbr\u003eEngineering Thermoplastics\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers and Their Applications\u003cbr\u003e\u003cbr\u003eThermoset Elastomers\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNanocomposites: preparation, structure, properties\u003cbr\u003e\u003cbr\u003ePolyolefins\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride (PVC)\u003cbr\u003e\u003cbr\u003eBiodegradable Plastics\u003cbr\u003e\u003cbr\u003ePolymeric Biomaterials\u003cbr\u003e\u003cbr\u003eAdditives (7 chapters)\u003cbr\u003e\u003cbr\u003eAdhesion Promotion\u003cbr\u003e\u003cbr\u003eCoatings and Colorant Processing Fundamentals (two chapters combined)\u003cbr\u003e\u003cbr\u003eDispersants and Coupling Agents\u003cbr\u003e\u003cbr\u003eFunctional Fillers for Plastics\u003cbr\u003e\u003cbr\u003eFlame Retardants\u003cbr\u003e\u003cbr\u003ePlasticizers\u003cbr\u003e\u003cbr\u003ePolymer Stabilization\u003cbr\u003e\u003cbr\u003eProcesses (11 chapters)\u003cbr\u003e\u003cbr\u003eBlow Molding\u003cbr\u003e\u003cbr\u003eChaotic advection and its application for forming structured plastic materials\u003cbr\u003e\u003cbr\u003eChemical Mechanical Polishing: Role of Polymeric Additives and Composite Materials\u003cbr\u003e\u003cbr\u003eCompression Molding\u003cbr\u003e\u003cbr\u003eExtrusion\u003cbr\u003e\u003cbr\u003eInjection Molding\u003cbr\u003e\u003cbr\u003eMicrocellular Processing\u003cbr\u003e\u003cbr\u003eRotational Molding\u003cbr\u003e\u003cbr\u003eThermoforming\u003cbr\u003e\u003cbr\u003eProcess Monitoring \u0026amp; Control\u003cbr\u003e\u003cbr\u003eRecycling of Plastics\u003cbr\u003e\u003cbr\u003eApplications (6 chapters)\u003cbr\u003e\u003cbr\u003eDesign of Plastic Parts\u003cbr\u003e\u003cbr\u003ePlastics in Building and Construction\u003cbr\u003e\u003cbr\u003eFiber Reinforced Polymer Composites Applications\u003cbr\u003e\u003cbr\u003ePlastic Piping Materials\u003cbr\u003e\u003cbr\u003ePolyethylene Terephthalate (PET) Bottles\u003cbr\u003e\u003cbr\u003eTissue Engineering Scaffolds Fabrication\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nEdited by Myer Kutz, Myer Kutz Associates. Inc., Delmar, NY, USA\u003c\/li\u003e","published_at":"2017-06-22T21:13:36-04:00","created_at":"2017-06-22T21:13:36-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","additives","applications","biomaterials","book","material","plastics","recycling","testing"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378362180,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applied Plastics Engineering Handbook - Processing and Materials","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-3514-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3514-7.jpg?v=1498190758"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3514-7.jpg?v=1498190758","options":["Title"],"media":[{"alt":null,"id":350156128349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3514-7.jpg?v=1498190758"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3514-7.jpg?v=1498190758","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Myer Kutz \u003cbr\u003eISBN 978-1-4377-3514-7 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e574 pages, 1st. Edition\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe expert contributors to this new handbook demystify new technologies and materials and present the fundamentals of plastics engineering for optimal engineering and business decisions.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cli\u003e• Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don’t teach you in school, and experienced practitioners evaluating new technologies or getting up to speed on a new field.\u003c\/li\u003e\n\u003cli\u003eThe depth and detail of the coverage of new developments enable engineers and managers to gain knowledge of, and evaluate, new technologies and materials in key growth areas such as biomaterials and nanotechnology.\u003c\/li\u003e\n\u003cli\u003eThis highly practical handbook is set apart from other references in the field, is written by engineers for an audience of engineers and providing a wealth of real-world examples, best practice guidance, and rules-of-thumb.\u003c\/li\u003e\n\u003cli\u003e\u003cb\u003eQuotes\u003c\/b\u003e\u003c\/li\u003e\n\u003cli\u003eAn authoritative source of practical advice for engineers, providing authoritative guidance from experts that will lead to cost savings and process improvements. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained along with techniques for testing, measuring, enhancing and analyzing them. Materials and additives are described as well as their characteristics and effects. The technologies and machinery used in processing operations are covered with reference to product design. And recent developments in a cross-section of applications demonstrate in a pragmatic way, the opportunities as well as the limitations of plastics.\"--Biospace.com\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I Plastics Engineering: Basic Fundamentals (7 chapters)\u003cbr\u003e\u003cbr\u003eIntroduction to Plastics Engineering (sections 1-4 and 6-8 of old Chapter 22, The Plastics Industry)\u003cbr\u003e\u003cbr\u003eElectrical Properties\u003cbr\u003e\u003cbr\u003eMechanical Properties\u003cbr\u003e\u003cbr\u003eTesting of Plastics\u003cbr\u003e\u003cbr\u003eTesting and Instrumental Analysis for the plastics processing industry: key technologies\u003cbr\u003e\u003cbr\u003ePlastics Processing (sections 5 of old Chapter 22, The Plastics Industry)\u003cbr\u003e\u003cbr\u003eAdditives for Plastics\u003cbr\u003e\u003cbr\u003ePart II Plastics Engineering: New Developments\u003cbr\u003e\u003cbr\u003ePlastics Materials (9 chapters)\u003cbr\u003e\u003cbr\u003eEngineering Thermoplastics\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers and Their Applications\u003cbr\u003e\u003cbr\u003eThermoset Elastomers\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNanocomposites: preparation, structure, properties\u003cbr\u003e\u003cbr\u003ePolyolefins\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride (PVC)\u003cbr\u003e\u003cbr\u003eBiodegradable Plastics\u003cbr\u003e\u003cbr\u003ePolymeric Biomaterials\u003cbr\u003e\u003cbr\u003eAdditives (7 chapters)\u003cbr\u003e\u003cbr\u003eAdhesion Promotion\u003cbr\u003e\u003cbr\u003eCoatings and Colorant Processing Fundamentals (two chapters combined)\u003cbr\u003e\u003cbr\u003eDispersants and Coupling Agents\u003cbr\u003e\u003cbr\u003eFunctional Fillers for Plastics\u003cbr\u003e\u003cbr\u003eFlame Retardants\u003cbr\u003e\u003cbr\u003ePlasticizers\u003cbr\u003e\u003cbr\u003ePolymer Stabilization\u003cbr\u003e\u003cbr\u003eProcesses (11 chapters)\u003cbr\u003e\u003cbr\u003eBlow Molding\u003cbr\u003e\u003cbr\u003eChaotic advection and its application for forming structured plastic materials\u003cbr\u003e\u003cbr\u003eChemical Mechanical Polishing: Role of Polymeric Additives and Composite Materials\u003cbr\u003e\u003cbr\u003eCompression Molding\u003cbr\u003e\u003cbr\u003eExtrusion\u003cbr\u003e\u003cbr\u003eInjection Molding\u003cbr\u003e\u003cbr\u003eMicrocellular Processing\u003cbr\u003e\u003cbr\u003eRotational Molding\u003cbr\u003e\u003cbr\u003eThermoforming\u003cbr\u003e\u003cbr\u003eProcess Monitoring \u0026amp; Control\u003cbr\u003e\u003cbr\u003eRecycling of Plastics\u003cbr\u003e\u003cbr\u003eApplications (6 chapters)\u003cbr\u003e\u003cbr\u003eDesign of Plastic Parts\u003cbr\u003e\u003cbr\u003ePlastics in Building and Construction\u003cbr\u003e\u003cbr\u003eFiber Reinforced Polymer Composites Applications\u003cbr\u003e\u003cbr\u003ePlastic Piping Materials\u003cbr\u003e\u003cbr\u003ePolyethylene Terephthalate (PET) Bottles\u003cbr\u003e\u003cbr\u003eTissue Engineering Scaffolds Fabrication\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nEdited by Myer Kutz, Myer Kutz Associates. Inc., Delmar, NY, USA\u003c\/li\u003e"}
Atlas of Material Damage
$325.00
{"id":11242221572,"title":"Atlas of Material Damage","handle":"978-1-895198-48-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-48-5 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 310 \u003cbr\u003eChapter 7\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAtlas of Material Damage has 464 microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform particular functions to make outstanding products. Findings presented by each illustration are fully explained in the text and labeled. \u003cbr\u003e\u003cbr\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end). \u003cbr\u003e\u003cbr\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, a technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics. \u003cbr\u003e\u003cbr\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality. \u003cbr\u003e\u003cbr\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003cbr\u003e\u003cbr\u003e1 Effect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003cbr\u003e2 Analysis of causes of material damage and degradation\u003cbr\u003e3 Effect of processing conditions on material damage\u003cbr\u003e4 Effect of singular and combined action of different degradants on industrial products\u003cbr\u003e5 Systematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003cbr\u003e6 Technological steps required to obtain specifically designed morphology required for specific performance \u003cbr\u003e7 Comparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003cbr\u003e\u003cbr\u003eThe above information is based on the most recent publications. Only 3% of sources were published before 2000 and about 65% appeared in 2009-2012. \u003cbr\u003e\u003cbr\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003cbr\u003e\u003cbr\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables. \u003cbr\u003e\u003cbr\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003eIn 1981, Carl Hanser Verlag published An Atlas of Polymer Damage by Lothar Engel, Hermann Klingele, Gottfried Ehrenstein, and Helmut Schaper. This unique publication became my favorite book, which I have frequently consulted throughout the last thirty years. \u003cbr\u003e\u003cbr\u003eUsing it I have learned that there are very many applications of this knowledge, such as:\u003cbr\u003e• Materials can be made stronger and more durable with little or no cost by proper use of morphological structure\u003cbr\u003e• In many cases, polymer additives could be eliminated \u003cbr\u003e• Their useful life in product can be extended\u003cbr\u003e• Material damage can be avoided \u003cbr\u003eThese and other findings are discussed in this book, which is meant to be easy to read because it is composed of hundreds of pictures and mechanisms of performance, with a little text just to explain what can be learned from the illustrations. Its description is as close to the observations of the original authors as permitted by the integrity of narration since they have the privilege of knowing more because they have seen the information within a broader scope of their research.\u003cbr\u003e\u003cbr\u003eI hope this book will have many readers because it opens so many unexploited possibilities to make what we use today much better. Many recently introduced products use these principles. Also, a great deal of research concentrates on using specially developed structural features for the betterment of properties of their materials. Many excellent products of today cannot be made without the application of the knowledge discussed in this book.\u003cbr\u003e\u003cbr\u003eUsers of the book will find that most of the research included was done between 2009 and today, which underlines the value of these findings, considering that many problems of the past are no longer important today because they were not only solved but already implemented in product manufacture.\u003cbr\u003e\u003cbr\u003eMy goal was to produce a book which can add value to the previously published volume since so many things have changed in the last thirty years. This book has no boundaries of application because it is clear from the analysis of a large number of research projects that structural knowledge and practical ideas are useful in very different applications. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e2 Material composition, structure, and morphological features\u003cbr\u003e2.1 Materials having predominantly homogeneous structure and composition \u003cbr\u003e2.2 Heterogeneous materials \u003cbr\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e2.2.2 Materials containing insoluble additives \u003cbr\u003e2.2.3 Materials containing immiscible phases \u003cbr\u003e2.2.4 Composites \u003cbr\u003e2.2.5 Multi-component layered materials \u003cbr\u003e2.2.6 Foams, porosity \u003cbr\u003e2.2.7 Compressed solids \u003cbr\u003e2.3 Material surface versus bulk \u003cbr\u003e\u003cbr\u003e3 Effect of processing on material structure \u003cbr\u003e3.1 Temperature \u003cbr\u003e3.2 Pressure \u003cbr\u003e3.3 Time\u003cbr\u003e3.4 Viscosity \u003cbr\u003e3.5 Flow rate (shear rate) \u003cbr\u003e3.6 Deformation \u003cbr\u003e3.7 Orientation \u003cbr\u003e\u003cbr\u003e4 Scale of damage – basic concept \u003cbr\u003e4.1 Atomic \u003cbr\u003e4.2 Microscale \u003cbr\u003e4.3 Macroscale \u003cbr\u003e\u003cbr\u003e5 Microscopic mechanisms of damage caused by degradants \u003cbr\u003e5.1 Bulk (mechanical forces) \u003cbr\u003e5.1.1 Elastic-brittle fracture \u003cbr\u003e5.1.2 Elastic-plastic deformation \u003cbr\u003e5.1.3 Time-related damage \u003cbr\u003e5.1.3.1 Fatigue \u003cbr\u003e5.1.3.2 Creep \u003cbr\u003e5.1.4 Impact damage \u003cbr\u003e5.1.5 Shear fracture \u003cbr\u003e5.16 Compression set \u003cbr\u003e5.1.7 Bending forces \u003cbr\u003e5.1.8 Anisotropic damage \u003cbr\u003e5.2 Electric forces \u003cbr\u003e5.2.1 Tracking \u003cbr\u003e5.2.2 Arcing \u003cbr\u003e5.2.3 Drying out in batteries \u003cbr\u003e5.2.4 Pin-holes \u003cbr\u003e5.2.5 Cracks\u003cbr\u003e5.2.6 Delamination \u003cbr\u003e5.3 Surface-initiated damage \u003cbr\u003e5.3.1 Physical forces \u003cbr\u003e5.3.1.1 Thermal treatment \u003cbr\u003e5.3.1.1.1 Process heat \u003cbr\u003e5.3.1.1.2 Conditions of performance \u003cbr\u003e5.3.1.1.3 Infrared \u003cbr\u003e5.3.1.1.4 Frictional heat \u003cbr\u003e5.3.1.1.5 Low-temperature effects \u003cbr\u003e5.3.1.1.6 Thermal stresses \u003cbr\u003e5.3.1.2 Radiation \u003cbr\u003e5.3.1.2.1 Alpha and beta rays \u003cbr\u003e5.3.1.2.2 Gamma rays \u003cbr\u003e5.3.1.2.3 Laser beam \u003cbr\u003e5.3.1.2.4 Cosmic rays \u003cbr\u003e5.3.1.2.5 Plasma \u003cbr\u003e5.3.1.3 Weathering \u003cbr\u003e5.3.2 Mechanical action \u003cbr\u003e5.3.2.1 Scratching \u003cbr\u003e5.3.2.2 Impact \u003cbr\u003e5.3.2.3 Adhesive failure, sliding, rolling \u003cbr\u003e5.3.3 Chemical reactions \u003cbr\u003e5.3.3.1 Molecular oxygen \u003cbr\u003e5.3.3.2 Ozone \u003cbr\u003e5.3.3.3 Atomic oxygen \u003cbr\u003e5.3.3.4 Sulfur dioxide \u003cbr\u003e5.3.3.5 Particulate matter \u003cbr\u003e5.3.3.6 Other gaseous pollutants \u003cbr\u003e5.4 Combination of degrading elements \u003cbr\u003e5.4.1 Environmental stress cracking \u003cbr\u003e5.4.2 Biodegradation and biodeterioration \u003cbr\u003e5.4.3 Effect of body fluids \u003cbr\u003e5.4.4 Controlled–release substances in pharmaceutical applications \u003cbr\u003e5.4.5 Corrosion\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:47-04:00","created_at":"2017-06-22T21:13:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","analysis","biodegradation","book","chemical reactions","cracks","deformation","degradation","demage","humidity","material","mechanical action","methods of analysis","morphology of damaged material","physical forces","polymers","processing and degradation","thermal","weathering"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374596,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Atlas of Material Damage","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-48-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053","options":["Title"],"media":[{"alt":null,"id":350156750941,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-48-5 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 310 \u003cbr\u003eChapter 7\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAtlas of Material Damage has 464 microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform particular functions to make outstanding products. Findings presented by each illustration are fully explained in the text and labeled. \u003cbr\u003e\u003cbr\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end). \u003cbr\u003e\u003cbr\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, a technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics. \u003cbr\u003e\u003cbr\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality. \u003cbr\u003e\u003cbr\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003cbr\u003e\u003cbr\u003e1 Effect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003cbr\u003e2 Analysis of causes of material damage and degradation\u003cbr\u003e3 Effect of processing conditions on material damage\u003cbr\u003e4 Effect of singular and combined action of different degradants on industrial products\u003cbr\u003e5 Systematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003cbr\u003e6 Technological steps required to obtain specifically designed morphology required for specific performance \u003cbr\u003e7 Comparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003cbr\u003e\u003cbr\u003eThe above information is based on the most recent publications. Only 3% of sources were published before 2000 and about 65% appeared in 2009-2012. \u003cbr\u003e\u003cbr\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003cbr\u003e\u003cbr\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables. \u003cbr\u003e\u003cbr\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003eIn 1981, Carl Hanser Verlag published An Atlas of Polymer Damage by Lothar Engel, Hermann Klingele, Gottfried Ehrenstein, and Helmut Schaper. This unique publication became my favorite book, which I have frequently consulted throughout the last thirty years. \u003cbr\u003e\u003cbr\u003eUsing it I have learned that there are very many applications of this knowledge, such as:\u003cbr\u003e• Materials can be made stronger and more durable with little or no cost by proper use of morphological structure\u003cbr\u003e• In many cases, polymer additives could be eliminated \u003cbr\u003e• Their useful life in product can be extended\u003cbr\u003e• Material damage can be avoided \u003cbr\u003eThese and other findings are discussed in this book, which is meant to be easy to read because it is composed of hundreds of pictures and mechanisms of performance, with a little text just to explain what can be learned from the illustrations. Its description is as close to the observations of the original authors as permitted by the integrity of narration since they have the privilege of knowing more because they have seen the information within a broader scope of their research.\u003cbr\u003e\u003cbr\u003eI hope this book will have many readers because it opens so many unexploited possibilities to make what we use today much better. Many recently introduced products use these principles. Also, a great deal of research concentrates on using specially developed structural features for the betterment of properties of their materials. Many excellent products of today cannot be made without the application of the knowledge discussed in this book.\u003cbr\u003e\u003cbr\u003eUsers of the book will find that most of the research included was done between 2009 and today, which underlines the value of these findings, considering that many problems of the past are no longer important today because they were not only solved but already implemented in product manufacture.\u003cbr\u003e\u003cbr\u003eMy goal was to produce a book which can add value to the previously published volume since so many things have changed in the last thirty years. This book has no boundaries of application because it is clear from the analysis of a large number of research projects that structural knowledge and practical ideas are useful in very different applications. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e2 Material composition, structure, and morphological features\u003cbr\u003e2.1 Materials having predominantly homogeneous structure and composition \u003cbr\u003e2.2 Heterogeneous materials \u003cbr\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e2.2.2 Materials containing insoluble additives \u003cbr\u003e2.2.3 Materials containing immiscible phases \u003cbr\u003e2.2.4 Composites \u003cbr\u003e2.2.5 Multi-component layered materials \u003cbr\u003e2.2.6 Foams, porosity \u003cbr\u003e2.2.7 Compressed solids \u003cbr\u003e2.3 Material surface versus bulk \u003cbr\u003e\u003cbr\u003e3 Effect of processing on material structure \u003cbr\u003e3.1 Temperature \u003cbr\u003e3.2 Pressure \u003cbr\u003e3.3 Time\u003cbr\u003e3.4 Viscosity \u003cbr\u003e3.5 Flow rate (shear rate) \u003cbr\u003e3.6 Deformation \u003cbr\u003e3.7 Orientation \u003cbr\u003e\u003cbr\u003e4 Scale of damage – basic concept \u003cbr\u003e4.1 Atomic \u003cbr\u003e4.2 Microscale \u003cbr\u003e4.3 Macroscale \u003cbr\u003e\u003cbr\u003e5 Microscopic mechanisms of damage caused by degradants \u003cbr\u003e5.1 Bulk (mechanical forces) \u003cbr\u003e5.1.1 Elastic-brittle fracture \u003cbr\u003e5.1.2 Elastic-plastic deformation \u003cbr\u003e5.1.3 Time-related damage \u003cbr\u003e5.1.3.1 Fatigue \u003cbr\u003e5.1.3.2 Creep \u003cbr\u003e5.1.4 Impact damage \u003cbr\u003e5.1.5 Shear fracture \u003cbr\u003e5.16 Compression set \u003cbr\u003e5.1.7 Bending forces \u003cbr\u003e5.1.8 Anisotropic damage \u003cbr\u003e5.2 Electric forces \u003cbr\u003e5.2.1 Tracking \u003cbr\u003e5.2.2 Arcing \u003cbr\u003e5.2.3 Drying out in batteries \u003cbr\u003e5.2.4 Pin-holes \u003cbr\u003e5.2.5 Cracks\u003cbr\u003e5.2.6 Delamination \u003cbr\u003e5.3 Surface-initiated damage \u003cbr\u003e5.3.1 Physical forces \u003cbr\u003e5.3.1.1 Thermal treatment \u003cbr\u003e5.3.1.1.1 Process heat \u003cbr\u003e5.3.1.1.2 Conditions of performance \u003cbr\u003e5.3.1.1.3 Infrared \u003cbr\u003e5.3.1.1.4 Frictional heat \u003cbr\u003e5.3.1.1.5 Low-temperature effects \u003cbr\u003e5.3.1.1.6 Thermal stresses \u003cbr\u003e5.3.1.2 Radiation \u003cbr\u003e5.3.1.2.1 Alpha and beta rays \u003cbr\u003e5.3.1.2.2 Gamma rays \u003cbr\u003e5.3.1.2.3 Laser beam \u003cbr\u003e5.3.1.2.4 Cosmic rays \u003cbr\u003e5.3.1.2.5 Plasma \u003cbr\u003e5.3.1.3 Weathering \u003cbr\u003e5.3.2 Mechanical action \u003cbr\u003e5.3.2.1 Scratching \u003cbr\u003e5.3.2.2 Impact \u003cbr\u003e5.3.2.3 Adhesive failure, sliding, rolling \u003cbr\u003e5.3.3 Chemical reactions \u003cbr\u003e5.3.3.1 Molecular oxygen \u003cbr\u003e5.3.3.2 Ozone \u003cbr\u003e5.3.3.3 Atomic oxygen \u003cbr\u003e5.3.3.4 Sulfur dioxide \u003cbr\u003e5.3.3.5 Particulate matter \u003cbr\u003e5.3.3.6 Other gaseous pollutants \u003cbr\u003e5.4 Combination of degrading elements \u003cbr\u003e5.4.1 Environmental stress cracking \u003cbr\u003e5.4.2 Biodegradation and biodeterioration \u003cbr\u003e5.4.3 Effect of body fluids \u003cbr\u003e5.4.4 Controlled–release substances in pharmaceutical applications \u003cbr\u003e5.4.5 Corrosion\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Atlas of Material Dama...
$335.00
{"id":11427073668,"title":"Atlas of Material Damage, 2nd Edition","handle":"atlas-of-material-damage-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor:George Wypych \u003cbr\u003e ISBN 978-1-927885-25-3 (hard cover); 978-1-927885-26-0 (E-PUB)\u003cbr\u003e Published: 2017 January\u003cbr\u003e Pages: 334\u003cbr\u003e Printed in color\u003cbr\u003e Hardcover and epub\u003cbr\u003e Figures: 495 \n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eAtlas of Material Damage\u003c\/strong\u003e has microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform functions to make outstanding products. All this is presented in color print, which emphasize peculiarities of morphology. Findings presented by each illustration are fully explained in the text and labeled.\u003c\/p\u003e\n\u003cp\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end).\u003c\/p\u003e\n\u003cp\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics.\u003c\/p\u003e\n\u003cp\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality.\u003c\/p\u003e\n\u003cp\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003c\/p\u003e\n\u003col\u003e\n\u003cli\u003eEffect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003c\/li\u003e\n\u003cli\u003eAnalysis of causes of material damage and degradation\u003c\/li\u003e\n\u003cli\u003eEffect of processing conditions on material damage\u003c\/li\u003e\n\u003cli\u003eEffect of singular and combined action of different degradants on industrial products\u003c\/li\u003e\n\u003cli\u003eSystematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003c\/li\u003e\n\u003cli\u003eTechnological steps required to obtain specifically designed morphology required for specific performance\u003c\/li\u003e\n\u003cli\u003eComparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003c\/li\u003e\n\u003c\/ol\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThe above information is based on the most recent publications. Only 2% of sources were published before 2000 and most appeared recently.\u003c\/p\u003e\n\u003cp\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003c\/p\u003e\n\u003cp\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables.\u003c\/p\u003e\n\u003cp\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology.\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e2 Material Composition, Structure and Morphological Features\u003c\/strong\u003e\u003cbr\u003e 2.1 Materials having predominantly homogeneous structure and composition\u003cbr\u003e 2.2 Heterogeneous materials \u003cbr\u003e 2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e 2.2.2 Materials containing insoluble additives \u003cbr\u003e 2.2.3 Materials containing immiscible phases \u003cbr\u003e 2.2.4 Composites \u003cbr\u003e 2.2.5 Multi-component layered materials \u003cbr\u003e 2.2.6 Foams and porosity \u003cbr\u003e 2.2.7 Compressed solids \u003cbr\u003e 2.3 Material surface versus bulk \u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e3 Effect of Processing on Material Structure\u003c\/strong\u003e \u003cbr\u003e 3.1 Temperature\u003cbr\u003e 3.2 Pressure\u003cbr\u003e 3.3 Time \u003cbr\u003e 3.4 Viscosity \u003cbr\u003e 3.5 Flow rate (shear rate)\u003cbr\u003e 3.6 Deformation \u003cbr\u003e 3.7 Orientation \u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e4 Scale of Damage. Basic Concept\u003c\/strong\u003e\u003cbr\u003e 4.1 Atomistic \u003cbr\u003e 4.2 Microscale\u003cbr\u003e 4.3 Macroscale \u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e5 Microscopic Mechanisms of Damage Caused by Degradants \u003c\/strong\u003e\u003cbr\u003e 5.1 Bulk (mechanical forces) \u003cbr\u003e 5.1.1 Elastic-brittle fracture \u003cbr\u003e 5.1.2 Elastic-plastic deformation \u003cbr\u003e 5.1.3 Time-related damage \u003cbr\u003e 5.1.3.1 Fatigue \u003cbr\u003e 5.1.3.2 Creep \u003cbr\u003e 5.1.4 Impact damage \u003cbr\u003e 5.1.5 Shear fracture \u003cbr\u003e 5.1.6 Compression set \u003cbr\u003e 5.1.7 Bending forces \u003cbr\u003e 5.1.8 Anisotropic damage \u003cbr\u003e 5.2 Electric forces \u003cbr\u003e 5.2.1 Tracking \u003cbr\u003e 5.2.2 Arcing \u003cbr\u003e 5.2.3 Drying out in batteries \u003cbr\u003e 5.2.4 Pinholes \u003cbr\u003e 5.2.5 Cracks\u003cbr\u003e 5.2.6 Delamination\u003cbr\u003e 5.3 Surface-initiated damage \u003cbr\u003e 5.3.1 Physical forces \u003cbr\u003e 5.3.1.1 Thermal treatment \u003cbr\u003e 5.3.1.2 Radiation \u003cbr\u003e 5.3.1.3 Weathering \u003cbr\u003e 5.3.2 Mechanical action \u003cbr\u003e 5.3.2.1 Scratching \u003cbr\u003e 5.3.2.2 Impact \u003cbr\u003e 5.3.2.3 Adhesive failure, sliding, and rolling \u003cbr\u003e 5.3.3 Chemical reactions \u003cbr\u003e 5.3.3.1 Molecular oxygen \u003cbr\u003e 5.3.3.2 Ozone \u003cbr\u003e 5.3.3.3 Atomic oxygen \u003cbr\u003e 5.3.3.4 Sulfur dioxide \u003cbr\u003e 5.3.3.5 Particulate matter \u003cbr\u003e 5.3.3.6 Other gaseous pollutants \u003cbr\u003e 5.4 Combination of degrading elements \u003cbr\u003e 5.4.1 Environmental stress cracking \u003cbr\u003e 5.4.2 Biodegradation and biodeterioration \u003cbr\u003e 5.4.3 Effect of body fluids \u003cbr\u003e 5.4.4 Controlled-release substances in pharmaceutical applications \u003cbr\u003e 5.4.5 Corrosion\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-07-13T16:43:02-04:00","created_at":"2017-07-13T16:46:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["biodegradation","chemical reactions","mechanical action","scale of damage","surface-initiated damage","weathering"],"price":33500,"price_min":33500,"price_max":33500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45223114628,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Atlas of Material Damage, 2nd Edition","public_title":null,"options":["Default Title"],"price":33500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-927885-25-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-25-3.jpg?v=1499978891"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-25-3.jpg?v=1499978891","options":["Title"],"media":[{"alt":null,"id":362519724125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-25-3.jpg?v=1499978891"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-25-3.jpg?v=1499978891","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor:George Wypych \u003cbr\u003e ISBN 978-1-927885-25-3 (hard cover); 978-1-927885-26-0 (E-PUB)\u003cbr\u003e Published: 2017 January\u003cbr\u003e Pages: 334\u003cbr\u003e Printed in color\u003cbr\u003e Hardcover and epub\u003cbr\u003e Figures: 495 \n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eAtlas of Material Damage\u003c\/strong\u003e has microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform functions to make outstanding products. All this is presented in color print, which emphasize peculiarities of morphology. Findings presented by each illustration are fully explained in the text and labeled.\u003c\/p\u003e\n\u003cp\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end).\u003c\/p\u003e\n\u003cp\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics.\u003c\/p\u003e\n\u003cp\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality.\u003c\/p\u003e\n\u003cp\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003c\/p\u003e\n\u003col\u003e\n\u003cli\u003eEffect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003c\/li\u003e\n\u003cli\u003eAnalysis of causes of material damage and degradation\u003c\/li\u003e\n\u003cli\u003eEffect of processing conditions on material damage\u003c\/li\u003e\n\u003cli\u003eEffect of singular and combined action of different degradants on industrial products\u003c\/li\u003e\n\u003cli\u003eSystematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003c\/li\u003e\n\u003cli\u003eTechnological steps required to obtain specifically designed morphology required for specific performance\u003c\/li\u003e\n\u003cli\u003eComparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003c\/li\u003e\n\u003c\/ol\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThe above information is based on the most recent publications. Only 2% of sources were published before 2000 and most appeared recently.\u003c\/p\u003e\n\u003cp\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003c\/p\u003e\n\u003cp\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables.\u003c\/p\u003e\n\u003cp\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology.\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e2 Material Composition, Structure and Morphological Features\u003c\/strong\u003e\u003cbr\u003e 2.1 Materials having predominantly homogeneous structure and composition\u003cbr\u003e 2.2 Heterogeneous materials \u003cbr\u003e 2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e 2.2.2 Materials containing insoluble additives \u003cbr\u003e 2.2.3 Materials containing immiscible phases \u003cbr\u003e 2.2.4 Composites \u003cbr\u003e 2.2.5 Multi-component layered materials \u003cbr\u003e 2.2.6 Foams and porosity \u003cbr\u003e 2.2.7 Compressed solids \u003cbr\u003e 2.3 Material surface versus bulk \u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e3 Effect of Processing on Material Structure\u003c\/strong\u003e \u003cbr\u003e 3.1 Temperature\u003cbr\u003e 3.2 Pressure\u003cbr\u003e 3.3 Time \u003cbr\u003e 3.4 Viscosity \u003cbr\u003e 3.5 Flow rate (shear rate)\u003cbr\u003e 3.6 Deformation \u003cbr\u003e 3.7 Orientation \u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e4 Scale of Damage. Basic Concept\u003c\/strong\u003e\u003cbr\u003e 4.1 Atomistic \u003cbr\u003e 4.2 Microscale\u003cbr\u003e 4.3 Macroscale \u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e5 Microscopic Mechanisms of Damage Caused by Degradants \u003c\/strong\u003e\u003cbr\u003e 5.1 Bulk (mechanical forces) \u003cbr\u003e 5.1.1 Elastic-brittle fracture \u003cbr\u003e 5.1.2 Elastic-plastic deformation \u003cbr\u003e 5.1.3 Time-related damage \u003cbr\u003e 5.1.3.1 Fatigue \u003cbr\u003e 5.1.3.2 Creep \u003cbr\u003e 5.1.4 Impact damage \u003cbr\u003e 5.1.5 Shear fracture \u003cbr\u003e 5.1.6 Compression set \u003cbr\u003e 5.1.7 Bending forces \u003cbr\u003e 5.1.8 Anisotropic damage \u003cbr\u003e 5.2 Electric forces \u003cbr\u003e 5.2.1 Tracking \u003cbr\u003e 5.2.2 Arcing \u003cbr\u003e 5.2.3 Drying out in batteries \u003cbr\u003e 5.2.4 Pinholes \u003cbr\u003e 5.2.5 Cracks\u003cbr\u003e 5.2.6 Delamination\u003cbr\u003e 5.3 Surface-initiated damage \u003cbr\u003e 5.3.1 Physical forces \u003cbr\u003e 5.3.1.1 Thermal treatment \u003cbr\u003e 5.3.1.2 Radiation \u003cbr\u003e 5.3.1.3 Weathering \u003cbr\u003e 5.3.2 Mechanical action \u003cbr\u003e 5.3.2.1 Scratching \u003cbr\u003e 5.3.2.2 Impact \u003cbr\u003e 5.3.2.3 Adhesive failure, sliding, and rolling \u003cbr\u003e 5.3.3 Chemical reactions \u003cbr\u003e 5.3.3.1 Molecular oxygen \u003cbr\u003e 5.3.3.2 Ozone \u003cbr\u003e 5.3.3.3 Atomic oxygen \u003cbr\u003e 5.3.3.4 Sulfur dioxide \u003cbr\u003e 5.3.3.5 Particulate matter \u003cbr\u003e 5.3.3.6 Other gaseous pollutants \u003cbr\u003e 5.4 Combination of degrading elements \u003cbr\u003e 5.4.1 Environmental stress cracking \u003cbr\u003e 5.4.2 Biodegradation and biodeterioration \u003cbr\u003e 5.4.3 Effect of body fluids \u003cbr\u003e 5.4.4 Controlled-release substances in pharmaceutical applications \u003cbr\u003e 5.4.5 Corrosion\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Atlas of Material Dama...
$370.00
{"id":7336300347549,"title":"Atlas of Material Damage, 3rd Edition","handle":"atlas-of-material-damage-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nGeorge Wypych\u003cbr\u003e ISBN 978-1-927885-85-7 \u003cbr\u003e Published: 2022 January\u003cbr\u003e Pages: 430+iv\u003cbr\u003e Printed in color\u003cbr\u003e Figures: 544\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eAtlas of Material Damage\u003c\/strong\u003e has microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced not to fail, and how they are designed to perform functions to make outstanding products. All this is presented in color print, which emphasizes the peculiarities of morphology. Each illustration is fully explained in the text. The most recent findings during 2017-2021 are included, and their importance emphasized. \u003c\/p\u003e\n\u003cp\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see the full list at the end).\u003c\/p\u003e\n\u003cp\u003e It is pertinent from the above that others can adapt methods described by one branch of industry. For example, a technology that powers the slow or targeted release of pharmaceutical products can successfully prevent premature loss of vital additives from plastics.\u003c\/p\u003e\n\u003cp\u003eProduct reliability is the primary aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the central goal of product development and the most important indicator of material quality.\u003c\/p\u003e\n\u003cp\u003eThis book provides information on defect formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eEffect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003c\/li\u003e\n\u003cli\u003eAnalysis of causes of material damage and degradation\u003c\/li\u003e\n\u003cli\u003eEffect of processing conditions on material damage\u003c\/li\u003e\n\u003cli\u003eEffect of singular and combined action of different degradants on industrial products\u003c\/li\u003e\n\u003cli\u003eSystematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003c\/li\u003e\n\u003cli\u003eTechnological steps required to obtain specifically designed morphology required for specific performance\u003c\/li\u003e\n\u003cli\u003eComparison of experiences generated in different sectors of the industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eThe above information is based on the most recent publications. Less than 2% of sources were published before 2000.\u003c\/p\u003e\n\u003cp\u003eThe name “Atlas” was selected to indicate the book's emphasis on illustrations and morphology, with many real examples of damaged products and a discussion of causes of damage and potential for material improvements. \u003c\/p\u003e\n\u003cp\u003eThis book should be owned and frequently consulted by engineers and researchers in adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, shipbuilding and repair, stone, textile industry, windows and doors, wires and cables.\u003c\/p\u003e\n\u003cp\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Material Composition, Structure and Morphological Features\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e2.1 Materials having predominantly homogeneous structure and composition\u003cbr data-mce-fragment=\"1\"\u003e2.2 Heterogeneous materials \u003cbr data-mce-fragment=\"1\"\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr data-mce-fragment=\"1\"\u003e2.2.2 Materials containing insoluble additives \u003cbr data-mce-fragment=\"1\"\u003e2.2.3 Materials containing immiscible phases \u003cbr data-mce-fragment=\"1\"\u003e2.2.4 Composites \u003cbr data-mce-fragment=\"1\"\u003e2.2.5 Multi-component layered materials \u003cbr data-mce-fragment=\"1\"\u003e2.2.6 Foams and porosity \u003cbr data-mce-fragment=\"1\"\u003e2.2.7 Compressed solids \u003cbr data-mce-fragment=\"1\"\u003e2.3 Material surface versus bulk \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e \u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Effect of Processing on Material Structure\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e3.1 Temperature\u003cbr data-mce-fragment=\"1\"\u003e3.2 Pressure\u003cbr data-mce-fragment=\"1\"\u003e3.3 Time \u003cbr data-mce-fragment=\"1\"\u003e3.4 Viscosity \u003cbr data-mce-fragment=\"1\"\u003e3.5 Flow rate (shear rate)\u003cbr data-mce-fragment=\"1\"\u003e3.6 Deformation \u003cbr data-mce-fragment=\"1\"\u003e3.7 Orientation \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e \u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Scale of Damage. Basic Concept\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e4.1 Atomistic \u003cbr data-mce-fragment=\"1\"\u003e4.2 Microscale\u003cbr data-mce-fragment=\"1\"\u003e4.3 Macroscale \u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Microscopic Mechanisms of Damage Caused by Degradants\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e5.1 Bulk (mechanical forces) \u003cbr data-mce-fragment=\"1\"\u003e5.1.1 Elastic-brittle fracture \u003cbr data-mce-fragment=\"1\"\u003e5.1.2 Elastic-plastic deformation \u003cbr data-mce-fragment=\"1\"\u003e5.1.3 Time-related damage \u003cbr data-mce-fragment=\"1\"\u003e5.1.3.1 Fatigue \u003cbr data-mce-fragment=\"1\"\u003e5.1.3.2 Creep \u003cbr data-mce-fragment=\"1\"\u003e5.1.4 Impact damage \u003cbr data-mce-fragment=\"1\"\u003e5.1.5 Shear fracture \u003cbr data-mce-fragment=\"1\"\u003e5.1.6 Compression set \u003cbr data-mce-fragment=\"1\"\u003e5.1.7 Bending forces \u003cbr data-mce-fragment=\"1\"\u003e5.1.8 Anisotropic damage \u003cbr data-mce-fragment=\"1\"\u003e5.2 Electric forces \u003cbr data-mce-fragment=\"1\"\u003e5.2.1 Tracking \u003cbr data-mce-fragment=\"1\"\u003e5.2.2 Arcing \u003cbr data-mce-fragment=\"1\"\u003e5.2.3 Drying out in batteries \u003cbr data-mce-fragment=\"1\"\u003e5.2.4 Pinholes \u003cbr data-mce-fragment=\"1\"\u003e5.2.5 Cracks\u003cbr data-mce-fragment=\"1\"\u003e5.2.6 Delamination\u003cbr data-mce-fragment=\"1\"\u003e5.3 Surface-initiated damage \u003cbr data-mce-fragment=\"1\"\u003e5.3.1 Physical forces \u003cbr data-mce-fragment=\"1\"\u003e5.3.1.1 Thermal treatment \u003cbr data-mce-fragment=\"1\"\u003e5.3.1.2 Radiation \u003cbr data-mce-fragment=\"1\"\u003e5.3.1.3 Weathering \u003cbr data-mce-fragment=\"1\"\u003e5.3.2 Mechanical action \u003cbr data-mce-fragment=\"1\"\u003e5.3.2.1 Scratching \u003cbr data-mce-fragment=\"1\"\u003e5.3.2.2 Impact \u003cbr data-mce-fragment=\"1\"\u003e5.3.2.3 Adhesive failure, sliding, and rolling \u003cbr data-mce-fragment=\"1\"\u003e5.3.3 Chemical reactions \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.1 Molecular oxygen \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.2 Ozone \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.3 Atomic oxygen \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.4 Sulfur dioxide \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.5 Particulate matter \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.6 Other gaseous pollutants \u003cbr data-mce-fragment=\"1\"\u003e5.4 Combination of degrading elements \u003cbr data-mce-fragment=\"1\"\u003e5.4.1 Environmental stress cracking \u003cbr data-mce-fragment=\"1\"\u003e5.4.2 Biodegradation and biodeterioration \u003cbr data-mce-fragment=\"1\"\u003e5.4.3 Effect of body fluids \u003cbr data-mce-fragment=\"1\"\u003e5.4.4 Controlled-release substances in pharmaceutical applications \u003cbr data-mce-fragment=\"1\"\u003e5.4.5 Corrosion \u003cbr\u003e","published_at":"2022-03-31T20:19:21-04:00","created_at":"2022-03-31T20:06:14-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","best","Materials"],"price":37000,"price_min":37000,"price_max":37000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165545042077,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Atlas of Material Damage, 3rd Edition","public_title":null,"options":["Default Title"],"price":37000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-85-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885857-Case.png?v=1648771874"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885857-Case.png?v=1648771874","options":["Title"],"media":[{"alt":null,"id":24734118445213,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885857-Case.png?v=1648771874"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885857-Case.png?v=1648771874","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nGeorge Wypych\u003cbr\u003e ISBN 978-1-927885-85-7 \u003cbr\u003e Published: 2022 January\u003cbr\u003e Pages: 430+iv\u003cbr\u003e Printed in color\u003cbr\u003e Figures: 544\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eAtlas of Material Damage\u003c\/strong\u003e has microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced not to fail, and how they are designed to perform functions to make outstanding products. All this is presented in color print, which emphasizes the peculiarities of morphology. Each illustration is fully explained in the text. The most recent findings during 2017-2021 are included, and their importance emphasized. \u003c\/p\u003e\n\u003cp\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see the full list at the end).\u003c\/p\u003e\n\u003cp\u003e It is pertinent from the above that others can adapt methods described by one branch of industry. For example, a technology that powers the slow or targeted release of pharmaceutical products can successfully prevent premature loss of vital additives from plastics.\u003c\/p\u003e\n\u003cp\u003eProduct reliability is the primary aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the central goal of product development and the most important indicator of material quality.\u003c\/p\u003e\n\u003cp\u003eThis book provides information on defect formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eEffect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003c\/li\u003e\n\u003cli\u003eAnalysis of causes of material damage and degradation\u003c\/li\u003e\n\u003cli\u003eEffect of processing conditions on material damage\u003c\/li\u003e\n\u003cli\u003eEffect of singular and combined action of different degradants on industrial products\u003c\/li\u003e\n\u003cli\u003eSystematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003c\/li\u003e\n\u003cli\u003eTechnological steps required to obtain specifically designed morphology required for specific performance\u003c\/li\u003e\n\u003cli\u003eComparison of experiences generated in different sectors of the industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eThe above information is based on the most recent publications. Less than 2% of sources were published before 2000.\u003c\/p\u003e\n\u003cp\u003eThe name “Atlas” was selected to indicate the book's emphasis on illustrations and morphology, with many real examples of damaged products and a discussion of causes of damage and potential for material improvements. \u003c\/p\u003e\n\u003cp\u003eThis book should be owned and frequently consulted by engineers and researchers in adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, shipbuilding and repair, stone, textile industry, windows and doors, wires and cables.\u003c\/p\u003e\n\u003cp\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Material Composition, Structure and Morphological Features\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e2.1 Materials having predominantly homogeneous structure and composition\u003cbr data-mce-fragment=\"1\"\u003e2.2 Heterogeneous materials \u003cbr data-mce-fragment=\"1\"\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr data-mce-fragment=\"1\"\u003e2.2.2 Materials containing insoluble additives \u003cbr data-mce-fragment=\"1\"\u003e2.2.3 Materials containing immiscible phases \u003cbr data-mce-fragment=\"1\"\u003e2.2.4 Composites \u003cbr data-mce-fragment=\"1\"\u003e2.2.5 Multi-component layered materials \u003cbr data-mce-fragment=\"1\"\u003e2.2.6 Foams and porosity \u003cbr data-mce-fragment=\"1\"\u003e2.2.7 Compressed solids \u003cbr data-mce-fragment=\"1\"\u003e2.3 Material surface versus bulk \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e \u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Effect of Processing on Material Structure\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e3.1 Temperature\u003cbr data-mce-fragment=\"1\"\u003e3.2 Pressure\u003cbr data-mce-fragment=\"1\"\u003e3.3 Time \u003cbr data-mce-fragment=\"1\"\u003e3.4 Viscosity \u003cbr data-mce-fragment=\"1\"\u003e3.5 Flow rate (shear rate)\u003cbr data-mce-fragment=\"1\"\u003e3.6 Deformation \u003cbr data-mce-fragment=\"1\"\u003e3.7 Orientation \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e \u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Scale of Damage. Basic Concept\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e4.1 Atomistic \u003cbr data-mce-fragment=\"1\"\u003e4.2 Microscale\u003cbr data-mce-fragment=\"1\"\u003e4.3 Macroscale \u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Microscopic Mechanisms of Damage Caused by Degradants\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e5.1 Bulk (mechanical forces) \u003cbr data-mce-fragment=\"1\"\u003e5.1.1 Elastic-brittle fracture \u003cbr data-mce-fragment=\"1\"\u003e5.1.2 Elastic-plastic deformation \u003cbr data-mce-fragment=\"1\"\u003e5.1.3 Time-related damage \u003cbr data-mce-fragment=\"1\"\u003e5.1.3.1 Fatigue \u003cbr data-mce-fragment=\"1\"\u003e5.1.3.2 Creep \u003cbr data-mce-fragment=\"1\"\u003e5.1.4 Impact damage \u003cbr data-mce-fragment=\"1\"\u003e5.1.5 Shear fracture \u003cbr data-mce-fragment=\"1\"\u003e5.1.6 Compression set \u003cbr data-mce-fragment=\"1\"\u003e5.1.7 Bending forces \u003cbr data-mce-fragment=\"1\"\u003e5.1.8 Anisotropic damage \u003cbr data-mce-fragment=\"1\"\u003e5.2 Electric forces \u003cbr data-mce-fragment=\"1\"\u003e5.2.1 Tracking \u003cbr data-mce-fragment=\"1\"\u003e5.2.2 Arcing \u003cbr data-mce-fragment=\"1\"\u003e5.2.3 Drying out in batteries \u003cbr data-mce-fragment=\"1\"\u003e5.2.4 Pinholes \u003cbr data-mce-fragment=\"1\"\u003e5.2.5 Cracks\u003cbr data-mce-fragment=\"1\"\u003e5.2.6 Delamination\u003cbr data-mce-fragment=\"1\"\u003e5.3 Surface-initiated damage \u003cbr data-mce-fragment=\"1\"\u003e5.3.1 Physical forces \u003cbr data-mce-fragment=\"1\"\u003e5.3.1.1 Thermal treatment \u003cbr data-mce-fragment=\"1\"\u003e5.3.1.2 Radiation \u003cbr data-mce-fragment=\"1\"\u003e5.3.1.3 Weathering \u003cbr data-mce-fragment=\"1\"\u003e5.3.2 Mechanical action \u003cbr data-mce-fragment=\"1\"\u003e5.3.2.1 Scratching \u003cbr data-mce-fragment=\"1\"\u003e5.3.2.2 Impact \u003cbr data-mce-fragment=\"1\"\u003e5.3.2.3 Adhesive failure, sliding, and rolling \u003cbr data-mce-fragment=\"1\"\u003e5.3.3 Chemical reactions \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.1 Molecular oxygen \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.2 Ozone \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.3 Atomic oxygen \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.4 Sulfur dioxide \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.5 Particulate matter \u003cbr data-mce-fragment=\"1\"\u003e5.3.3.6 Other gaseous pollutants \u003cbr data-mce-fragment=\"1\"\u003e5.4 Combination of degrading elements \u003cbr data-mce-fragment=\"1\"\u003e5.4.1 Environmental stress cracking \u003cbr data-mce-fragment=\"1\"\u003e5.4.2 Biodegradation and biodeterioration \u003cbr data-mce-fragment=\"1\"\u003e5.4.3 Effect of body fluids \u003cbr data-mce-fragment=\"1\"\u003e5.4.4 Controlled-release substances in pharmaceutical applications \u003cbr data-mce-fragment=\"1\"\u003e5.4.5 Corrosion \u003cbr\u003e"}
Biocides in Plastics
$153.00
{"id":11242214020,"title":"Biocides in Plastics","handle":"978-1-85957-512-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D. Nichols, Thor Overseas Limited \u003cbr\u003eISBN 978-1-85957-512-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 126\u003cbr\u003eFormat: Soft-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of biocides in plastics is commonplace. They are added to protect the plastic from degradation by microbes or to provide an external antimicrobial hygienic surface.\u003cbr\u003e\u003cbr\u003eBiocides are selected on the basis of their function and the application for which they are intended, but choosing the right biocide is often not so simple. As well as biocidal performance, the in-process stability, migration, leachability, light and heat stability may all be important factors.\u003cbr\u003e\u003cbr\u003eThis Rapra Review Report examines the use of biocides in plastics with reference to material types and application requirements. The commonly available biocides are reviewed and details of their strengths and weaknesses are provided. The author reviews the frequently used test methods for fungi and bacteria, and, in an ever-changing regulatory environment, explores the influence of legislation on the current and future use of such biocides.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to biocide suppliers and plastic product manufacturers, and to all professionals requiring information on biocide chemistry and application.\u003cbr\u003e\u003cbr\u003eThis detailed and state-of-the-art review is supported by an indexed section containing several hundred key references and abstracts selected from the Polymer Library.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 INTRODUCTION\u003c\/b\u003e\u003cbr\u003e2.1 Bacteria\u003cbr\u003e2.2 Fungi\u003cbr\u003e2.3 Algae\u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 THE NEED FOR BIOCIDES IN PLASTICS AND BASIC MICROBIOLOGY\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003e3 PLASTIC MATERIALS REQUIRING BIOCIDES\u003c\/b\u003e\u003cbr\u003e3.1 Biostabiliser Effects\u003cbr\u003e3.1.1 Nutrient Sources for Fungi and Bacteria\u003cbr\u003e3.1.2 Microbiological Effects\u003cbr\u003e3.1.3 Organisms of Importance\u003cbr\u003e3.2 Hygienic Applications\u003cbr\u003e3.2.1 Organisms of Interest\u003cbr\u003e3.2.2 Merits of Such Biocides\u003cbr\u003e3.2.3 The Bacterial Problem\u003cbr\u003e3.2.4 False Claims\u003cbr\u003e3.2.5 Conclusions Regarding Hygienic Applications\u003cbr\u003e3.3 Active Packaging\u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 TEST METHODS\u003c\/b\u003e\u003cbr\u003e4.1 Fungal Test Methods\u003cbr\u003e4.1.1 Fungicidal Procedures\u003cbr\u003e4.1.2 Fungistatic Procedures\u003cbr\u003e4.1.3 Soil Burial\u003cbr\u003e4.1.4 Humidity Chamber or Vermiculite Bed\u003cbr\u003e4.2 Bacterial Test Methods\u003cbr\u003e4.2.1 Resistance of Plastic to Bacteria\u003cbr\u003e4.2.2 Antimicrobial Plastic\u003cbr\u003e4.2.3 Pink Stain Test\u003cbr\u003e4.3 Laboratory Tests versus use Conditions\u003cbr\u003e\u003cbr\u003e\u003cb\u003e5 AVAILABLE ACTIVE INGREDIENTS\u003c\/b\u003e\u003cbr\u003e5.1 Migratory Biocides\u003cbr\u003e5.1.1 OBPA\u003cbr\u003e5.1.2 OIT\u003cbr\u003e5.1.3 Butyl BIT\u003cbr\u003e5.1.4 Zinc Pyrithione\u003cbr\u003e5.1.5 Iodo-Propylbutyl Carbamate (IPBC)\u003cbr\u003e5.1.6 N-Haloalkylthio Compounds\u003cbr\u003e5.1.7 Carbendazim (N-benzimidazol-2-ylcarbamic acid methylester)\u003cbr\u003e5.1.8 Bethoxazin (3-Benzo(b)thien-2-yl-5,6-dihydro-1,4,2-oxathiazine 4-oxide)\u003cbr\u003e5.2 Non or Low Migratory Biocides\u003cbr\u003e5.2.1 Triclosan (2,2,4-dicholoro-2-hydroxydiphenyl ether)\u003cbr\u003e5.2.2 DCOIT \u003cbr\u003e5.2.3 Silver\u003cbr\u003e5.2.4 Sustainable Antimicrobial Polymers (Degussa)\u003cbr\u003e5.2.5 Titanium Dioxide Nanoparticles\u003cbr\u003e5.3 Other Ingredients\u003cbr\u003e\u003cbr\u003e\u003cb\u003e6 LEGISLATION REGARDING BIOCIDES\u003c\/b\u003e\u003cbr\u003e6.1 Limitations of Use\u003cbr\u003e6.2 Future Requirements\u003cbr\u003e6.3 BPD Exemptions\u003cbr\u003e\u003cbr\u003e\u003cb\u003e7 SUMMARY\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eAdditional References\u003cbr\u003eUnpublished References\u003cbr\u003eBibliography\u003cbr\u003eAcknowledgements\u003cbr\u003eAbbreviations\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDean Nichols has a BSc. (Hons.) degree in biology and has worked for THOR, a speciality chemicals company and leading biocide company, for the past 15 years. His experience has involved research and development and marketing of biocides and other speciality chemicals to the Middle East, Europe and some countries in the Far East. Currently, he is a member of Thors biocide product management team and has a global role for promotion of products, services and expertise into various market sectors.","published_at":"2017-06-22T21:13:20-04:00","created_at":"2017-06-22T21:13:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","Biocides","book","degradation plastics","environment","p-additives","polymer"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378351044,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biocides in Plastics","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-512-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-512-3.jpg?v=1498191099"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-512-3.jpg?v=1498191099","options":["Title"],"media":[{"alt":null,"id":350156849245,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-512-3.jpg?v=1498191099"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-512-3.jpg?v=1498191099","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D. Nichols, Thor Overseas Limited \u003cbr\u003eISBN 978-1-85957-512-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 126\u003cbr\u003eFormat: Soft-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of biocides in plastics is commonplace. They are added to protect the plastic from degradation by microbes or to provide an external antimicrobial hygienic surface.\u003cbr\u003e\u003cbr\u003eBiocides are selected on the basis of their function and the application for which they are intended, but choosing the right biocide is often not so simple. As well as biocidal performance, the in-process stability, migration, leachability, light and heat stability may all be important factors.\u003cbr\u003e\u003cbr\u003eThis Rapra Review Report examines the use of biocides in plastics with reference to material types and application requirements. The commonly available biocides are reviewed and details of their strengths and weaknesses are provided. The author reviews the frequently used test methods for fungi and bacteria, and, in an ever-changing regulatory environment, explores the influence of legislation on the current and future use of such biocides.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to biocide suppliers and plastic product manufacturers, and to all professionals requiring information on biocide chemistry and application.\u003cbr\u003e\u003cbr\u003eThis detailed and state-of-the-art review is supported by an indexed section containing several hundred key references and abstracts selected from the Polymer Library.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 INTRODUCTION\u003c\/b\u003e\u003cbr\u003e2.1 Bacteria\u003cbr\u003e2.2 Fungi\u003cbr\u003e2.3 Algae\u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 THE NEED FOR BIOCIDES IN PLASTICS AND BASIC MICROBIOLOGY\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003e3 PLASTIC MATERIALS REQUIRING BIOCIDES\u003c\/b\u003e\u003cbr\u003e3.1 Biostabiliser Effects\u003cbr\u003e3.1.1 Nutrient Sources for Fungi and Bacteria\u003cbr\u003e3.1.2 Microbiological Effects\u003cbr\u003e3.1.3 Organisms of Importance\u003cbr\u003e3.2 Hygienic Applications\u003cbr\u003e3.2.1 Organisms of Interest\u003cbr\u003e3.2.2 Merits of Such Biocides\u003cbr\u003e3.2.3 The Bacterial Problem\u003cbr\u003e3.2.4 False Claims\u003cbr\u003e3.2.5 Conclusions Regarding Hygienic Applications\u003cbr\u003e3.3 Active Packaging\u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 TEST METHODS\u003c\/b\u003e\u003cbr\u003e4.1 Fungal Test Methods\u003cbr\u003e4.1.1 Fungicidal Procedures\u003cbr\u003e4.1.2 Fungistatic Procedures\u003cbr\u003e4.1.3 Soil Burial\u003cbr\u003e4.1.4 Humidity Chamber or Vermiculite Bed\u003cbr\u003e4.2 Bacterial Test Methods\u003cbr\u003e4.2.1 Resistance of Plastic to Bacteria\u003cbr\u003e4.2.2 Antimicrobial Plastic\u003cbr\u003e4.2.3 Pink Stain Test\u003cbr\u003e4.3 Laboratory Tests versus use Conditions\u003cbr\u003e\u003cbr\u003e\u003cb\u003e5 AVAILABLE ACTIVE INGREDIENTS\u003c\/b\u003e\u003cbr\u003e5.1 Migratory Biocides\u003cbr\u003e5.1.1 OBPA\u003cbr\u003e5.1.2 OIT\u003cbr\u003e5.1.3 Butyl BIT\u003cbr\u003e5.1.4 Zinc Pyrithione\u003cbr\u003e5.1.5 Iodo-Propylbutyl Carbamate (IPBC)\u003cbr\u003e5.1.6 N-Haloalkylthio Compounds\u003cbr\u003e5.1.7 Carbendazim (N-benzimidazol-2-ylcarbamic acid methylester)\u003cbr\u003e5.1.8 Bethoxazin (3-Benzo(b)thien-2-yl-5,6-dihydro-1,4,2-oxathiazine 4-oxide)\u003cbr\u003e5.2 Non or Low Migratory Biocides\u003cbr\u003e5.2.1 Triclosan (2,2,4-dicholoro-2-hydroxydiphenyl ether)\u003cbr\u003e5.2.2 DCOIT \u003cbr\u003e5.2.3 Silver\u003cbr\u003e5.2.4 Sustainable Antimicrobial Polymers (Degussa)\u003cbr\u003e5.2.5 Titanium Dioxide Nanoparticles\u003cbr\u003e5.3 Other Ingredients\u003cbr\u003e\u003cbr\u003e\u003cb\u003e6 LEGISLATION REGARDING BIOCIDES\u003c\/b\u003e\u003cbr\u003e6.1 Limitations of Use\u003cbr\u003e6.2 Future Requirements\u003cbr\u003e6.3 BPD Exemptions\u003cbr\u003e\u003cbr\u003e\u003cb\u003e7 SUMMARY\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eAdditional References\u003cbr\u003eUnpublished References\u003cbr\u003eBibliography\u003cbr\u003eAcknowledgements\u003cbr\u003eAbbreviations\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDean Nichols has a BSc. (Hons.) degree in biology and has worked for THOR, a speciality chemicals company and leading biocide company, for the past 15 years. His experience has involved research and development and marketing of biocides and other speciality chemicals to the Middle East, Europe and some countries in the Far East. Currently, he is a member of Thors biocide product management team and has a global role for promotion of products, services and expertise into various market sectors."}
Biodegradable Polymers
$390.00
{"id":11242213828,"title":"Biodegradable Polymers","handle":"978-1-85957-519-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David K. Platt \u003cbr\u003eISBN 978-1-85957-519-2 \u003cbr\u003e\u003cbr\u003eRapra Market Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers have experienced strong growth over the last three years and are set to make further inroads into markets traditionally dominated by conventional thermoplastics in future. \u003cbr\u003e\u003cbr\u003eDemand is being driven by a number of factors. \u003cbr\u003eThe cost of biodegradable polymers has come down considerably over the last three years while at the same time standard thermoplastic prices have increased considerably. Now, some classes of biodegradable polymers are price competitive with polymers such as PET. \u003cbr\u003e\u003cbr\u003eThe biodegradable polymers industry itself has established an agreed framework for testing and certification and there is growing political pressure in developed countries to reduce packaging waste and develop a composting infrastructure. Biodegradable polymer producers have also invested in product and process improvements. Finally, consumers and brand owners are beginning to recognize the benefits of sustainable or ‘green’ packaging. \u003cbr\u003e\u003cbr\u003eFour main classes of biodegradable polymers are analyzed in this report, polylactic acid (PLA), starch-based polymers, synthetic biodegradable polymers, such as aromatic aliphatic co-polyesters, and polyhydroxyalkanoates (PHA). The report analyses their key performance properties, applications development, market drivers and future prospects. Each product section also contains an estimate of market size by world region and end use market, plus forecasts to 2010. There is also an analysis of key suppliers and their products. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e \u003cbr\u003eBiodegradable polymers market size by geographic region, polymer type and end use sector, 2000 and 2005, plus forecasts to 2010. Market opportunity analysis by end use sector, such as packaging, bags and sacks, foodservice, agriculture, medical, consumer products and fibres. Illustrations of product and applications development over the last three years. Supply chain analysis: including details of thirty leading biodegradable polymer suppliers and profiles of around fifty of the world’s leading biodegradable polymer processors. Analysis of biodegradable polymer performance properties, market drivers, applications and product developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Platt graduated from the University of Nottingham with an Economics degree before completing an MBA at the University of Bradford. He joined a leading international market consultancy where he specialized in plastics sector research. He conducted a wide range of multi-client and single-client studies covering a wide range of materials, from standard thermoplastics, engineering and high performance polymers to conductive polymers and thermoplastic elastomers. Now operating as a freelance consultant, he makes regular contributions to the European plastics trade press, and works with leading plastics industry consultants.","published_at":"2017-06-22T21:13:20-04:00","created_at":"2017-06-22T21:13:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","agriculture","analysis","aromatic aliphatic co-polyesters","bags","biodegradable polymers","book","consumer products","foodservice","market","medical","packaging","PHA","PLA","polyhydroxyalkanoates","polylactic acid","polymer","polymers","properties","report","sacks","starch-based polymers","synthetic biodegradable polymers"],"price":39000,"price_min":39000,"price_max":39000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350852,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biodegradable Polymers","public_title":null,"options":["Default Title"],"price":39000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-519-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157","options":["Title"],"media":[{"alt":null,"id":350156882013,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David K. Platt \u003cbr\u003eISBN 978-1-85957-519-2 \u003cbr\u003e\u003cbr\u003eRapra Market Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers have experienced strong growth over the last three years and are set to make further inroads into markets traditionally dominated by conventional thermoplastics in future. \u003cbr\u003e\u003cbr\u003eDemand is being driven by a number of factors. \u003cbr\u003eThe cost of biodegradable polymers has come down considerably over the last three years while at the same time standard thermoplastic prices have increased considerably. Now, some classes of biodegradable polymers are price competitive with polymers such as PET. \u003cbr\u003e\u003cbr\u003eThe biodegradable polymers industry itself has established an agreed framework for testing and certification and there is growing political pressure in developed countries to reduce packaging waste and develop a composting infrastructure. Biodegradable polymer producers have also invested in product and process improvements. Finally, consumers and brand owners are beginning to recognize the benefits of sustainable or ‘green’ packaging. \u003cbr\u003e\u003cbr\u003eFour main classes of biodegradable polymers are analyzed in this report, polylactic acid (PLA), starch-based polymers, synthetic biodegradable polymers, such as aromatic aliphatic co-polyesters, and polyhydroxyalkanoates (PHA). The report analyses their key performance properties, applications development, market drivers and future prospects. Each product section also contains an estimate of market size by world region and end use market, plus forecasts to 2010. There is also an analysis of key suppliers and their products. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e \u003cbr\u003eBiodegradable polymers market size by geographic region, polymer type and end use sector, 2000 and 2005, plus forecasts to 2010. Market opportunity analysis by end use sector, such as packaging, bags and sacks, foodservice, agriculture, medical, consumer products and fibres. Illustrations of product and applications development over the last three years. Supply chain analysis: including details of thirty leading biodegradable polymer suppliers and profiles of around fifty of the world’s leading biodegradable polymer processors. Analysis of biodegradable polymer performance properties, market drivers, applications and product developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Platt graduated from the University of Nottingham with an Economics degree before completing an MBA at the University of Bradford. He joined a leading international market consultancy where he specialized in plastics sector research. He conducted a wide range of multi-client and single-client studies covering a wide range of materials, from standard thermoplastics, engineering and high performance polymers to conductive polymers and thermoplastic elastomers. Now operating as a freelance consultant, he makes regular contributions to the European plastics trade press, and works with leading plastics industry consultants."}
Biological and Biomedi...
$139.95
{"id":11242202436,"title":"Biological and Biomedical Coatings Handbook, Processing and Characterization, Volume 1","handle":"978-1-43-984995-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-984995-8 \u003cbr\u003e\u003cbr\u003e456 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003e\u003cbr\u003eConsisting of two volumes—Processing and Characterization and Applications—this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine.\u003cbr\u003e\u003cbr\u003eAn exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses:\u003cbr\u003e\n\u003cli\u003eSynthesis, fabrication, and characterization of nanocoatings\u003c\/li\u003e\n\u003cli\u003eThe sol-gel method and electrophoretic deposition\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite and organically modified coatings\u003c\/li\u003e\n\u003cli\u003eBioceramics and bioactive glass-based coatings\u003c\/li\u003e\n\u003cli\u003eHydrothermal crystallization and self-healing effects\u003c\/li\u003e\n\u003cli\u003ePhysical and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eLayered assembled polyelectrolyte filmsWith chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:12:44-04:00","created_at":"2017-06-22T21:12:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","bioceramic coating","biomedical coatings","biopolymers","book","coatings","nanocoatings","thin films"],"price":13995,"price_min":13995,"price_max":13995,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378311172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biological and Biomedical Coatings Handbook, Processing and Characterization, Volume 1","public_title":null,"options":["Default Title"],"price":13995,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-43-984995-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242","options":["Title"],"media":[{"alt":null,"id":350157242461,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-984995-8 \u003cbr\u003e\u003cbr\u003e456 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003e\u003cbr\u003eConsisting of two volumes—Processing and Characterization and Applications—this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine.\u003cbr\u003e\u003cbr\u003eAn exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses:\u003cbr\u003e\n\u003cli\u003eSynthesis, fabrication, and characterization of nanocoatings\u003c\/li\u003e\n\u003cli\u003eThe sol-gel method and electrophoretic deposition\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite and organically modified coatings\u003c\/li\u003e\n\u003cli\u003eBioceramics and bioactive glass-based coatings\u003c\/li\u003e\n\u003cli\u003eHydrothermal crystallization and self-healing effects\u003c\/li\u003e\n\u003cli\u003ePhysical and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eLayered assembled polyelectrolyte filmsWith chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/li\u003e"}
Biological and Biomedi...
$220.00
{"id":11242203140,"title":"Biological and Biomedical Coatings Handbook, Two-Volume Set","handle":"978-1-43-982125-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-982125-1 \u003cbr\u003e\u003cbr\u003e976 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set explores the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003eThe set covers advances in the latest understanding, design, and performance of biological and biomedical coatings for a vast array of material types, including sol-gel, bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the field of regenerative medicine.\u003cbr\u003eTopics include:\u003cbr\u003e\n\u003cli\u003eImplants and implanted devices\u003c\/li\u003e\n\u003cli\u003eOrganically modified coatings\u003c\/li\u003e\n\u003cli\u003eOrthopedic and dental implants\u003c\/li\u003e\n\u003cli\u003eControl of drug release\u003c\/li\u003e\n\u003cli\u003eBiosensing and bioactive coatings\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydrothermal, physical, and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eImpedance spectroscopy\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite nanocoatings\u003cbr\u003e\u003cbr\u003eWith chapters authored by world experts at the forefront of research in their respective areas, this timely set consists of two volumes—Processing and Characterization and Applications—to cover a subject that is truly fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\u003cbr\u003e\u003cbr\u003e\u003cb\u003eVOLUME 2: Applications (K12270)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eSol-Gel Derived Hydroxyapatite Coatings on Metallic Implants: Characterization, In Vitro and In Vivo Analysis, W. Yongsheng\u003cbr\u003e\u003cbr\u003eAmorphous Carbon Coatings for Biological Applications, S.-E. Ong and S. Zhang\u003cbr\u003e\u003cbr\u003eBiomedical Applications of Carbon-Based Materials, S. Alwarappan, S.R. Singh, and A. Kumar\u003cbr\u003e\u003cbr\u003eImpedance Spectroscopy on Carbon-Based Materials for Biological Application, H. Ye and S. Su\u003cbr\u003e\u003cbr\u003eControl of Drug Release from Coatings: Theories and Methodologies, L. Shang, S. Zhang, S.S. Venkatraman, and H. Du\u003cbr\u003e\u003cbr\u003eRelease-Controlled Coatings, J.Z. Tang and N.P. Rhodes\u003cbr\u003e\u003cbr\u003eOrthopedic and Dental Implant Surfaces and Coatings, R.Z. LeGeros, P.G. Coelho, D. Holmes, F. Dimaano, and J.P. LeGeros\u003cbr\u003e\u003cbr\u003ePiezoelectric Zinc Oxide and Aluminum Nitride Films for Microfluidic and Biosensing Applications, Y. Q. Fu, J.K. Luo, A.J. Flewitt, A.J. Walton, M.P.Y. Desmulliez, and W.I. Milne\u003cbr\u003e\u003cbr\u003eMedical Applications of Sputter-Deposited Shape Memory Alloy Thin Films, Y.Q. Fu, W.M. Huang, and S. Miyazaki\u003cbr\u003e\u003cbr\u003eBioactive Coatings for Implanted Devices, S. Venkatraman, X. Yun, H. Yingying, D. Mondal, and L.K. Lin\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/div\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:12:47-04:00","created_at":"2017-06-22T21:12:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","bioactive coatings","biomedical coatings","biopolymers","book","controldrug release","nanocoatings","thin films"],"price":22000,"price_min":22000,"price_max":22000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378315908,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biological and Biomedical Coatings Handbook, Two-Volume Set","public_title":null,"options":["Default Title"],"price":22000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-43-982125-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-982125-1.jpg?v=1499724251"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-982125-1.jpg?v=1499724251","options":["Title"],"media":[{"alt":null,"id":350157340765,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-982125-1.jpg?v=1499724251"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-982125-1.jpg?v=1499724251","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-982125-1 \u003cbr\u003e\u003cbr\u003e976 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set explores the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003eThe set covers advances in the latest understanding, design, and performance of biological and biomedical coatings for a vast array of material types, including sol-gel, bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the field of regenerative medicine.\u003cbr\u003eTopics include:\u003cbr\u003e\n\u003cli\u003eImplants and implanted devices\u003c\/li\u003e\n\u003cli\u003eOrganically modified coatings\u003c\/li\u003e\n\u003cli\u003eOrthopedic and dental implants\u003c\/li\u003e\n\u003cli\u003eControl of drug release\u003c\/li\u003e\n\u003cli\u003eBiosensing and bioactive coatings\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydrothermal, physical, and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eImpedance spectroscopy\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite nanocoatings\u003cbr\u003e\u003cbr\u003eWith chapters authored by world experts at the forefront of research in their respective areas, this timely set consists of two volumes—Processing and Characterization and Applications—to cover a subject that is truly fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\u003cbr\u003e\u003cbr\u003e\u003cb\u003eVOLUME 2: Applications (K12270)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eSol-Gel Derived Hydroxyapatite Coatings on Metallic Implants: Characterization, In Vitro and In Vivo Analysis, W. Yongsheng\u003cbr\u003e\u003cbr\u003eAmorphous Carbon Coatings for Biological Applications, S.-E. Ong and S. Zhang\u003cbr\u003e\u003cbr\u003eBiomedical Applications of Carbon-Based Materials, S. Alwarappan, S.R. Singh, and A. Kumar\u003cbr\u003e\u003cbr\u003eImpedance Spectroscopy on Carbon-Based Materials for Biological Application, H. Ye and S. Su\u003cbr\u003e\u003cbr\u003eControl of Drug Release from Coatings: Theories and Methodologies, L. Shang, S. Zhang, S.S. Venkatraman, and H. Du\u003cbr\u003e\u003cbr\u003eRelease-Controlled Coatings, J.Z. Tang and N.P. Rhodes\u003cbr\u003e\u003cbr\u003eOrthopedic and Dental Implant Surfaces and Coatings, R.Z. LeGeros, P.G. Coelho, D. Holmes, F. Dimaano, and J.P. LeGeros\u003cbr\u003e\u003cbr\u003ePiezoelectric Zinc Oxide and Aluminum Nitride Films for Microfluidic and Biosensing Applications, Y. Q. Fu, J.K. Luo, A.J. Flewitt, A.J. Walton, M.P.Y. Desmulliez, and W.I. Milne\u003cbr\u003e\u003cbr\u003eMedical Applications of Sputter-Deposited Shape Memory Alloy Thin Films, Y.Q. Fu, W.M. Huang, and S. Miyazaki\u003cbr\u003e\u003cbr\u003eBioactive Coatings for Implanted Devices, S. Venkatraman, X. Yun, H. Yingying, D. Mondal, and L.K. Lin\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/div\u003e\n\u003c\/li\u003e"}
Biopolymers
$153.00
{"id":11242200836,"title":"Biopolymers","handle":"978-1-85957-379-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.M. Johnson, L.Y. Mwaikambo and N. Tucker \u003cbr\u003eISBN 978-1-85957-379-2 \u003cbr\u003e\u003cbr\u003epages 158\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe earth has finite resources in terms of fossil origin fuel and a finite capacity for disposal of waste. Biopolymers may offer a solution to both these issues in the long-term. The ideal biopolymer is both of renewable biological origin and biodegradable at the end of its life. In some cases material may be of a biological origin and not readily biodegradable, such as thermosets made from cashew nut shell liquid. On the other hand, polyvinyl alcohol is an example of a polymer of a synthetic origin and biodegradable. \u003cbr\u003e\u003cbr\u003eEnvironmental degradation can involve enzymatic pathways and microorganisms such as bacteria and fungi, or chemical pathways such as hydrolysis. It is important that biopolymers have an adequate life span for applications - their biodegradability makes them ideal for use in resorbable medical products such as sutures, in short-term packaging applications for fast foods and fresh groceries, and for sanitary uses. \u003cbr\u003e\u003cbr\u003eThis review sets out to examine the current trends in biopolymer science. The different types of biological polymers are discussed. The chemistry and synthesis of some key biopolymers is described, including cellulose, hemicellulose, starch, polyhydroxyalkanoates (of bacterial origin), tannins (polyphenolic plant products), cashew nut shell liquid, rosins (from tree sap), lignin (from wood), and man made polylactides. Many other biopolymers are also being investigated, for example, alginates from seaweed and algae, and proteins such as casein and soybean. The abstracts at the end of this report cover an extensive range of materials and are fully indexed. \u003cbr\u003e\u003cbr\u003eCommercially, bioplastics have proven to be relatively expensive and available only in small quantities. This has lead to limitations on applications to date. However, there are signs that this is changing, with increasing environmental awareness and more stringent legislation regarding recyclability and restrictions on waste disposal. Cargill Dow has a polylactic acid polymer in production (Natureworks). Metabolix has been working on polyhydroxyalkanoates (Biopol). Several companies have been developing starch products such as Avebe, Biop, Earthshell and Midwest Grain Products Inc. Polyols for polyurethane have been obtained from vegetable oils, etc. \u003cbr\u003e\u003cbr\u003eCertification of compostability is now available from DIN CERTCO. The requirements for this standard are discussed in the report. Additives can compromise the environmentally-friendly status of a polymer and must be chosen with care. Thus natural fibre reinforcements are also discussed briefly here. Biocomposites have been developed comprising natural origin polymer matrices and natural fibres, such as sugar cane bagasse and jute. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by over 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Biopolymers\u003cbr\u003e1.2 Biodisintegratables or Biodeteriorating Polymers\u003cbr\u003e1.3 Biodegradability\u003cbr\u003e1.4 Environmental Impact\u003cbr\u003e1.5 Market Size \u003cbr\u003e2. Synthesis of Biopolymers\u003cbr\u003e2.1 Cellulose\u003cbr\u003e2.2 Starch\u003cbr\u003e2.3 Hemicellulose\u003cbr\u003e2.4 Polyhydroxyalkanoates (PHA)\u003cbr\u003e2.5 Tannins\u003cbr\u003e2.6 Cashew Nut Shell Liquid (CNSL)\u003cbr\u003e2.6.1 The Structure of CNSL\u003cbr\u003e2.6.2 Polymer Synthesis of CNSL\u003cbr\u003e2.7 Rosins\u003cbr\u003e2.8 Lignin\u003cbr\u003e2.9 Polylactic Acids and Polylactides\u003cbr\u003e2.10 Other \u003cbr\u003e3. Commercially Available Biopolymers \u003cbr\u003e4. Uses of Biopolymers\u003cbr\u003e4.1 General Uses\u003cbr\u003e4.2 Uses of Specific Polymer Types \u003cbr\u003e5. Manufacturing Technologies for Biopolymers\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Manufacturing Methods\u003cbr\u003e5.3 Additives\u003cbr\u003e5.3.1 Plasticizers\u003cbr\u003e5.3.2 Lubricants\u003cbr\u003e5.3.3 Colorants\u003cbr\u003e5.3.4 Flame Retardants\u003cbr\u003e5.3.5 Blowing (Foaming) Agents\u003cbr\u003e5.3.6 Crosslinkers\u003cbr\u003e5.3.7 Fillers \u003cbr\u003e6. Fillers and Reinforcement for Biopolymers \u003cbr\u003e7.The Markets and Economics for Biopolymers \u003cbr\u003e8.Compostability Certification \u003cbr\u003e9.The Chemistry and Biology of Polymer Degradation \u003cbr\u003e10.Conclusions\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMark Johnson\u003c\/b\u003e is currently reading for a doctorate in Engineering Business Management (EngD) at the University of Warwick. Prior to this he worked as a production engineer in composite fabrication. The areas of study of his doctorate are biodegradable composites, their fabrication, performance, biodegradability and the factors affecting their uptake and usage by industry. \u003cbr\u003e\u003cb\u003e\u003cbr\u003eDr. Leonard Mwaikambo\u003c\/b\u003e\u003cbr\u003eholds the post of Lecturer at the Sokoine University of Agriculture, Tanzania, and is currently a Research Fellow in the Department of Chemistry, University of Warwick. His research concerns the development of sustainably produced, recyclable natural fibre composites. He has keen interest in developing matrices based on polymerised natural oils and fats for composite manufacture. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eNick Tucker\u003c\/b\u003e's interest in biopolymers was started by a request from the Rover Group to examine the potential effect of biodegradable polymers on end-of-life vehicle disposal. His current research portfolio now covers the economic manufacture and application of low environmental impact biodegradable composites from sustainable resources. In parallel with these activities, he runs the Sustainable Composites Network with the Biocomposites Centre at the University of Wales, Bangor.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e","published_at":"2017-06-22T21:12:39-04:00","created_at":"2017-06-22T21:12:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","applications","bacterial origin","biodegradability","biodeteriorating polymers","biodisintegratables","biological origin polymers","biopolymers","book","cashew nut shell liquid","cellulose","environmental impact","hemicellulose","lignin","polyhydroxyalkanoates","polylactides","polyphenolic plant products","product properties environmental\/safety issues each technology area. These papers are not contained main conference book. RAPRA Business Machines Appliances","rosins","starch","synthesis","tannins","tree sap"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378307268,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biopolymers","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-379-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953","options":["Title"],"media":[{"alt":null,"id":353911668829,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.M. Johnson, L.Y. Mwaikambo and N. Tucker \u003cbr\u003eISBN 978-1-85957-379-2 \u003cbr\u003e\u003cbr\u003epages 158\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe earth has finite resources in terms of fossil origin fuel and a finite capacity for disposal of waste. Biopolymers may offer a solution to both these issues in the long-term. The ideal biopolymer is both of renewable biological origin and biodegradable at the end of its life. In some cases material may be of a biological origin and not readily biodegradable, such as thermosets made from cashew nut shell liquid. On the other hand, polyvinyl alcohol is an example of a polymer of a synthetic origin and biodegradable. \u003cbr\u003e\u003cbr\u003eEnvironmental degradation can involve enzymatic pathways and microorganisms such as bacteria and fungi, or chemical pathways such as hydrolysis. It is important that biopolymers have an adequate life span for applications - their biodegradability makes them ideal for use in resorbable medical products such as sutures, in short-term packaging applications for fast foods and fresh groceries, and for sanitary uses. \u003cbr\u003e\u003cbr\u003eThis review sets out to examine the current trends in biopolymer science. The different types of biological polymers are discussed. The chemistry and synthesis of some key biopolymers is described, including cellulose, hemicellulose, starch, polyhydroxyalkanoates (of bacterial origin), tannins (polyphenolic plant products), cashew nut shell liquid, rosins (from tree sap), lignin (from wood), and man made polylactides. Many other biopolymers are also being investigated, for example, alginates from seaweed and algae, and proteins such as casein and soybean. The abstracts at the end of this report cover an extensive range of materials and are fully indexed. \u003cbr\u003e\u003cbr\u003eCommercially, bioplastics have proven to be relatively expensive and available only in small quantities. This has lead to limitations on applications to date. However, there are signs that this is changing, with increasing environmental awareness and more stringent legislation regarding recyclability and restrictions on waste disposal. Cargill Dow has a polylactic acid polymer in production (Natureworks). Metabolix has been working on polyhydroxyalkanoates (Biopol). Several companies have been developing starch products such as Avebe, Biop, Earthshell and Midwest Grain Products Inc. Polyols for polyurethane have been obtained from vegetable oils, etc. \u003cbr\u003e\u003cbr\u003eCertification of compostability is now available from DIN CERTCO. The requirements for this standard are discussed in the report. Additives can compromise the environmentally-friendly status of a polymer and must be chosen with care. Thus natural fibre reinforcements are also discussed briefly here. Biocomposites have been developed comprising natural origin polymer matrices and natural fibres, such as sugar cane bagasse and jute. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by over 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Biopolymers\u003cbr\u003e1.2 Biodisintegratables or Biodeteriorating Polymers\u003cbr\u003e1.3 Biodegradability\u003cbr\u003e1.4 Environmental Impact\u003cbr\u003e1.5 Market Size \u003cbr\u003e2. Synthesis of Biopolymers\u003cbr\u003e2.1 Cellulose\u003cbr\u003e2.2 Starch\u003cbr\u003e2.3 Hemicellulose\u003cbr\u003e2.4 Polyhydroxyalkanoates (PHA)\u003cbr\u003e2.5 Tannins\u003cbr\u003e2.6 Cashew Nut Shell Liquid (CNSL)\u003cbr\u003e2.6.1 The Structure of CNSL\u003cbr\u003e2.6.2 Polymer Synthesis of CNSL\u003cbr\u003e2.7 Rosins\u003cbr\u003e2.8 Lignin\u003cbr\u003e2.9 Polylactic Acids and Polylactides\u003cbr\u003e2.10 Other \u003cbr\u003e3. Commercially Available Biopolymers \u003cbr\u003e4. Uses of Biopolymers\u003cbr\u003e4.1 General Uses\u003cbr\u003e4.2 Uses of Specific Polymer Types \u003cbr\u003e5. Manufacturing Technologies for Biopolymers\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Manufacturing Methods\u003cbr\u003e5.3 Additives\u003cbr\u003e5.3.1 Plasticizers\u003cbr\u003e5.3.2 Lubricants\u003cbr\u003e5.3.3 Colorants\u003cbr\u003e5.3.4 Flame Retardants\u003cbr\u003e5.3.5 Blowing (Foaming) Agents\u003cbr\u003e5.3.6 Crosslinkers\u003cbr\u003e5.3.7 Fillers \u003cbr\u003e6. Fillers and Reinforcement for Biopolymers \u003cbr\u003e7.The Markets and Economics for Biopolymers \u003cbr\u003e8.Compostability Certification \u003cbr\u003e9.The Chemistry and Biology of Polymer Degradation \u003cbr\u003e10.Conclusions\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMark Johnson\u003c\/b\u003e is currently reading for a doctorate in Engineering Business Management (EngD) at the University of Warwick. Prior to this he worked as a production engineer in composite fabrication. The areas of study of his doctorate are biodegradable composites, their fabrication, performance, biodegradability and the factors affecting their uptake and usage by industry. \u003cbr\u003e\u003cb\u003e\u003cbr\u003eDr. Leonard Mwaikambo\u003c\/b\u003e\u003cbr\u003eholds the post of Lecturer at the Sokoine University of Agriculture, Tanzania, and is currently a Research Fellow in the Department of Chemistry, University of Warwick. His research concerns the development of sustainably produced, recyclable natural fibre composites. He has keen interest in developing matrices based on polymerised natural oils and fats for composite manufacture. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eNick Tucker\u003c\/b\u003e's interest in biopolymers was started by a request from the Rover Group to examine the potential effect of biodegradable polymers on end-of-life vehicle disposal. His current research portfolio now covers the economic manufacture and application of low environmental impact biodegradable composites from sustainable resources. In parallel with these activities, he runs the Sustainable Composites Network with the Biocomposites Centre at the University of Wales, Bangor.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e"}
Biopolymers, Volume 3b...
$474.00
{"id":11242247492,"title":"Biopolymers, Volume 3b , Polyesters II - Properties and Chemical Synthesis","handle":"978-3-527-30219-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Yoshiharu Doi (Editor), Alexander Steinbüchel (Editor) \u003cbr\u003eISBN 978-3-527-30219-2 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e480 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nVolumes 3a, b and 4 focus on polyesters synthesized by bacteria and eukaryotic organisms as well as all aspects of the biosynthesis and metabolism of these biopolymers together with their production and isolation. In addition, these volumes treat various synthetic polyesters and related polymers synthesized by the chemical industry for the manufacture of biodegradable materials. Topics include: polyhydroxyalkanoates, pha granules, non-storage phas, poly(malic acid), cutin, suberin, polyphosphate, polylactides, polyglycolide, polyanhydrides, polyesteramides, aliphatic organic polyesters and related polymers, in vitro synthesis of polyesters, chemical synthesis, biotechnological production by fermentation, isolation from plants, production in transgenic plants, biodegradation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nMethods for Analysis of Poly(3-hydroxyalkanoate) Composition (T. de Rijk, et al.). \u003cbr\u003e\u003cbr\u003eIntracellular Degradation of PHAs (T. Saito \u0026amp; T. Kobayashi). \u003cbr\u003e\u003cbr\u003eExtracellular Polyhydroxyalkanoate Depolymerases: The Key Enzymes of PHA Degradation (D. Jendrossek). \u003cbr\u003e\u003cbr\u003eMicrobial Degradation of Aliphatic Polyesters (Y. Tokiwa). \u003cbr\u003e\u003cbr\u003eMolecular and Material Design of Biodegradable Poly(hydroxyalkanoate)s (H. Abe \u0026amp; Y. Doi). \u003cbr\u003e\u003cbr\u003eStructure, Composition and Solution Properties of PHAs (N. Yoshie \u0026amp; Y. Inoue). \u003cbr\u003e\u003cbr\u003eCrystallization and Material Properties of Polyhydroxyalkanoates (R. Marchessault \u0026amp; G. Yu). \u003cbr\u003e\u003cbr\u003eStructure and Hydrolysis of Polyester Single Crystals (T. Iwata \u0026amp; Y. Doi). \u003cbr\u003e\u003cbr\u003ePhysical and Processing Properties of Polyhydroxyalkanoate Copolymers (M. Satkowski, et al.). \u003cbr\u003e\u003cbr\u003eFermentative Production of Building Blocks for Chemical Synthesis of Polyesters (S. Lee, et al.). \u003cbr\u003e\u003cbr\u003eGeneral Methodology for Chemical Synthesis of Polyesters (J. Seppälä, et al.). \u003cbr\u003e\u003cbr\u003eMechanisms of Aliphatic Polyester Formation (A. Duda \u0026amp; S. Penczek). \u003cbr\u003e\u003cbr\u003eChemical Synthesis and Properties of Well-defined Oligomeric Esters (I. Taniguchi \u0026amp; Y. Kimura). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:06-04:00","created_at":"2017-06-22T21:15:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","biodegradation","biopolymers","book","coal","humic substances","lignin","metabolism","polyamides","polyesters","polyisoprenoids","polymers","polysaccharides","proteinaceous materials"],"price":47400,"price_min":47400,"price_max":47400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378465284,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biopolymers, Volume 3b , Polyesters II - Properties and Chemical Synthesis","public_title":null,"options":["Default Title"],"price":47400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-30219-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-30219-2.jpg?v=1499187286"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-30219-2.jpg?v=1499187286","options":["Title"],"media":[{"alt":null,"id":353913602141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-30219-2.jpg?v=1499187286"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-30219-2.jpg?v=1499187286","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Yoshiharu Doi (Editor), Alexander Steinbüchel (Editor) \u003cbr\u003eISBN 978-3-527-30219-2 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e480 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nVolumes 3a, b and 4 focus on polyesters synthesized by bacteria and eukaryotic organisms as well as all aspects of the biosynthesis and metabolism of these biopolymers together with their production and isolation. In addition, these volumes treat various synthetic polyesters and related polymers synthesized by the chemical industry for the manufacture of biodegradable materials. Topics include: polyhydroxyalkanoates, pha granules, non-storage phas, poly(malic acid), cutin, suberin, polyphosphate, polylactides, polyglycolide, polyanhydrides, polyesteramides, aliphatic organic polyesters and related polymers, in vitro synthesis of polyesters, chemical synthesis, biotechnological production by fermentation, isolation from plants, production in transgenic plants, biodegradation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nMethods for Analysis of Poly(3-hydroxyalkanoate) Composition (T. de Rijk, et al.). \u003cbr\u003e\u003cbr\u003eIntracellular Degradation of PHAs (T. Saito \u0026amp; T. Kobayashi). \u003cbr\u003e\u003cbr\u003eExtracellular Polyhydroxyalkanoate Depolymerases: The Key Enzymes of PHA Degradation (D. Jendrossek). \u003cbr\u003e\u003cbr\u003eMicrobial Degradation of Aliphatic Polyesters (Y. Tokiwa). \u003cbr\u003e\u003cbr\u003eMolecular and Material Design of Biodegradable Poly(hydroxyalkanoate)s (H. Abe \u0026amp; Y. Doi). \u003cbr\u003e\u003cbr\u003eStructure, Composition and Solution Properties of PHAs (N. Yoshie \u0026amp; Y. Inoue). \u003cbr\u003e\u003cbr\u003eCrystallization and Material Properties of Polyhydroxyalkanoates (R. Marchessault \u0026amp; G. Yu). \u003cbr\u003e\u003cbr\u003eStructure and Hydrolysis of Polyester Single Crystals (T. Iwata \u0026amp; Y. Doi). \u003cbr\u003e\u003cbr\u003ePhysical and Processing Properties of Polyhydroxyalkanoate Copolymers (M. Satkowski, et al.). \u003cbr\u003e\u003cbr\u003eFermentative Production of Building Blocks for Chemical Synthesis of Polyesters (S. Lee, et al.). \u003cbr\u003e\u003cbr\u003eGeneral Methodology for Chemical Synthesis of Polyesters (J. Seppälä, et al.). \u003cbr\u003e\u003cbr\u003eMechanisms of Aliphatic Polyester Formation (A. Duda \u0026amp; S. Penczek). \u003cbr\u003e\u003cbr\u003eChemical Synthesis and Properties of Well-defined Oligomeric Esters (I. Taniguchi \u0026amp; Y. Kimura). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e"}
Biopolymers: Biomedica...
$216.00
{"id":11242204420,"title":"Biopolymers: Biomedical and Environmental Applications","handle":"978-0-470-63923-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Susheel Kalia, Luc Avérous \u003cbr\u003eISBN 978-0-470-63923-8 \u003cbr\u003e\u003cbr\u003e\u003cspan style=\"font-family: Arial, Helvetica, sans-serif; font-size: 12px;\" class=\"Apple-style-span\"\u003eHardcover\u003c\/span\u003e\n\u003cdiv class=\"productDetail-format\"\u003e\n\u003cdiv class=\"productDetail-format\"\u003e642 pages\u003c\/div\u003e\n\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook focuses on biopolymers for both environmental and biomedical applications. It shows recent advances in technology in all areas from chemical synthesis or biosynthesis to end use applications. These areas have not been covered in a single book before and they include biopolymers for chemical and biotechnological modifications, material structures, characterization, processing, properties, and applications.\u003cbr\u003eAfter the introduction which summarizes the importance of biopolymer in the market, the book covers almost all the topics related to polysaccharides, biofibers, bioplastics, biocomposites, natural rubber, gums, bacterial and blood compatible polymers, and applications of biopolymers in various fields.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroductory Preface.\u003cbr\u003e\u003cbr\u003eAbout the Editors.\u003cbr\u003e\u003cbr\u003ePart I. Polysaccharides.\u003cbr\u003e\u003cbr\u003e1. Hyaluronic Acid: A Natural Biopolymer (Juergen Schiller, Nicola Volpi, Eva Hrabárova, and Ladislav Soltes).\u003cbr\u003e\u003cbr\u003e2. Polysaccharide Graft Copolymers Synthesis, Properties and Applications (B. S. Kaith, Hemant Mittal, Jaspreet Kaur Bhatia, and Susheel Kalia).\u003cbr\u003e\u003cbr\u003e3. Natural Polysaccharides: From Membranes to Active Food Packaging (Keith J. Fahnestock, Marjorie S. Austero, and Caroline L. Schauer).\u003cbr\u003e\u003cbr\u003e4. Starch as Source of Polymeric Materials (Antonio A. J. Carvalho).\u003cbr\u003e\u003cbr\u003e5. Grafted Polysaccharides: Smart Materials of Future, Synthesis and Applications (Gautam Sen, Ashoke Sharon, and Sagar Pal).\u003cbr\u003e\u003cbr\u003e6. Chitosan: The Marine based Biopolymer for Applications (Debasish Sahoo, and P. L. Nayak).\u003cbr\u003e\u003cbr\u003ePart II. Bioplastics and Biocomposites.\u003cbr\u003e\u003cbr\u003e7. Biopolymers Based-on Carboxylic Acids Derived from Renewable Resources (Sushil Kumar, Nikhil Prakash, and Dipaloy Datta).\u003cbr\u003e\u003cbr\u003e8. Characteristics and Applications of PLA (Sandra Domenek, Cecile Courgneau, and Violette Ducruet).\u003cbr\u003e\u003cbr\u003e9. Biobased Composites \u0026amp; Applications (Smita Mohanty, and Sanjay K. Nayak).\u003cbr\u003e\u003cbr\u003ePart III. Miscellaneous Biopolymers.\u003cbr\u003e\u003cbr\u003e10. Cassia Seed Gums: A Renewable Reservoir for Synthesizing High Performance Materials for Water Remediation (Vandana Singh, and Pramendra Kumar).\u003cbr\u003e\u003cbr\u003e11. Bacterial Polymers: Resources, Synthesis and Applications (GVN Rathna, and Sutapa Gosh).\u003cbr\u003e\u003cbr\u003e12. Gum Arabica: A Natural Biopolymer (A. Sarkar).\u003cbr\u003e\u003cbr\u003e13. Gluten: A Natural Biopolymer (S. Georgiev, and Tereza Dekova).\u003cbr\u003e\u003cbr\u003e14. Natural Rubber: Production, Properties, and Applications (Thomas Kurian, and N. M. Mathew).\u003cbr\u003e\u003cbr\u003e15. Electronic Structures and Conduction Properties of Biopolymers (Mohsineen Wazir, Vinita Arora, and A. K. Bakhshi).\u003cbr\u003e\u003cbr\u003ePart IV. Biopolymers for Specific Applications.\u003cbr\u003e\u003cbr\u003e16. Applications of Biopolymers in Agriculture with Special Reference to Role of Plant Derived Biopolymers in Crop Protection (S. Niranjan Raj, S. N. Lavanya, J, Sudisha, and H. Shekar Shetty).\u003cbr\u003e\u003cbr\u003e17. Modified Cellulose Fibers as a Biosorbent for the Organic Pollutants (Sami Boufi, and Sabrine Alila).\u003cbr\u003e\u003cbr\u003e18. Polymers and Biopolymers in Pharmaceutical Technology (István Erös).\u003cbr\u003e\u003cbr\u003e19. Biopolymers Employed in Drug Delivery (Betina Giehl Zanetti Ramos).\u003cbr\u003e\u003cbr\u003e20. Natural Polymeric Vectors in Gene Therapy (Patit P. Kundu, and Kishor Sarkar).\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eSusheel Kalia is Assistant Professor in the Department of Chemistry, Bahra University (Shimla Hills), India. He received his PhD from Punjab Technical University Jalandhar, India. He has 33 research papers to his credit in international journals along with 45 publications in proceedings of national \u0026amp; international conferences as well as several book chapters. He is a life member of the Asian Polymer Association and Indian Cryogenics Council. He has edited the book, Cellulose Fibers, Bio- and Nano- Polymer Composites (Springer 2011). He is currently working in the field of polymer composites, cellulose nanofibers, hydrogels and cryogenics.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eLuc Avérous is Director of the Laboratory of Engineering Polymers for Advanced Technologies at the University of Strasbourg, France. He obtained his PhD in science and polymer engineering from the School of Mines of Paris in 1995. For the last 15 years his major research projects have dealt with multiphase systems (blends, multilayers, biocomposites, and nano-biocomposites) based on agro-resources (starch, lignins, chitosan, cellulose etc.) and biopolyesters (PLA, PHA, PCL etc.). He has been particularly involved in the study of the materials-process-properties chain. He has published more than 60 journal articles, 15 book chapters, has 2 patents to his name, and has co-edited 3 books. With his expertise in starch-based materials, and more generally in biopolymers, he is regularly invited to organise symposia and conferences.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:50-04:00","created_at":"2017-06-22T21:12:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biomedical","biopolymers","boiosynthesis","book","environment","gluten","gum arabic","natural rubber","polysaccharides"],"price":21600,"price_min":21600,"price_max":21600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378318724,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biopolymers: Biomedical and Environmental Applications","public_title":null,"options":["Default Title"],"price":21600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-63923-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-63923-8.jpg?v=1499189395"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-63923-8.jpg?v=1499189395","options":["Title"],"media":[{"alt":null,"id":353915175005,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-63923-8.jpg?v=1499189395"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-63923-8.jpg?v=1499189395","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Susheel Kalia, Luc Avérous \u003cbr\u003eISBN 978-0-470-63923-8 \u003cbr\u003e\u003cbr\u003e\u003cspan style=\"font-family: Arial, Helvetica, sans-serif; font-size: 12px;\" class=\"Apple-style-span\"\u003eHardcover\u003c\/span\u003e\n\u003cdiv class=\"productDetail-format\"\u003e\n\u003cdiv class=\"productDetail-format\"\u003e642 pages\u003c\/div\u003e\n\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook focuses on biopolymers for both environmental and biomedical applications. It shows recent advances in technology in all areas from chemical synthesis or biosynthesis to end use applications. These areas have not been covered in a single book before and they include biopolymers for chemical and biotechnological modifications, material structures, characterization, processing, properties, and applications.\u003cbr\u003eAfter the introduction which summarizes the importance of biopolymer in the market, the book covers almost all the topics related to polysaccharides, biofibers, bioplastics, biocomposites, natural rubber, gums, bacterial and blood compatible polymers, and applications of biopolymers in various fields.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroductory Preface.\u003cbr\u003e\u003cbr\u003eAbout the Editors.\u003cbr\u003e\u003cbr\u003ePart I. Polysaccharides.\u003cbr\u003e\u003cbr\u003e1. Hyaluronic Acid: A Natural Biopolymer (Juergen Schiller, Nicola Volpi, Eva Hrabárova, and Ladislav Soltes).\u003cbr\u003e\u003cbr\u003e2. Polysaccharide Graft Copolymers Synthesis, Properties and Applications (B. S. Kaith, Hemant Mittal, Jaspreet Kaur Bhatia, and Susheel Kalia).\u003cbr\u003e\u003cbr\u003e3. Natural Polysaccharides: From Membranes to Active Food Packaging (Keith J. Fahnestock, Marjorie S. Austero, and Caroline L. Schauer).\u003cbr\u003e\u003cbr\u003e4. Starch as Source of Polymeric Materials (Antonio A. J. Carvalho).\u003cbr\u003e\u003cbr\u003e5. Grafted Polysaccharides: Smart Materials of Future, Synthesis and Applications (Gautam Sen, Ashoke Sharon, and Sagar Pal).\u003cbr\u003e\u003cbr\u003e6. Chitosan: The Marine based Biopolymer for Applications (Debasish Sahoo, and P. L. Nayak).\u003cbr\u003e\u003cbr\u003ePart II. Bioplastics and Biocomposites.\u003cbr\u003e\u003cbr\u003e7. Biopolymers Based-on Carboxylic Acids Derived from Renewable Resources (Sushil Kumar, Nikhil Prakash, and Dipaloy Datta).\u003cbr\u003e\u003cbr\u003e8. Characteristics and Applications of PLA (Sandra Domenek, Cecile Courgneau, and Violette Ducruet).\u003cbr\u003e\u003cbr\u003e9. Biobased Composites \u0026amp; Applications (Smita Mohanty, and Sanjay K. Nayak).\u003cbr\u003e\u003cbr\u003ePart III. Miscellaneous Biopolymers.\u003cbr\u003e\u003cbr\u003e10. Cassia Seed Gums: A Renewable Reservoir for Synthesizing High Performance Materials for Water Remediation (Vandana Singh, and Pramendra Kumar).\u003cbr\u003e\u003cbr\u003e11. Bacterial Polymers: Resources, Synthesis and Applications (GVN Rathna, and Sutapa Gosh).\u003cbr\u003e\u003cbr\u003e12. Gum Arabica: A Natural Biopolymer (A. Sarkar).\u003cbr\u003e\u003cbr\u003e13. Gluten: A Natural Biopolymer (S. Georgiev, and Tereza Dekova).\u003cbr\u003e\u003cbr\u003e14. Natural Rubber: Production, Properties, and Applications (Thomas Kurian, and N. M. Mathew).\u003cbr\u003e\u003cbr\u003e15. Electronic Structures and Conduction Properties of Biopolymers (Mohsineen Wazir, Vinita Arora, and A. K. Bakhshi).\u003cbr\u003e\u003cbr\u003ePart IV. Biopolymers for Specific Applications.\u003cbr\u003e\u003cbr\u003e16. Applications of Biopolymers in Agriculture with Special Reference to Role of Plant Derived Biopolymers in Crop Protection (S. Niranjan Raj, S. N. Lavanya, J, Sudisha, and H. Shekar Shetty).\u003cbr\u003e\u003cbr\u003e17. Modified Cellulose Fibers as a Biosorbent for the Organic Pollutants (Sami Boufi, and Sabrine Alila).\u003cbr\u003e\u003cbr\u003e18. Polymers and Biopolymers in Pharmaceutical Technology (István Erös).\u003cbr\u003e\u003cbr\u003e19. Biopolymers Employed in Drug Delivery (Betina Giehl Zanetti Ramos).\u003cbr\u003e\u003cbr\u003e20. Natural Polymeric Vectors in Gene Therapy (Patit P. Kundu, and Kishor Sarkar).\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eSusheel Kalia is Assistant Professor in the Department of Chemistry, Bahra University (Shimla Hills), India. He received his PhD from Punjab Technical University Jalandhar, India. He has 33 research papers to his credit in international journals along with 45 publications in proceedings of national \u0026amp; international conferences as well as several book chapters. He is a life member of the Asian Polymer Association and Indian Cryogenics Council. He has edited the book, Cellulose Fibers, Bio- and Nano- Polymer Composites (Springer 2011). He is currently working in the field of polymer composites, cellulose nanofibers, hydrogels and cryogenics.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eLuc Avérous is Director of the Laboratory of Engineering Polymers for Advanced Technologies at the University of Strasbourg, France. He obtained his PhD in science and polymer engineering from the School of Mines of Paris in 1995. For the last 15 years his major research projects have dealt with multiphase systems (blends, multilayers, biocomposites, and nano-biocomposites) based on agro-resources (starch, lignins, chitosan, cellulose etc.) and biopolyesters (PLA, PHA, PCL etc.). He has been particularly involved in the study of the materials-process-properties chain. He has published more than 60 journal articles, 15 book chapters, has 2 patents to his name, and has co-edited 3 books. With his expertise in starch-based materials, and more generally in biopolymers, he is regularly invited to organise symposia and conferences.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Blends and Alloys of E...
$72.00
{"id":11242253956,"title":"Blends and Alloys of Engineering Thermoplastics","handle":"978-0-08041744-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: H.T. van de Grampel \u003cbr\u003eISBN 978-0-08041744-8 \u003cbr\u003e\u003cbr\u003eGE Plastics BV\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e132 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report explains the theory of blending materials which may be essentially incompatible, and the properties and applications of commercially available blends of engineering thermoplastics are then described. \u003cbr\u003e\u003cbr\u003eExperimental results and data on commercial materials can be obtained from the accompanying references and abstracts (499).\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:27-04:00","created_at":"2017-06-22T21:15:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1991","alloys","applications","blends","book","morphology","p-structural","physical properties","polymer","thermoplastics"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378488004,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blends and Alloys of Engineering Thermoplastics","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08041744-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446","options":["Title"],"media":[{"alt":null,"id":353915338845,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: H.T. van de Grampel \u003cbr\u003eISBN 978-0-08041744-8 \u003cbr\u003e\u003cbr\u003eGE Plastics BV\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e132 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report explains the theory of blending materials which may be essentially incompatible, and the properties and applications of commercially available blends of engineering thermoplastics are then described. \u003cbr\u003e\u003cbr\u003eExperimental results and data on commercial materials can be obtained from the accompanying references and abstracts (499).\u003cbr\u003e\u003cbr\u003e"}