- Grid List
Filter
Plasticizers Database
$295.00
{"id":11242211268,"title":"Plasticizers Database","handle":"978-1-895198-57-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1-895198-57-7 \u003cbr\u003e\u003cbr\u003eversion 3.0 \u003cbr\u003eNumber of plasticizers: 1475\u003cbr\u003eNumber of data fields: 105\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePlasticizer Database V.3 is a new edition of database last published in 2004. The new edition has the same structure as the previous database but it is completely updated to the present status of plasticizer production. Since 2004, substantial changes occurred in plasticizer market, caused by health and environmental concerns, which were followed by appropriate regulations. These new regulations and new product developments caused changes in plasticizer production and applications.\u003cbr\u003eSince 2004, 498 plasticizers included in the previous edition of Plasticizer Database were discontinued. Over 200 new plasticizers were added. Also, a number of major plasticizer manufacturers changed from 98 to 85, which shows consolidation of plasticizer production and offering.\u003cbr\u003eAll these changes are clearly reflected in the new edition of Plasticizer Database, which is required by both new readers and owners of the previous edition of the database. Plasticizer Database V.3 is the largest database on plasticizers ever published. The information about its contents is given below.\u003cbr\u003eThe plasticizer database was developed to contain data required in plasticizers application. Attempts were made to include a large number of plasticizers used in various sectors of industry to provide information for all users and to help in finding new solutions and formulations. Plasticizers included in the database can be divided into two categories: generic chemical name compounds and commercial plasticizers which are either mixture of several components, industrial grades of the particular compound, polymeric materials, or products having unknown, complex composition. In most cases, plasticizers differ from solvents by boiling point, which is above 250oC, but some plasticizers are used as temporary plasticizers or are expected to react with other components of the mixture. These substances will not meet the boiling temperature criterion but will still be included since they play the role of plasticizers. A large number of the plasticizers and the data fields makes this database the most comprehensive database on plasticizers ever available in any source.\u003c\/p\u003e\n\u003cp\u003eThe plasticizer database is divided into five general sections: General information, Physical properties, Health \u0026amp; safety, Ecological properties, and Use \u0026amp; performance. Information on the selected plasticizer can be accessed by clicking on any of the above tabs. The database has a large number of data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains plasticizer name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003c\/p\u003e\n\u003cp\u003eIn \u003cb\u003eGeneral Information\u003c\/b\u003e section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical Formula, Molecular mass, RTECS Number, Chemical Category, Mixture, EC number, Ester Content, Phosphorus Content, Bromine Content, Solids Content, Oxirane Oxygen Content, Paraffinic Content, Naphthenic Content, Moisture Content, Chlorine Content, Bound Acrylonitrile, Sulfur Content, Butadiene Content, Aromatic Carbon, Total Aromatic Content, and Hydroxyl Number.\u003cbr\u003ePhysical Properties section contains data on State, Odor, Color (Gardner, Saybolt, and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine Value, Refractive indices at different temperatures, Specific gravity at different temperatures, Density at different temperatures, Vapor pressure at different temperatures, Coefficients of Antoine equation, Temperature range of accuracy of Antoine equation, Vapor Density, Volume Resistivity, Acid number, Acidity(acetic acid), Saponification value, pH, Viscosity at different temperatures, Kinematic viscosity at different temperatures, Absolute viscosity at 25C, Surface tension at different temperatures, Solubility in water, and Water solubility.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eHealth \u0026amp; Safety\u003c\/b\u003e data section contains data on NFPA Classification, Canadian WHMIS Classification, HMIS Personal Protection, OSHA Hazard Class, UN Risk Phrases, US Safety Phrases, UN\/NA Class, DOT Class, ADR\/RIC Class, ICAO\/IATA Class, IMDG Class, Food Approval(s), Autoignition Temperature, Flash Point, Flash Point Method, Explosive LEL, Explosive UEL, TLV - TWA 8h (ACGIH, NIOSH, OSHA), Max Exposure Concentration NIOSH-IDLH, Toxicological Information, acute, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Dermal LD50 (guinea pig), LD50 dermal rat, Inhalation, LC50, (rat, mouse, 4h (mist)), Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, and Mutagenicity.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eEcological Properties\u003c\/b\u003e section includes Biological Oxygen Demand, Chemical Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Sheepshead minnow, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc and log Kow).\u003cbr\u003e\u003cb\u003e\u003cbr\u003eUse \u0026amp; Performance\u003c\/b\u003e section contains the following information: Manufacturer, Recommended for Polymers, Recommended for Products, Outstanding Properties, Limiting Oxygen Index, Tensile Strength at different concentrations of plasticizer, Ultimate Elongation at different concentrations of plasticizer, Elastic Elongation, 100% Modulus at different concentrations of plasticizer, Brittle Temperature at different concentrations of plasticizer, Low Temperature Flexibility at different concentrations of plasticizer, Clash-Berg at different concentrations of plasticizer, Shore A Hardness at different concentrations of plasticizer, and Volatility at different concentrations of plasticizer and different temperatures.\u003c\/p\u003e\n\u003cp\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search finds plasticizers by typing the first letter or two of their name which moves list to the location of a searched compound. Plasticizers can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual plasticizers, plasticizers can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of plasticizers for which data exist for the selected property. The plasticizer property can be viewed on the screen and used for evaluation of plasticizer suitability for the chosen task or plasticizer selection for application as well as plasticizer comparison.\u003c\/p\u003e\n\u003cp\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer operating under Windows XP or higher. The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of plasticizers. The database is an excellent companion to the \u003ca href=\"..\/proddetail.php?prod=1-895198-29-1\"\u003e\u003cb\u003eHandbook of Plasticizers\u003c\/b\u003e\u003c\/a\u003e because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.","published_at":"2017-06-22T21:13:11-04:00","created_at":"2017-06-22T21:13:11-04:00","vendor":"Chemtec Publishing","type":"CD","tags":["2012","abbreviations","absorption","acceptor","acid number","acidity","additives","alectrical conductivity","Antoine equation","autoignition","boiling point","cd","CD-ROM","coefficients","color","combustion","conductivity","density","dissociation","Donor","dor","DOT","EINECS","environment","EPA","ester","explosive","fire","flammability","flash","formula","freezing","Gardner","gravity","Hansen","health","Henry's law","Hildebrand","HMIS","hydroxyl number","iodine value","IUPAC","LEL","melting","moisture","molecular mass","NFPA","OSHA","p-additives","p-properties","pH","phosphorus","pKa","plasticizers","Platinum-cobalt","polarity","polymer","pour","protection","reactivity","refractive","risk phrases","RTECS Number","safety","saponification","solubility","surface","synonyms","tension","UEL","UN","UV","vapor","vaporization","viscosity","volatility","WHMIS"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378334852,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plasticizers Database","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-57-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086","options":["Title"],"media":[{"alt":null,"id":409013289053,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1-895198-57-7 \u003cbr\u003e\u003cbr\u003eversion 3.0 \u003cbr\u003eNumber of plasticizers: 1475\u003cbr\u003eNumber of data fields: 105\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePlasticizer Database V.3 is a new edition of database last published in 2004. The new edition has the same structure as the previous database but it is completely updated to the present status of plasticizer production. Since 2004, substantial changes occurred in plasticizer market, caused by health and environmental concerns, which were followed by appropriate regulations. These new regulations and new product developments caused changes in plasticizer production and applications.\u003cbr\u003eSince 2004, 498 plasticizers included in the previous edition of Plasticizer Database were discontinued. Over 200 new plasticizers were added. Also, a number of major plasticizer manufacturers changed from 98 to 85, which shows consolidation of plasticizer production and offering.\u003cbr\u003eAll these changes are clearly reflected in the new edition of Plasticizer Database, which is required by both new readers and owners of the previous edition of the database. Plasticizer Database V.3 is the largest database on plasticizers ever published. The information about its contents is given below.\u003cbr\u003eThe plasticizer database was developed to contain data required in plasticizers application. Attempts were made to include a large number of plasticizers used in various sectors of industry to provide information for all users and to help in finding new solutions and formulations. Plasticizers included in the database can be divided into two categories: generic chemical name compounds and commercial plasticizers which are either mixture of several components, industrial grades of the particular compound, polymeric materials, or products having unknown, complex composition. In most cases, plasticizers differ from solvents by boiling point, which is above 250oC, but some plasticizers are used as temporary plasticizers or are expected to react with other components of the mixture. These substances will not meet the boiling temperature criterion but will still be included since they play the role of plasticizers. A large number of the plasticizers and the data fields makes this database the most comprehensive database on plasticizers ever available in any source.\u003c\/p\u003e\n\u003cp\u003eThe plasticizer database is divided into five general sections: General information, Physical properties, Health \u0026amp; safety, Ecological properties, and Use \u0026amp; performance. Information on the selected plasticizer can be accessed by clicking on any of the above tabs. The database has a large number of data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains plasticizer name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003c\/p\u003e\n\u003cp\u003eIn \u003cb\u003eGeneral Information\u003c\/b\u003e section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical Formula, Molecular mass, RTECS Number, Chemical Category, Mixture, EC number, Ester Content, Phosphorus Content, Bromine Content, Solids Content, Oxirane Oxygen Content, Paraffinic Content, Naphthenic Content, Moisture Content, Chlorine Content, Bound Acrylonitrile, Sulfur Content, Butadiene Content, Aromatic Carbon, Total Aromatic Content, and Hydroxyl Number.\u003cbr\u003ePhysical Properties section contains data on State, Odor, Color (Gardner, Saybolt, and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine Value, Refractive indices at different temperatures, Specific gravity at different temperatures, Density at different temperatures, Vapor pressure at different temperatures, Coefficients of Antoine equation, Temperature range of accuracy of Antoine equation, Vapor Density, Volume Resistivity, Acid number, Acidity(acetic acid), Saponification value, pH, Viscosity at different temperatures, Kinematic viscosity at different temperatures, Absolute viscosity at 25C, Surface tension at different temperatures, Solubility in water, and Water solubility.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eHealth \u0026amp; Safety\u003c\/b\u003e data section contains data on NFPA Classification, Canadian WHMIS Classification, HMIS Personal Protection, OSHA Hazard Class, UN Risk Phrases, US Safety Phrases, UN\/NA Class, DOT Class, ADR\/RIC Class, ICAO\/IATA Class, IMDG Class, Food Approval(s), Autoignition Temperature, Flash Point, Flash Point Method, Explosive LEL, Explosive UEL, TLV - TWA 8h (ACGIH, NIOSH, OSHA), Max Exposure Concentration NIOSH-IDLH, Toxicological Information, acute, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Dermal LD50 (guinea pig), LD50 dermal rat, Inhalation, LC50, (rat, mouse, 4h (mist)), Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, and Mutagenicity.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eEcological Properties\u003c\/b\u003e section includes Biological Oxygen Demand, Chemical Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Sheepshead minnow, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc and log Kow).\u003cbr\u003e\u003cb\u003e\u003cbr\u003eUse \u0026amp; Performance\u003c\/b\u003e section contains the following information: Manufacturer, Recommended for Polymers, Recommended for Products, Outstanding Properties, Limiting Oxygen Index, Tensile Strength at different concentrations of plasticizer, Ultimate Elongation at different concentrations of plasticizer, Elastic Elongation, 100% Modulus at different concentrations of plasticizer, Brittle Temperature at different concentrations of plasticizer, Low Temperature Flexibility at different concentrations of plasticizer, Clash-Berg at different concentrations of plasticizer, Shore A Hardness at different concentrations of plasticizer, and Volatility at different concentrations of plasticizer and different temperatures.\u003c\/p\u003e\n\u003cp\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search finds plasticizers by typing the first letter or two of their name which moves list to the location of a searched compound. Plasticizers can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual plasticizers, plasticizers can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of plasticizers for which data exist for the selected property. The plasticizer property can be viewed on the screen and used for evaluation of plasticizer suitability for the chosen task or plasticizer selection for application as well as plasticizer comparison.\u003c\/p\u003e\n\u003cp\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer operating under Windows XP or higher. The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of plasticizers. The database is an excellent companion to the \u003ca href=\"..\/proddetail.php?prod=1-895198-29-1\"\u003e\u003cb\u003eHandbook of Plasticizers\u003c\/b\u003e\u003c\/a\u003e because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment."}
Stabilisers for Polyol...
$119.00
{"id":11242207172,"title":"Stabilisers for Polyolefins","handle":"978-1-85957-285-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Kröhnke and F. Werner, Clariant Huningue \u003cbr\u003eISBN 978-1-85957-285-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: Nov 2001\u003cbr\u003e\u003c\/span\u003ePages 132\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the first technical breakthrough occurred in the development of plastics at the beginning of the 20th century, plastic materials have become increasingly important. As well as research into polymer synthesis, the polymer industry is permanently challenged to improve the stability and lifetime of polymers. Demanding requirements can only be reached by means of the addition of small amounts of appropriate stabilisers, which maintain or even improve the initial properties of plastic materials. \u003cbr\u003e\u003cbr\u003eIn this review, the authors describe the main types of stabilisers with the focus on those categories for polyolefins. They also elucidate some of the physical and chemical aspects of such products when incorporated into the polymer matrix, discussing stability during weathering, heat ageing, and processing. Examples of the stabilisation of a variety of different articles are presented to reinforce the points discussed. The review is supported by several hundred relevant abstracts selected from the Rapra Abstracts database\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eChristoph Kröhnke\u003c\/strong\u003e is presently Team leader in the Development Group of Clariant's Business Line Polymer Additives. His expertise lies mainly in the field of solid-state polymer chemistry and physics. Since 1991 he has been particularly involved in the area of polymer degradation and stabilisation.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrédéric Werner\u003c\/strong\u003e joined Clariant's Business Line Polymer Additives in 1999 as regional technical manager for South Europe, Eastern Europe, and Mexico. He provides technical support to customers in the area of polyolefins and engineering plastics with products including amongst others processing, long-term heat, and light stabilisers.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:12:59-04:00","created_at":"2017-06-22T21:12:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","additives","ageing","book","degradation","heat","p-additives","p-applications","plastics","polymer","polymers","polyolefines","polyolefins","stabilisers"],"price":11900,"price_min":11900,"price_max":11900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378325700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Stabilisers for Polyolefins","public_title":null,"options":["Default Title"],"price":11900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-285-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895","options":["Title"],"media":[{"alt":null,"id":358762512477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Kröhnke and F. Werner, Clariant Huningue \u003cbr\u003eISBN 978-1-85957-285-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: Nov 2001\u003cbr\u003e\u003c\/span\u003ePages 132\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the first technical breakthrough occurred in the development of plastics at the beginning of the 20th century, plastic materials have become increasingly important. As well as research into polymer synthesis, the polymer industry is permanently challenged to improve the stability and lifetime of polymers. Demanding requirements can only be reached by means of the addition of small amounts of appropriate stabilisers, which maintain or even improve the initial properties of plastic materials. \u003cbr\u003e\u003cbr\u003eIn this review, the authors describe the main types of stabilisers with the focus on those categories for polyolefins. They also elucidate some of the physical and chemical aspects of such products when incorporated into the polymer matrix, discussing stability during weathering, heat ageing, and processing. Examples of the stabilisation of a variety of different articles are presented to reinforce the points discussed. The review is supported by several hundred relevant abstracts selected from the Rapra Abstracts database\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eChristoph Kröhnke\u003c\/strong\u003e is presently Team leader in the Development Group of Clariant's Business Line Polymer Additives. His expertise lies mainly in the field of solid-state polymer chemistry and physics. Since 1991 he has been particularly involved in the area of polymer degradation and stabilisation.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrédéric Werner\u003c\/strong\u003e joined Clariant's Business Line Polymer Additives in 1999 as regional technical manager for South Europe, Eastern Europe, and Mexico. He provides technical support to customers in the area of polyolefins and engineering plastics with products including amongst others processing, long-term heat, and light stabilisers.\u003cbr\u003e\u003cbr\u003e"}
Structure and Properti...
$205.00
{"id":11242242948,"title":"Structure and Properties of Crosslinked Polymers","handle":"978-1-84735-559-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","crosslinked polymers","epoxy polymers","nanocomposites","p-additives","p-structural","polymer","supersegmental structure"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Structure and Properties of Crosslinked Polymers","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-559-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","options":["Title"],"media":[{"alt":null,"id":358766608477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Update on Troubleshoot...
$130.00
{"id":11242230148,"title":"Update on Troubleshooting the PVC Extrusion Process","handle":"9781847355508","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Natamai Subramanian Muralisrinivasan \u003cbr\u003eISBN 9781847355508 \u003cbr\u003e\u003cbr\u003ePages:164\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years, PVC has penetrated markets once dominated by metals, it continues to grow in popularity with unique and dependable properties that can be used efficiently and produced economically. Because of the flexible to rigid formulations, the field of PVC is continually marked with technical innovations. Additives are also a part both technically and economically in the PVC extrusion processes. Plasticizers are the third largest global plastic additives used in PVC production. The driving forces for PVC extrusion comes from the extensive use of additives in a wide range of applications, increased quality requirements, the need of PVC products that meet increasingly rigorous quality specifications and problems relating to finished products.\u003cbr\u003e\u003cbr\u003eThis comprehensive book contains information on a wide range of topics with the emphasis on compounding and additives but also gives details about the combination of woody materials with PVC to wood polymer composites (WPC).\u003cbr\u003e\u003cbr\u003eThis Update will help the reader enhance their knowledge in PVC processing technology. R\u0026amp;D scientists, researchers, production managers, chemical engineers, and academics alike will all benefit.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e","published_at":"2017-06-22T21:14:13-04:00","created_at":"2017-06-22T21:14:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","additives","book","extrusion","p-additives","p-chemistry","plasticizers","polymer","polymer composites (WPC)","polymers","PVC"],"price":13000,"price_min":13000,"price_max":13000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378399684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Update on Troubleshooting the PVC Extrusion Process","public_title":null,"options":["Default Title"],"price":13000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847355508","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847355508_525ea61a-8735-4145-830f-c7fbac4215ef.jpg?v=1499957097"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355508_525ea61a-8735-4145-830f-c7fbac4215ef.jpg?v=1499957097","options":["Title"],"media":[{"alt":null,"id":358841516125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355508_525ea61a-8735-4145-830f-c7fbac4215ef.jpg?v=1499957097"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355508_525ea61a-8735-4145-830f-c7fbac4215ef.jpg?v=1499957097","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Natamai Subramanian Muralisrinivasan \u003cbr\u003eISBN 9781847355508 \u003cbr\u003e\u003cbr\u003ePages:164\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years, PVC has penetrated markets once dominated by metals, it continues to grow in popularity with unique and dependable properties that can be used efficiently and produced economically. Because of the flexible to rigid formulations, the field of PVC is continually marked with technical innovations. Additives are also a part both technically and economically in the PVC extrusion processes. Plasticizers are the third largest global plastic additives used in PVC production. The driving forces for PVC extrusion comes from the extensive use of additives in a wide range of applications, increased quality requirements, the need of PVC products that meet increasingly rigorous quality specifications and problems relating to finished products.\u003cbr\u003e\u003cbr\u003eThis comprehensive book contains information on a wide range of topics with the emphasis on compounding and additives but also gives details about the combination of woody materials with PVC to wood polymer composites (WPC).\u003cbr\u003e\u003cbr\u003eThis Update will help the reader enhance their knowledge in PVC processing technology. R\u0026amp;D scientists, researchers, production managers, chemical engineers, and academics alike will all benefit.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e"}