- Grid List
Filter
Databook of Solvents
$285.00
{"id":11242240452,"title":"Databook of Solvents","handle":"978-1-895198-80-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-895198-80-5 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2014\u003c\/span\u003e\u003cbr\u003ePages: 742\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSolvents comprise a large group of commercial products of different purities determined by their application (e.g., chemical reagents, pharmaceutical solvents, cleaning liquids, etc.). Their properties are very important for application of solvents and needed to understand behavior of solvent mixtures. \u003cbr\u003e\u003cbr\u003eThis book contains large set of data on the most important solvents used in everyday industrial practice. The Databook of Solvents provides information divided into five sections: General, Physical, Health, Environmental, and Use. \u003cbr\u003e\u003cbr\u003eIn the General section the following data are displayed: Name, CAS number, Acronym, Chemical category, Empirical formula, IUPAC name, Mixture, Moisture contents, Molecular weight, Properties, Product contents, EC number, RTECS number, and Synonyms 1, 2, 3.\u003cbr\u003ePhysical section contains data on Name, CAS number, Dielectric constant, Acceptor number, Acid dissociation constant, Aniline point, Antoine temperature range, Antoine constants A, B, and C, Boiling temperature, Coefficient of thermal expansion, Color, Corrosivity, Donor number, Electrical conductivity, Evaporation rates with butyl acetate=1 and ether=1, Freezing temperature, Hansen solubility parameters dD, dP, and dH, Molar volume, Heat of combustion, Enthalpy of vaporization, Enthalpy of vaporization temperature, Henry's law constant, Hildebrand solubility parameter, Kauri butanol number, Odor, Odor threshold, pH, Polarity parameter, ET(30), Refractive index, Solubility in water, Specific gravity, Specific gravity temperature, Specific heat, State, Surface tension, Thermal conductivity, Vapor density, Vapor pressure, Vapor pressure temperature, Viscosity, and Viscosity temperature.\u003cbr\u003e\u003cbr\u003eHealth section contains data on Name, CAS number, Autoignition temperature, Carcinogenicity: IRAC, NTP, OSHA, Mutagenic properties, Reproduction\/developmental toxicity, DOT class, TDG class, ICAO\/IATA class, packaging group, IMDG class, packaging group, UN\/NA hazard class, UN packaging group, Proper shipping name, Explosion limits: lower and upper, Flash point, Flash point method, LD50 dermal (rabbit), LC50 inhalation (rat), LD50 oral (mouse), LD50 oral (rat), Maximum concentration during 30 min exposure (NIOSH-IDLH), Maximum concentration at any time: ACGIH, NIOSH, OSHA, Maximum concentration during continuous exposure for 15 min: ACGIH, NIOSH, OSHA, NFPA flammability, health, reactivity, HMIS flammability, health, reactivity, Route of entry, Ingestion, Skin irritation, Eye irritation, Inhalation, First aid: eyes, skin, inhalation, Chronic effects, Target organs, Threshold limiting value: ACGIH, NIOSH, OSHA, UN number, UN risk phrases, and UN safety phrases. \u003cbr\u003e\u003cbr\u003eEnvironmental section contains data on Name, CAS number, Aquatic toxicity, Bluegill sunfish (96-h LC50), Daphnia magna (96-h LC50) and (48-h LC50), Fathead minnow (96-h LC50), Rainbow trout (96-h LC50), Bioconcentration factor, Biodegradation probability, Biological oxygen demand (20-day test) and (5-day test), Chemical oxygen demand, Atmospheric half-life, Hydroxyl rate constant, Global warming potential, Montreal protocol, Partition coefficient, Ozone depletion potential (CFC11=1), Ozone rate constant, Soil absorption constant, Theoretical oxygen demand, Urban ozone formation potential (C2H4=1), UV absorption.\u003cbr\u003e\u003cbr\u003eUse section contains information on Name, CAS number, Manufacturer, Outstanding properties, Potential substitutes, Recommended for polymers, Features \u0026amp; benefits, Processing methods, Recommended dosage, and Recommended for products.\u003cbr\u003eMore than 250 of the most essential solvents are included in the publication. The table of contents gives more information on solvent groups included in the Databook of Solvents. \u003cbr\u003eReaders interested in this subject should note that two volumes of fundamental treatment of all essential areas of solvents’ use have also been just published. They include: Handbook of Solvents. Volume 1. Properties and Handbook of Solvents. Volume 2. Use, Health, and Environment. Together these four books provide the most comprehensive information on the subject ever published. The books are the authoritative source of knowledge, considering that very well-known experts in the fields of solvent use were involved in creation of these extensive publications.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e2 INFORMATION ON THE DATA FIELDS\u003cbr\u003e3 SOLVENTS\u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Alcohols\u003cbr\u003e3.3 Aldehydes\u003cbr\u003e3.4 Aliphatic hydrocarbons\u003cbr\u003e3.5 Amides\u003cbr\u003e3.6 Amines\u003cbr\u003e3.7 Aromatic hydrocarbons\u003cbr\u003e3.8 Chlorofluorocarbons \u003cbr\u003e3.9 Esters\u003cbr\u003e3.10 Ethers\u003cbr\u003e3.11 Glycol ethers\u003cbr\u003e3.12 Halogenated\u003cbr\u003e3.13 Heterocyclic\u003cbr\u003e3.14 Hydrochlorofluorocarbons\u003cbr\u003e3.15 Ketones\u003cbr\u003e3.16 Nitriles\u003cbr\u003e3.17 Perfluorocarbons\u003cbr\u003e3.18 Polyhydric alcohols\u003cbr\u003e3.19 Sulfoxides\u003cbr\u003e3.20 Supercritical fluids\u003cbr\u003e3.21 Terpenes\u003cbr\u003e3.22 Thiol derivatives","published_at":"2017-06-22T21:14:44-04:00","created_at":"2017-06-22T21:14:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","environment","environmental impact","features and benefits","general","health and safety data","p-additives","physical properties","potential substitutes","solvents","use"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433860,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Databook of Solvents","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-80-5","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-80-5.jpg?v=1499212946"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-80-5.jpg?v=1499212946","options":["Title"],"media":[{"alt":null,"id":353970061405,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-80-5.jpg?v=1499212946"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-80-5.jpg?v=1499212946","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-895198-80-5 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2014\u003c\/span\u003e\u003cbr\u003ePages: 742\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSolvents comprise a large group of commercial products of different purities determined by their application (e.g., chemical reagents, pharmaceutical solvents, cleaning liquids, etc.). Their properties are very important for application of solvents and needed to understand behavior of solvent mixtures. \u003cbr\u003e\u003cbr\u003eThis book contains large set of data on the most important solvents used in everyday industrial practice. The Databook of Solvents provides information divided into five sections: General, Physical, Health, Environmental, and Use. \u003cbr\u003e\u003cbr\u003eIn the General section the following data are displayed: Name, CAS number, Acronym, Chemical category, Empirical formula, IUPAC name, Mixture, Moisture contents, Molecular weight, Properties, Product contents, EC number, RTECS number, and Synonyms 1, 2, 3.\u003cbr\u003ePhysical section contains data on Name, CAS number, Dielectric constant, Acceptor number, Acid dissociation constant, Aniline point, Antoine temperature range, Antoine constants A, B, and C, Boiling temperature, Coefficient of thermal expansion, Color, Corrosivity, Donor number, Electrical conductivity, Evaporation rates with butyl acetate=1 and ether=1, Freezing temperature, Hansen solubility parameters dD, dP, and dH, Molar volume, Heat of combustion, Enthalpy of vaporization, Enthalpy of vaporization temperature, Henry's law constant, Hildebrand solubility parameter, Kauri butanol number, Odor, Odor threshold, pH, Polarity parameter, ET(30), Refractive index, Solubility in water, Specific gravity, Specific gravity temperature, Specific heat, State, Surface tension, Thermal conductivity, Vapor density, Vapor pressure, Vapor pressure temperature, Viscosity, and Viscosity temperature.\u003cbr\u003e\u003cbr\u003eHealth section contains data on Name, CAS number, Autoignition temperature, Carcinogenicity: IRAC, NTP, OSHA, Mutagenic properties, Reproduction\/developmental toxicity, DOT class, TDG class, ICAO\/IATA class, packaging group, IMDG class, packaging group, UN\/NA hazard class, UN packaging group, Proper shipping name, Explosion limits: lower and upper, Flash point, Flash point method, LD50 dermal (rabbit), LC50 inhalation (rat), LD50 oral (mouse), LD50 oral (rat), Maximum concentration during 30 min exposure (NIOSH-IDLH), Maximum concentration at any time: ACGIH, NIOSH, OSHA, Maximum concentration during continuous exposure for 15 min: ACGIH, NIOSH, OSHA, NFPA flammability, health, reactivity, HMIS flammability, health, reactivity, Route of entry, Ingestion, Skin irritation, Eye irritation, Inhalation, First aid: eyes, skin, inhalation, Chronic effects, Target organs, Threshold limiting value: ACGIH, NIOSH, OSHA, UN number, UN risk phrases, and UN safety phrases. \u003cbr\u003e\u003cbr\u003eEnvironmental section contains data on Name, CAS number, Aquatic toxicity, Bluegill sunfish (96-h LC50), Daphnia magna (96-h LC50) and (48-h LC50), Fathead minnow (96-h LC50), Rainbow trout (96-h LC50), Bioconcentration factor, Biodegradation probability, Biological oxygen demand (20-day test) and (5-day test), Chemical oxygen demand, Atmospheric half-life, Hydroxyl rate constant, Global warming potential, Montreal protocol, Partition coefficient, Ozone depletion potential (CFC11=1), Ozone rate constant, Soil absorption constant, Theoretical oxygen demand, Urban ozone formation potential (C2H4=1), UV absorption.\u003cbr\u003e\u003cbr\u003eUse section contains information on Name, CAS number, Manufacturer, Outstanding properties, Potential substitutes, Recommended for polymers, Features \u0026amp; benefits, Processing methods, Recommended dosage, and Recommended for products.\u003cbr\u003eMore than 250 of the most essential solvents are included in the publication. The table of contents gives more information on solvent groups included in the Databook of Solvents. \u003cbr\u003eReaders interested in this subject should note that two volumes of fundamental treatment of all essential areas of solvents’ use have also been just published. They include: Handbook of Solvents. Volume 1. Properties and Handbook of Solvents. Volume 2. Use, Health, and Environment. Together these four books provide the most comprehensive information on the subject ever published. The books are the authoritative source of knowledge, considering that very well-known experts in the fields of solvent use were involved in creation of these extensive publications.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e2 INFORMATION ON THE DATA FIELDS\u003cbr\u003e3 SOLVENTS\u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Alcohols\u003cbr\u003e3.3 Aldehydes\u003cbr\u003e3.4 Aliphatic hydrocarbons\u003cbr\u003e3.5 Amides\u003cbr\u003e3.6 Amines\u003cbr\u003e3.7 Aromatic hydrocarbons\u003cbr\u003e3.8 Chlorofluorocarbons \u003cbr\u003e3.9 Esters\u003cbr\u003e3.10 Ethers\u003cbr\u003e3.11 Glycol ethers\u003cbr\u003e3.12 Halogenated\u003cbr\u003e3.13 Heterocyclic\u003cbr\u003e3.14 Hydrochlorofluorocarbons\u003cbr\u003e3.15 Ketones\u003cbr\u003e3.16 Nitriles\u003cbr\u003e3.17 Perfluorocarbons\u003cbr\u003e3.18 Polyhydric alcohols\u003cbr\u003e3.19 Sulfoxides\u003cbr\u003e3.20 Supercritical fluids\u003cbr\u003e3.21 Terpenes\u003cbr\u003e3.22 Thiol derivatives"}
Databook of Solvents -...
$295.00
{"id":2059055333469,"title":"Databook of Solvents - 2nd edition","handle":"databook-of-solvents-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-927885-45-1\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003e\u003cbr\u003e\u003c\/span\u003ePublication date: January 2019\u003cbr\u003eNumber of pages: 798+x\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe second edition of this book was redesigned to include all high production volume solvents. The high production volume solvents are produced or imported at levels greater than 1,000 tones per year in at least one member country. The most recent list of these chemicals has been compiled based on submissions from eight member countries (including the USA) in addition to the European Union’s HPV list according to EC Regulation 793\/93. It has been used by the member countries to choose chemicals on which to make a hazard assessment for human health and the environment.\u003c\/p\u003e\n\u003cp\u003eThis selection of data is important considering that it is expected that the total amount of solvents to be used in 2020 in the USA alone will be 4.3 million tons. Still, an unknown but considered a large fraction of these massive amounts of solvents ends up polluting the air, water, and soil. It is hoped that this the most extensive and up-to-date information on these solvents (sometimes containing suggestions on safer replacements if they were readily available) will help in a more rational, effective, and safe use of the solvents.\u003c\/p\u003e\n\u003cp\u003eThis book is the reference source containing a large number of data on the most important solvents used in industry. Solvents comprise a large group of commercial products of different purities determined by their application (e.g., chemical reagents, pharmaceutical solvents, cleaning liquids, etc.). Their properties are very important for selection of solvents for the application. They are also needed to understand the behavior of solvent mixtures.\u003c\/p\u003e\n\u003cp\u003eThis book contains a large set of data on the most important solvents used in everyday industrial practice. The \u003cstrong\u003eDatabook of Solvents\u003c\/strong\u003e provides information divided into five sections: General, Physical, Health, Environmental, and Use.\u003c\/p\u003e\n\u003cp\u003eIn the \u003cstrong\u003eGeneral s\u003c\/strong\u003eection the following data are displayed: Name, CAS number, Acronym, Chemical category, Empirical formula, IUPAC name, Mixture, Moisture contents, Molecular weight, Properties, Product contents, EC number, RTECS number, and Synonyms 1, 2, 3.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePhysical\u003c\/strong\u003e section contains data on Name, CAS number, Dielectric constant, Acceptor number, Acid dissociation constant, Aniline point, Antoine temperature range, Antoine constants A, B, and C, Boiling temperature, Coefficient of thermal expansion, Color, Corrosivity, Donor number, Electrical conductivity, Evaporation rates with butyl acetate=1 and ether=1, Freezing temperature, Hansen solubility parameters dD, dP, and dH, Molar volume, Heat of combustion, Enthalpy of vaporization, Enthalpy of vaporization temperature, Henry's law constant, Hildebrand solubility parameter, Kauri butanol number, Odor, Odor threshold, pH, Polarity parameter, ET(30), Refractive index, Solubility in water, Specific gravity, Specific gravity temperature, Specific heat, State, Surface tension, Thermal conductivity, Vapor density, Vapor pressure, Vapor pressure temperature, Viscosity, and Viscosity temperature.\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003eHealth \u003c\/strong\u003esection contains data on Name, CAS number, Autoignition temperature, Carcinogenicity: IRAC, NTP, OSHA, Mutagenic properties, Reproduction\/developmental toxicity, DOT class, TDG class, ICAO\/IATA class, packaging group, IMDG class, packaging group, UN\/NA hazard class, UN packaging group, Proper shipping name, Explosion limits: lower and upper, Flash point, Flash point method, LD50 dermal (rabbit), LC50 inhalation (rat), LD50 oral (mouse), LD50 oral (rat), Maximum concentration during 30 min exposure (NIOSH-IDLH), Maximum concentration at any time: ACGIH, NIOSH, OSHA, Maximum concentration during continuous exposure for 15 min: ACGIH, NIOSH, OSHA, NFPA flammability, health, reactivity, HMIS flammability, health, reactivity, Route of entry, Ingestion, Skin irritation, Eye irritation, Inhalation, First aid: eyes, skin, inhalation, Chronic effects, Target organs, Threshold limiting value: ACGIH, NIOSH, OSHA, UN number, UN risk phrases, and UN safety phrases.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eEnvironmental\u003c\/strong\u003e section contains data on Name, CAS number, Aquatic toxicity, Bluegill sunfish (96-h LC50), Daphnia magna (96-h LC50) and (48-h LC50), Fathead minnow (96-h LC50), Rainbow trout (96-h LC50), Bioconcentration factor, Biodegradation probability, Biological oxygen demand (20-day test) and (5-day test), Chemical oxygen demand, Atmospheric half-life, Hydroxyl rate constant, Global warming potential, Montreal protocol, Partition coefficient, Ozone depletion potential (CFC11=1), Ozone rate constant, Soil absorption constant, Theoretical oxygen demand, Urban ozone formation potential (C2H4=1), UV absorption.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eUse\u003c\/strong\u003e section contains information on Name, CAS number, Manufacturer, Outstanding properties, Potential substitutes, Recommended for polymers, Features \u0026amp; benefits, Processing methods, Recommended dosage, and Recommended for products.\u003c\/p\u003e\n\u003cp\u003eMore than 280 of these essential solvents are included in the publication. The table of contents gives more information on solvent groups included in the \u003cstrong\u003eDatabook of Solvents\u003c\/strong\u003e. Further information which may help in replacement of these solvents can be found in a separate publication entitled \u003cstrong\u003eDatabook of Green Solvents\u003c\/strong\u003e which is published in the most current revised version.\u003c\/p\u003e\n\u003cp\u003eReaders interested in this subject should note that two volumes of fundamental treatment of all essential areas of solvents’ use have also been just published. They include \u003cstrong\u003eHandbook of Solvents. Volume 1. Properties \u003c\/strong\u003eand\u003cstrong\u003e Handbook of Solvents\u003c\/strong\u003e. \u003cstrong\u003eVolume 2. Use, Health, and Environment\u003c\/strong\u003e. Together these four books provide the most comprehensive information on the subject of solvents ever published. The books are the authoritative source of knowledge, considering that experts in the fields of solvent use were involved in the creation of these extensive publications. One of the essential aims of these books is to keep them updated with the most up-to-date findings, data, and commercial developments.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e2 INFORMATION ON THE DATA FIELDS\u003cbr\u003e3 SOLVENTS\u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Alcohols\u003cbr\u003e3.3 Aldehydes\u003cbr\u003e3.4 Aliphatic hydrocarbons\u003cbr\u003e3.5 Amides\u003cbr\u003e3.6 Amines\u003cbr\u003e3.7 Aromatic hydrocarbons\u003cbr\u003e3.8 Chlorofluorocarbons \u003cbr\u003e3.9 Esters\u003cbr\u003e3.10 Ethers\u003cbr\u003e3.11 Glycol ethers\u003cbr\u003e3.12 Halogenated\u003cbr\u003e3.13 Heterocyclic\u003cbr\u003e3.14 Hydrochlorofluorocarbons\u003cbr\u003e3.15 Ketones\u003cbr\u003e3.16 Nitriles\u003cbr\u003e3.17 Perfluorocarbons\u003cbr\u003e3.18 Polyhydric alcohols\u003cbr\u003e3.19 Sulfoxides\u003cbr\u003e3.20 Supercritical fluids\u003cbr\u003e3.21 Terpenes\u003cbr\u003e3.22 Thiol derivatives","published_at":"2019-03-18T14:30:00-04:00","created_at":"2019-03-18T14:15:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2019","environment","environmental impact","features and benefits","general","health and safety data","p-additives","physical properties","potential substitutes","solvents","use"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":20181786296413,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Databook of Solvents - 2nd edition","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-45-1","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-45-1.jpg?v=1552933325"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-45-1.jpg?v=1552933325","options":["Title"],"media":[{"alt":null,"id":1423137112157,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-45-1.jpg?v=1552933325"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-45-1.jpg?v=1552933325","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-927885-45-1\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003e\u003cbr\u003e\u003c\/span\u003ePublication date: January 2019\u003cbr\u003eNumber of pages: 798+x\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe second edition of this book was redesigned to include all high production volume solvents. The high production volume solvents are produced or imported at levels greater than 1,000 tones per year in at least one member country. The most recent list of these chemicals has been compiled based on submissions from eight member countries (including the USA) in addition to the European Union’s HPV list according to EC Regulation 793\/93. It has been used by the member countries to choose chemicals on which to make a hazard assessment for human health and the environment.\u003c\/p\u003e\n\u003cp\u003eThis selection of data is important considering that it is expected that the total amount of solvents to be used in 2020 in the USA alone will be 4.3 million tons. Still, an unknown but considered a large fraction of these massive amounts of solvents ends up polluting the air, water, and soil. It is hoped that this the most extensive and up-to-date information on these solvents (sometimes containing suggestions on safer replacements if they were readily available) will help in a more rational, effective, and safe use of the solvents.\u003c\/p\u003e\n\u003cp\u003eThis book is the reference source containing a large number of data on the most important solvents used in industry. Solvents comprise a large group of commercial products of different purities determined by their application (e.g., chemical reagents, pharmaceutical solvents, cleaning liquids, etc.). Their properties are very important for selection of solvents for the application. They are also needed to understand the behavior of solvent mixtures.\u003c\/p\u003e\n\u003cp\u003eThis book contains a large set of data on the most important solvents used in everyday industrial practice. The \u003cstrong\u003eDatabook of Solvents\u003c\/strong\u003e provides information divided into five sections: General, Physical, Health, Environmental, and Use.\u003c\/p\u003e\n\u003cp\u003eIn the \u003cstrong\u003eGeneral s\u003c\/strong\u003eection the following data are displayed: Name, CAS number, Acronym, Chemical category, Empirical formula, IUPAC name, Mixture, Moisture contents, Molecular weight, Properties, Product contents, EC number, RTECS number, and Synonyms 1, 2, 3.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePhysical\u003c\/strong\u003e section contains data on Name, CAS number, Dielectric constant, Acceptor number, Acid dissociation constant, Aniline point, Antoine temperature range, Antoine constants A, B, and C, Boiling temperature, Coefficient of thermal expansion, Color, Corrosivity, Donor number, Electrical conductivity, Evaporation rates with butyl acetate=1 and ether=1, Freezing temperature, Hansen solubility parameters dD, dP, and dH, Molar volume, Heat of combustion, Enthalpy of vaporization, Enthalpy of vaporization temperature, Henry's law constant, Hildebrand solubility parameter, Kauri butanol number, Odor, Odor threshold, pH, Polarity parameter, ET(30), Refractive index, Solubility in water, Specific gravity, Specific gravity temperature, Specific heat, State, Surface tension, Thermal conductivity, Vapor density, Vapor pressure, Vapor pressure temperature, Viscosity, and Viscosity temperature.\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003eHealth \u003c\/strong\u003esection contains data on Name, CAS number, Autoignition temperature, Carcinogenicity: IRAC, NTP, OSHA, Mutagenic properties, Reproduction\/developmental toxicity, DOT class, TDG class, ICAO\/IATA class, packaging group, IMDG class, packaging group, UN\/NA hazard class, UN packaging group, Proper shipping name, Explosion limits: lower and upper, Flash point, Flash point method, LD50 dermal (rabbit), LC50 inhalation (rat), LD50 oral (mouse), LD50 oral (rat), Maximum concentration during 30 min exposure (NIOSH-IDLH), Maximum concentration at any time: ACGIH, NIOSH, OSHA, Maximum concentration during continuous exposure for 15 min: ACGIH, NIOSH, OSHA, NFPA flammability, health, reactivity, HMIS flammability, health, reactivity, Route of entry, Ingestion, Skin irritation, Eye irritation, Inhalation, First aid: eyes, skin, inhalation, Chronic effects, Target organs, Threshold limiting value: ACGIH, NIOSH, OSHA, UN number, UN risk phrases, and UN safety phrases.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eEnvironmental\u003c\/strong\u003e section contains data on Name, CAS number, Aquatic toxicity, Bluegill sunfish (96-h LC50), Daphnia magna (96-h LC50) and (48-h LC50), Fathead minnow (96-h LC50), Rainbow trout (96-h LC50), Bioconcentration factor, Biodegradation probability, Biological oxygen demand (20-day test) and (5-day test), Chemical oxygen demand, Atmospheric half-life, Hydroxyl rate constant, Global warming potential, Montreal protocol, Partition coefficient, Ozone depletion potential (CFC11=1), Ozone rate constant, Soil absorption constant, Theoretical oxygen demand, Urban ozone formation potential (C2H4=1), UV absorption.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eUse\u003c\/strong\u003e section contains information on Name, CAS number, Manufacturer, Outstanding properties, Potential substitutes, Recommended for polymers, Features \u0026amp; benefits, Processing methods, Recommended dosage, and Recommended for products.\u003c\/p\u003e\n\u003cp\u003eMore than 280 of these essential solvents are included in the publication. The table of contents gives more information on solvent groups included in the \u003cstrong\u003eDatabook of Solvents\u003c\/strong\u003e. Further information which may help in replacement of these solvents can be found in a separate publication entitled \u003cstrong\u003eDatabook of Green Solvents\u003c\/strong\u003e which is published in the most current revised version.\u003c\/p\u003e\n\u003cp\u003eReaders interested in this subject should note that two volumes of fundamental treatment of all essential areas of solvents’ use have also been just published. They include \u003cstrong\u003eHandbook of Solvents. Volume 1. Properties \u003c\/strong\u003eand\u003cstrong\u003e Handbook of Solvents\u003c\/strong\u003e. \u003cstrong\u003eVolume 2. Use, Health, and Environment\u003c\/strong\u003e. Together these four books provide the most comprehensive information on the subject of solvents ever published. The books are the authoritative source of knowledge, considering that experts in the fields of solvent use were involved in the creation of these extensive publications. One of the essential aims of these books is to keep them updated with the most up-to-date findings, data, and commercial developments.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e2 INFORMATION ON THE DATA FIELDS\u003cbr\u003e3 SOLVENTS\u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Alcohols\u003cbr\u003e3.3 Aldehydes\u003cbr\u003e3.4 Aliphatic hydrocarbons\u003cbr\u003e3.5 Amides\u003cbr\u003e3.6 Amines\u003cbr\u003e3.7 Aromatic hydrocarbons\u003cbr\u003e3.8 Chlorofluorocarbons \u003cbr\u003e3.9 Esters\u003cbr\u003e3.10 Ethers\u003cbr\u003e3.11 Glycol ethers\u003cbr\u003e3.12 Halogenated\u003cbr\u003e3.13 Heterocyclic\u003cbr\u003e3.14 Hydrochlorofluorocarbons\u003cbr\u003e3.15 Ketones\u003cbr\u003e3.16 Nitriles\u003cbr\u003e3.17 Perfluorocarbons\u003cbr\u003e3.18 Polyhydric alcohols\u003cbr\u003e3.19 Sulfoxides\u003cbr\u003e3.20 Supercritical fluids\u003cbr\u003e3.21 Terpenes\u003cbr\u003e3.22 Thiol derivatives"}
Databook of UV Stabili...
$285.00
{"id":11242204804,"title":"Databook of UV Stabilizers","handle":"978-1-895198-88-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-895198-88-1 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2015\u003cbr\u003e\u003c\/span\u003eNumber of pages: 458\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe databook contains information on the most frequently used UV stabilizers. The information on each stabilizer included in the Databook of UV Stabilizers is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; Performance. The data belong to over 100 data fields, which accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. \u003cbr\u003e\u003cbr\u003eIn General information section, the following data are displayed: name, CAS #, Common name, Common synonym, Acronym, Empirical formula, Molecular weight, Chemical category, Mixture, Product contents, Moisture content, Silicone content, and EC number\u003cbr\u003e\u003cbr\u003ePhysical properties section contains data on State, Odor, Color (Gardner and Platinum-cobalt scales), Acid number, Active content, Ash contents, Acid dissociation constants, Base dissociation constant, Boiling point, Bulk density, Freezing\/melting temperature, pH, Molar absorption coefficient, Physical state, Product form, Refractive index, Specific gravity, Solubility in water and solvents, Transmittance, Volatility\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on Flash point, Flash point method, Autoignition temperature, Explosive LEL, Explosive UEL, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Food law approvals, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat LC50, Skin irritation, Eye irritation (human), Ingestion, First aid: eyes, skin, and inhalation, Chronic effects, Carcinogenicity, Mutagenicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA).\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc, log Kow). \u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Recommended for polymers, Typical applications, Features \u0026amp; benefits, Processing methods, Additive application method, Recommended dosage, Davies scale, Concentration used, Food approval, Conditions to avoid, Costabilizers.\u003cbr\u003e\u003cbr\u003eThe book also contains introductory chapter in which general indicators of performance of UV stabilizers are discussed and a chapter containing information on the data fields included in the description of individual stabilizers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Information on data fields\u003cbr\u003e3 UV Stabilizers\u003cbr\u003e3.1 Organic UV absorbers\u003cbr\u003e3.1.1 Benzophenones\u003cbr\u003e3.1.2 Benzotriazoles\u003cbr\u003e3.1.3 Benzotriazines\u003cbr\u003e3.1.4 Benzoxaxinones\u003cbr\u003e3.1.5 Cinamates\u003cbr\u003e3.1.6 Cyanoacrylates\u003cbr\u003e3.1.7 Malonates\u003cbr\u003e3.1.8 Octocrylenes\u003cbr\u003e3.1.9 Oxanilides\u003cbr\u003e3.2 Inorganic UV absorbers\u003cbr\u003e3.3 Fibers\u003cbr\u003e3.4 Hindered amine stabilizers\u003cbr\u003e3.4.1 Monomeric\u003cbr\u003e3.4.2 Polymeric\u003cbr\u003e3.5 Phenolic antioxidants\u003cbr\u003e3.6 Phosphites \u0026amp; phosphonites\u003cbr\u003e3.7 Thiosynergists\u003cbr\u003e3.8 Amines\u003cbr\u003e3.9 Quenchers\u003cbr\u003e3.10 Optical brighteners\u003cbr\u003e3.11 Synergistic mixtures of stabilizers\u003cbr\u003e3.11.1 Monomeric and oligomeric HAS\u003cbr\u003e3.11.2 HAS+UV absorber\u003cbr\u003e3.11.3 Phosphite+phenolic antioxidant\u003cbr\u003e3.11.4 HAS+UV absorber+phenolic antioxidant\u003cbr\u003e3.11.5 Other\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cbr\u003e\u003cstrong\u003eAnna Wypych\u003c\/strong\u003e, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers, 3 databases, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003e has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/p\u003e","published_at":"2017-06-22T21:12:51-04:00","created_at":"2017-06-22T21:12:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","book","ecological properties","general information","health","inorganic UV absorber","organic UV absorber","p-additives","p-chemical","p-properties","performance","physical-chemical properties","safety","synergistics mixture","use","UV stabilizers"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378319108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Databook of UV Stabilizers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-88-1","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-88-1.jpg?v=1499213023"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-88-1.jpg?v=1499213023","options":["Title"],"media":[{"alt":null,"id":353970618461,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-88-1.jpg?v=1499213023"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-88-1.jpg?v=1499213023","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-895198-88-1 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2015\u003cbr\u003e\u003c\/span\u003eNumber of pages: 458\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe databook contains information on the most frequently used UV stabilizers. The information on each stabilizer included in the Databook of UV Stabilizers is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; Performance. The data belong to over 100 data fields, which accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. \u003cbr\u003e\u003cbr\u003eIn General information section, the following data are displayed: name, CAS #, Common name, Common synonym, Acronym, Empirical formula, Molecular weight, Chemical category, Mixture, Product contents, Moisture content, Silicone content, and EC number\u003cbr\u003e\u003cbr\u003ePhysical properties section contains data on State, Odor, Color (Gardner and Platinum-cobalt scales), Acid number, Active content, Ash contents, Acid dissociation constants, Base dissociation constant, Boiling point, Bulk density, Freezing\/melting temperature, pH, Molar absorption coefficient, Physical state, Product form, Refractive index, Specific gravity, Solubility in water and solvents, Transmittance, Volatility\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on Flash point, Flash point method, Autoignition temperature, Explosive LEL, Explosive UEL, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Food law approvals, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat LC50, Skin irritation, Eye irritation (human), Ingestion, First aid: eyes, skin, and inhalation, Chronic effects, Carcinogenicity, Mutagenicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA).\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc, log Kow). \u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Recommended for polymers, Typical applications, Features \u0026amp; benefits, Processing methods, Additive application method, Recommended dosage, Davies scale, Concentration used, Food approval, Conditions to avoid, Costabilizers.\u003cbr\u003e\u003cbr\u003eThe book also contains introductory chapter in which general indicators of performance of UV stabilizers are discussed and a chapter containing information on the data fields included in the description of individual stabilizers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Information on data fields\u003cbr\u003e3 UV Stabilizers\u003cbr\u003e3.1 Organic UV absorbers\u003cbr\u003e3.1.1 Benzophenones\u003cbr\u003e3.1.2 Benzotriazoles\u003cbr\u003e3.1.3 Benzotriazines\u003cbr\u003e3.1.4 Benzoxaxinones\u003cbr\u003e3.1.5 Cinamates\u003cbr\u003e3.1.6 Cyanoacrylates\u003cbr\u003e3.1.7 Malonates\u003cbr\u003e3.1.8 Octocrylenes\u003cbr\u003e3.1.9 Oxanilides\u003cbr\u003e3.2 Inorganic UV absorbers\u003cbr\u003e3.3 Fibers\u003cbr\u003e3.4 Hindered amine stabilizers\u003cbr\u003e3.4.1 Monomeric\u003cbr\u003e3.4.2 Polymeric\u003cbr\u003e3.5 Phenolic antioxidants\u003cbr\u003e3.6 Phosphites \u0026amp; phosphonites\u003cbr\u003e3.7 Thiosynergists\u003cbr\u003e3.8 Amines\u003cbr\u003e3.9 Quenchers\u003cbr\u003e3.10 Optical brighteners\u003cbr\u003e3.11 Synergistic mixtures of stabilizers\u003cbr\u003e3.11.1 Monomeric and oligomeric HAS\u003cbr\u003e3.11.2 HAS+UV absorber\u003cbr\u003e3.11.3 Phosphite+phenolic antioxidant\u003cbr\u003e3.11.4 HAS+UV absorber+phenolic antioxidant\u003cbr\u003e3.11.5 Other\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cbr\u003e\u003cstrong\u003eAnna Wypych\u003c\/strong\u003e, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers, 3 databases, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003e has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/p\u003e"}
Developments in Colora...
$153.00
{"id":11242222212,"title":"Developments in Colorants for Plastics","handle":"978-1-85957-373-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: I. Christensen \u003cbr\u003eISBN 978-1-85957-373-0 \u003cbr\u003e\u003cbr\u003eFirst Edition, Pages 120, Figures 4, Tables 2\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are two types of colorants in use: dyes and pigments. Pigments are insoluble and must be adequately dispersed in the plastic to achieve a uniform color. This can be a problem in very thin moldings where particle agglomerates are highly visible. Dyes are soluble in plastics and give a more transparent finish. \u003cbr\u003e\u003cbr\u003eHealth, safety, and environmental issues have brought about changes in the marketplace as manufacturers strive to meet national and international regulations. Factors to consider in colorant selection include the presence of heavy metal compounds, migration of colorants into food or packaged goods (contamination issues), toxicity in the fire, etc. \u003cbr\u003e\u003cbr\u003eThere are many functional considerations when selecting colorants. For example, many plastics are processed at very high temperatures and shear, and products are exposed to heat and light. The colorants must tolerate these conditions to function adequately. The basic pigments and dyes used to achieve different color effects at different performance levels are described in this review. The economics of different colorant types are outlined. \u003cbr\u003e\u003cbr\u003eThere have been developments across the color spectrum and in the field of special effects. Manufacturers are looking at ways to eliminate cadmium and lead pigments and to improve existing products, for example by coating pigment particles to improve compatibility with plastics and aid dispersion. They are also experimenting with new chemicals as colorants and there is scope for an increased range of products particularly in the yellow region. \u003cbr\u003e\u003cbr\u003eSpecial effect colorants are being used to generate effects such as fluorescence, phosphorescence, pearlescence and holographics. These are relatively expensive products, are often difficult to process and many are used for specialist niche applications. These issues are discussed and referenced in this new review. \u003cbr\u003e\u003cbr\u003eOverall, this is a very well written, clear review of the subject of colorants for plastics. It is based on practical information for plastics processors with regard to colorant selection and the range of products and effects available. References are included throughout the review for further reading and key manufacturers of colorants are listed where relevant. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from the Rapra Polymer Library database, to facilitate further reading on this subject. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCommon colorants \u003cbr\u003eDevelopments in colorants \u003cbr\u003eSpecial effects \u003cbr\u003ePractical information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Definitions \u003cbr\u003e1.2 Pigments versus Dyes \u003cbr\u003e1.3 Organic versus Inorganic \u003cbr\u003e1.4 Environmental and Occupational Health and Safety (OHS) Issues \u003cbr\u003e1.5 Decision Factors in Selecting Colorants \u003cbr\u003e1.6 Hotter, Faster, Thinner \u003cbr\u003e1.7 Delivery Systems \u003cbr\u003e1.8 Easy Dispersing Pigments \u003cbr\u003e1.9 Non-Dusting, Free Flowing \u003cbr\u003e\u003cbr\u003e2. The Colorants \u003cbr\u003e2.1 Yellow Color \u003cbr\u003e2.1.1 Low Performance Applications \u003cbr\u003e2.1.2 Medium Performance Applications \u003cbr\u003e2.1.3 High Performance Applications \u003cbr\u003e2.2 Orange Color \u003cbr\u003e2.2.1 Low Performance Applications \u003cbr\u003e\u003cbr\u003e2.2.2 Medium Performance Applications \u003cbr\u003e2.2.3 High Performance Applications \u003cbr\u003e2.3 Brown Color \u003cbr\u003e2.4 Red Color \u003cbr\u003e2.4.1 Low Performance Applications \u003cbr\u003e2.4.2 Medium Performance Applications \u003cbr\u003e2.4.3 High Performance Applications \u003cbr\u003e2.5 Maroon and Violet Color \u003cbr\u003e2.5.1 Low Performance Applications \u003cbr\u003e2.5.2 Medium Performance Applications \u003cbr\u003e2.5.3 High Performance Applications \u003cbr\u003e2.6 Blue Color \u003cbr\u003e2.7 Green Color \u003cbr\u003e\u003cbr\u003e3. Special Effects \u003cbr\u003e3.1 Metallic \u003cbr\u003e3.2 Pearlescent \u003cbr\u003e3.3 Holographic \u003cbr\u003e3.4 Fluorescent \u003cbr\u003e3.5 Phosphorescent \u003cbr\u003e3.6 Thermochromic and Photochromic \u003cbr\u003e\u003cbr\u003e4. Summary and Conclusions \u003cbr\u003eAcknowledgments \u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nIan Christensen spent ten years working in colorant development, pigment marketing, and masterbatching with Ciba Specialty Chemicals in both technical and managerial roles. He recently changed continents and industries and is now involved in licensing intellectual property and some freelance technical writing. He has chemistry and MBA degrees.","published_at":"2017-06-22T21:13:49-04:00","created_at":"2017-06-22T21:13:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","agglomerates","applications","book","colorants","dispersing","dyes","fluorescence","fluorescent","food","holographic","holographics coloring","metallic","p-additives","pearlescence","pearlescent","phosphorescence","phosphorescent","photochromic","pigments","polymer","special effects","thermochromic"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378375364,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Developments in Colorants for Plastics","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-373-0","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-373-0.jpg?v=1499213315"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-373-0.jpg?v=1499213315","options":["Title"],"media":[{"alt":null,"id":353972650077,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-373-0.jpg?v=1499213315"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-373-0.jpg?v=1499213315","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: I. Christensen \u003cbr\u003eISBN 978-1-85957-373-0 \u003cbr\u003e\u003cbr\u003eFirst Edition, Pages 120, Figures 4, Tables 2\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are two types of colorants in use: dyes and pigments. Pigments are insoluble and must be adequately dispersed in the plastic to achieve a uniform color. This can be a problem in very thin moldings where particle agglomerates are highly visible. Dyes are soluble in plastics and give a more transparent finish. \u003cbr\u003e\u003cbr\u003eHealth, safety, and environmental issues have brought about changes in the marketplace as manufacturers strive to meet national and international regulations. Factors to consider in colorant selection include the presence of heavy metal compounds, migration of colorants into food or packaged goods (contamination issues), toxicity in the fire, etc. \u003cbr\u003e\u003cbr\u003eThere are many functional considerations when selecting colorants. For example, many plastics are processed at very high temperatures and shear, and products are exposed to heat and light. The colorants must tolerate these conditions to function adequately. The basic pigments and dyes used to achieve different color effects at different performance levels are described in this review. The economics of different colorant types are outlined. \u003cbr\u003e\u003cbr\u003eThere have been developments across the color spectrum and in the field of special effects. Manufacturers are looking at ways to eliminate cadmium and lead pigments and to improve existing products, for example by coating pigment particles to improve compatibility with plastics and aid dispersion. They are also experimenting with new chemicals as colorants and there is scope for an increased range of products particularly in the yellow region. \u003cbr\u003e\u003cbr\u003eSpecial effect colorants are being used to generate effects such as fluorescence, phosphorescence, pearlescence and holographics. These are relatively expensive products, are often difficult to process and many are used for specialist niche applications. These issues are discussed and referenced in this new review. \u003cbr\u003e\u003cbr\u003eOverall, this is a very well written, clear review of the subject of colorants for plastics. It is based on practical information for plastics processors with regard to colorant selection and the range of products and effects available. References are included throughout the review for further reading and key manufacturers of colorants are listed where relevant. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from the Rapra Polymer Library database, to facilitate further reading on this subject. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCommon colorants \u003cbr\u003eDevelopments in colorants \u003cbr\u003eSpecial effects \u003cbr\u003ePractical information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Definitions \u003cbr\u003e1.2 Pigments versus Dyes \u003cbr\u003e1.3 Organic versus Inorganic \u003cbr\u003e1.4 Environmental and Occupational Health and Safety (OHS) Issues \u003cbr\u003e1.5 Decision Factors in Selecting Colorants \u003cbr\u003e1.6 Hotter, Faster, Thinner \u003cbr\u003e1.7 Delivery Systems \u003cbr\u003e1.8 Easy Dispersing Pigments \u003cbr\u003e1.9 Non-Dusting, Free Flowing \u003cbr\u003e\u003cbr\u003e2. The Colorants \u003cbr\u003e2.1 Yellow Color \u003cbr\u003e2.1.1 Low Performance Applications \u003cbr\u003e2.1.2 Medium Performance Applications \u003cbr\u003e2.1.3 High Performance Applications \u003cbr\u003e2.2 Orange Color \u003cbr\u003e2.2.1 Low Performance Applications \u003cbr\u003e\u003cbr\u003e2.2.2 Medium Performance Applications \u003cbr\u003e2.2.3 High Performance Applications \u003cbr\u003e2.3 Brown Color \u003cbr\u003e2.4 Red Color \u003cbr\u003e2.4.1 Low Performance Applications \u003cbr\u003e2.4.2 Medium Performance Applications \u003cbr\u003e2.4.3 High Performance Applications \u003cbr\u003e2.5 Maroon and Violet Color \u003cbr\u003e2.5.1 Low Performance Applications \u003cbr\u003e2.5.2 Medium Performance Applications \u003cbr\u003e2.5.3 High Performance Applications \u003cbr\u003e2.6 Blue Color \u003cbr\u003e2.7 Green Color \u003cbr\u003e\u003cbr\u003e3. Special Effects \u003cbr\u003e3.1 Metallic \u003cbr\u003e3.2 Pearlescent \u003cbr\u003e3.3 Holographic \u003cbr\u003e3.4 Fluorescent \u003cbr\u003e3.5 Phosphorescent \u003cbr\u003e3.6 Thermochromic and Photochromic \u003cbr\u003e\u003cbr\u003e4. Summary and Conclusions \u003cbr\u003eAcknowledgments \u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nIan Christensen spent ten years working in colorant development, pigment marketing, and masterbatching with Ciba Specialty Chemicals in both technical and managerial roles. He recently changed continents and industries and is now involved in licensing intellectual property and some freelance technical writing. He has chemistry and MBA degrees."}
Fire Retardancy of Pol...
$249.00
{"id":11242254340,"title":"Fire Retardancy of Polymers","handle":"978-0-85404-582-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Le Bras, C. Wilkie, S. Bourbigot \u003cbr\u003eISBN 978-0-85404-582-2 \u003cbr\u003e\u003cbr\u003epages 410, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymers is restricted by their flammability- they may indeed initiate or propagate fire. \u003cstrong\u003eFire Retardancy of Polymers\u003c\/strong\u003e focuses on mineral additives from either micro- or nano-composites for application in fire retardants. With the use of fire retardant additives containing halogen or phosphorus compounds in decline, the need for other systems is evident.\u003cbr\u003e\u003cbr\u003eThe major materials that are used as fire retardant fillers for polymers are alumina trihydrate or magnesium hydroxide, which account for more than 50% by weight of the worldwide sales of fire retardants. Recent works have shown that such halogen-free compounds may give enhanced fire retardancy to polymeric materials when used in low levels, alone, or in the synergistic mixture and that the corresponding fire performances depend on the dispersion of the mineral filler, micrometer-scale dispersion leading to the best performances.\u003cbr\u003e\u003cbr\u003eSpecialists discuss these new applications of mineral fillers with particular emphasis on action mechanisms, new materials including textiles, toxicology, and hazards. With extensive references, this book provides a comprehensive and up-to-date view of these applications and will appeal to professionals, materials scientists, and engineers looking for novel ways to eliminate fire hazards and improve flame retardancy of materials, with a special interest in sustainable development.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:28-04:00","created_at":"2017-06-22T21:15:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","additives","alumina trihydrate","book","dispersion","fillers","fire","flame retardancy","hazards","magnesium hydroxide","mineral filler","p-additives","polymer","polymers","textiles","toxicology"],"price":24900,"price_min":24900,"price_max":24900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378489796,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fire Retardancy of Polymers","public_title":null,"options":["Default Title"],"price":24900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-85404-582-2","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-85404-582-2.jpg?v=1500216348"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-85404-582-2.jpg?v=1500216348","options":["Title"],"media":[{"alt":null,"id":354807283805,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-85404-582-2.jpg?v=1500216348"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-85404-582-2.jpg?v=1500216348","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Le Bras, C. Wilkie, S. Bourbigot \u003cbr\u003eISBN 978-0-85404-582-2 \u003cbr\u003e\u003cbr\u003epages 410, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymers is restricted by their flammability- they may indeed initiate or propagate fire. \u003cstrong\u003eFire Retardancy of Polymers\u003c\/strong\u003e focuses on mineral additives from either micro- or nano-composites for application in fire retardants. With the use of fire retardant additives containing halogen or phosphorus compounds in decline, the need for other systems is evident.\u003cbr\u003e\u003cbr\u003eThe major materials that are used as fire retardant fillers for polymers are alumina trihydrate or magnesium hydroxide, which account for more than 50% by weight of the worldwide sales of fire retardants. Recent works have shown that such halogen-free compounds may give enhanced fire retardancy to polymeric materials when used in low levels, alone, or in the synergistic mixture and that the corresponding fire performances depend on the dispersion of the mineral filler, micrometer-scale dispersion leading to the best performances.\u003cbr\u003e\u003cbr\u003eSpecialists discuss these new applications of mineral fillers with particular emphasis on action mechanisms, new materials including textiles, toxicology, and hazards. With extensive references, this book provides a comprehensive and up-to-date view of these applications and will appeal to professionals, materials scientists, and engineers looking for novel ways to eliminate fire hazards and improve flame retardancy of materials, with a special interest in sustainable development.\u003cbr\u003e\u003cbr\u003e"}
Flame Retardant Polyme...
$187.00
{"id":11242206916,"title":"Flame Retardant Polymer Nanocomposites","handle":"978-0-471-73426-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., Alexander B. Morgan, Charles A. Wilkie \u003cbr\u003eISBN 978-0-471-73426-0 \u003cbr\u003e\u003cbr\u003epages 421, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFlame Retardant Polymer Nanocomposites takes a comprehensive look at polymer nanocomposites for flame retardancy applications and includes nanocomposite fundamentals (theory, design, synthesis, characterization) as well as polymer flammability fundamentals with emphasis on how nanocomposites affect flammability.\u003cbr\u003e\u003cbr\u003eThe book has practical examples from literature, patents, and existing commercial products. Readers can design new work based upon the material in the book or use it as a handy reference for interpreting existing work and results.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1. Introduction to Flame Retardancy and Polymer Flammability. \u003cbr\u003e\u003cbr\u003eChapter 2. Polymer Nanocomposite Technology, Fundamentals. \u003cbr\u003e\u003cbr\u003eChapter 3. Flame Retardant Mechanism of Polymer Clay Nanocomposites. \u003cbr\u003e\u003cbr\u003eChapter 4. Molecular Mechanics Calculations of the Thermodynamic Stabilities of Polymer\/Carbon Nanotube Composites? \u003cbr\u003e\u003cbr\u003eChapter 5. Considerations on the Specific Impacts of the Main Fire Retardancy Mechanisms in Nanocomposites. \u003cbr\u003e\u003cbr\u003eChapter 6. Intumescence and Nanocomposite: a Novel Route for Flame Retarding Polymeric Materials. \u003cbr\u003e\u003cbr\u003eChapter 7. Flame Retardant Properties of Organoclays and Carbon Nanotubes and Their Combinations with Alumina Trihydrate. \u003cbr\u003e\u003cbr\u003eChapter 8. Nanocomposites with Halogen and Non-Intumescent Phosphorus Flame Retardant Additives. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 9. Thermoset Fire Retardant Nanocomposites. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 10. Progress in Flammability Studies of Nanocomposites with New Types of Nanoparticles. \u003cbr\u003e\u003cbr\u003eChapter 11. Potential Applications of Nanocomposites for Flame Retardancy. \u003cbr\u003e\u003cbr\u003eChapter 12. Practical Issues and Future Trends of Polymer Nanocomposite Flammability Research.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eAlexander B. Morgan\u003c\/strong\u003e, PhD, is a Senior Research Scientist and group leader for the Advanced Polymers Group at the University of Dayton Research Institute. Dr. Morgan has worked for over eleven years in the field of flame retardancy and has focused on flame retardant nanocomposites for the past seven years. He previously held positions at Dow Chemical as a research chemist and was a National Research Council Postdoctoral Fellow at the National Institute of Standards and Technology. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCharles A. Wilkie\u003c\/strong\u003e, PhD, is the Pfletschinger-Habermann Professor of Chemistry at Marquette University. Dr. Wilkie has worked for almost thirty years in fire retardancy, focusing on nanocomposites the past seven years. He is Associate Editor of Polymers for Advanced Technologies and on the editorial boards of Thermochimica Acta and Polymer Degradation and Stability.","published_at":"2017-06-22T21:12:58-04:00","created_at":"2017-06-22T21:12:58-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additives","book","carbon","clay","fire","flame retardancy","flame retardant","flammability","nanocomposites","nanotubes","p-additives","phosphorus","ploymer","polymer","polymeric"],"price":18700,"price_min":18700,"price_max":18700,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378322436,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Flame Retardant Polymer Nanocomposites","public_title":null,"options":["Default Title"],"price":18700,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-471-73426-0","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-471-73426-0.jpg?v=1499724462"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-471-73426-0.jpg?v=1499724462","options":["Title"],"media":[{"alt":null,"id":354807349341,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-471-73426-0.jpg?v=1499724462"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-471-73426-0.jpg?v=1499724462","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., Alexander B. Morgan, Charles A. Wilkie \u003cbr\u003eISBN 978-0-471-73426-0 \u003cbr\u003e\u003cbr\u003epages 421, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFlame Retardant Polymer Nanocomposites takes a comprehensive look at polymer nanocomposites for flame retardancy applications and includes nanocomposite fundamentals (theory, design, synthesis, characterization) as well as polymer flammability fundamentals with emphasis on how nanocomposites affect flammability.\u003cbr\u003e\u003cbr\u003eThe book has practical examples from literature, patents, and existing commercial products. Readers can design new work based upon the material in the book or use it as a handy reference for interpreting existing work and results.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1. Introduction to Flame Retardancy and Polymer Flammability. \u003cbr\u003e\u003cbr\u003eChapter 2. Polymer Nanocomposite Technology, Fundamentals. \u003cbr\u003e\u003cbr\u003eChapter 3. Flame Retardant Mechanism of Polymer Clay Nanocomposites. \u003cbr\u003e\u003cbr\u003eChapter 4. Molecular Mechanics Calculations of the Thermodynamic Stabilities of Polymer\/Carbon Nanotube Composites? \u003cbr\u003e\u003cbr\u003eChapter 5. Considerations on the Specific Impacts of the Main Fire Retardancy Mechanisms in Nanocomposites. \u003cbr\u003e\u003cbr\u003eChapter 6. Intumescence and Nanocomposite: a Novel Route for Flame Retarding Polymeric Materials. \u003cbr\u003e\u003cbr\u003eChapter 7. Flame Retardant Properties of Organoclays and Carbon Nanotubes and Their Combinations with Alumina Trihydrate. \u003cbr\u003e\u003cbr\u003eChapter 8. Nanocomposites with Halogen and Non-Intumescent Phosphorus Flame Retardant Additives. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 9. Thermoset Fire Retardant Nanocomposites. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 10. Progress in Flammability Studies of Nanocomposites with New Types of Nanoparticles. \u003cbr\u003e\u003cbr\u003eChapter 11. Potential Applications of Nanocomposites for Flame Retardancy. \u003cbr\u003e\u003cbr\u003eChapter 12. Practical Issues and Future Trends of Polymer Nanocomposite Flammability Research.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eAlexander B. Morgan\u003c\/strong\u003e, PhD, is a Senior Research Scientist and group leader for the Advanced Polymers Group at the University of Dayton Research Institute. Dr. Morgan has worked for over eleven years in the field of flame retardancy and has focused on flame retardant nanocomposites for the past seven years. He previously held positions at Dow Chemical as a research chemist and was a National Research Council Postdoctoral Fellow at the National Institute of Standards and Technology. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCharles A. Wilkie\u003c\/strong\u003e, PhD, is the Pfletschinger-Habermann Professor of Chemistry at Marquette University. Dr. Wilkie has worked for almost thirty years in fire retardancy, focusing on nanocomposites the past seven years. He is Associate Editor of Polymers for Advanced Technologies and on the editorial boards of Thermochimica Acta and Polymer Degradation and Stability."}
Functional Fillers for...
$270.00
{"id":11242208516,"title":"Functional Fillers for Plastics","handle":"978-3-527-32361-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Marino Xanthos \u003cbr\u003eISBN 978-3-527-32361-6 \u003cbr\u003e\u003cbr\u003epages 531, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEdited and co-authored by Professor Marino Xanthos with contributions by international experts from industry and academia, the book presents methods of mixing\/incorporation technologies, surface treatments and modifications for enhanced functionality, an analysis of parameters affecting filler performance and a presentation of current and emerging applications. Additionally, the novel classification according to modification of specific polymer properties rather than filler chemical composition will provide a better understanding of the relationships between processing, structure, and properties of products containing functional fillers and the identification of new markets and applications. \u003cbr\u003e\u003cbr\u003eFor engineers, scientists and technologists involved in the industrially important sector of polymer composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003eList of Contributors. \u003cbr\u003e\u003cstrong\u003ePart I: Polymers and Fillers.\u003c\/strong\u003e \u003cbr\u003e1 Polymers and Polymer Composites. \u003cbr\u003e2 Modification of Polymer Mechanical and Rheological Properties\u003cbr\u003ewith Functional Fillers. \u003cbr\u003e3 Mixing of Fillers with Plastics. \u003cbr\u003e\u003cstrong\u003ePart II: Surface Modifiers and Coupling Agents.\u003c\/strong\u003e \u003cbr\u003e4 Silane Coupling Agents. \u003cbr\u003e5 Titanate Coupling Agents. \u003cbr\u003e6 Functional Polymers and Other Modifiers. \u003cbr\u003e\u003cstrong\u003ePart III: Fillers and their Functions.\u003c\/strong\u003e \u003cbr\u003e7 Glass Fibers. \u003cbr\u003e8 Mica Flakes. \u003cbr\u003e9 Nanoclays and Their Emerging Markets. \u003cbr\u003e10 Carbon Nanotubes\/Nanofibers and Carbon Fibers. \u003cbr\u003e11 Natural Fibers. \u003cbr\u003e12 Talc. \u003cbr\u003e13 Kaolin. \u003cbr\u003e14 Wollastonite. \u003cbr\u003e15 Wood Flour. \u003cbr\u003e16 Calcium Carbonate. \u003cbr\u003e17 Fire Retardants. \u003cbr\u003e18 Conductive and Magnetic Fillers.\u003cbr\u003e19 Surface Property Modifiers. \u003cbr\u003e20 Processing Aids. \u003cbr\u003e21 Glass and Ceramic Spheres. \u003cbr\u003e22 Bioactive Fillers. \u003cbr\u003e23 In Situ Generated Fillers: Organic–Inorganic Hybrids.\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMarino Xanthos\u003c\/strong\u003e is Professor of Chemical Engineering and Director of the Polymer Engineering Center of the New Jersey Institute of Technology since 1995. He studied chemical engineering at the University of Toronto, where he took his Ph.D. degree in 1974. He then became Manager of R \u0026amp; D and Technical Services at Marietta Resources International Ltd. in 1975 and taught at the Stevens Institute of Technology, Hoboken, from 1980 to 1995. Since 1988, he has also been Director of Research at the Polymer Processing Institute (PPI), Newark, NJ, an independent non-profit research organization located at NJIT. His interests focus on polymer blends, composites, and foams, polymer modification and reactive processing, plastics recycling and life-cycle assessment, structure-property relationships, environmental considerations in polymer processing.","published_at":"2017-06-22T21:13:03-04:00","created_at":"2017-06-22T21:13:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","applications","bioactive","book","calcium carbonate","ceramic","composite","conductive","fibers","fillers","fire retardant","functional","glass","magnetic","mica","mineral","p-additives","plastics","polymer","polymers","processing aids","rheology","silane","talc kaolin wollastonite","Wiley","wood"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378328452,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Functional Fillers for Plastics","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-32361-6","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-3-527-32361-6.jpg?v=1499386929"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-3-527-32361-6.jpg?v=1499386929","options":["Title"],"media":[{"alt":null,"id":354808856669,"position":1,"preview_image":{"aspect_ratio":0.736,"height":450,"width":331,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-3-527-32361-6.jpg?v=1499386929"},"aspect_ratio":0.736,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-3-527-32361-6.jpg?v=1499386929","width":331}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Marino Xanthos \u003cbr\u003eISBN 978-3-527-32361-6 \u003cbr\u003e\u003cbr\u003epages 531, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEdited and co-authored by Professor Marino Xanthos with contributions by international experts from industry and academia, the book presents methods of mixing\/incorporation technologies, surface treatments and modifications for enhanced functionality, an analysis of parameters affecting filler performance and a presentation of current and emerging applications. Additionally, the novel classification according to modification of specific polymer properties rather than filler chemical composition will provide a better understanding of the relationships between processing, structure, and properties of products containing functional fillers and the identification of new markets and applications. \u003cbr\u003e\u003cbr\u003eFor engineers, scientists and technologists involved in the industrially important sector of polymer composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003eList of Contributors. \u003cbr\u003e\u003cstrong\u003ePart I: Polymers and Fillers.\u003c\/strong\u003e \u003cbr\u003e1 Polymers and Polymer Composites. \u003cbr\u003e2 Modification of Polymer Mechanical and Rheological Properties\u003cbr\u003ewith Functional Fillers. \u003cbr\u003e3 Mixing of Fillers with Plastics. \u003cbr\u003e\u003cstrong\u003ePart II: Surface Modifiers and Coupling Agents.\u003c\/strong\u003e \u003cbr\u003e4 Silane Coupling Agents. \u003cbr\u003e5 Titanate Coupling Agents. \u003cbr\u003e6 Functional Polymers and Other Modifiers. \u003cbr\u003e\u003cstrong\u003ePart III: Fillers and their Functions.\u003c\/strong\u003e \u003cbr\u003e7 Glass Fibers. \u003cbr\u003e8 Mica Flakes. \u003cbr\u003e9 Nanoclays and Their Emerging Markets. \u003cbr\u003e10 Carbon Nanotubes\/Nanofibers and Carbon Fibers. \u003cbr\u003e11 Natural Fibers. \u003cbr\u003e12 Talc. \u003cbr\u003e13 Kaolin. \u003cbr\u003e14 Wollastonite. \u003cbr\u003e15 Wood Flour. \u003cbr\u003e16 Calcium Carbonate. \u003cbr\u003e17 Fire Retardants. \u003cbr\u003e18 Conductive and Magnetic Fillers.\u003cbr\u003e19 Surface Property Modifiers. \u003cbr\u003e20 Processing Aids. \u003cbr\u003e21 Glass and Ceramic Spheres. \u003cbr\u003e22 Bioactive Fillers. \u003cbr\u003e23 In Situ Generated Fillers: Organic–Inorganic Hybrids.\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMarino Xanthos\u003c\/strong\u003e is Professor of Chemical Engineering and Director of the Polymer Engineering Center of the New Jersey Institute of Technology since 1995. He studied chemical engineering at the University of Toronto, where he took his Ph.D. degree in 1974. He then became Manager of R \u0026amp; D and Technical Services at Marietta Resources International Ltd. in 1975 and taught at the Stevens Institute of Technology, Hoboken, from 1980 to 1995. Since 1988, he has also been Director of Research at the Polymer Processing Institute (PPI), Newark, NJ, an independent non-profit research organization located at NJIT. His interests focus on polymer blends, composites, and foams, polymer modification and reactive processing, plastics recycling and life-cycle assessment, structure-property relationships, environmental considerations in polymer processing."}
Handbook of Antistatics
$265.00
{"id":11242205060,"title":"Handbook of Antistatics","handle":"1-895198-34-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jürgen Pionteck \u0026amp; George Wypych \u003cbr\u003eISBN 1-895198-34-8 \u003cbr\u003e\u003cbr\u003ePages 359,Tables 140, Figures 110\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first comprehensive book written on the subject of antistatic additives. A few previously published books are either very old or they constitute short reviews or chapters in books on polymer additives.\u003cbr\u003e\u003cbr\u003eThe present volume includes information based on the complete review of existing literature and patented inventions on additives capable to modify properties of materials in such a manner that they become antistatic, conductive, and\/or EMI shielding.\u003cbr\u003e\u003cbr\u003eThirteen chemical families of materials are used for a production of antistatic additives. There are about 700 commercial products derived from these developments and used by industry to change electric conductivity of materials. The properties of these commercial products are given in the extensive database of antistatics which constitutes a separate publication but useful together with this handbook (see separate publication: Database of Antistatics). The information in both publications is not repeated but it is complementary.\u003cbr\u003e\u003cbr\u003eAntistatic additives are used in the production of materials from 57 generic families of polymers and numerous polymer blends having excellent conductive properties. Polymers containing antistatic additives are processed by 18 groups of processing methods and, in addition, 9 incorporation methods are used on the commercial scale with these products. The processing methods are used by 40 industries, listed in the box on the left side of the page, for the manufacture of a large number of commercial products.\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various polymers is divided into the following sections: types and concentrations of antistatics used, the potential effect of antistatics on polymer and\/or other additives, and examples of typical formulations used for processing of polymers containing the antistatic additive.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various products is divided into the following sections: types and concentrations of antistatics used by a particular industry, reasons for their use, advantages, and disadvantages of the use of different additives, the effect on product properties, and examples of formulations. \u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: types and concentrations of antistatics, eventual influence on processing, and examples of formulations. The goal of this chapter is to provide information on the amount and the type of antistatics used in each processing method, discuss the eventual influence of antistatics on a process and give examples of typical formulations used by the discussed here processing methods.\u003cbr\u003e\u003cbr\u003eThe book contains 22 chapters, each addressing specific aspect of properties and applications of antistatic agents. Please review the attached table contents for a detailed list of topics, ideas, and reviews included in this comprehensive volume. In addition, a separate publication is also available (Database of Antistatics), which is a database of commercial materials used as antistatic additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Historical developments in studies on static electricity \u003cbr\u003e1.2 The triboelectric series and electrostatic charging \u003cbr\u003e1.3 Electrical properties of plastics \u003cbr\u003e1.3.1 Electrical conductivity \u003cbr\u003e1.3.2 Dielectric behavior of plastics in low electric fields \u003cbr\u003e1.3.3 Electrostatic charging of dielectric polymers \u003cbr\u003e1.3.4 Stability of plastics in high electric fields \u003cbr\u003e1.4 Antistatic agents \u003cbr\u003e1.4.1 Classification of antistatics \u003cbr\u003e1.4.2 Expectations from antistatics \u003cbr\u003e1.5 Definitions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Types of Antistatic Agents \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial antistatic agents \u003cbr\u003e2.2.1 Amines (quaternary and others) \u003cbr\u003e2.2.2 Carbon black \u003cbr\u003e2.2.3 Esters \u003cbr\u003e2.2.4 Fibers \u003cbr\u003e2.2.4.1 Metal \u003cbr\u003e2.2.4.2 Carbon and graphite fibers \u003cbr\u003e2.2.4.3 Others \u003cbr\u003e2.2.5 Inorganic materials \u003cbr\u003e2.2.6 Masterbatches \u003cbr\u003e2.2.7 Metal powders and nanopowders \u003cbr\u003e2.2.8 Nanotubes \u003cbr\u003e2.2.9 Polyethylene glycol \u003cbr\u003e2.2.10 Polymers \u003cbr\u003e2.2.10.1 Inherently conductive \u003cbr\u003e2.2.10.2 Containing antistatic \u003cbr\u003e\u003cbr\u003e3 Typical Methods of Quality Control of Antistatics \u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Brookfield viscosity \u003cbr\u003e3.4 Capacitance \u003cbr\u003e3.5 Chemical resistance \u003cbr\u003e3.6 Color \u003cbr\u003e3.7 Compression set \u003cbr\u003e3.8 Dielectric breakdown voltage \u003cbr\u003e3.9 Dielectric constant (relative permittivity) \u003cbr\u003e3.10 Dielectric strength \u003cbr\u003e3.11 Dissipation factor \u003cbr\u003e3.12 Dry arc resistance \u003cbr\u003e3.13 Electrical resistivity \u003cbr\u003e3.14 Erosion resistance \u003cbr\u003e3.15 Flash and fire point \u003cbr\u003e3.16 Hardness \u003cbr\u003e3.17 Kinematic viscosity \u003cbr\u003e3.18 Loss index \u003cbr\u003e3.19 Marking (classification) \u003cbr\u003e3.20 Melt rheology \u003cbr\u003e3.21 Refractive index \u003cbr\u003e3.22 Residual contamination \u003cbr\u003e3.23 Saponification value \u003cbr\u003e3.24 Specific gravity \u003cbr\u003e3.25 Specifications for commercial products and standard test methods \u003cbr\u003e3.25.1 Adhesive bonding \u003cbr\u003e3.25.2 Aviation and distillate fuels \u003cbr\u003e3.25.3 Conductive adhesives \u003cbr\u003e3.25.4 Conveyor belting \u003cbr\u003e3.25.5 Crosslinkable ethylene plastics \u003cbr\u003e3.25.6 Electrical insulating materials \u003cbr\u003e3.25.7 Electrocoat bath \u003cbr\u003e3.25.8 Electronic devices \u003cbr\u003e3.25.9 Endless belts \u003cbr\u003e3.25.10 Extruded film and tape \u003cbr\u003e3.25.11 Flooring \u003cbr\u003e3.25.12 Footwear (protective) \u003cbr\u003e3.25.13 Hoses \u003cbr\u003e3.25.14 Insulation shielding materials \u003cbr\u003e3.25.15 Liquid paints \u003cbr\u003e3.25.16 Medical applications \u003cbr\u003e3.25.17 Polymer-based microwave circuit substrates \u003cbr\u003e3.25.18 Protective clothing \u003cbr\u003e3.25.19 Rubber \u003cbr\u003e3.25.20 Textile fabric \u003cbr\u003e3.25.21 Ventilation materials \u003cbr\u003e3.25.22 Writing paper \u003cbr\u003e3.26 Tensile properties \u003cbr\u003e3.27 Thermal expansion coefficient \u003cbr\u003e3.28 Water concentration \u003cbr\u003e3.29 Weight loss \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 Electrostatic Hazards \u003cbr\u003e4.1 Electrostatic charge generation \u003cbr\u003e4.2 Electromagnetic interference \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Ignition Hazards and Preventive Measures \u003cbr\u003e5.1 Conditions of ignition \u003cbr\u003e5.2 Types of discharge and discharge energy \u003cbr\u003e5.3 Minimum ignition energy \u003cbr\u003e5.4 Preventive measures \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Mechanisms of Action of Antistatic Agents \u003cbr\u003ePetra Pötschke \u0026amp; Jürgen Pionteck\u003cbr\u003e6.1 Conductive modification of polymer surfaces \u003cbr\u003e6.2 Mechanism of action of antistatics added into bulk \u003cbr\u003e6.2.1 Internal organic antistatics \u003cbr\u003e6.2.2 Conductive inorganic fillers \u003cbr\u003e6.2.3 Conductive inorganic materials in blends of insulating polymers \u003cbr\u003e6.2.4 Conductive polymer\/insulating polymer composites \u003cbr\u003e6.3 Consideration of mechanism in selection of antistatic agents for particular application\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Compatibility of Antistatic Agents with Matrix and Their Performance \u003cbr\u003e7.1 What influences compatibility of antistatic agents with matrix? \u003cbr\u003e7.2 Methods of antistatic agent selection based on principles of compatibility \u003cbr\u003e7.3 Influence of compatibility on permanence of antistatic agent incorporation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Antistatic Agent Motion and Diffusion \u003cbr\u003e8.1 Antistatic agent diffusion rate and the methods of study \u003cbr\u003e8.2 Antistatic agent motion and distribution in matrix \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Structure and Distribution of Non-migrating Antistatics \u003cbr\u003e9.1 Morphological structure and distribution of non-migrating (permanent) antistatics \u003cbr\u003e9.2 Percolation threshold \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Antistatic Agent Incorporation Method and Its Performance \u003cbr\u003e10.1 Grafting \u003cbr\u003e10.2 Chemical modification \u003cbr\u003e10.3 Surface coating \u003cbr\u003e10.4 UV and electron beam curing \u003cbr\u003e10.5 Plasma treatment \u003cbr\u003e10.6 Physical vapor deposition \u003cbr\u003e10.7 Mixing\/dispersion \u003cbr\u003e10.8 Crystallization in matrix \u003cbr\u003e10.9 Nucleation of inorganic nanoparticles \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 Antistatic Agents and Other Components of Formulation \u003cbr\u003e11.1 Antistatic agent consumption by fillers \u003cbr\u003e11.2 Absorption of additives by antistatic agents \u003cbr\u003e11.3 Molecular mobility and transport in the presence of antistatic agents \u003cbr\u003e11.4 Effect of antistatic agents on polymerization and curing reactions \u003cbr\u003e11.5 Effect of moisture and humidity \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 Effect of Antistatic Agents on Some Properties of Compounded Materials \u003cbr\u003e12.1 Mechanical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.2 Optical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.3 Spectral properties \u003cbr\u003e12.4 Rheological properties \u003cbr\u003ePetra Pötschke \u003cbr\u003e12.4.1 Effect of low molecular weight organic additives \u003cbr\u003e12.4.2 Effect of conductive inorganic materials \u003cbr\u003e12.5 Electrical properties \u003cbr\u003e12.6 Glass transition temperature \u003cbr\u003e12.7 Thermal stability \u003cbr\u003e12.8 Effect of UV and ionized radiation on materials containing antistatics \u003cbr\u003e12.9 Morphology, crystallization, structure, and orientation of macromolecules \u003cbr\u003e12.10 Hydrophilic properties, surface free energy \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 Antistatic Agent Selection for Specific Polymers \u003cbr\u003e13.1 ABS \u003cbr\u003e13.2 Acrylics \u003cbr\u003e13.3 Cellulose acetate \u003cbr\u003e13.4 Cellulose butyrate and propionate \u003cbr\u003e13.5 Cellulose nitrate \u003cbr\u003e13.6 Charge transfer polymers \u003cbr\u003e13.7 Chlorinated polyvinylchloride \u003cbr\u003e13.8 Chlorosulfonated polyethylene \u003cbr\u003e13.9 Epoxy resin \u003cbr\u003e13.10 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e13.11 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e13.12 Ionomers \u003cbr\u003e13.13 Nitrile rubber \u003cbr\u003e13.14 Polyacene \u003cbr\u003e13.15 Polyacetylene \u003cbr\u003e13.16 Polyacrylonitrile \u003cbr\u003e13.17 Polyamide \u003cbr\u003e13.18 Polyaniline \u003cbr\u003e13.19 Polybutadiene \u003cbr\u003e13.20 Polybutylmethacrylate \u003cbr\u003e13.21 Polycarbonate \u003cbr\u003e13.22 Polyester \u003cbr\u003e13.23 Polyetheretherketone \u003cbr\u003e13.24 Polyetherimide \u003cbr\u003e13.25 Polyethylene \u003cbr\u003e13.26 Polyimide \u003cbr\u003e13.27 Polyisoprene \u003cbr\u003e13.28 Polyisothionaphthene \u003cbr\u003e13.29 Polylactide \u003cbr\u003e13.30 Polymethylmethacrylate \u003cbr\u003e13.31 Polyoxyethylene \u003cbr\u003e13.32 Polyoxymethylene \u003cbr\u003e13.33 Poly(N-vinyl-2-pyrrolidone) 176\u003cbr\u003e13.34 Polyparaphenylene \u003cbr\u003e13.35 Poly(phenylene ether) \u003cbr\u003e13.36 Poly(phenylene sulfide) \u003cbr\u003e13.37 Poly(phenylene vinylene) \u003cbr\u003e13.38 Polypropylene \u003cbr\u003e13.39 Polypyrrole \u003cbr\u003e13.40 Polystyrene \u003cbr\u003e13.41 Polysulfone \u003cbr\u003e13.42 Polythiophene \u003cbr\u003e13.43 Polyvinylacetate \u003cbr\u003e13.44 Polyvinylalcohol \u003cbr\u003e13.45 Polyvinylbenzylalcohol \u003cbr\u003e13.46 Polyvinylbutyral \u003cbr\u003e13.47 Polyvinylchloride \u003cbr\u003e13.48 Poly(vinylene sulfide) \u003cbr\u003e13.49 Polyvinylidenechloride \u003cbr\u003e13.50 Polyvinylidenefluoride \u003cbr\u003e13.51 Polyurethanes \u003cbr\u003e13.52 Proteins \u003cbr\u003e13.53 Rubber, natural \u003cbr\u003e13.54 Silicone \u003cbr\u003e13.55 Styrene-butadiene rubber \u003cbr\u003e13.56 Styrene-butadiene-styrene copolymer \u003cbr\u003e13.57 Starch \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 Antistatic Agents in Polymer Blends \u003cbr\u003e14.1 Antistatic agent partition between blend component polymers \u003cbr\u003e14.2 Interaction of antistatic agents with blend components \u003cbr\u003e14.3 Blends of conductive and non-conductive polymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 Antistatic Agents in Various Industrial Products \u003cbr\u003e15.1 Adhesives and sealants \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Agriculture \u003cbr\u003e15.4 Automotive applications \u003cbr\u003e15.5 Bottles and plastic containers \u003cbr\u003e15.6 Bulk shipping containers \u003cbr\u003e15.7 Business machines \u003cbr\u003e15.8 Cementitious materials \u003cbr\u003e15.9 Ceramics \u003cbr\u003e15.10 Coated fabrics \u003cbr\u003e15.11 Composites \u003cbr\u003e15.12 Cosmetics \u003cbr\u003e15.13 Equipment manufacture \u003cbr\u003e15.14 Electrical equipment \u003cbr\u003e15.15 Electronics \u003cbr\u003e15.16 Fibers and textile materials \u003cbr\u003e15.17 Filtration \u003cbr\u003e15.18 Flooring \u003cbr\u003e15.19 Foams \u003cbr\u003e15.20 Footwear \u003cbr\u003e15.21 Fuels \u003cbr\u003e15.22 Gaskets \u003cbr\u003e15.23 Glass \u003cbr\u003e15.24 Inks, varnishes, and lacquers \u003cbr\u003e15.25 Magnetic tapes and disks \u003cbr\u003e15.26 Masking tapes \u003cbr\u003e15.27 Medical applications \u003cbr\u003e15.28 Membranes \u003cbr\u003e15.29 Packaging \u003cbr\u003e15.30 Paints and coatings \u003cbr\u003e15.31 Paper \u003cbr\u003e15.32 Pharmaceutical products \u003cbr\u003e15.33 Photographic materials \u003cbr\u003e15.34 Pipes and conveying systems \u003cbr\u003e15.35 Roofing and pavement materials \u003cbr\u003e15.36 Tires \u003cbr\u003e15.37 Tubing \u003cbr\u003e15.38 Upholstery \u003cbr\u003e15.39 Wire and cable \u003cbr\u003e15.40 Work clothing \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 Antistatic Agents in Various Processing Methods \u003cbr\u003e16.1 Blow molding \u003cbr\u003e16.2 Calendering \u003cbr\u003e16.3 Casting \u003cbr\u003e16.4 Coil coating \u003cbr\u003e16.5 Compression molding \u003cbr\u003e16.6 Dip coating \u003cbr\u003e16.7 Extrusion \u003cbr\u003e16.8 Injection molding \u003cbr\u003e16.9 Multilayered lamination \u003cbr\u003e16.10 Powder molding \u003cbr\u003e16.11 Rotational molding \u003cbr\u003e16.12 Rubber processing \u003cbr\u003e16.13 Spray coating \u003cbr\u003e16.14 Spin coating and finishing \u003cbr\u003e16.15 Sputtering \u003cbr\u003e16.16 Thermoforming \u003cbr\u003e16.17 Vacuum molding \u003cbr\u003e16.18 Web coating \u003cbr\u003e16.18 Wire coating \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 Specialized Analytical Methods in Antistatic Agent Testing \u003cbr\u003e17.1 Identification \u003cbr\u003e17.2 Methods of determination of concentration \u003cbr\u003e17.3 General methods \u003cbr\u003e17.3.1 Time-of-flight secondary ion mass spectrometry \u003cbr\u003e17.3.2 Atomic force microscopy \u003cbr\u003e17.3.3 Microscopy \u003cbr\u003e17.3.4 X-ray photoelectron spectroscopy, XPS or ESCA \u003cbr\u003e17.3.5 X-ray analysis \u003cbr\u003e17.3.6 Visible, UV and IR spectroscopy \u003cbr\u003e17.3.7 Ellipsometry \u003cbr\u003e17.3.8 Contact angle \u003cbr\u003e17.3.9 Atomic absorption spectroscopy \u003cbr\u003e17.3.10 Thermal analysis \u003cbr\u003e17.3.11 Molecular mass \u003cbr\u003e17.3.12 Specific surface area \u003cbr\u003e17.3.14 Mechanical aging \u003cbr\u003e17.4 Specific methods \u003cbr\u003e17.4.1 Charge accumulation and charge decay time \u003cbr\u003e17.4.2 Dielectric spectroscopy \u003cbr\u003e17.4.3 Dirt pickup methods \u003cbr\u003e17.4.4 Electrical conductivity \u003cbr\u003e17.4.5 Shielding effectiveness \u003cbr\u003e17.4.6 Propagating brush discharge \u003cbr\u003e17.4.7 Half-life discharge \u003cbr\u003e17.4.8 Tribocharging \u003cbr\u003e17.4.9 Electrostatic charge and field \u003cbr\u003e17.4.10 Surface and volume resistivity \u003cbr\u003e17.4.11 Internal space charge \u003cbr\u003e17.4.12 Ionic-conductivity spectra \u003cbr\u003e17.4.13 Electrical capacitance tomography \u003cbr\u003e17.4.14 Contact potential \u003cbr\u003e17.4.15 Transfer efficiency \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 Mathematical Modelling of Antistatic Properties \u003cbr\u003e18.1 Percolation concentration of antistatic filler \u003cbr\u003e18.2 Conduction mechanism modeling \u003cbr\u003e18.3 Charge decay \u003cbr\u003e18.4 Dielectric permittivity \u003cbr\u003e18.5 Electromagnetic wave shielding effectiveness \u003cbr\u003e18.6 Electrification of transformer oil \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 Health and Safety Issues with Antistatic Agents \u003cbr\u003e19.1 Aluminum \u003cbr\u003e19.2 Carbon black \u003cbr\u003e19.3 Copper \u003cbr\u003e19.4 Graphite \u003cbr\u003e19.5 Nickel and its compounds \u003cbr\u003e19.6 Silver \u003cbr\u003e19.7 Sorbitan monooleate \u003cbr\u003e19.8 Sorbitan monostearate \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 The Environmental Fate of Antistatic Agents \u003cbr\u003eWilliam R. Roy\u003cbr\u003e20.1 Introduction \u003cbr\u003e20.2 A lack of information \u003cbr\u003e20.3 Surfactants and metals \u003cbr\u003e20.3.1 Surfactants \u003cbr\u003e20.3.2 Sorption of surfactants by soils and clays \u003cbr\u003e20.3.3 Silver and nickel \u003cbr\u003e20.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e21 Regulations and Data \u003cbr\u003e21.1 Toxic substance control \u003cbr\u003e21.2. Carcinogenic effect \u003cbr\u003e21.3 Workplace exposure limits \u003cbr\u003e21.4 Food regulatory acts \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e22 Personal Protection \u003cbr\u003e22.1 Clothing \u003cbr\u003e22.2 Gloves \u003cbr\u003e22.3 Eye protection \u003cbr\u003e22.4 Respiratory protection \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJürgen Pionteck\u003c\/strong\u003e, born in 1957, studied chemistry at the Dresden Technical University, where he obtained his Ph. D. (Dr. rer. nat.) in the field of physical-organic chemistry under the guidance of K. Schwetlick in 1988. Since 1988 he is the researcher at the Leibniz Institute of Polymer Research Dresden, where he was heading the Polymer Blend Department from 1990 till 1998. In 1991\/1992 he worked for 1 year with W. J. MacKnight at the University of Massachusetts at Amherst. Jürgen Pionteck is author or co-author of almost 100 scientific papers. He was awarded the Science Award of the Dresden Technical University, third-class, the Award of the Association of Supporters of the IPF for Innovative Research on New Materials, and the Honorary Medal of the Polymer Institute Bratislava.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003e has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/p\u003e","published_at":"2017-06-22T21:12:52-04:00","created_at":"2017-06-22T21:12:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","antistatic","antistatic agents","antistatics additives","application of antistatic agents","book","conductive","environmental","medical applications","p-additives","polymer","regulations","stability of plastics in high electric fields","types of antistatics agents"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378319556,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Antistatics","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-34-8","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/1-895198-34-8.jpg?v=1499387415"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/1-895198-34-8.jpg?v=1499387415","options":["Title"],"media":[{"alt":null,"id":354809249885,"position":1,"preview_image":{"aspect_ratio":0.754,"height":499,"width":376,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/1-895198-34-8.jpg?v=1499387415"},"aspect_ratio":0.754,"height":499,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/1-895198-34-8.jpg?v=1499387415","width":376}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jürgen Pionteck \u0026amp; George Wypych \u003cbr\u003eISBN 1-895198-34-8 \u003cbr\u003e\u003cbr\u003ePages 359,Tables 140, Figures 110\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first comprehensive book written on the subject of antistatic additives. A few previously published books are either very old or they constitute short reviews or chapters in books on polymer additives.\u003cbr\u003e\u003cbr\u003eThe present volume includes information based on the complete review of existing literature and patented inventions on additives capable to modify properties of materials in such a manner that they become antistatic, conductive, and\/or EMI shielding.\u003cbr\u003e\u003cbr\u003eThirteen chemical families of materials are used for a production of antistatic additives. There are about 700 commercial products derived from these developments and used by industry to change electric conductivity of materials. The properties of these commercial products are given in the extensive database of antistatics which constitutes a separate publication but useful together with this handbook (see separate publication: Database of Antistatics). The information in both publications is not repeated but it is complementary.\u003cbr\u003e\u003cbr\u003eAntistatic additives are used in the production of materials from 57 generic families of polymers and numerous polymer blends having excellent conductive properties. Polymers containing antistatic additives are processed by 18 groups of processing methods and, in addition, 9 incorporation methods are used on the commercial scale with these products. The processing methods are used by 40 industries, listed in the box on the left side of the page, for the manufacture of a large number of commercial products.\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various polymers is divided into the following sections: types and concentrations of antistatics used, the potential effect of antistatics on polymer and\/or other additives, and examples of typical formulations used for processing of polymers containing the antistatic additive.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various products is divided into the following sections: types and concentrations of antistatics used by a particular industry, reasons for their use, advantages, and disadvantages of the use of different additives, the effect on product properties, and examples of formulations. \u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: types and concentrations of antistatics, eventual influence on processing, and examples of formulations. The goal of this chapter is to provide information on the amount and the type of antistatics used in each processing method, discuss the eventual influence of antistatics on a process and give examples of typical formulations used by the discussed here processing methods.\u003cbr\u003e\u003cbr\u003eThe book contains 22 chapters, each addressing specific aspect of properties and applications of antistatic agents. Please review the attached table contents for a detailed list of topics, ideas, and reviews included in this comprehensive volume. In addition, a separate publication is also available (Database of Antistatics), which is a database of commercial materials used as antistatic additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Historical developments in studies on static electricity \u003cbr\u003e1.2 The triboelectric series and electrostatic charging \u003cbr\u003e1.3 Electrical properties of plastics \u003cbr\u003e1.3.1 Electrical conductivity \u003cbr\u003e1.3.2 Dielectric behavior of plastics in low electric fields \u003cbr\u003e1.3.3 Electrostatic charging of dielectric polymers \u003cbr\u003e1.3.4 Stability of plastics in high electric fields \u003cbr\u003e1.4 Antistatic agents \u003cbr\u003e1.4.1 Classification of antistatics \u003cbr\u003e1.4.2 Expectations from antistatics \u003cbr\u003e1.5 Definitions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Types of Antistatic Agents \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial antistatic agents \u003cbr\u003e2.2.1 Amines (quaternary and others) \u003cbr\u003e2.2.2 Carbon black \u003cbr\u003e2.2.3 Esters \u003cbr\u003e2.2.4 Fibers \u003cbr\u003e2.2.4.1 Metal \u003cbr\u003e2.2.4.2 Carbon and graphite fibers \u003cbr\u003e2.2.4.3 Others \u003cbr\u003e2.2.5 Inorganic materials \u003cbr\u003e2.2.6 Masterbatches \u003cbr\u003e2.2.7 Metal powders and nanopowders \u003cbr\u003e2.2.8 Nanotubes \u003cbr\u003e2.2.9 Polyethylene glycol \u003cbr\u003e2.2.10 Polymers \u003cbr\u003e2.2.10.1 Inherently conductive \u003cbr\u003e2.2.10.2 Containing antistatic \u003cbr\u003e\u003cbr\u003e3 Typical Methods of Quality Control of Antistatics \u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Brookfield viscosity \u003cbr\u003e3.4 Capacitance \u003cbr\u003e3.5 Chemical resistance \u003cbr\u003e3.6 Color \u003cbr\u003e3.7 Compression set \u003cbr\u003e3.8 Dielectric breakdown voltage \u003cbr\u003e3.9 Dielectric constant (relative permittivity) \u003cbr\u003e3.10 Dielectric strength \u003cbr\u003e3.11 Dissipation factor \u003cbr\u003e3.12 Dry arc resistance \u003cbr\u003e3.13 Electrical resistivity \u003cbr\u003e3.14 Erosion resistance \u003cbr\u003e3.15 Flash and fire point \u003cbr\u003e3.16 Hardness \u003cbr\u003e3.17 Kinematic viscosity \u003cbr\u003e3.18 Loss index \u003cbr\u003e3.19 Marking (classification) \u003cbr\u003e3.20 Melt rheology \u003cbr\u003e3.21 Refractive index \u003cbr\u003e3.22 Residual contamination \u003cbr\u003e3.23 Saponification value \u003cbr\u003e3.24 Specific gravity \u003cbr\u003e3.25 Specifications for commercial products and standard test methods \u003cbr\u003e3.25.1 Adhesive bonding \u003cbr\u003e3.25.2 Aviation and distillate fuels \u003cbr\u003e3.25.3 Conductive adhesives \u003cbr\u003e3.25.4 Conveyor belting \u003cbr\u003e3.25.5 Crosslinkable ethylene plastics \u003cbr\u003e3.25.6 Electrical insulating materials \u003cbr\u003e3.25.7 Electrocoat bath \u003cbr\u003e3.25.8 Electronic devices \u003cbr\u003e3.25.9 Endless belts \u003cbr\u003e3.25.10 Extruded film and tape \u003cbr\u003e3.25.11 Flooring \u003cbr\u003e3.25.12 Footwear (protective) \u003cbr\u003e3.25.13 Hoses \u003cbr\u003e3.25.14 Insulation shielding materials \u003cbr\u003e3.25.15 Liquid paints \u003cbr\u003e3.25.16 Medical applications \u003cbr\u003e3.25.17 Polymer-based microwave circuit substrates \u003cbr\u003e3.25.18 Protective clothing \u003cbr\u003e3.25.19 Rubber \u003cbr\u003e3.25.20 Textile fabric \u003cbr\u003e3.25.21 Ventilation materials \u003cbr\u003e3.25.22 Writing paper \u003cbr\u003e3.26 Tensile properties \u003cbr\u003e3.27 Thermal expansion coefficient \u003cbr\u003e3.28 Water concentration \u003cbr\u003e3.29 Weight loss \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 Electrostatic Hazards \u003cbr\u003e4.1 Electrostatic charge generation \u003cbr\u003e4.2 Electromagnetic interference \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Ignition Hazards and Preventive Measures \u003cbr\u003e5.1 Conditions of ignition \u003cbr\u003e5.2 Types of discharge and discharge energy \u003cbr\u003e5.3 Minimum ignition energy \u003cbr\u003e5.4 Preventive measures \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Mechanisms of Action of Antistatic Agents \u003cbr\u003ePetra Pötschke \u0026amp; Jürgen Pionteck\u003cbr\u003e6.1 Conductive modification of polymer surfaces \u003cbr\u003e6.2 Mechanism of action of antistatics added into bulk \u003cbr\u003e6.2.1 Internal organic antistatics \u003cbr\u003e6.2.2 Conductive inorganic fillers \u003cbr\u003e6.2.3 Conductive inorganic materials in blends of insulating polymers \u003cbr\u003e6.2.4 Conductive polymer\/insulating polymer composites \u003cbr\u003e6.3 Consideration of mechanism in selection of antistatic agents for particular application\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Compatibility of Antistatic Agents with Matrix and Their Performance \u003cbr\u003e7.1 What influences compatibility of antistatic agents with matrix? \u003cbr\u003e7.2 Methods of antistatic agent selection based on principles of compatibility \u003cbr\u003e7.3 Influence of compatibility on permanence of antistatic agent incorporation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Antistatic Agent Motion and Diffusion \u003cbr\u003e8.1 Antistatic agent diffusion rate and the methods of study \u003cbr\u003e8.2 Antistatic agent motion and distribution in matrix \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Structure and Distribution of Non-migrating Antistatics \u003cbr\u003e9.1 Morphological structure and distribution of non-migrating (permanent) antistatics \u003cbr\u003e9.2 Percolation threshold \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Antistatic Agent Incorporation Method and Its Performance \u003cbr\u003e10.1 Grafting \u003cbr\u003e10.2 Chemical modification \u003cbr\u003e10.3 Surface coating \u003cbr\u003e10.4 UV and electron beam curing \u003cbr\u003e10.5 Plasma treatment \u003cbr\u003e10.6 Physical vapor deposition \u003cbr\u003e10.7 Mixing\/dispersion \u003cbr\u003e10.8 Crystallization in matrix \u003cbr\u003e10.9 Nucleation of inorganic nanoparticles \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 Antistatic Agents and Other Components of Formulation \u003cbr\u003e11.1 Antistatic agent consumption by fillers \u003cbr\u003e11.2 Absorption of additives by antistatic agents \u003cbr\u003e11.3 Molecular mobility and transport in the presence of antistatic agents \u003cbr\u003e11.4 Effect of antistatic agents on polymerization and curing reactions \u003cbr\u003e11.5 Effect of moisture and humidity \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 Effect of Antistatic Agents on Some Properties of Compounded Materials \u003cbr\u003e12.1 Mechanical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.2 Optical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.3 Spectral properties \u003cbr\u003e12.4 Rheological properties \u003cbr\u003ePetra Pötschke \u003cbr\u003e12.4.1 Effect of low molecular weight organic additives \u003cbr\u003e12.4.2 Effect of conductive inorganic materials \u003cbr\u003e12.5 Electrical properties \u003cbr\u003e12.6 Glass transition temperature \u003cbr\u003e12.7 Thermal stability \u003cbr\u003e12.8 Effect of UV and ionized radiation on materials containing antistatics \u003cbr\u003e12.9 Morphology, crystallization, structure, and orientation of macromolecules \u003cbr\u003e12.10 Hydrophilic properties, surface free energy \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 Antistatic Agent Selection for Specific Polymers \u003cbr\u003e13.1 ABS \u003cbr\u003e13.2 Acrylics \u003cbr\u003e13.3 Cellulose acetate \u003cbr\u003e13.4 Cellulose butyrate and propionate \u003cbr\u003e13.5 Cellulose nitrate \u003cbr\u003e13.6 Charge transfer polymers \u003cbr\u003e13.7 Chlorinated polyvinylchloride \u003cbr\u003e13.8 Chlorosulfonated polyethylene \u003cbr\u003e13.9 Epoxy resin \u003cbr\u003e13.10 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e13.11 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e13.12 Ionomers \u003cbr\u003e13.13 Nitrile rubber \u003cbr\u003e13.14 Polyacene \u003cbr\u003e13.15 Polyacetylene \u003cbr\u003e13.16 Polyacrylonitrile \u003cbr\u003e13.17 Polyamide \u003cbr\u003e13.18 Polyaniline \u003cbr\u003e13.19 Polybutadiene \u003cbr\u003e13.20 Polybutylmethacrylate \u003cbr\u003e13.21 Polycarbonate \u003cbr\u003e13.22 Polyester \u003cbr\u003e13.23 Polyetheretherketone \u003cbr\u003e13.24 Polyetherimide \u003cbr\u003e13.25 Polyethylene \u003cbr\u003e13.26 Polyimide \u003cbr\u003e13.27 Polyisoprene \u003cbr\u003e13.28 Polyisothionaphthene \u003cbr\u003e13.29 Polylactide \u003cbr\u003e13.30 Polymethylmethacrylate \u003cbr\u003e13.31 Polyoxyethylene \u003cbr\u003e13.32 Polyoxymethylene \u003cbr\u003e13.33 Poly(N-vinyl-2-pyrrolidone) 176\u003cbr\u003e13.34 Polyparaphenylene \u003cbr\u003e13.35 Poly(phenylene ether) \u003cbr\u003e13.36 Poly(phenylene sulfide) \u003cbr\u003e13.37 Poly(phenylene vinylene) \u003cbr\u003e13.38 Polypropylene \u003cbr\u003e13.39 Polypyrrole \u003cbr\u003e13.40 Polystyrene \u003cbr\u003e13.41 Polysulfone \u003cbr\u003e13.42 Polythiophene \u003cbr\u003e13.43 Polyvinylacetate \u003cbr\u003e13.44 Polyvinylalcohol \u003cbr\u003e13.45 Polyvinylbenzylalcohol \u003cbr\u003e13.46 Polyvinylbutyral \u003cbr\u003e13.47 Polyvinylchloride \u003cbr\u003e13.48 Poly(vinylene sulfide) \u003cbr\u003e13.49 Polyvinylidenechloride \u003cbr\u003e13.50 Polyvinylidenefluoride \u003cbr\u003e13.51 Polyurethanes \u003cbr\u003e13.52 Proteins \u003cbr\u003e13.53 Rubber, natural \u003cbr\u003e13.54 Silicone \u003cbr\u003e13.55 Styrene-butadiene rubber \u003cbr\u003e13.56 Styrene-butadiene-styrene copolymer \u003cbr\u003e13.57 Starch \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 Antistatic Agents in Polymer Blends \u003cbr\u003e14.1 Antistatic agent partition between blend component polymers \u003cbr\u003e14.2 Interaction of antistatic agents with blend components \u003cbr\u003e14.3 Blends of conductive and non-conductive polymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 Antistatic Agents in Various Industrial Products \u003cbr\u003e15.1 Adhesives and sealants \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Agriculture \u003cbr\u003e15.4 Automotive applications \u003cbr\u003e15.5 Bottles and plastic containers \u003cbr\u003e15.6 Bulk shipping containers \u003cbr\u003e15.7 Business machines \u003cbr\u003e15.8 Cementitious materials \u003cbr\u003e15.9 Ceramics \u003cbr\u003e15.10 Coated fabrics \u003cbr\u003e15.11 Composites \u003cbr\u003e15.12 Cosmetics \u003cbr\u003e15.13 Equipment manufacture \u003cbr\u003e15.14 Electrical equipment \u003cbr\u003e15.15 Electronics \u003cbr\u003e15.16 Fibers and textile materials \u003cbr\u003e15.17 Filtration \u003cbr\u003e15.18 Flooring \u003cbr\u003e15.19 Foams \u003cbr\u003e15.20 Footwear \u003cbr\u003e15.21 Fuels \u003cbr\u003e15.22 Gaskets \u003cbr\u003e15.23 Glass \u003cbr\u003e15.24 Inks, varnishes, and lacquers \u003cbr\u003e15.25 Magnetic tapes and disks \u003cbr\u003e15.26 Masking tapes \u003cbr\u003e15.27 Medical applications \u003cbr\u003e15.28 Membranes \u003cbr\u003e15.29 Packaging \u003cbr\u003e15.30 Paints and coatings \u003cbr\u003e15.31 Paper \u003cbr\u003e15.32 Pharmaceutical products \u003cbr\u003e15.33 Photographic materials \u003cbr\u003e15.34 Pipes and conveying systems \u003cbr\u003e15.35 Roofing and pavement materials \u003cbr\u003e15.36 Tires \u003cbr\u003e15.37 Tubing \u003cbr\u003e15.38 Upholstery \u003cbr\u003e15.39 Wire and cable \u003cbr\u003e15.40 Work clothing \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 Antistatic Agents in Various Processing Methods \u003cbr\u003e16.1 Blow molding \u003cbr\u003e16.2 Calendering \u003cbr\u003e16.3 Casting \u003cbr\u003e16.4 Coil coating \u003cbr\u003e16.5 Compression molding \u003cbr\u003e16.6 Dip coating \u003cbr\u003e16.7 Extrusion \u003cbr\u003e16.8 Injection molding \u003cbr\u003e16.9 Multilayered lamination \u003cbr\u003e16.10 Powder molding \u003cbr\u003e16.11 Rotational molding \u003cbr\u003e16.12 Rubber processing \u003cbr\u003e16.13 Spray coating \u003cbr\u003e16.14 Spin coating and finishing \u003cbr\u003e16.15 Sputtering \u003cbr\u003e16.16 Thermoforming \u003cbr\u003e16.17 Vacuum molding \u003cbr\u003e16.18 Web coating \u003cbr\u003e16.18 Wire coating \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 Specialized Analytical Methods in Antistatic Agent Testing \u003cbr\u003e17.1 Identification \u003cbr\u003e17.2 Methods of determination of concentration \u003cbr\u003e17.3 General methods \u003cbr\u003e17.3.1 Time-of-flight secondary ion mass spectrometry \u003cbr\u003e17.3.2 Atomic force microscopy \u003cbr\u003e17.3.3 Microscopy \u003cbr\u003e17.3.4 X-ray photoelectron spectroscopy, XPS or ESCA \u003cbr\u003e17.3.5 X-ray analysis \u003cbr\u003e17.3.6 Visible, UV and IR spectroscopy \u003cbr\u003e17.3.7 Ellipsometry \u003cbr\u003e17.3.8 Contact angle \u003cbr\u003e17.3.9 Atomic absorption spectroscopy \u003cbr\u003e17.3.10 Thermal analysis \u003cbr\u003e17.3.11 Molecular mass \u003cbr\u003e17.3.12 Specific surface area \u003cbr\u003e17.3.14 Mechanical aging \u003cbr\u003e17.4 Specific methods \u003cbr\u003e17.4.1 Charge accumulation and charge decay time \u003cbr\u003e17.4.2 Dielectric spectroscopy \u003cbr\u003e17.4.3 Dirt pickup methods \u003cbr\u003e17.4.4 Electrical conductivity \u003cbr\u003e17.4.5 Shielding effectiveness \u003cbr\u003e17.4.6 Propagating brush discharge \u003cbr\u003e17.4.7 Half-life discharge \u003cbr\u003e17.4.8 Tribocharging \u003cbr\u003e17.4.9 Electrostatic charge and field \u003cbr\u003e17.4.10 Surface and volume resistivity \u003cbr\u003e17.4.11 Internal space charge \u003cbr\u003e17.4.12 Ionic-conductivity spectra \u003cbr\u003e17.4.13 Electrical capacitance tomography \u003cbr\u003e17.4.14 Contact potential \u003cbr\u003e17.4.15 Transfer efficiency \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 Mathematical Modelling of Antistatic Properties \u003cbr\u003e18.1 Percolation concentration of antistatic filler \u003cbr\u003e18.2 Conduction mechanism modeling \u003cbr\u003e18.3 Charge decay \u003cbr\u003e18.4 Dielectric permittivity \u003cbr\u003e18.5 Electromagnetic wave shielding effectiveness \u003cbr\u003e18.6 Electrification of transformer oil \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 Health and Safety Issues with Antistatic Agents \u003cbr\u003e19.1 Aluminum \u003cbr\u003e19.2 Carbon black \u003cbr\u003e19.3 Copper \u003cbr\u003e19.4 Graphite \u003cbr\u003e19.5 Nickel and its compounds \u003cbr\u003e19.6 Silver \u003cbr\u003e19.7 Sorbitan monooleate \u003cbr\u003e19.8 Sorbitan monostearate \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 The Environmental Fate of Antistatic Agents \u003cbr\u003eWilliam R. Roy\u003cbr\u003e20.1 Introduction \u003cbr\u003e20.2 A lack of information \u003cbr\u003e20.3 Surfactants and metals \u003cbr\u003e20.3.1 Surfactants \u003cbr\u003e20.3.2 Sorption of surfactants by soils and clays \u003cbr\u003e20.3.3 Silver and nickel \u003cbr\u003e20.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e21 Regulations and Data \u003cbr\u003e21.1 Toxic substance control \u003cbr\u003e21.2. Carcinogenic effect \u003cbr\u003e21.3 Workplace exposure limits \u003cbr\u003e21.4 Food regulatory acts \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e22 Personal Protection \u003cbr\u003e22.1 Clothing \u003cbr\u003e22.2 Gloves \u003cbr\u003e22.3 Eye protection \u003cbr\u003e22.4 Respiratory protection \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJürgen Pionteck\u003c\/strong\u003e, born in 1957, studied chemistry at the Dresden Technical University, where he obtained his Ph. D. (Dr. rer. nat.) in the field of physical-organic chemistry under the guidance of K. Schwetlick in 1988. Since 1988 he is the researcher at the Leibniz Institute of Polymer Research Dresden, where he was heading the Polymer Blend Department from 1990 till 1998. In 1991\/1992 he worked for 1 year with W. J. MacKnight at the University of Massachusetts at Amherst. Jürgen Pionteck is author or co-author of almost 100 scientific papers. He was awarded the Science Award of the Dresden Technical University, third-class, the Award of the Association of Supporters of the IPF for Innovative Research on New Materials, and the Honorary Medal of the Polymer Institute Bratislava.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003e has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/p\u003e"}
Handbook of Fillers
$285.00
{"id":11242220868,"title":"Handbook of Fillers","handle":"978-1-895198-41-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-41-6 \u003cbr\u003e\u003cbr\u003eFigures: 578\u003cbr\u003eTables: 190\u003cbr\u003ePages: 774\u003cbr\u003eThird Edition\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003eOver 3,000 research papers, mostly published from 1994 to 2009 (over 1500 new papers in this edition), technical data from over 160 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous edition, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers. \u003cbr\u003e Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by 154 SEM TEM, AFM micrographs.\u003cbr\u003e The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. \u003cbr\u003e This book is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace. The previous edition was very popular among environmental engineers, patent and litigation lawyers, and employees of various governmental agencies. \u003cbr\u003e To summarize, major features of this handbook are:\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1.1 Expectations from fillers\u003cbr\u003e1.2 Typical filler properties\u003cbr\u003e1.3 Definitions\u003cbr\u003e1.4 Classification\u003cbr\u003e1.5 Markets and trends\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders\u003cbr\u003e2.1.2 Aluminum borate whiskers\u003cbr\u003e2.1.3 Aluminum oxide \u003cbr\u003e2.1.4 Aluminum trihydroxide\u003cbr\u003e2.1.5 Anthracite\u003cbr\u003e2.1.6 Antimonate of sodium\u003cbr\u003e2.1.7 Antimony pentoxide\u003cbr\u003e2.1.8 Antimony trioxide\u003cbr\u003e2.1.9 Ammonium octamolybdate\u003cbr\u003e2.1.10 Apatite\u003cbr\u003e2.1.11 Ash, fly\u003cbr\u003e2.1.12 Attapulgite\u003cbr\u003e2.1.13 Barium metaborate\u003cbr\u003e2.1.14 Barium sulfate\u003cbr\u003e2.1.15 Barium \u0026amp; strontium sulfates\u003cbr\u003e2.1.16 Barium titanate\u003cbr\u003e2.1.17 Bentonite\u003cbr\u003e2.1.18 Beryllium oxide\u003cbr\u003e2.1.19 Boron nitride\u003cbr\u003e2.1.20 Calcium carbonate\u003cbr\u003e2.1.21 Calcium hydroxide\u003cbr\u003e2.1.22 Calcium sulfate\u003cbr\u003e2.1.23 Carbon black \u003cbr\u003e2.1.24 Ceramic beads\u003cbr\u003e2.1.25 Clay\u003cbr\u003e2.1.26 Copper\u003cbr\u003e2.1.27 Cobalt powder\u003cbr\u003e2.1.28 Cristobalite\u003cbr\u003e2.1.29 Diatomaceous earth\u003cbr\u003e2.1.30 Dolomite\u003cbr\u003e2.1.31 Ferrites\u003cbr\u003e2.1.32 Feldspar\u003cbr\u003e2.1.33 Glass beads\u003cbr\u003e2.1.34 Gold\u003cbr\u003e2.1.35 Graphite\u003cbr\u003e2.1.36 Hydrous calcium silicate\u003cbr\u003e2.1.37 Iron oxide \u003cbr\u003e2.1.38 Kaolin \u003cbr\u003e2.1.39 Lithopone \u003cbr\u003e2.1.40 Magnesium oxide \u003cbr\u003e2.1.41 Magnesium hydroxide \u003cbr\u003e2.1.42 Metal-containing conductive materials\u003cbr\u003e2.1.43 Mica\u003cbr\u003e2.1.44 Molybdenum\u003cbr\u003e2.1.45 Molybdenum disulfide\u003cbr\u003e2.1.46 Molybdic oxide\u003cbr\u003e2.1.47 Nanofillers\u003cbr\u003e2.1.48 Nickel\u003cbr\u003e2.1.49 Nickel oxide\u003cbr\u003e2.1.50 Nickel zinc ferrite\u003cbr\u003e2.1.51 Perlite\u003cbr\u003e2.1.52 Polymeric fillers\u003cbr\u003e2.1.53 Potassium hexatitanate whiskers\u003cbr\u003e2.1.54 Pumice\u003cbr\u003e2.1.55 Pyrophyllite\u003cbr\u003e2.1.56 Rubber particles\u003cbr\u003e2.1.57 Sepiolite\u003cbr\u003e2.1.58 Silica \u003cbr\u003e2.1.58.1 Fumed silica\u003cbr\u003e2.1.58.2 Fused silica \u003cbr\u003e2.1.58.3 Precipitated silica\u003cbr\u003e2.1.58.4 Nanosilica\u003cbr\u003e2.1.58.5 Quartz (Tripoli) \u003cbr\u003e2.1.58.6 Sand \u003cbr\u003e2.1.58.7 Silica gel\u003cbr\u003e2.1.59 Silicon carbide\u003cbr\u003e2.1.60 Silicon nitride\u003cbr\u003e2.1.61 Silver powder and flakes\u003cbr\u003e2.1.62 Slate flour \u003cbr\u003e2.1.63 Talc \u003cbr\u003e2.1.64 Titanium dioxide\u003cbr\u003e2.1.65 Tungsten \u003cbr\u003e2.1.66 Vermiculite \u003cbr\u003e2.1.67 Wollastonite \u003cbr\u003e2.1.68 Wood flour and similar materials\u003cbr\u003e2.1.69 Zeolites \u003cbr\u003e2.1.70 Zinc borate \u003cbr\u003e2.1.71 Zinc oxide \u003cbr\u003e2.1.72 Zinc stannate \u003cbr\u003e2.1.73 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers\u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Cellulose fibers \u003cbr\u003e2.2.4 Glass fibers \u003cbr\u003e2.2.5 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e3.1 Filler packaging\u003cbr\u003e3.2 External transportation\u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems\u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 QUALITY CONTROL OF FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e4.1 Absorption coefficient\u003cbr\u003e4.2 Acidity or alkalinity of water extract\u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles\u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area\u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties\u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments\u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties\u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light\u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue\u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area\u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5.1 Density\u003cbr\u003e5.2 Particle size\u003cbr\u003e5.3 Particle size distribution\u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness\u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing\u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure\u003cbr\u003e5.11 Flocculation and sedimentation\u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH\u003cbr\u003e5.15 Zeta-potential\u003cbr\u003e5.16 Surface energy\u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling\u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties\u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties\u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient\u003cbr\u003e5.29 Melting temperature \u003cbr\u003e5.30 Electrical properties \u003cbr\u003e5.31 Magnetic properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e6.1 Reactivity\u003cbr\u003e6.2 Chemical groups on the filler surface\u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties\u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence\u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1 Particle distribution in matrix\u003cbr\u003e7.2 Orientation of filler particles in a matrix\u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction\u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization\u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e8.1 Tensile strength and elongation\u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Elastic modulus \u003cbr\u003e8.4 Flexural strength and modulus \u003cbr\u003e8.5 Impact resistance \u003cbr\u003e8.6 Hardness \u003cbr\u003e8.7 Tear strength\u003cbr\u003e8.8 Compressive strength\u003cbr\u003e8.9 Fracture resistance \u003cbr\u003e8.10 Wear \u003cbr\u003e8.11 Friction \u003cbr\u003e8.12 Abrasion \u003cbr\u003e8.13 Scratch resistance\u003cbr\u003e8.14 Fatigue \u003cbr\u003e8.15 Failure \u003cbr\u003e8.16 Adhesion \u003cbr\u003e8.17 Thermal deformation\u003cbr\u003e8.18 Shrinkage \u003cbr\u003e8.19 Warpage \u003cbr\u003e8.20 Compression set\u003cbr\u003e8.21 Load transfer \u003cbr\u003e8.22 Residual stress \u003cbr\u003e8.23 Creep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e9.1 Viscosity\u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation\u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity\u003cbr\u003e9.6 Dynamic mechanical behavior\u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity\u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e10.1 Crystallinity\u003cbr\u003e10.2 Crystallization behavior\u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity\u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e11.1 Irradiation\u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors\u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 FLAMMABILITY OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e12.1 Definitions\u003cbr\u003e12.2 Limiting oxygen index\u003cbr\u003e12.3 Ignition and flame spread rate\u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion\u003cbr\u003e12.6 Emission of gaseous components\u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e13.1 Adhesion promoters\u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers\u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents\u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e14.1 Physical methods\u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement\u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis\u003cbr\u003e14.1.11 Electric constants determination\u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test\u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index\u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy\u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area\u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis\u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis\u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy\u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy\u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 FILLERS IN COMMERCIAL POLYMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e15.1 Acrylics\u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer\u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Elastomers \u003cbr\u003e15.7 Epoxy resins \u003cbr\u003e15.8 Ethylene vinyl acetate copolymers \u003cbr\u003e15.9 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.10 Ethylene-propylene copolymers \u003cbr\u003e15.11 Ionomers \u003cbr\u003e15.12 Liquid crystalline polymers\u003cbr\u003e15.13 Perfluoroalkoxy resin \u003cbr\u003e15.14 Phenolic resins \u003cbr\u003e15.15 Poly(acrylic acid) \u003cbr\u003e15.16 Polyamides \u003cbr\u003e15.17 Polyamideimide \u003cbr\u003e15.18 Polyamines \u003cbr\u003e15.19 Polyaniline \u003cbr\u003e15.20 Polyaryletherketone\u003cbr\u003e15.21 Poly(butylene terephthalate) \u003cbr\u003e15.22 Polycarbonate \u003cbr\u003e15.23 Polyetheretherketone\u003cbr\u003e15.24 Polyetherimide \u003cbr\u003e15.25 Polyether sulfone \u003cbr\u003e15.26 Polyethylene \u003cbr\u003e15.27 Polyethylene, chlorinated \u003cbr\u003e15.28 Polyethylene, chlorosulfonated \u003cbr\u003e15.29 Poly(ethylene oxide) \u003cbr\u003e15.30 Poly(ethylene terephthalate)\u003cbr\u003e15.31 Polyimide \u003cbr\u003e15.32 Polymethylmethacrylate\u003cbr\u003e15.33 Polyoxymethylene \u003cbr\u003e15.34 Poly(phenylene ether)\u003cbr\u003e15.35 Poly(phenylene sulfide) \u003cbr\u003e15.36 Polypropylene \u003cbr\u003e15.37 Polypyrrole \u003cbr\u003e15.38 Polystyrene \u0026amp; high impact \u003cbr\u003e15.39 Polysulfides \u003cbr\u003e15.40 Polysulfone \u003cbr\u003e15.41 Polytetrafluoroethylene\u003cbr\u003e15.42 Polyurethanes \u003cbr\u003e15.43 Poly(vinyl acetate)\u003cbr\u003e15.44 Poly(vinyl alcohol)\u003cbr\u003e15.45 Poly(vinyl butyral) \u003cbr\u003e15.46 Poly(vinyl chloride) \u003cbr\u003e15.47 Rubbers \u003cbr\u003e15.47.1 Natural rubber\u003cbr\u003e15.47.2 Nitrile rubber \u003cbr\u003e15.47.3 Polybutadiene rubber \u003cbr\u003e15.47.4 Polybutyl rubber \u003cbr\u003e15.47.5 Polychloroprene \u003cbr\u003e15.47.6 Polyisobutylene \u003cbr\u003e15.47.7 Polyisoprene \u003cbr\u003e15.47.8 Styrene-butadiene rubber\u003cbr\u003e15.48 Silicones \u003cbr\u003e15.49 Styrene-acrylonitrile copolymer\u003cbr\u003e15.50 Tetrafluoroethylene-perfluoropropylene\u003cbr\u003e15.51 Unsaturated polyesters \u003cbr\u003e15.52 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 FILLER IN MATERIALS COMBINATIONS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e16.1 Blends, alloys and interpenetrating networks\u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 FORMULATION WITH FILLERS\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e18.1 Blow molding\u003cbr\u003e18.2 Calendering and hot-melt coating\u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding\u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding\u003cbr\u003e18.13 Rotational molding \u003cbr\u003e18.14 Sheet molding \u003cbr\u003e18.15 Thermoforming \u003cbr\u003e18.16 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace\u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints\u003cbr\u003e19.12 Cosmetics and pharmaceutical products\u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed\u003cbr\u003e19.20 Friction materials\u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields\u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication\u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 HAZARDS IN FILLER USE\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:50:53-05:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","additives for plastics","book","calcium carbon","compounding of rubber","fillers additives","fillers and environment","flame retardanst for plastics","graphite","magnesium","mica","nanofillers","p-additives","particular fillers","physical properties","polymer","polymers","quality control","silica"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372804,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Fillers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-41-6","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-41-6.jpg?v=1499441992"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-41-6.jpg?v=1499441992","options":["Title"],"media":[{"alt":null,"id":355724558429,"position":1,"preview_image":{"aspect_ratio":0.667,"height":499,"width":333,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-41-6.jpg?v=1499441992"},"aspect_ratio":0.667,"height":499,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-41-6.jpg?v=1499441992","width":333}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-41-6 \u003cbr\u003e\u003cbr\u003eFigures: 578\u003cbr\u003eTables: 190\u003cbr\u003ePages: 774\u003cbr\u003eThird Edition\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003eOver 3,000 research papers, mostly published from 1994 to 2009 (over 1500 new papers in this edition), technical data from over 160 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous edition, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers. \u003cbr\u003e Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by 154 SEM TEM, AFM micrographs.\u003cbr\u003e The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. \u003cbr\u003e This book is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace. The previous edition was very popular among environmental engineers, patent and litigation lawyers, and employees of various governmental agencies. \u003cbr\u003e To summarize, major features of this handbook are:\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1.1 Expectations from fillers\u003cbr\u003e1.2 Typical filler properties\u003cbr\u003e1.3 Definitions\u003cbr\u003e1.4 Classification\u003cbr\u003e1.5 Markets and trends\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders\u003cbr\u003e2.1.2 Aluminum borate whiskers\u003cbr\u003e2.1.3 Aluminum oxide \u003cbr\u003e2.1.4 Aluminum trihydroxide\u003cbr\u003e2.1.5 Anthracite\u003cbr\u003e2.1.6 Antimonate of sodium\u003cbr\u003e2.1.7 Antimony pentoxide\u003cbr\u003e2.1.8 Antimony trioxide\u003cbr\u003e2.1.9 Ammonium octamolybdate\u003cbr\u003e2.1.10 Apatite\u003cbr\u003e2.1.11 Ash, fly\u003cbr\u003e2.1.12 Attapulgite\u003cbr\u003e2.1.13 Barium metaborate\u003cbr\u003e2.1.14 Barium sulfate\u003cbr\u003e2.1.15 Barium \u0026amp; strontium sulfates\u003cbr\u003e2.1.16 Barium titanate\u003cbr\u003e2.1.17 Bentonite\u003cbr\u003e2.1.18 Beryllium oxide\u003cbr\u003e2.1.19 Boron nitride\u003cbr\u003e2.1.20 Calcium carbonate\u003cbr\u003e2.1.21 Calcium hydroxide\u003cbr\u003e2.1.22 Calcium sulfate\u003cbr\u003e2.1.23 Carbon black \u003cbr\u003e2.1.24 Ceramic beads\u003cbr\u003e2.1.25 Clay\u003cbr\u003e2.1.26 Copper\u003cbr\u003e2.1.27 Cobalt powder\u003cbr\u003e2.1.28 Cristobalite\u003cbr\u003e2.1.29 Diatomaceous earth\u003cbr\u003e2.1.30 Dolomite\u003cbr\u003e2.1.31 Ferrites\u003cbr\u003e2.1.32 Feldspar\u003cbr\u003e2.1.33 Glass beads\u003cbr\u003e2.1.34 Gold\u003cbr\u003e2.1.35 Graphite\u003cbr\u003e2.1.36 Hydrous calcium silicate\u003cbr\u003e2.1.37 Iron oxide \u003cbr\u003e2.1.38 Kaolin \u003cbr\u003e2.1.39 Lithopone \u003cbr\u003e2.1.40 Magnesium oxide \u003cbr\u003e2.1.41 Magnesium hydroxide \u003cbr\u003e2.1.42 Metal-containing conductive materials\u003cbr\u003e2.1.43 Mica\u003cbr\u003e2.1.44 Molybdenum\u003cbr\u003e2.1.45 Molybdenum disulfide\u003cbr\u003e2.1.46 Molybdic oxide\u003cbr\u003e2.1.47 Nanofillers\u003cbr\u003e2.1.48 Nickel\u003cbr\u003e2.1.49 Nickel oxide\u003cbr\u003e2.1.50 Nickel zinc ferrite\u003cbr\u003e2.1.51 Perlite\u003cbr\u003e2.1.52 Polymeric fillers\u003cbr\u003e2.1.53 Potassium hexatitanate whiskers\u003cbr\u003e2.1.54 Pumice\u003cbr\u003e2.1.55 Pyrophyllite\u003cbr\u003e2.1.56 Rubber particles\u003cbr\u003e2.1.57 Sepiolite\u003cbr\u003e2.1.58 Silica \u003cbr\u003e2.1.58.1 Fumed silica\u003cbr\u003e2.1.58.2 Fused silica \u003cbr\u003e2.1.58.3 Precipitated silica\u003cbr\u003e2.1.58.4 Nanosilica\u003cbr\u003e2.1.58.5 Quartz (Tripoli) \u003cbr\u003e2.1.58.6 Sand \u003cbr\u003e2.1.58.7 Silica gel\u003cbr\u003e2.1.59 Silicon carbide\u003cbr\u003e2.1.60 Silicon nitride\u003cbr\u003e2.1.61 Silver powder and flakes\u003cbr\u003e2.1.62 Slate flour \u003cbr\u003e2.1.63 Talc \u003cbr\u003e2.1.64 Titanium dioxide\u003cbr\u003e2.1.65 Tungsten \u003cbr\u003e2.1.66 Vermiculite \u003cbr\u003e2.1.67 Wollastonite \u003cbr\u003e2.1.68 Wood flour and similar materials\u003cbr\u003e2.1.69 Zeolites \u003cbr\u003e2.1.70 Zinc borate \u003cbr\u003e2.1.71 Zinc oxide \u003cbr\u003e2.1.72 Zinc stannate \u003cbr\u003e2.1.73 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers\u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Cellulose fibers \u003cbr\u003e2.2.4 Glass fibers \u003cbr\u003e2.2.5 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e3.1 Filler packaging\u003cbr\u003e3.2 External transportation\u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems\u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 QUALITY CONTROL OF FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e4.1 Absorption coefficient\u003cbr\u003e4.2 Acidity or alkalinity of water extract\u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles\u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area\u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties\u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments\u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties\u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light\u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue\u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area\u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5.1 Density\u003cbr\u003e5.2 Particle size\u003cbr\u003e5.3 Particle size distribution\u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness\u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing\u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure\u003cbr\u003e5.11 Flocculation and sedimentation\u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH\u003cbr\u003e5.15 Zeta-potential\u003cbr\u003e5.16 Surface energy\u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling\u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties\u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties\u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient\u003cbr\u003e5.29 Melting temperature \u003cbr\u003e5.30 Electrical properties \u003cbr\u003e5.31 Magnetic properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e6.1 Reactivity\u003cbr\u003e6.2 Chemical groups on the filler surface\u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties\u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence\u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1 Particle distribution in matrix\u003cbr\u003e7.2 Orientation of filler particles in a matrix\u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction\u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization\u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e8.1 Tensile strength and elongation\u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Elastic modulus \u003cbr\u003e8.4 Flexural strength and modulus \u003cbr\u003e8.5 Impact resistance \u003cbr\u003e8.6 Hardness \u003cbr\u003e8.7 Tear strength\u003cbr\u003e8.8 Compressive strength\u003cbr\u003e8.9 Fracture resistance \u003cbr\u003e8.10 Wear \u003cbr\u003e8.11 Friction \u003cbr\u003e8.12 Abrasion \u003cbr\u003e8.13 Scratch resistance\u003cbr\u003e8.14 Fatigue \u003cbr\u003e8.15 Failure \u003cbr\u003e8.16 Adhesion \u003cbr\u003e8.17 Thermal deformation\u003cbr\u003e8.18 Shrinkage \u003cbr\u003e8.19 Warpage \u003cbr\u003e8.20 Compression set\u003cbr\u003e8.21 Load transfer \u003cbr\u003e8.22 Residual stress \u003cbr\u003e8.23 Creep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e9.1 Viscosity\u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation\u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity\u003cbr\u003e9.6 Dynamic mechanical behavior\u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity\u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e10.1 Crystallinity\u003cbr\u003e10.2 Crystallization behavior\u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity\u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e11.1 Irradiation\u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors\u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 FLAMMABILITY OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e12.1 Definitions\u003cbr\u003e12.2 Limiting oxygen index\u003cbr\u003e12.3 Ignition and flame spread rate\u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion\u003cbr\u003e12.6 Emission of gaseous components\u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e13.1 Adhesion promoters\u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers\u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents\u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e14.1 Physical methods\u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement\u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis\u003cbr\u003e14.1.11 Electric constants determination\u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test\u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index\u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy\u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area\u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis\u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis\u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy\u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy\u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 FILLERS IN COMMERCIAL POLYMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e15.1 Acrylics\u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer\u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Elastomers \u003cbr\u003e15.7 Epoxy resins \u003cbr\u003e15.8 Ethylene vinyl acetate copolymers \u003cbr\u003e15.9 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.10 Ethylene-propylene copolymers \u003cbr\u003e15.11 Ionomers \u003cbr\u003e15.12 Liquid crystalline polymers\u003cbr\u003e15.13 Perfluoroalkoxy resin \u003cbr\u003e15.14 Phenolic resins \u003cbr\u003e15.15 Poly(acrylic acid) \u003cbr\u003e15.16 Polyamides \u003cbr\u003e15.17 Polyamideimide \u003cbr\u003e15.18 Polyamines \u003cbr\u003e15.19 Polyaniline \u003cbr\u003e15.20 Polyaryletherketone\u003cbr\u003e15.21 Poly(butylene terephthalate) \u003cbr\u003e15.22 Polycarbonate \u003cbr\u003e15.23 Polyetheretherketone\u003cbr\u003e15.24 Polyetherimide \u003cbr\u003e15.25 Polyether sulfone \u003cbr\u003e15.26 Polyethylene \u003cbr\u003e15.27 Polyethylene, chlorinated \u003cbr\u003e15.28 Polyethylene, chlorosulfonated \u003cbr\u003e15.29 Poly(ethylene oxide) \u003cbr\u003e15.30 Poly(ethylene terephthalate)\u003cbr\u003e15.31 Polyimide \u003cbr\u003e15.32 Polymethylmethacrylate\u003cbr\u003e15.33 Polyoxymethylene \u003cbr\u003e15.34 Poly(phenylene ether)\u003cbr\u003e15.35 Poly(phenylene sulfide) \u003cbr\u003e15.36 Polypropylene \u003cbr\u003e15.37 Polypyrrole \u003cbr\u003e15.38 Polystyrene \u0026amp; high impact \u003cbr\u003e15.39 Polysulfides \u003cbr\u003e15.40 Polysulfone \u003cbr\u003e15.41 Polytetrafluoroethylene\u003cbr\u003e15.42 Polyurethanes \u003cbr\u003e15.43 Poly(vinyl acetate)\u003cbr\u003e15.44 Poly(vinyl alcohol)\u003cbr\u003e15.45 Poly(vinyl butyral) \u003cbr\u003e15.46 Poly(vinyl chloride) \u003cbr\u003e15.47 Rubbers \u003cbr\u003e15.47.1 Natural rubber\u003cbr\u003e15.47.2 Nitrile rubber \u003cbr\u003e15.47.3 Polybutadiene rubber \u003cbr\u003e15.47.4 Polybutyl rubber \u003cbr\u003e15.47.5 Polychloroprene \u003cbr\u003e15.47.6 Polyisobutylene \u003cbr\u003e15.47.7 Polyisoprene \u003cbr\u003e15.47.8 Styrene-butadiene rubber\u003cbr\u003e15.48 Silicones \u003cbr\u003e15.49 Styrene-acrylonitrile copolymer\u003cbr\u003e15.50 Tetrafluoroethylene-perfluoropropylene\u003cbr\u003e15.51 Unsaturated polyesters \u003cbr\u003e15.52 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 FILLER IN MATERIALS COMBINATIONS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e16.1 Blends, alloys and interpenetrating networks\u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 FORMULATION WITH FILLERS\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e18.1 Blow molding\u003cbr\u003e18.2 Calendering and hot-melt coating\u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding\u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding\u003cbr\u003e18.13 Rotational molding \u003cbr\u003e18.14 Sheet molding \u003cbr\u003e18.15 Thermoforming \u003cbr\u003e18.16 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace\u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints\u003cbr\u003e19.12 Cosmetics and pharmaceutical products\u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed\u003cbr\u003e19.20 Friction materials\u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields\u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication\u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 HAZARDS IN FILLER USE\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Fillers, 4...
$350.00
{"id":11242221188,"title":"Handbook of Fillers, 4th Edition","handle":"978-1-895198-91-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-91-1 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003eFigures: 615\u003c\/div\u003e\n\u003cdiv\u003eTables: 190\u003c\/div\u003e\n\u003cdiv\u003ePages: 922\u003c\/div\u003e\n\u003cdiv\u003eFourth Edition\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003e\u003cbr\u003eOver 4,000 research papers, mostly published from 1994 to 2015 (over 1000 new papers in this edition), technical data from over 200 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e\u003cbr\u003eThe book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous editions, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers, graphene and other novelty products. \u003cbr\u003e\u003cbr\u003eFillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e\u003cbr\u003eThe book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e\u003cbr\u003eOne third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by over 200 SEM TEM, AFM micrographs.\u003cbr\u003e\u003cbr\u003eThe second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e\u003cbr\u003eThe last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. This part is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace.\u003cbr\u003e\u003cbr\u003eTo summarize, major features of this handbook are:\u003cbr\u003e\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Expectations from fillers \u003cbr\u003e1.2 Typical filler properties \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e1.5 Markets and trends \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders \u003cbr\u003e2.1.2 Aluminum borate whiskers \u003cbr\u003e2.1.3 Aluminum nitride \u003cbr\u003e2.1.4 Aluminum oxide \u003cbr\u003e2.1.5 Aluminum trihydroxide \u003cbr\u003e2.1.6 Anthracite \u003cbr\u003e2.1.7 Antimonate of sodium \u003cbr\u003e2.1.8 Antimony pentoxide \u003cbr\u003e2.1.8 Antimony trioxide \u003cbr\u003e2.1.10 Ammonium octamolybdate \u003cbr\u003e2.1.11 Apatite \u003cbr\u003e2.1.12 Ash, fly \u003cbr\u003e2.1.13 Attapulgite \u003cbr\u003e2.1.14 Barium metaborate \u003cbr\u003e2.1.15 Barium sulfate \u003cbr\u003e2.1.16 Barium \u0026amp; strontium sulfates \u003cbr\u003e2.1.17 Barium titanate \u003cbr\u003e2.1.18 Bentonite \u003cbr\u003e2.1.19 Beryllium oxide \u003cbr\u003e2.1.20 Boron nitride \u003cbr\u003e2.1.21 Calcium carbonate \u003cbr\u003e2.1.22 Calcium fluoride \u003cbr\u003e2.1.23 Calcium hydroxide \u003cbr\u003e2.1.24 Calcium phosphate \u003cbr\u003e2.1.25 Calcium silicate \u003cbr\u003e2.1.26 Calcium sulfate \u003cbr\u003e2.1.27 Carbon black \u003cbr\u003e2.1.28 Carbonyl iron powder \u003cbr\u003e2.1.29 Cellulose particles \u003cbr\u003e2.1.30 Ceramic beads \u003cbr\u003e2.1.31 Chitosan \u003cbr\u003e2.1.32 Clamshell powder \u003cbr\u003e2.1.33 Clay \u003cbr\u003e2.1.34 Cobalt powder \u003cbr\u003e2.1.35 Copper \u003cbr\u003e2.1.36 Corn cob powder \u003cbr\u003e2.1.37 Cristobalite \u003cbr\u003e2.1.38 Diatomaceous earth \u003cbr\u003e2.1.39 Dolomite \u003cbr\u003e2.1.40 Eggshell filler \u003cbr\u003e2.1.41 Ferrites \u003cbr\u003e2.1.42 Feldspar \u003cbr\u003e2.1.43 Gandolinium oxide \u003cbr\u003e2.1.44 Glass beads \u003cbr\u003e2.1.45 Gold \u003cbr\u003e2.1.46 Graphene \u003cbr\u003e2.1.47 Graphene oxide \u003cbr\u003e2.1.48 Graphite \u003cbr\u003e2.1.49 Ground tire powder \u003cbr\u003e2.1.50 Halloysite \u003cbr\u003e2.1.51 Huntite \u003cbr\u003e2.1.52 Hydrous calcium silicate \u003cbr\u003e2.1.53 Illite \u003cbr\u003e2.1.54 Iron \u003cbr\u003e2.1.55 Iron oxide \u003cbr\u003e2.1.56 Kaolin \u003cbr\u003e2.1.57 Lead oxide \u003cbr\u003e2.1.58 Lithopone \u003cbr\u003e2.1.59 Magnesium oxide \u003cbr\u003e2.1.60 Magnesium hydroxide \u003cbr\u003e2.1.61 Magnetite \u003cbr\u003e2.1.62 Metal-containing conductive materials \u003cbr\u003e2.1.63 Mica \u003cbr\u003e2.1.64 Molybdenum \u003cbr\u003e2.1.65 Molybdenum disulfide \u003cbr\u003e2.1.66 Molybdic oxide \u003cbr\u003e2.1.67 Nanofillers \u003cbr\u003e2.1.68 Nickel \u003cbr\u003e2.1.69 Nickel oxide \u003cbr\u003e2.1.70 Nickel zinc ferrite \u003cbr\u003e2.1.71 Nutshell powder \u003cbr\u003e2.1.72 Perlite \u003cbr\u003e2.1.73 Polymeric fillers \u003cbr\u003e2.1.74 Potassium hexatitanate whiskers \u003cbr\u003e2.1.75 Pumice \u003cbr\u003e2.1.76 Pyrophyllite \u003cbr\u003e2.1.77 Rubber particles \u003cbr\u003e2.1.78 Sepiolite \u003cbr\u003e2.1.79 Silica \u003cbr\u003e2.1.79.1 Fumed silica \u003cbr\u003e2.1.79.2 Fused silica \u003cbr\u003e2.1.79.3 Precipitated silica \u003cbr\u003e2.1.79.4 Quartz (Tripoli) \u003cbr\u003e2.1.79.5 Sand \u003cbr\u003e2.1.79.6 Silica gel \u003cbr\u003e2.1.80 Silicon carbide \u003cbr\u003e2.1.81 Silicon nitride \u003cbr\u003e2.1.82 Silver powder and flakes \u003cbr\u003e2.1.83 Slate flour \u003cbr\u003e2.1.84 Talc \u003cbr\u003e2.1.85 Titanium dioxide \u003cbr\u003e2.1.86 Tungsten \u003cbr\u003e2.1.87 Vermiculite \u003cbr\u003e2.1.88 Wollastonite \u003cbr\u003e2.1.89 Wood flour and similar materials \u003cbr\u003e2.1.90 Zeolites \u003cbr\u003e2.1.91 Zinc borate \u003cbr\u003e2.1.92 Zinc oxide \u003cbr\u003e2.1.93 Zinc stannate \u003cbr\u003e2.1.94 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers \u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Carbon nanotubes \u003cbr\u003e2.2.4 Cellulose fibers \u003cbr\u003e2.2.5 Glass fibers \u003cbr\u003e2.2.6 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING \u003cbr\u003e3.1 Filler packaging \u003cbr\u003e3.2 External transportation \u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems \u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 QUALITY CONTROL OF FILLERS \u003cbr\u003e4.1 Absorption coefficient \u003cbr\u003e4.2 Acidity or alkalinity of water extract \u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles \u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area \u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties \u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments \u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties \u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light \u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue \u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area \u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e5.1 Density \u003cbr\u003e5.2 Particle size \u003cbr\u003e5.3 Particle size distribution \u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness \u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing \u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure \u003cbr\u003e5.11 Flocculation and sedimentation \u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH \u003cbr\u003e5.15 Zeta-potential \u003cbr\u003e5.16 Surface energy \u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling \u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties \u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties \u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient \u003cbr\u003e5.29 Thermal degradation \u003cbr\u003e5.30 Melting temperature \u003cbr\u003e5.31 Glass transition temperature \u003cbr\u003e5.32 Electrical properties \u003cbr\u003e5.33 Relative permittivity \u003cbr\u003e5.34 Electrical percolation \u003cbr\u003e5.35 EMI shielding \u003cbr\u003e5.36 Magnetic properties \u003cbr\u003e5.37 Shape memory \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e6.1 Reactivity \u003cbr\u003e6.2 Chemical groups on the filler surface \u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties \u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence \u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003cbr\u003e7.1 Particle distribution in matrix \u003cbr\u003e7.2 Orientation of filler particles in a matrix \u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction \u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization \u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e8.1 Tensile strength and elongation \u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Mullins’ effect \u003cbr\u003e8.4 Elastic modulus \u003cbr\u003e8.5 Flexural strength and modulus \u003cbr\u003e8.6 Impact resistance \u003cbr\u003e8.7 Hardness \u003cbr\u003e8.8 Tear strength \u003cbr\u003e8.9 Compressive strength \u003cbr\u003e8.10 Fracture resistance \u003cbr\u003e8.11 Wear \u003cbr\u003e8.12 Friction \u003cbr\u003e8.13 Abrasion \u003cbr\u003e8.14 Scratch resistance \u003cbr\u003e8.15 Fatigue \u003cbr\u003e8.16 Failure \u003cbr\u003e8.17 Adhesion \u003cbr\u003e8.18 Thermal deformation \u003cbr\u003e8.19 Shrinkage \u003cbr\u003e8.20 Warpage \u003cbr\u003e8.21 Compression set \u003cbr\u003e8.22 Load transfer \u003cbr\u003e8.23 Residual stress \u003cbr\u003e8.24 \u003cbr\u003eCreep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e9.1 Viscosity \u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation \u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity \u003cbr\u003e9.6 Dynamic mechanical behavior \u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity \u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003cbr\u003e10.1 Crystallinity \u003cbr\u003e10.2 Crystallization behavior \u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity \u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS \u003cbr\u003e11.1 Irradiation \u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors \u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 FLAMMABILITY OF FILLED MATERIALS \u003cbr\u003e12.1 Definitions \u003cbr\u003e12.2 Limiting oxygen index \u003cbr\u003e12.3 Ignition and flame spread rate \u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion \u003cbr\u003e12.6 Emission of gaseous components \u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003cbr\u003e13.1 Adhesion promoters \u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers \u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents \u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003cbr\u003e14.1 Physical methods \u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement \u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis \u003cbr\u003e14.1.11 Electric constants determination \u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test \u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index \u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy \u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area \u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis \u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis \u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy \u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy \u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 FILLERS IN COMMERCIAL POLYMERS \u003cbr\u003e15.1 Acrylics \u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer \u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Bismaleimide \u003cbr\u003e15.7 Cellulose acetate \u003cbr\u003e15.8 Chitosan \u003cbr\u003e15.9 Elastomers \u003cbr\u003e15.10 Epoxy resins \u003cbr\u003e15.11 Ethylene vinyl acetate copolymer \u003cbr\u003e15.12 Ethylene vinyl alcohol copolymer \u003cbr\u003e15.13 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.14 Ethylene-propylene copolymers \u003cbr\u003e15.15 Ionomers \u003cbr\u003e15.16 Liquid crystalline polymers \u003cbr\u003e15.17 Perfluoroalkoxy resin \u003cbr\u003e15.18 Phenolic resins \u003cbr\u003e15.19 Poly(acrylic acid) \u003cbr\u003e15.20 Polyacrylonitrile \u003cbr\u003e15.21 Polyamides \u003cbr\u003e15.22 Polyamideimide \u003cbr\u003e15.23 Polyamines \u003cbr\u003e15.24 Polyaniline \u003cbr\u003e15.25 Polyaryletherketone \u003cbr\u003e15.26 Poly(butylene succinate) \u003cbr\u003e15.27 Poly(butylene terephthalate) \u003cbr\u003e15.28 Polycaprolactone \u003cbr\u003e15.29 Polycarbonate \u003cbr\u003e15.30 Polydicyclopentadiene \u003cbr\u003e15.31 Polyetheretherketone \u003cbr\u003e15.32 Polyetherimide \u003cbr\u003e15.33 Polyether sulfone \u003cbr\u003e15.34 Polyethylene \u003cbr\u003e15.35 Polyethylene, chlorinated \u003cbr\u003e15.36 Polyethylene, chlorosulfonated \u003cbr\u003e15.37 Poly(ethylene oxide) \u003cbr\u003e15.38 Poly(ethylene terephthalate) \u003cbr\u003e15.39 Polyimide \u003cbr\u003e15.41 Polymethylmethacrylate \u003cbr\u003e15.42 Polyoxymethylene \u003cbr\u003e15.43 Poly(phenylene ether) \u003cbr\u003e15.44 Poly(phenylene sulfide) \u003cbr\u003e15.45 Polypropylene \u003cbr\u003e15.46 Polypyrrole \u003cbr\u003e15.47 Polystyrene \u0026amp; high impact \u003cbr\u003e15.48 Polysulfide \u003cbr\u003e15.49 Polysulfone \u003cbr\u003e15.50 Polytetrafluoroethylene \u003cbr\u003e15.51 Polyurethanes \u003cbr\u003e15.52 Poly(vinyl acetate) \u003cbr\u003e15.53 Poly(vinyl alcohol) \u003cbr\u003e15.54 Poly(vinyl butyral) \u003cbr\u003e15.55 Poly(vinyl chloride) \u003cbr\u003e15.56 Rubbers \u003cbr\u003e15.56.1 Natural rubber \u003cbr\u003e15.56.2 Nitrile rubber \u003cbr\u003e15.56.3 Polybutadiene rubber \u003cbr\u003e15.56.4 Polybutyl rubber \u003cbr\u003e15.56.5 Polychloroprene \u003cbr\u003e15.56.6 Polyisobutylene \u003cbr\u003e15.56.7 Polyisoprene \u003cbr\u003e15.56.8 Styrene-butadiene rubber \u003cbr\u003e15.57 Silicones \u003cbr\u003e15.58 Styrene-acrylonitrile copolymer \u003cbr\u003e15.59 Tetrafluoroethylene-perfluoropropylene \u003cbr\u003e15.60 Unsaturated polyesters \u003cbr\u003e15.61 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 FILLER IN MATERIALS COMBINATIONS \u003cbr\u003e16.1 Blends, alloys and interpenetrating networks \u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 FORMULATION WITH FILLERS \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS \u003cbr\u003e18.1 Blow molding \u003cbr\u003e18.2 Calendering and hot-melt coating \u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding \u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding \u003cbr\u003e18.13 Resin transfer molding \u003cbr\u003e18.14 Rotational molding \u003cbr\u003e18.15 Sheet molding \u003cbr\u003e18.16 Spinning \u003cbr\u003e18.17 Thermoforming \u003cbr\u003e18.18 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace \u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints \u003cbr\u003e19.12 Cosmetics and pharmaceutical products \u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed \u003cbr\u003e19.20 Friction materials \u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields \u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication \u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 HAZARDS IN FILLER USE \u003cbr\u003eReferences \u003cbr\u003eINDEX\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:46-04:00","created_at":"2017-06-22T21:13:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","additives for plastics","best","book","calcium carbon","compounding of rubber","fillers additives","fillers and environment","flame retardanst for plastics","graphite","magnesium","mica","nanofillers","p-additives","particular fillers","physical properties","polymer","quality control","silica"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374020,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Fillers, 4th Edition","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-91-1","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-91-1.jpg?v=1499719932"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-91-1.jpg?v=1499719932","options":["Title"],"media":[{"alt":null,"id":355725115485,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-91-1.jpg?v=1499719932"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-91-1.jpg?v=1499719932","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-91-1 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003eFigures: 615\u003c\/div\u003e\n\u003cdiv\u003eTables: 190\u003c\/div\u003e\n\u003cdiv\u003ePages: 922\u003c\/div\u003e\n\u003cdiv\u003eFourth Edition\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003e\u003cbr\u003eOver 4,000 research papers, mostly published from 1994 to 2015 (over 1000 new papers in this edition), technical data from over 200 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e\u003cbr\u003eThe book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous editions, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers, graphene and other novelty products. \u003cbr\u003e\u003cbr\u003eFillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e\u003cbr\u003eThe book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e\u003cbr\u003eOne third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by over 200 SEM TEM, AFM micrographs.\u003cbr\u003e\u003cbr\u003eThe second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e\u003cbr\u003eThe last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. This part is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace.\u003cbr\u003e\u003cbr\u003eTo summarize, major features of this handbook are:\u003cbr\u003e\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Expectations from fillers \u003cbr\u003e1.2 Typical filler properties \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e1.5 Markets and trends \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders \u003cbr\u003e2.1.2 Aluminum borate whiskers \u003cbr\u003e2.1.3 Aluminum nitride \u003cbr\u003e2.1.4 Aluminum oxide \u003cbr\u003e2.1.5 Aluminum trihydroxide \u003cbr\u003e2.1.6 Anthracite \u003cbr\u003e2.1.7 Antimonate of sodium \u003cbr\u003e2.1.8 Antimony pentoxide \u003cbr\u003e2.1.8 Antimony trioxide \u003cbr\u003e2.1.10 Ammonium octamolybdate \u003cbr\u003e2.1.11 Apatite \u003cbr\u003e2.1.12 Ash, fly \u003cbr\u003e2.1.13 Attapulgite \u003cbr\u003e2.1.14 Barium metaborate \u003cbr\u003e2.1.15 Barium sulfate \u003cbr\u003e2.1.16 Barium \u0026amp; strontium sulfates \u003cbr\u003e2.1.17 Barium titanate \u003cbr\u003e2.1.18 Bentonite \u003cbr\u003e2.1.19 Beryllium oxide \u003cbr\u003e2.1.20 Boron nitride \u003cbr\u003e2.1.21 Calcium carbonate \u003cbr\u003e2.1.22 Calcium fluoride \u003cbr\u003e2.1.23 Calcium hydroxide \u003cbr\u003e2.1.24 Calcium phosphate \u003cbr\u003e2.1.25 Calcium silicate \u003cbr\u003e2.1.26 Calcium sulfate \u003cbr\u003e2.1.27 Carbon black \u003cbr\u003e2.1.28 Carbonyl iron powder \u003cbr\u003e2.1.29 Cellulose particles \u003cbr\u003e2.1.30 Ceramic beads \u003cbr\u003e2.1.31 Chitosan \u003cbr\u003e2.1.32 Clamshell powder \u003cbr\u003e2.1.33 Clay \u003cbr\u003e2.1.34 Cobalt powder \u003cbr\u003e2.1.35 Copper \u003cbr\u003e2.1.36 Corn cob powder \u003cbr\u003e2.1.37 Cristobalite \u003cbr\u003e2.1.38 Diatomaceous earth \u003cbr\u003e2.1.39 Dolomite \u003cbr\u003e2.1.40 Eggshell filler \u003cbr\u003e2.1.41 Ferrites \u003cbr\u003e2.1.42 Feldspar \u003cbr\u003e2.1.43 Gandolinium oxide \u003cbr\u003e2.1.44 Glass beads \u003cbr\u003e2.1.45 Gold \u003cbr\u003e2.1.46 Graphene \u003cbr\u003e2.1.47 Graphene oxide \u003cbr\u003e2.1.48 Graphite \u003cbr\u003e2.1.49 Ground tire powder \u003cbr\u003e2.1.50 Halloysite \u003cbr\u003e2.1.51 Huntite \u003cbr\u003e2.1.52 Hydrous calcium silicate \u003cbr\u003e2.1.53 Illite \u003cbr\u003e2.1.54 Iron \u003cbr\u003e2.1.55 Iron oxide \u003cbr\u003e2.1.56 Kaolin \u003cbr\u003e2.1.57 Lead oxide \u003cbr\u003e2.1.58 Lithopone \u003cbr\u003e2.1.59 Magnesium oxide \u003cbr\u003e2.1.60 Magnesium hydroxide \u003cbr\u003e2.1.61 Magnetite \u003cbr\u003e2.1.62 Metal-containing conductive materials \u003cbr\u003e2.1.63 Mica \u003cbr\u003e2.1.64 Molybdenum \u003cbr\u003e2.1.65 Molybdenum disulfide \u003cbr\u003e2.1.66 Molybdic oxide \u003cbr\u003e2.1.67 Nanofillers \u003cbr\u003e2.1.68 Nickel \u003cbr\u003e2.1.69 Nickel oxide \u003cbr\u003e2.1.70 Nickel zinc ferrite \u003cbr\u003e2.1.71 Nutshell powder \u003cbr\u003e2.1.72 Perlite \u003cbr\u003e2.1.73 Polymeric fillers \u003cbr\u003e2.1.74 Potassium hexatitanate whiskers \u003cbr\u003e2.1.75 Pumice \u003cbr\u003e2.1.76 Pyrophyllite \u003cbr\u003e2.1.77 Rubber particles \u003cbr\u003e2.1.78 Sepiolite \u003cbr\u003e2.1.79 Silica \u003cbr\u003e2.1.79.1 Fumed silica \u003cbr\u003e2.1.79.2 Fused silica \u003cbr\u003e2.1.79.3 Precipitated silica \u003cbr\u003e2.1.79.4 Quartz (Tripoli) \u003cbr\u003e2.1.79.5 Sand \u003cbr\u003e2.1.79.6 Silica gel \u003cbr\u003e2.1.80 Silicon carbide \u003cbr\u003e2.1.81 Silicon nitride \u003cbr\u003e2.1.82 Silver powder and flakes \u003cbr\u003e2.1.83 Slate flour \u003cbr\u003e2.1.84 Talc \u003cbr\u003e2.1.85 Titanium dioxide \u003cbr\u003e2.1.86 Tungsten \u003cbr\u003e2.1.87 Vermiculite \u003cbr\u003e2.1.88 Wollastonite \u003cbr\u003e2.1.89 Wood flour and similar materials \u003cbr\u003e2.1.90 Zeolites \u003cbr\u003e2.1.91 Zinc borate \u003cbr\u003e2.1.92 Zinc oxide \u003cbr\u003e2.1.93 Zinc stannate \u003cbr\u003e2.1.94 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers \u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Carbon nanotubes \u003cbr\u003e2.2.4 Cellulose fibers \u003cbr\u003e2.2.5 Glass fibers \u003cbr\u003e2.2.6 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING \u003cbr\u003e3.1 Filler packaging \u003cbr\u003e3.2 External transportation \u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems \u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 QUALITY CONTROL OF FILLERS \u003cbr\u003e4.1 Absorption coefficient \u003cbr\u003e4.2 Acidity or alkalinity of water extract \u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles \u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area \u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties \u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments \u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties \u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light \u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue \u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area \u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e5.1 Density \u003cbr\u003e5.2 Particle size \u003cbr\u003e5.3 Particle size distribution \u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness \u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing \u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure \u003cbr\u003e5.11 Flocculation and sedimentation \u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH \u003cbr\u003e5.15 Zeta-potential \u003cbr\u003e5.16 Surface energy \u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling \u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties \u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties \u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient \u003cbr\u003e5.29 Thermal degradation \u003cbr\u003e5.30 Melting temperature \u003cbr\u003e5.31 Glass transition temperature \u003cbr\u003e5.32 Electrical properties \u003cbr\u003e5.33 Relative permittivity \u003cbr\u003e5.34 Electrical percolation \u003cbr\u003e5.35 EMI shielding \u003cbr\u003e5.36 Magnetic properties \u003cbr\u003e5.37 Shape memory \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e6.1 Reactivity \u003cbr\u003e6.2 Chemical groups on the filler surface \u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties \u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence \u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003cbr\u003e7.1 Particle distribution in matrix \u003cbr\u003e7.2 Orientation of filler particles in a matrix \u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction \u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization \u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e8.1 Tensile strength and elongation \u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Mullins’ effect \u003cbr\u003e8.4 Elastic modulus \u003cbr\u003e8.5 Flexural strength and modulus \u003cbr\u003e8.6 Impact resistance \u003cbr\u003e8.7 Hardness \u003cbr\u003e8.8 Tear strength \u003cbr\u003e8.9 Compressive strength \u003cbr\u003e8.10 Fracture resistance \u003cbr\u003e8.11 Wear \u003cbr\u003e8.12 Friction \u003cbr\u003e8.13 Abrasion \u003cbr\u003e8.14 Scratch resistance \u003cbr\u003e8.15 Fatigue \u003cbr\u003e8.16 Failure \u003cbr\u003e8.17 Adhesion \u003cbr\u003e8.18 Thermal deformation \u003cbr\u003e8.19 Shrinkage \u003cbr\u003e8.20 Warpage \u003cbr\u003e8.21 Compression set \u003cbr\u003e8.22 Load transfer \u003cbr\u003e8.23 Residual stress \u003cbr\u003e8.24 \u003cbr\u003eCreep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e9.1 Viscosity \u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation \u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity \u003cbr\u003e9.6 Dynamic mechanical behavior \u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity \u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003cbr\u003e10.1 Crystallinity \u003cbr\u003e10.2 Crystallization behavior \u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity \u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS \u003cbr\u003e11.1 Irradiation \u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors \u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 FLAMMABILITY OF FILLED MATERIALS \u003cbr\u003e12.1 Definitions \u003cbr\u003e12.2 Limiting oxygen index \u003cbr\u003e12.3 Ignition and flame spread rate \u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion \u003cbr\u003e12.6 Emission of gaseous components \u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003cbr\u003e13.1 Adhesion promoters \u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers \u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents \u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003cbr\u003e14.1 Physical methods \u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement \u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis \u003cbr\u003e14.1.11 Electric constants determination \u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test \u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index \u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy \u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area \u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis \u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis \u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy \u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy \u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 FILLERS IN COMMERCIAL POLYMERS \u003cbr\u003e15.1 Acrylics \u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer \u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Bismaleimide \u003cbr\u003e15.7 Cellulose acetate \u003cbr\u003e15.8 Chitosan \u003cbr\u003e15.9 Elastomers \u003cbr\u003e15.10 Epoxy resins \u003cbr\u003e15.11 Ethylene vinyl acetate copolymer \u003cbr\u003e15.12 Ethylene vinyl alcohol copolymer \u003cbr\u003e15.13 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.14 Ethylene-propylene copolymers \u003cbr\u003e15.15 Ionomers \u003cbr\u003e15.16 Liquid crystalline polymers \u003cbr\u003e15.17 Perfluoroalkoxy resin \u003cbr\u003e15.18 Phenolic resins \u003cbr\u003e15.19 Poly(acrylic acid) \u003cbr\u003e15.20 Polyacrylonitrile \u003cbr\u003e15.21 Polyamides \u003cbr\u003e15.22 Polyamideimide \u003cbr\u003e15.23 Polyamines \u003cbr\u003e15.24 Polyaniline \u003cbr\u003e15.25 Polyaryletherketone \u003cbr\u003e15.26 Poly(butylene succinate) \u003cbr\u003e15.27 Poly(butylene terephthalate) \u003cbr\u003e15.28 Polycaprolactone \u003cbr\u003e15.29 Polycarbonate \u003cbr\u003e15.30 Polydicyclopentadiene \u003cbr\u003e15.31 Polyetheretherketone \u003cbr\u003e15.32 Polyetherimide \u003cbr\u003e15.33 Polyether sulfone \u003cbr\u003e15.34 Polyethylene \u003cbr\u003e15.35 Polyethylene, chlorinated \u003cbr\u003e15.36 Polyethylene, chlorosulfonated \u003cbr\u003e15.37 Poly(ethylene oxide) \u003cbr\u003e15.38 Poly(ethylene terephthalate) \u003cbr\u003e15.39 Polyimide \u003cbr\u003e15.41 Polymethylmethacrylate \u003cbr\u003e15.42 Polyoxymethylene \u003cbr\u003e15.43 Poly(phenylene ether) \u003cbr\u003e15.44 Poly(phenylene sulfide) \u003cbr\u003e15.45 Polypropylene \u003cbr\u003e15.46 Polypyrrole \u003cbr\u003e15.47 Polystyrene \u0026amp; high impact \u003cbr\u003e15.48 Polysulfide \u003cbr\u003e15.49 Polysulfone \u003cbr\u003e15.50 Polytetrafluoroethylene \u003cbr\u003e15.51 Polyurethanes \u003cbr\u003e15.52 Poly(vinyl acetate) \u003cbr\u003e15.53 Poly(vinyl alcohol) \u003cbr\u003e15.54 Poly(vinyl butyral) \u003cbr\u003e15.55 Poly(vinyl chloride) \u003cbr\u003e15.56 Rubbers \u003cbr\u003e15.56.1 Natural rubber \u003cbr\u003e15.56.2 Nitrile rubber \u003cbr\u003e15.56.3 Polybutadiene rubber \u003cbr\u003e15.56.4 Polybutyl rubber \u003cbr\u003e15.56.5 Polychloroprene \u003cbr\u003e15.56.6 Polyisobutylene \u003cbr\u003e15.56.7 Polyisoprene \u003cbr\u003e15.56.8 Styrene-butadiene rubber \u003cbr\u003e15.57 Silicones \u003cbr\u003e15.58 Styrene-acrylonitrile copolymer \u003cbr\u003e15.59 Tetrafluoroethylene-perfluoropropylene \u003cbr\u003e15.60 Unsaturated polyesters \u003cbr\u003e15.61 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 FILLER IN MATERIALS COMBINATIONS \u003cbr\u003e16.1 Blends, alloys and interpenetrating networks \u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 FORMULATION WITH FILLERS \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS \u003cbr\u003e18.1 Blow molding \u003cbr\u003e18.2 Calendering and hot-melt coating \u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding \u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding \u003cbr\u003e18.13 Resin transfer molding \u003cbr\u003e18.14 Rotational molding \u003cbr\u003e18.15 Sheet molding \u003cbr\u003e18.16 Spinning \u003cbr\u003e18.17 Thermoforming \u003cbr\u003e18.18 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace \u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints \u003cbr\u003e19.12 Cosmetics and pharmaceutical products \u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed \u003cbr\u003e19.20 Friction materials \u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields \u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication \u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 HAZARDS IN FILLER USE \u003cbr\u003eReferences \u003cbr\u003eINDEX\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Nucleating...
$285.00
{"id":11242221124,"title":"Handbook of Nucleating Agents","handle":"978-1-895198-93-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-93-5 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003c\/span\u003e\u003cbr\u003ePages: 252\u003c\/div\u003e\n\u003cdiv\u003eFigures: 77\u003c\/div\u003e\n\u003cdiv\u003eTables: 19\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Nucleating Agents is the most extensive monograph on the subject ever written. In addition to the Handbook, Databook of Nucleating Agents is simultaneously published to give readers comprehensive information on this important subject. \u003cbr\u003e\u003cbr\u003eHandbook of Nucleating Agents gives information on how to increase the production rate, modify structure and morphology, improve mechanical performance, and reduce haze of polymeric products with a proper selection of nucleating agents (and\/or the so-called clarifying agents). Handbook of Nucleating Agents brings analyses of important publications found in open and patent literature. Special attention is given to the findings of the last five years which brought many new important developments. \u003cbr\u003e\u003cbr\u003eThe book is divided into 14 chapters each of which concentrates on essential performance of nucleating agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in Databook of Nucleating Agents which is published as a separate book to help in selection of product available in the commercial markets and analyze properties of different products. Information in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe next six chapters of Handbook discuss the most essential theoretical knowledge required for the proper selection and use of nucleating and clarifying agents. These include polymer crystallization in the presence and without nucleating agents, parameters of crystallization, essential influences on the nucleation processes, the measures of nucleation efficiency, the mechanisms of nucleation, and the effective methods of dispersion of nucleating agents. \u003cbr\u003e\u003cbr\u003eFollowing three chapters concentrate on the application aspects in different formulations. Here extensive use is being made of patent literature and research papers available for different applications. Discussed are 19 polymer processing methods which require use of nucleating agents, 40 different polymers which are known to use nucleating agents, and 16 groups of commercial products in which nucleating agents found applications. This shows that the modern use nucleating agent is widespread in industry.\u003cbr\u003e\u003cbr\u003eThe last three chapters discuss the effects of nucleating agents on physical and mechanical properties of materials, the most essential analytical techniques used to analyze systems containing nucleating agents, and health and safety in use of nucleating agents.\u003cbr\u003e\u003cbr\u003eThis important and timely publication(s) should not be missed. They contain essential information for upgrading production to the more economical level and products to the highest performance standards possible today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e\u003cbr\u003e2 Chemical Origin of Nucleating Agents \u003cbr\u003e2.1 Acids \u003cbr\u003e2.2 Amides \u003cbr\u003e2.3 Carbon nanotubes \u003cbr\u003e2.4 Graphene derivatives \u003cbr\u003e2.5 Hydrazides \u003cbr\u003e2.6 Inorganic materials \u003cbr\u003e2.6.1 Boron nitride \u003cbr\u003e2.6.2 Calcium carbonate \u003cbr\u003e2.6.3 Hydroxides \u003cbr\u003e2.6.4 Silica \u003cbr\u003e2.6.5 Talc \u003cbr\u003e2.6.6 Others \u003cbr\u003e2.7 Masterbatch \u003cbr\u003e2.8 Phosphate salts \u003cbr\u003e2.9 Polymeric \u003cbr\u003e2.10 Proprietary nucleating agents \u003cbr\u003e2.11 Salts of carboxylic acids \u003cbr\u003e2.12 Sorbitol derivatives \u003cbr\u003e2.13 Xylan esters \u003cbr\u003e2.14 Other nucleating agents \u003cbr\u003e\u003cbr\u003e3 Polymer Crystallization with and without Nucleating Agents\u003cbr\u003e\u003cbr\u003e4 Parameters of Crystallization \u003cbr\u003e\u003cbr\u003e5 What Influences Nucleation?\u003cbr\u003e5.1 Concentration \u003cbr\u003e5.2 Solubility of nucleating agent in polymer \u003cbr\u003e5.3 Shear rate and time \u003cbr\u003e5.4 Form of nucleating agent \u003cbr\u003e5.5 Mixtures of nucleating agents \u003cbr\u003e\u003cbr\u003e6 Nucleation Efficiency Measures \u003cbr\u003e6.1 Nuclei density\u003cbr\u003e6.2 Nucleation activity and constant \u003cbr\u003e6.3 Nucleation efficiency \u003cbr\u003e6.4 Activation energy \u003cbr\u003e\u003cbr\u003e7 Mechanisms of Crystallization \u003cbr\u003e\u003cbr\u003e8 Dispersion of Nucleating Agents \u003cbr\u003e\u003cbr\u003e9 Nucleating Agents in Different Processing Methods \u003cbr\u003e9.1 Blow molding \u003cbr\u003e9.2 Blown film extrusion \u003cbr\u003e9.3 Calendering \u003cbr\u003e9.4 Compression molding \u003cbr\u003e9.5 Dip coating \u003cbr\u003e9.6 Extrusion \u003cbr\u003e9.7 Foaming \u003cbr\u003e9.8 Hot-melt coating \u003cbr\u003e9.9 Injection molding \u003cbr\u003e9.10 Micro-injection molding \u003cbr\u003e9.11 Powder injection molding \u003cbr\u003e9.12 Pultrusion \u003cbr\u003e9.13 Reaction injection molding \u003cbr\u003e9.14 Rotational molding \u003cbr\u003e9.15 Sheet molding \u003cbr\u003e9.16 Spinning \u003cbr\u003e9.17 Thermoforming \u003cbr\u003e9.18 Welding and machining \u003cbr\u003e9.19 Wire coating\u003cbr\u003e\u003cbr\u003e10 Application of Nucleating Agents in Specific Polymers \u003cbr\u003e10.1 Poly(acrylonitrile-co-butadiene-co-styrene) \u003cbr\u003e10.2 Cellulose acetate \u003cbr\u003e10.3 Epoxy resin \u003cbr\u003e10.4 Ethylene-propylene diene terpolymer \u003cbr\u003e10.5 Ethylene-vinyl acetate copolymer \u003cbr\u003e10.6 Fluorinated ethylene-propylene copolymer \u003cbr\u003e10.7 Liquid crystalline polymer \u003cbr\u003e10.8 Polyamide \u003cbr\u003e10.9 Poly(acrylic acid) \u003cbr\u003e10.10 Polyacrylonitrile \u003cbr\u003e10.11 Polyaniline\u003cbr\u003e10.12 Poly(butylene terephthalate) \u003cbr\u003e10.13 Polycarbonate\u003cbr\u003e10.14 Poly(?-caprolactone) \u003cbr\u003e10.15 Polychlorotrifluoroethylene \u003cbr\u003e10.16 Polyethylene \u003cbr\u003e10.17 Polyetheretherketone \u003cbr\u003e10.18 Polyetherketoneketone \u003cbr\u003e10.19 Poly(ethylene oxide) \u003cbr\u003e10.20 Poly(ether sulfone) \u003cbr\u003e10.21 Poly(ethylene terephthalate) \u003cbr\u003e10.22 Polyethylene, silane-crosslinkable \u003cbr\u003e10.23 Poly(glycolic acid) \u003cbr\u003e10.24 Poly(3-hydroxybutyrate) \u003cbr\u003e10.25 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)\u003cbr\u003e10.26 Polyimide \u003cbr\u003e10.27 Poly(lactic acid) \u003cbr\u003e10.28 Polyoxymethylene \u003cbr\u003e10.29 Polypropylene \u003cbr\u003e10.30 Polyphthalamide \u003cbr\u003e10.31 Poly(p-phenylene sulfide)\u003cbr\u003e10.32 Polystyrene \u003cbr\u003e10.33 Poly(trimethylene terephthalate) \u003cbr\u003e10.34 Polyurethane \u003cbr\u003e10.35 Poly(vinyl alcohol) \u003cbr\u003e10.36 Poly(vinylidene fluoride) \u003cbr\u003e10.37 Poly(vinylidene fluoride-co-hexafluoropropylene) \u003cbr\u003e10.38 Poly(vinyl fluoride) \u003cbr\u003e10.39 Poly(N-vinyl carbazole) \u003cbr\u003e10.40 Unsaturated polyester \u003cbr\u003e\u003cbr\u003e11 Nucleating Agents in Various Products\u003cbr\u003e11.1 Adhesives\u003cbr\u003e11.2 Aerospace \u003cbr\u003e11.3 Appliances \u003cbr\u003e11.4 Automotive materials \u003cbr\u003e11.5 Bottles \u003cbr\u003e11.6 Building construction \u003cbr\u003e11.7 Cable \u0026amp; wire \u003cbr\u003e11.8 Coatings \u0026amp; paints \u003cbr\u003e11.9 Electronics and electrical \u003cbr\u003e11.10 Fibers \u003cbr\u003e11.11 Films \u003cbr\u003e11.12 Medical applications \u003cbr\u003e11.13 Pharmaceutical applications \u003cbr\u003e11.14 Railway \u003cbr\u003e11.15 Roofing \u003cbr\u003e11.16 Window profiles \u003cbr\u003e\u003cbr\u003e12 Effect of Nucleating Agents on Physical-mechanical Properties \u003cbr\u003e12.1 Physical properties\u003cbr\u003e12.1.1 Agglomeration \u003cbr\u003e12.1.2 Aspect ratio \u003cbr\u003e12.1.3 Crystalline structure \u003cbr\u003e12.1.4 Hydrophilic\/hydrophobic properties \u003cbr\u003e12.1.5 Melting temperature \u003cbr\u003e12.1.6 Moisture \u003cbr\u003e12.1.7 Optical properties \u003cbr\u003e12.1.8 Particle size \u003cbr\u003e12.1.9 Refractive index \u003cbr\u003e12.1.10 Shape memory \u003cbr\u003e12.1.11 Solubility \u003cbr\u003e12.1.12 Surface energy\u003cbr\u003e12.1.13 Thermal conductivity \u003cbr\u003e12.1.14 Transition temperature \u003cbr\u003e12.1.15 Zeta potential \u003cbr\u003e12.2 Mechanical properties \u003cbr\u003e12.2.1 Flexural strength\u003cbr\u003e12.2.2 Hardness\u003cbr\u003e12.2.3 Impact strength \u003cbr\u003e12.2.4 Residual stress \u003cbr\u003e12.2.5 Scratch resistance \u003cbr\u003e12.2.6 Shrinkage \u003cbr\u003e12.2.7 Tear strength \u003cbr\u003e12.2.8 Thermal deformation \u003cbr\u003e12.2.9 Tensile strength \u003cbr\u003e\u003cbr\u003e13 Important Analytical Methods Used in the Studies of Nucleating Agents \u003cbr\u003e13.1 Crystallinity \u003cbr\u003e13.2 Crystallization half-time \u003cbr\u003e13.3 Differential scanning calorimetry \u003cbr\u003e13.4 Fast scanning chip calorimetry\u003cbr\u003e13.5 FTIR \u003cbr\u003e13.6 Haze\u003cbr\u003e13.7 Orientation degree \u003cbr\u003e13.8 Polarized light microscopy \u003cbr\u003e13.9 Quenching device\u003cbr\u003e13.10 Small angle x-ray diffraction \u003cbr\u003e13.11 Spherulite size \u003cbr\u003e13.12 Thermogravimetric analysis \u003cbr\u003e13.13 Vicat softening temperature \u003cbr\u003e13.14 Wide angle x-ray diffraction\u003cbr\u003e\u003cbr\u003e14 Health and Safety with Nucleating Agents \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:45-04:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","alpha crystallization","beta crystallization","book","material","nucleating agent","nucleation","p-additives"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378373444,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Nucleating Agents","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-93-5","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-93-5.jpg?v=1499442373"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-93-5.jpg?v=1499442373","options":["Title"],"media":[{"alt":null,"id":355729408093,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-93-5.jpg?v=1499442373"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-93-5.jpg?v=1499442373","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-93-5 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003c\/span\u003e\u003cbr\u003ePages: 252\u003c\/div\u003e\n\u003cdiv\u003eFigures: 77\u003c\/div\u003e\n\u003cdiv\u003eTables: 19\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Nucleating Agents is the most extensive monograph on the subject ever written. In addition to the Handbook, Databook of Nucleating Agents is simultaneously published to give readers comprehensive information on this important subject. \u003cbr\u003e\u003cbr\u003eHandbook of Nucleating Agents gives information on how to increase the production rate, modify structure and morphology, improve mechanical performance, and reduce haze of polymeric products with a proper selection of nucleating agents (and\/or the so-called clarifying agents). Handbook of Nucleating Agents brings analyses of important publications found in open and patent literature. Special attention is given to the findings of the last five years which brought many new important developments. \u003cbr\u003e\u003cbr\u003eThe book is divided into 14 chapters each of which concentrates on essential performance of nucleating agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in Databook of Nucleating Agents which is published as a separate book to help in selection of product available in the commercial markets and analyze properties of different products. Information in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe next six chapters of Handbook discuss the most essential theoretical knowledge required for the proper selection and use of nucleating and clarifying agents. These include polymer crystallization in the presence and without nucleating agents, parameters of crystallization, essential influences on the nucleation processes, the measures of nucleation efficiency, the mechanisms of nucleation, and the effective methods of dispersion of nucleating agents. \u003cbr\u003e\u003cbr\u003eFollowing three chapters concentrate on the application aspects in different formulations. Here extensive use is being made of patent literature and research papers available for different applications. Discussed are 19 polymer processing methods which require use of nucleating agents, 40 different polymers which are known to use nucleating agents, and 16 groups of commercial products in which nucleating agents found applications. This shows that the modern use nucleating agent is widespread in industry.\u003cbr\u003e\u003cbr\u003eThe last three chapters discuss the effects of nucleating agents on physical and mechanical properties of materials, the most essential analytical techniques used to analyze systems containing nucleating agents, and health and safety in use of nucleating agents.\u003cbr\u003e\u003cbr\u003eThis important and timely publication(s) should not be missed. They contain essential information for upgrading production to the more economical level and products to the highest performance standards possible today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e\u003cbr\u003e2 Chemical Origin of Nucleating Agents \u003cbr\u003e2.1 Acids \u003cbr\u003e2.2 Amides \u003cbr\u003e2.3 Carbon nanotubes \u003cbr\u003e2.4 Graphene derivatives \u003cbr\u003e2.5 Hydrazides \u003cbr\u003e2.6 Inorganic materials \u003cbr\u003e2.6.1 Boron nitride \u003cbr\u003e2.6.2 Calcium carbonate \u003cbr\u003e2.6.3 Hydroxides \u003cbr\u003e2.6.4 Silica \u003cbr\u003e2.6.5 Talc \u003cbr\u003e2.6.6 Others \u003cbr\u003e2.7 Masterbatch \u003cbr\u003e2.8 Phosphate salts \u003cbr\u003e2.9 Polymeric \u003cbr\u003e2.10 Proprietary nucleating agents \u003cbr\u003e2.11 Salts of carboxylic acids \u003cbr\u003e2.12 Sorbitol derivatives \u003cbr\u003e2.13 Xylan esters \u003cbr\u003e2.14 Other nucleating agents \u003cbr\u003e\u003cbr\u003e3 Polymer Crystallization with and without Nucleating Agents\u003cbr\u003e\u003cbr\u003e4 Parameters of Crystallization \u003cbr\u003e\u003cbr\u003e5 What Influences Nucleation?\u003cbr\u003e5.1 Concentration \u003cbr\u003e5.2 Solubility of nucleating agent in polymer \u003cbr\u003e5.3 Shear rate and time \u003cbr\u003e5.4 Form of nucleating agent \u003cbr\u003e5.5 Mixtures of nucleating agents \u003cbr\u003e\u003cbr\u003e6 Nucleation Efficiency Measures \u003cbr\u003e6.1 Nuclei density\u003cbr\u003e6.2 Nucleation activity and constant \u003cbr\u003e6.3 Nucleation efficiency \u003cbr\u003e6.4 Activation energy \u003cbr\u003e\u003cbr\u003e7 Mechanisms of Crystallization \u003cbr\u003e\u003cbr\u003e8 Dispersion of Nucleating Agents \u003cbr\u003e\u003cbr\u003e9 Nucleating Agents in Different Processing Methods \u003cbr\u003e9.1 Blow molding \u003cbr\u003e9.2 Blown film extrusion \u003cbr\u003e9.3 Calendering \u003cbr\u003e9.4 Compression molding \u003cbr\u003e9.5 Dip coating \u003cbr\u003e9.6 Extrusion \u003cbr\u003e9.7 Foaming \u003cbr\u003e9.8 Hot-melt coating \u003cbr\u003e9.9 Injection molding \u003cbr\u003e9.10 Micro-injection molding \u003cbr\u003e9.11 Powder injection molding \u003cbr\u003e9.12 Pultrusion \u003cbr\u003e9.13 Reaction injection molding \u003cbr\u003e9.14 Rotational molding \u003cbr\u003e9.15 Sheet molding \u003cbr\u003e9.16 Spinning \u003cbr\u003e9.17 Thermoforming \u003cbr\u003e9.18 Welding and machining \u003cbr\u003e9.19 Wire coating\u003cbr\u003e\u003cbr\u003e10 Application of Nucleating Agents in Specific Polymers \u003cbr\u003e10.1 Poly(acrylonitrile-co-butadiene-co-styrene) \u003cbr\u003e10.2 Cellulose acetate \u003cbr\u003e10.3 Epoxy resin \u003cbr\u003e10.4 Ethylene-propylene diene terpolymer \u003cbr\u003e10.5 Ethylene-vinyl acetate copolymer \u003cbr\u003e10.6 Fluorinated ethylene-propylene copolymer \u003cbr\u003e10.7 Liquid crystalline polymer \u003cbr\u003e10.8 Polyamide \u003cbr\u003e10.9 Poly(acrylic acid) \u003cbr\u003e10.10 Polyacrylonitrile \u003cbr\u003e10.11 Polyaniline\u003cbr\u003e10.12 Poly(butylene terephthalate) \u003cbr\u003e10.13 Polycarbonate\u003cbr\u003e10.14 Poly(?-caprolactone) \u003cbr\u003e10.15 Polychlorotrifluoroethylene \u003cbr\u003e10.16 Polyethylene \u003cbr\u003e10.17 Polyetheretherketone \u003cbr\u003e10.18 Polyetherketoneketone \u003cbr\u003e10.19 Poly(ethylene oxide) \u003cbr\u003e10.20 Poly(ether sulfone) \u003cbr\u003e10.21 Poly(ethylene terephthalate) \u003cbr\u003e10.22 Polyethylene, silane-crosslinkable \u003cbr\u003e10.23 Poly(glycolic acid) \u003cbr\u003e10.24 Poly(3-hydroxybutyrate) \u003cbr\u003e10.25 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)\u003cbr\u003e10.26 Polyimide \u003cbr\u003e10.27 Poly(lactic acid) \u003cbr\u003e10.28 Polyoxymethylene \u003cbr\u003e10.29 Polypropylene \u003cbr\u003e10.30 Polyphthalamide \u003cbr\u003e10.31 Poly(p-phenylene sulfide)\u003cbr\u003e10.32 Polystyrene \u003cbr\u003e10.33 Poly(trimethylene terephthalate) \u003cbr\u003e10.34 Polyurethane \u003cbr\u003e10.35 Poly(vinyl alcohol) \u003cbr\u003e10.36 Poly(vinylidene fluoride) \u003cbr\u003e10.37 Poly(vinylidene fluoride-co-hexafluoropropylene) \u003cbr\u003e10.38 Poly(vinyl fluoride) \u003cbr\u003e10.39 Poly(N-vinyl carbazole) \u003cbr\u003e10.40 Unsaturated polyester \u003cbr\u003e\u003cbr\u003e11 Nucleating Agents in Various Products\u003cbr\u003e11.1 Adhesives\u003cbr\u003e11.2 Aerospace \u003cbr\u003e11.3 Appliances \u003cbr\u003e11.4 Automotive materials \u003cbr\u003e11.5 Bottles \u003cbr\u003e11.6 Building construction \u003cbr\u003e11.7 Cable \u0026amp; wire \u003cbr\u003e11.8 Coatings \u0026amp; paints \u003cbr\u003e11.9 Electronics and electrical \u003cbr\u003e11.10 Fibers \u003cbr\u003e11.11 Films \u003cbr\u003e11.12 Medical applications \u003cbr\u003e11.13 Pharmaceutical applications \u003cbr\u003e11.14 Railway \u003cbr\u003e11.15 Roofing \u003cbr\u003e11.16 Window profiles \u003cbr\u003e\u003cbr\u003e12 Effect of Nucleating Agents on Physical-mechanical Properties \u003cbr\u003e12.1 Physical properties\u003cbr\u003e12.1.1 Agglomeration \u003cbr\u003e12.1.2 Aspect ratio \u003cbr\u003e12.1.3 Crystalline structure \u003cbr\u003e12.1.4 Hydrophilic\/hydrophobic properties \u003cbr\u003e12.1.5 Melting temperature \u003cbr\u003e12.1.6 Moisture \u003cbr\u003e12.1.7 Optical properties \u003cbr\u003e12.1.8 Particle size \u003cbr\u003e12.1.9 Refractive index \u003cbr\u003e12.1.10 Shape memory \u003cbr\u003e12.1.11 Solubility \u003cbr\u003e12.1.12 Surface energy\u003cbr\u003e12.1.13 Thermal conductivity \u003cbr\u003e12.1.14 Transition temperature \u003cbr\u003e12.1.15 Zeta potential \u003cbr\u003e12.2 Mechanical properties \u003cbr\u003e12.2.1 Flexural strength\u003cbr\u003e12.2.2 Hardness\u003cbr\u003e12.2.3 Impact strength \u003cbr\u003e12.2.4 Residual stress \u003cbr\u003e12.2.5 Scratch resistance \u003cbr\u003e12.2.6 Shrinkage \u003cbr\u003e12.2.7 Tear strength \u003cbr\u003e12.2.8 Thermal deformation \u003cbr\u003e12.2.9 Tensile strength \u003cbr\u003e\u003cbr\u003e13 Important Analytical Methods Used in the Studies of Nucleating Agents \u003cbr\u003e13.1 Crystallinity \u003cbr\u003e13.2 Crystallization half-time \u003cbr\u003e13.3 Differential scanning calorimetry \u003cbr\u003e13.4 Fast scanning chip calorimetry\u003cbr\u003e13.5 FTIR \u003cbr\u003e13.6 Haze\u003cbr\u003e13.7 Orientation degree \u003cbr\u003e13.8 Polarized light microscopy \u003cbr\u003e13.9 Quenching device\u003cbr\u003e13.10 Small angle x-ray diffraction \u003cbr\u003e13.11 Spherulite size \u003cbr\u003e13.12 Thermogravimetric analysis \u003cbr\u003e13.13 Vicat softening temperature \u003cbr\u003e13.14 Wide angle x-ray diffraction\u003cbr\u003e\u003cbr\u003e14 Health and Safety with Nucleating Agents \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Plasticize...
$285.00
{"id":11242200196,"title":"Handbook of Plasticizers, 2nd Edition","handle":"978-1-895198-50-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych Editor \u003cbr\u003eISBN 978-1-895198-50-8 \u003cbr\u003e\u003cbr\u003ePages 748, Tables 114, Figures 416, References 3876\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains the comprehensive review of information available in open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous edition. \u003cbr\u003e\u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing the variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e\u003cbr\u003eAll numerical data are in the form of database (see information on Plasticizer Database which is a separate publication), whereas the theoretical component of information is given in the traditional form of a printed book.\u003cbr\u003e\u003cbr\u003eTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the groups and also to give ranges of expected properties for a given group.\u003cbr\u003e\u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty five Sections of Chapter 10 discuss plasticizers effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation. \u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 34 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003e\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with Plasticizer Database which gives information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 PLASTICIZER TYPES \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003eMax Kron \u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 TRANSPORTATION AND STORAGE\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003cbr\u003eA. Marcilla and M. Beltrán \u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 THEORIES OF COMPATIBILITY\u003cbr\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e\u003cbr\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution of materials in contact \u003cbr\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e9 PLASTICIZATION STEPS \u003cbr\u003eA. Marcilla, J. C. García, and M. Beltrán \u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova \u003cbr\u003e10.21 Self-healing \u003cbr\u003e10.22 Shrinkage\u003cbr\u003e10.23 Soiling \u003cbr\u003e10.24 Free volume \u003cbr\u003e10.25 Effect of plasticizers on other properties \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 es \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003eA. Marcilla\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJ.C. García","published_at":"2017-06-22T21:12:37-04:00","created_at":"2017-06-22T21:12:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","abiotic","adipates","adsorption","alkyl sulfonates","azelates","benzoates","biodegradation","book","chlorinated paraffins","citrates","coated fabrics","cosmetics","database","degradation","dental materials","electrical","electronics","energetic plasticizers","environment","epoxides","eye protection","fibers","film","flooring","foams","food","footwear","gaskets","gloves","inks","medical applications","membranes","p-additives","paints","pharmaceutical products","plasticisers","plasticizers additives","polymer","releases","solubility","varnishes","volatilization","water"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378305028,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plasticizers, 2nd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-50-8","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-50-8.jpg?v=1499470955"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-50-8.jpg?v=1499470955","options":["Title"],"media":[{"alt":null,"id":356335190109,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-50-8.jpg?v=1499470955"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-50-8.jpg?v=1499470955","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych Editor \u003cbr\u003eISBN 978-1-895198-50-8 \u003cbr\u003e\u003cbr\u003ePages 748, Tables 114, Figures 416, References 3876\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains the comprehensive review of information available in open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous edition. \u003cbr\u003e\u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing the variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e\u003cbr\u003eAll numerical data are in the form of database (see information on Plasticizer Database which is a separate publication), whereas the theoretical component of information is given in the traditional form of a printed book.\u003cbr\u003e\u003cbr\u003eTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the groups and also to give ranges of expected properties for a given group.\u003cbr\u003e\u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty five Sections of Chapter 10 discuss plasticizers effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation. \u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 34 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003e\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with Plasticizer Database which gives information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 PLASTICIZER TYPES \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003eMax Kron \u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 TRANSPORTATION AND STORAGE\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003cbr\u003eA. Marcilla and M. Beltrán \u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 THEORIES OF COMPATIBILITY\u003cbr\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e\u003cbr\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution of materials in contact \u003cbr\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e9 PLASTICIZATION STEPS \u003cbr\u003eA. Marcilla, J. C. García, and M. Beltrán \u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova \u003cbr\u003e10.21 Self-healing \u003cbr\u003e10.22 Shrinkage\u003cbr\u003e10.23 Soiling \u003cbr\u003e10.24 Free volume \u003cbr\u003e10.25 Effect of plasticizers on other properties \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 es \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003eA. Marcilla\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJ.C. García"}
Handbook of Plasticize...
$350.00
{"id":11427318148,"title":"Handbook of Plasticizers, 3rd Edition","handle":"handbook-of-plasticizers-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1-895198-97-3 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: March 2017 \u003cbr\u003ePages 858+xii\u003cbr\u003eTables 122, Figures 373\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous editions. \u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used for the production of plasticizers is becoming one of the issues in the selection of plasticizers. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e \u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e \u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of a printed book, entitled \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e.\u003c\/p\u003e\nTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e \u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e \u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e \u003cbr\u003eTwenty-eight sections of Chapter 10 discuss plasticizers’ effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation.\n\u003cp\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e \u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e \u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e \u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with \u003cstrong\u003ePlasticizer Database\u003c\/strong\u003e and\/or \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e which gives information on the present status and properties of industrial and research plasticizers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eEditor\u003c\/strong\u003e\u003cbr\u003eGeorge Wypych studied chemical engineering and obtained Ph. D. in chemical engineering. The professional expertise includes both university teaching (full professor) and research \u0026amp;development. He has published 25 books (PVC Plastisols, University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, and 4th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, 1st and 2nd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st and 2nd Editions, ChemTec Publishing, The PVC Formulary, 1st and 2nd Editions, ChemTec Publishing), Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of Polymers, 1st and 2nd Editions, ChemTec Publishing, Atlas of Material Damage, 1st and 2nd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st and 2nd Editions, ChemTec Publishing), Databook of Solvents, ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents, ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing, 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability and the development of sealants and coatings. He is included in Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eRelated Publications\u003c\/strong\u003e\u003cbr\u003eDatabook of Plasticizers\u003cbr\u003ePVC Degradation and Stabilization\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003e1 \u003c\/em\u003e\u003cem\u003eINTRODUCTION \u003c\/em\u003e\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PLASTICIZER TYPES \u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e \u003cem\u003eMax Kron \u003c\/em\u003e\u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla and M. Beltrán \u003c\/em\u003e\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models\u003c\/p\u003e\n\u003cp\u003e6 \u003cstrong\u003eTHEORIES OF COMPATIBILITY\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003c\/em\u003e\u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution in materials in contact \u003cbr\u003e \u003cem\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003c\/em\u003e\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla, J. C. García and M. Beltrán \u003c\/em\u003e\u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e \u003cem\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003c\/em\u003e\u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003e \u003cem\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003c\/em\u003e\u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003c\/em\u003e\u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003c\/em\u003e\u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova\u003c\/em\u003e\u003cbr\u003e10.21 Stability of physico-mechanical properties of plasticized polyetherurethane in a humid medium\u003cbr\u003eM. A. Makarova, V. V. Tereshatov, A. I .Slobodinyuk, V. Yu. Senichev, Zh. A. Vnutskikh\u003cbr\u003e10.22 Fusible diurethane plasticizers for thermoplastic polyurethane composites\u003cbr\u003eV. V. Tereshatov, V. Yu. Senichev\u003cbr\u003e10.23 Determination of osmotic pressure of plasticizer in polymer\u003cbr\u003eV. V. Tereshatov, Zh. A. Vnutskikh, V. Yu. Senichev, A. I. Slobodinyuk\u003cbr\u003e10.24 Self-healing\u003cbr\u003e10.25 Shrinkage\u003cbr\u003e10.26 Soiling \u003cbr\u003e10.27 Free volume \u003cbr\u003e10.28 Effect of plasticizers on other properties\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003e \u003cem\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003c\/em\u003e\u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003c\/strong\u003e\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 Pipes \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003e \u003cem\u003eA. Marcilla, J.C. García, and M. Beltran \u003c\/em\u003e\u003cbr\u003e13.32 Tubing \u003cbr\u003e13.33 Wire and cable\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS \u003c\/strong\u003e\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e \u003cem\u003eM. Beltrán, J. C. Garcia, and A. Marcilla \u003c\/em\u003e\u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e16 MATHEMATICAL MODELLING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation\u003cbr\u003e16.3 Migration\u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED MATERIALS \u003c\/strong\u003e\u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e \u003cem\u003eSøren Thor Larsen\u003c\/em\u003e\u003cbr\u003e17.1.1 Introduction\u003cbr\u003e17.1.2 Airway allergy\u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers? \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers: basic biology and human \u003cbr\u003eextrapolation\u003cbr\u003e \u003cem\u003eClaire Sadler, Ann-Marie Bergholm, Nicola Powles-Glover, and Ruth A Roberts\u003c\/em\u003e\u003cbr\u003e17.2.1 Introduction\u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression\u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPARa \u003cbr\u003e17.2.4 Species differences in response to PPS \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e \u003cem\u003eJanet Y. Uriu-Adams and Carl L. Keen\u003c\/em\u003e\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP\u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal and conceptus nutrient metabolism \u003cbr\u003e17.3.4 Concluding comments\u003cbr\u003e17.3.5 Acknowledgements \u003cbr\u003e17.4 Public health implications of phthalates: A review of findings from the U.S. National Toxicology Program's Expert Panel Reports\u003cbr\u003e \u003cem\u003eStephanie R. Miles-Richardson\u003c\/em\u003e\u003cbr\u003e17.4.1 Introduction\u003cbr\u003e17.4.2 Exposure to adults in the general population \u003cbr\u003e17.4.3 Exposure of vulnerable sub-populations \u003cbr\u003e17.4.4 Health effects of phthalate exposure \u003cbr\u003e17.4.5 US NTP expert panel conclusions\u003cbr\u003e17.4.6 Public health implications\u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e \u003cem\u003eWerner Butte\u003c\/em\u003e\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.5 Summary \u003cbr\u003eAddendum \u003cbr\u003e \u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eWilliam R. Roy\u003c\/em\u003e\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment\u003cbr\u003e18.1.2 Levels in the environment\u003cbr\u003e18.2 Plasticizers in water\u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water\u003cbr\u003e18.2.5 Adsorption from water\u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003eSummary and concluding remarks\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e19 REGULATIONS AND DATA \u003c\/strong\u003e\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect\u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e20 PERSONAL PROTECTION \u003c\/strong\u003e\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-07-13T17:08:39-04:00","created_at":"2017-07-13T17:11:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","abiotic","adipates","adsorption","alkyl sulfonates","azelates","benzoates","biodegradation","book","chlorinated paraffins","citrates","coated fabrics","cosmetics","database","degradation","dental materials","electrical","electronics","energetic plasticizers","environment","epoxides","eye protection","fibers","film","flooring","foams","food","footwear","gaskets","gloves","inks","medical applications","membranes","p-additives","paints","pharmaceutical products","plasticisers","plasticizers additives","polymer","releases","solubility","varnishes","volatilization","water"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45225353156,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plasticizers, 3rd Edition","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-895198-97-3","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-97-3.jpg?v=1503344003"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-97-3.jpg?v=1503344003","options":["Title"],"media":[{"alt":null,"id":407379804253,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-97-3.jpg?v=1503344003"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-97-3.jpg?v=1503344003","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1-895198-97-3 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: March 2017 \u003cbr\u003ePages 858+xii\u003cbr\u003eTables 122, Figures 373\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous editions. \u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used for the production of plasticizers is becoming one of the issues in the selection of plasticizers. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e \u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e \u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of a printed book, entitled \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e.\u003c\/p\u003e\nTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e \u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e \u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e \u003cbr\u003eTwenty-eight sections of Chapter 10 discuss plasticizers’ effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation.\n\u003cp\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e \u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e \u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e \u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with \u003cstrong\u003ePlasticizer Database\u003c\/strong\u003e and\/or \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e which gives information on the present status and properties of industrial and research plasticizers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eEditor\u003c\/strong\u003e\u003cbr\u003eGeorge Wypych studied chemical engineering and obtained Ph. D. in chemical engineering. The professional expertise includes both university teaching (full professor) and research \u0026amp;development. He has published 25 books (PVC Plastisols, University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, and 4th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, 1st and 2nd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st and 2nd Editions, ChemTec Publishing, The PVC Formulary, 1st and 2nd Editions, ChemTec Publishing), Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of Polymers, 1st and 2nd Editions, ChemTec Publishing, Atlas of Material Damage, 1st and 2nd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st and 2nd Editions, ChemTec Publishing), Databook of Solvents, ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents, ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing, 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability and the development of sealants and coatings. He is included in Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eRelated Publications\u003c\/strong\u003e\u003cbr\u003eDatabook of Plasticizers\u003cbr\u003ePVC Degradation and Stabilization\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003e1 \u003c\/em\u003e\u003cem\u003eINTRODUCTION \u003c\/em\u003e\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PLASTICIZER TYPES \u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e \u003cem\u003eMax Kron \u003c\/em\u003e\u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla and M. Beltrán \u003c\/em\u003e\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models\u003c\/p\u003e\n\u003cp\u003e6 \u003cstrong\u003eTHEORIES OF COMPATIBILITY\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003c\/em\u003e\u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution in materials in contact \u003cbr\u003e \u003cem\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003c\/em\u003e\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla, J. C. García and M. Beltrán \u003c\/em\u003e\u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e \u003cem\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003c\/em\u003e\u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003e \u003cem\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003c\/em\u003e\u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003c\/em\u003e\u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003c\/em\u003e\u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova\u003c\/em\u003e\u003cbr\u003e10.21 Stability of physico-mechanical properties of plasticized polyetherurethane in a humid medium\u003cbr\u003eM. A. Makarova, V. V. Tereshatov, A. I .Slobodinyuk, V. Yu. Senichev, Zh. A. Vnutskikh\u003cbr\u003e10.22 Fusible diurethane plasticizers for thermoplastic polyurethane composites\u003cbr\u003eV. V. Tereshatov, V. Yu. Senichev\u003cbr\u003e10.23 Determination of osmotic pressure of plasticizer in polymer\u003cbr\u003eV. V. Tereshatov, Zh. A. Vnutskikh, V. Yu. Senichev, A. I. Slobodinyuk\u003cbr\u003e10.24 Self-healing\u003cbr\u003e10.25 Shrinkage\u003cbr\u003e10.26 Soiling \u003cbr\u003e10.27 Free volume \u003cbr\u003e10.28 Effect of plasticizers on other properties\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003e \u003cem\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003c\/em\u003e\u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003c\/strong\u003e\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 Pipes \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003e \u003cem\u003eA. Marcilla, J.C. García, and M. Beltran \u003c\/em\u003e\u003cbr\u003e13.32 Tubing \u003cbr\u003e13.33 Wire and cable\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS \u003c\/strong\u003e\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e \u003cem\u003eM. Beltrán, J. C. Garcia, and A. Marcilla \u003c\/em\u003e\u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e16 MATHEMATICAL MODELLING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation\u003cbr\u003e16.3 Migration\u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED MATERIALS \u003c\/strong\u003e\u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e \u003cem\u003eSøren Thor Larsen\u003c\/em\u003e\u003cbr\u003e17.1.1 Introduction\u003cbr\u003e17.1.2 Airway allergy\u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers? \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers: basic biology and human \u003cbr\u003eextrapolation\u003cbr\u003e \u003cem\u003eClaire Sadler, Ann-Marie Bergholm, Nicola Powles-Glover, and Ruth A Roberts\u003c\/em\u003e\u003cbr\u003e17.2.1 Introduction\u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression\u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPARa \u003cbr\u003e17.2.4 Species differences in response to PPS \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e \u003cem\u003eJanet Y. Uriu-Adams and Carl L. Keen\u003c\/em\u003e\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP\u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal and conceptus nutrient metabolism \u003cbr\u003e17.3.4 Concluding comments\u003cbr\u003e17.3.5 Acknowledgements \u003cbr\u003e17.4 Public health implications of phthalates: A review of findings from the U.S. National Toxicology Program's Expert Panel Reports\u003cbr\u003e \u003cem\u003eStephanie R. Miles-Richardson\u003c\/em\u003e\u003cbr\u003e17.4.1 Introduction\u003cbr\u003e17.4.2 Exposure to adults in the general population \u003cbr\u003e17.4.3 Exposure of vulnerable sub-populations \u003cbr\u003e17.4.4 Health effects of phthalate exposure \u003cbr\u003e17.4.5 US NTP expert panel conclusions\u003cbr\u003e17.4.6 Public health implications\u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e \u003cem\u003eWerner Butte\u003c\/em\u003e\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.5 Summary \u003cbr\u003eAddendum \u003cbr\u003e \u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eWilliam R. Roy\u003c\/em\u003e\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment\u003cbr\u003e18.1.2 Levels in the environment\u003cbr\u003e18.2 Plasticizers in water\u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water\u003cbr\u003e18.2.5 Adsorption from water\u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003eSummary and concluding remarks\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e19 REGULATIONS AND DATA \u003c\/strong\u003e\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect\u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e20 PERSONAL PROTECTION \u003c\/strong\u003e\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Plasticize...
$390.00
{"id":7703557439645,"title":"Handbook of Plasticizers, 4th Edition","handle":"handbook-of-plasticizers-4th-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1- 77467-022-4 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: Jan. 2023 \u003cbr data-mce-fragment=\"1\"\u003ePages 894+xxii\u003cbr data-mce-fragment=\"1\"\u003eTables 115, Figures 360\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Plasticizers brings together in one place all that is known about this vital and rapidly expanding field. The book serves both as a basic reference source for researchers, engineers, and others involved in plastics processing, research and development as well as a source of ideas regarding future developments.\u003cbr\u003e\u003cbr\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The information from the most recent sources was used to update information from previous editions. \u003cbr\u003eThe information available today permits the use of plasticizers more effectively and helps to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used to produce plasticizers is becoming one of the issues in their selection. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials that may have different reactions to the presence of plasticizers. Plasticizer choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database, should provide data and a broad background of theoretical information in a condensed form easy to search. \u003cbr\u003e\u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of the printed book entitled Databook of Plasticizers. \u003cbr\u003eTwenty-one chapters are included in the Handbook of Plasticizers. The full Table of Contents is given below. Only some chapters are discussed here to add more information that may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers that belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e\u003cbr\u003eChapters 5, 6, and 7 contain new and historical approaches, which explain the mechanisms of plasticizers’ action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies, which help in understanding these steps and the parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty-nine sections of Chapter 10 discuss plasticizers’ effect on the physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and the principles of their formulation. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. The use of such a consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilarly, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown, including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizer use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14, attempts are being made to discuss the following topics: The effect of plasticizers on process conditions, Processing defects formation and elimination with the use of plasticizers, In the fluence of rheological changes on the process, Equipment maintenance, and energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer’s effect on health, safety, and the environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers’ effect on health and safety. Chapter 18 contains information on plasticizers’ persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers, especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide the right answers. This book is best used in conjunction with the Plasticizer Database and\/or Databook of Plasticizers which give information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 PLASTICIZER TYPES\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates \u003cbr\u003e2.2.6 Benzoates \u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins, \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e2.2.12 Energetic plasticizers \u003cbr\u003e2.2.13 Epoxides \u003cbr\u003e2.2.14 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.15 Ether-ester plasticizers \u003cbr\u003e2.2.16 Glutarates \u003cbr\u003e2.2.17 Hydrocarbon oils \u003cbr\u003e2.2.18 Hydrocarbon resins \u003cbr\u003e2.2.19 Isobutyrates \u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.26.1 Esters \u003cbr\u003e2.2.26.2 Polybutenes \u003cbr\u003e2.26.3 Others \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Succinates \u003cbr\u003e2.2.30 Sulfonamides \u003cbr\u003e2.2.31 Superplasticizers and plasticizers for concrete \u003cbr\u003e2.2.32 Tri- and pyromellitates \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers \u003cbr\u003e2.4 Reactive plasticizers and internal plasticization \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging \u003cbr\u003e3.16 Fusion \u003cbr\u003e3.17 Gas chromatography \u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology \u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Polyvinylchloride standard specification \u003cbr\u003e3.25 Powder-mix time \u003cbr\u003e3.26 Purity \u003cbr\u003e3.27 Refractive index \u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value \u003cbr\u003e3.31 Saybolt viscosity \u003cbr\u003e3.32 Sorption of plasticizer \u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification \u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness \u003cbr\u003e3.37 Tensile properties \u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration \u003cbr\u003e3.42 Weight loss \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e \u003cbr\u003e A. Marcilla and M. Beltrán\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory \u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 COMPATIBILITY OF PLASTICIZERS 159\u003c\/strong\u003e\u003cbr\u003e George Wypych\u003cbr\u003e6.1 Prediction methods of plasticizer compatibility \u003cbr\u003e6.1.1 Flory-Huggins interaction parameter \u003cbr\u003e6.1.2 Prediction of Gibbs free energy of mixing UNIFAC-FV \u003cbr\u003e6.1.3 Molar volume \u003cbr\u003e6.1.4 Polarity \u003cbr\u003e6.1.5 Hansen solubility parameters \u003cbr\u003e6.1.6 Hoy solubility parameters and other methods based on solubility\u003cbr\u003e parameters \u003cbr\u003e6.1.7 Hildebrand solubility parameter \u003cbr\u003e6.1.8 Molecule charge density using COSMO \u003cbr\u003e6.1.9 Mesoscale simulation using DPD \u003cbr\u003e6.1.10 Ap\/Po ratio \u003cbr\u003e6.2 Validation methods \u003cbr\u003e6.2.1 DSC analysis \u003cbr\u003e6.2.2 Inverse gas chromatography \u003cbr\u003e6.2.3 Solid-gel transition temperature \u003cbr\u003e6.3 Effect of plasticizer structure and conditions of incorporation on\u003cbr\u003e compatibility \u003cbr\u003e6.3.1 Effect of plasticizer structure \u003cbr\u003e6.3.1.1 Aromaticity \u003cbr\u003e6.3.1.2 Branching \u003cbr\u003e6.3.1.3 Chain length \u003cbr\u003e6.3.1.4 Molecular weight \u003cbr\u003e6.3.1.5 Polarity \u003cbr\u003e6.3.2 Conditions of incorporation \u003cbr\u003e6.3.2.1 Amount (concentration) \u003cbr\u003e6.3.2.2 Method of processing \u003cbr\u003e6.3.2.3 Temperature \u003cbr\u003e6.4 Effect of plasticizer type on properties of plasticized material \u003cbr\u003e6.4.1 Crystallinity \u003cbr\u003e6.4.2 Exudation \u003cbr\u003e6.4.3 Permanence \u003cbr\u003e6.4.4 Thermal degradation \u003cbr\u003e6.4.5 Volatility \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study \u003cbr\u003e7.2 Plasticizer motion and distribution in the matrix \u003cbr\u003e7.3 Plasticizer migration \u003cbr\u003e7.4 Antiplasticization \u003cbr\u003e7.5 Effect of diffusion and mobility of plasticizers on their suitability \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of\u003cbr\u003e plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS\u003c\/strong\u003e \u003cbr\u003e A. Marcilla, J.C. García and M. Beltrán\u003cbr\u003e9.1 Plasticization steps \u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by Scanning Electron Microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS \u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by TG \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e George Wypych\u003cbr\u003e10.1 Mechanical properties \u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation \u003cbr\u003e10.1.3 Hardness \u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Glass transition temperature \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizers \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation \u003cbr\u003e10.11.4 Loss of plasticizer from the material due to chemical decomposition\u003cbr\u003e reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of materials \u003cbr\u003e10.12 Effect of UV and ionizing radiation on plasticized materials \u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology \u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling \u003cbr\u003e10.19 Fogging \u003cbr\u003e10.20 Hydrophobic\/hydrophilic properties \u003cbr\u003e10.21 Osmotic pressure of plasticizer in polymer \u003cbr\u003e10.22 Self-healing \u003cbr\u003e10.23 Shrinkage \u003cbr\u003e10.24 Soiling \u003cbr\u003e10.25 Free volume \u003cbr\u003e10.26 Dissolution \u003cbr\u003e10.27 Foaming \u003cbr\u003e10.28 Permeability \u003cbr\u003e10.29 Sorption \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e11.1 ABS \u003cbr\u003e11.1.1 Frequently used plasticizers \u003cbr\u003e11.1.2 Practical concentrations \u003cbr\u003e11.1.3 Main functions performed by plasticizers \u003cbr\u003e11.1.4 Mechanism of plasticizer action \u003cbr\u003e11.1.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.1.6 Typical formulations \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.2.1 Frequently used plasticizers \u003cbr\u003e11.2.2 Practical concentrations \u003cbr\u003e11.2.3 Main functions performed by plasticizers \u003cbr\u003e11.2.4 Mechanism of plasticizer action \u003cbr\u003e11.2.5 Typical formulations \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.3.1 Frequently used plasticizers \u003cbr\u003e11.3.2 Practical concentrations \u003cbr\u003e11.3.3 Main functions performed by plasticizers \u003cbr\u003e11.3.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.4 Butyl terpolymer \u003cbr\u003e11.4.1 Frequently used plasticizers \u003cbr\u003e11.4.2 Practical concentrations \u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.5.1 Frequently used plasticizers \u003cbr\u003e11.5.2 Practical concentrations \u003cbr\u003e11.5.3 Main functions performed by plasticizers \u003cbr\u003e11.5.4 Mechanism of plasticizer action \u003cbr\u003e11.5.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.6 Cellulose butyrate and propionate \u003cbr\u003e11.6.1 Frequently used plasticizers \u003cbr\u003e11.6.2 Practical concentrations \u003cbr\u003e11.6.3 Main functions performed by plasticizers \u003cbr\u003e11.6.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.7.1 Frequently used plasticizers \u003cbr\u003e11.7.2 Practical concentrations \u003cbr\u003e11.7.3 Main functions performed by plasticizers \u003cbr\u003e11.7.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.7.5 Typical formulations \u003cbr\u003e11.8 Chitosan \u003cbr\u003e11.8.1 Frequently used plasticizers \u003cbr\u003e11.8.2 Practical concentrations \u003cbr\u003e11.8.3 Main functions performed by plasticizers \u003cbr\u003e11.8.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.9 Chlorinated polyvinylchloride \u003cbr\u003e11.9.1 Frequently used plasticizers \u003cbr\u003e11.9.2 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.10.1 Frequently used plasticizers \u003cbr\u003e11.10.2 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.11.1 Frequently used plasticizers \u003cbr\u003e11.11.2 Practical concentrations \u003cbr\u003e11.11.3 Main functions performed by plasticizers \u003cbr\u003e11.11.4 Mechanism of plasticizer action \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.12.1 Frequently used plasticizers \u003cbr\u003e11.12.2 Practical concentrations \u003cbr\u003e11.12.3 Main functions performed by plasticizers \u003cbr\u003e11.12.4 Effect of plasticizer on polymer and other additives \u003cbr\u003e11.13 Ethylcellulose \u003cbr\u003e11.13.1 Frequently used plasticizers \u003cbr\u003e11.13.2 Practical concentrations \u003cbr\u003e11.13.3 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.14.1 Frequently used plasticizers \u003cbr\u003e11.14.2 Practical concentrations \u003cbr\u003e11.14.3 Main functions performed by plasticizers \u003cbr\u003e11.14.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.15 Ethylene-propylene-diene copolymer \u003cbr\u003e11.15.1 Frequently used plasticizers \u003cbr\u003e11.15.2 Practical concentrations \u003cbr\u003e11.15.3 Main functions performed by plasticizers \u003cbr\u003e11.15.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.15.5 Typical formulations \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.17.1 Frequently used plasticizers \u003cbr\u003e11.17.2 Practical concentrations \u003cbr\u003e11.17.3 Main functions performed by plasticizers \u003cbr\u003e11.17.4 Mechanism of plasticizer action \u003cbr\u003e11.17.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.18 Nitrile rubber \u003cbr\u003e11.18.1 Frequently used plasticizers \u003cbr\u003e11.18.2 Practical concentrations \u003cbr\u003e11.18.3 Main functions performed by plasticizers \u003cbr\u003e11.18.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.18.5 Typical formulations \u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile \u003cbr\u003e11.20.1 Frequently used plasticizers \u003cbr\u003e11.20.2 Practical concentrations \u003cbr\u003e11.20.3 Main functions performed by plasticizers \u003cbr\u003e11.20.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.21 Polyamide \u003cbr\u003e11.21.1 Frequently used plasticizers \u003cbr\u003e11.21.2 Practical concentrations \u003cbr\u003e11.21.3 Main functions performed by plasticizers \u003cbr\u003e11.21.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene \u003cbr\u003e11.24.1 Frequently used plasticizers \u003cbr\u003e11.24.2 Practical concentrations \u003cbr\u003e11.24.3 Main functions performed by plasticizers \u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.25.1 Frequently used plasticizers \u003cbr\u003e11.25.2 Practical concentrations \u003cbr\u003e11.25.3 Main functions performed by plasticizers \u003cbr\u003e11.26 Poly(butyl methacrylate) \u003cbr\u003e11.26.1 Frequently used plasticizers \u003cbr\u003e11.26.2 Practical concentrations \u003cbr\u003e11.26.3 Main functions performed by plasticizers \u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.27.1 Frequently used plasticizers \u003cbr\u003e11.27.2 Practical concentrations \u003cbr\u003e11.27.3 Main functions performed by plasticizers \u003cbr\u003e11.27.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.28.1 Frequently used plasticizers \u003cbr\u003e11.28.2 Practical concentrations \u003cbr\u003e11.28.3 Main functions performed by plasticizers \u003cbr\u003e11.28.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.28.5 Typical formulations \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.31.1 Frequently used plasticizers \u003cbr\u003e11.31.2 Practical concentrations \u003cbr\u003e11.31.3 Main functions performed by plasticizers \u003cbr\u003e11.31.4 Mechanism of plasticizer action \u003cbr\u003e11.31.5 Typical formulations \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.32.1 Frequently used plasticizers \u003cbr\u003e11.32.2 Practical concentrations \u003cbr\u003e11.32.3 Main functions performed by plasticizers \u003cbr\u003e11.32.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.33.1 Frequently used plasticizers \u003cbr\u003e11.33.2 Practical concentrations \u003cbr\u003e11.33.3 Main functions performed by plasticizers \u003cbr\u003e11.34 Polyisobutylene \u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.35.1 Frequently used plasticizers \u003cbr\u003e11.35.2 Practical concentrations \u003cbr\u003e11.35.3 Main functions performed by plasticizers \u003cbr\u003e11.35.4 Typical formulations \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.36.1 Frequently used plasticizers \u003cbr\u003e11.36.2 Practical concentrations \u003cbr\u003e11.36.3 Main functions performed by plasticizers \u003cbr\u003e11.36.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.37 Polylactide \u003cbr\u003e11.37.1 Frequently used plasticizers \u003cbr\u003e11.37.2 Practical concentrations \u003cbr\u003e11.37.3 Main functions performed by plasticizers \u003cbr\u003e11.37.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.38.1 Frequently used plasticizers \u003cbr\u003e11.38.2 Practical concentrations \u003cbr\u003e11.38.3 Main functions performed by plasticizers \u003cbr\u003e11.38.4 Mechanism of plasticizer action \u003cbr\u003e11.38.5 Typical formulations \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.39.1 Frequently used plasticizers \u003cbr\u003e11.39.2 Practical concentrations \u003cbr\u003e11.39.3 Main functions performed by plasticizers \u003cbr\u003e11.39.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.40.1 Frequently used plasticizers \u003cbr\u003e11.40.2 Practical concentrations \u003cbr\u003e11.40.3 Main functions performed by plasticizers \u003cbr\u003e11.40.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.42.1 Frequently used plasticizers \u003cbr\u003e11.42.2 Practical concentrations \u003cbr\u003e11.42.3 Main functions performed by plasticizers \u003cbr\u003e11.42.4 Mechanism of plasticizer action \u003cbr\u003e11.42.5 Typical formulations \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.43.1 Frequently used plasticizers \u003cbr\u003e11.43.2 Practical concentrations \u003cbr\u003e11.43.3 Main functions performed by plasticizers \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.45.1 Frequently used plasticizers \u003cbr\u003e11.45.2 Practical concentrations \u003cbr\u003e11.45.3 Main functions performed by plasticizers \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.46.1 Frequently used plasticizers \u003cbr\u003e11.46.2 Practical concentrations \u003cbr\u003e11.46.3 Main functions performed by plasticizers \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes \u003cbr\u003e11.48.1 Frequently used plasticizers \u003cbr\u003e11.48.2 Practical concentrations \u003cbr\u003e11.48.3 Main functions performed by plasticizers \u003cbr\u003e11.48.4 Mechanism of plasticizers action \u003cbr\u003e11.48.5 Effect of plasticizers on polymers and other additives \u003cbr\u003e11.48.6 Typical formulations \u003cbr\u003e11.49 Polyvinylacetate \u003cbr\u003e11.49.1 Frequently used plasticizers \u003cbr\u003e11.49.2 Practical concentrations \u003cbr\u003e11.49.3 Main functions performed by plasticizers \u003cbr\u003e11.49.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.50.1 Frequently used plasticizers \u003cbr\u003e11.50.2 Practical concentrations \u003cbr\u003e11.50.3 Main functions performed by plasticizers \u003cbr\u003e11.50.4 Mechanism of plasticizer action \u003cbr\u003e11.50.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.50.6 Typical formulations \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.51.1 Frequently used plasticizers \u003cbr\u003e11.51.2 Practical concentrations \u003cbr\u003e11.51.3 Main functions performed by plasticizers \u003cbr\u003e11.51.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.52.1 Frequently used plasticizers \u003cbr\u003e11.52.2 Practical concentrations \u003cbr\u003e11.52.3 Main functions performed by plasticizers \u003cbr\u003e11.52.4 Mechanism of plasticizer action \u003cbr\u003e11.52.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.52.6 Typical formulations \u003cbr\u003e11.53 Polyvinylfluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.54.1 Frequently used plasticizers \u003cbr\u003e11.54.2 Practical concentrations \u003cbr\u003e11.54.3 Main functions performed by plasticizers \u003cbr\u003e11.54.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.56.1 Frequently used plasticizers \u003cbr\u003e11.56.2 Practical concentrations \u003cbr\u003e11.56.3 Main functions performed by plasticizers \u003cbr\u003e11.56.4 Mechanism of plasticizer action \u003cbr\u003e11.56.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.57 Rubber, natural \u003cbr\u003e11.57.1 Frequently used plasticizers \u003cbr\u003e11.57.2 Practical concentrations \u003cbr\u003e11.57.3 Main functions performed by plasticizers \u003cbr\u003e11.57.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.57.5 Typical formulations \u003cbr\u003e11.58 Silicone \u003cbr\u003e11.58.1 Frequently used plasticizers \u003cbr\u003e11.58.2 Practical concentrations \u003cbr\u003e11.58.3 Main functions performed by plasticizers \u003cbr\u003e11.58.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.58.5 Typical formulations \u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.59.1 Frequently used plasticizers \u003cbr\u003e11.59.2 Practical concentrations \u003cbr\u003e11.59.3 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.59.4 Typical formulations \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.60.1 Frequently used plasticizers \u003cbr\u003e11.60.2 Practical concentrations \u003cbr\u003e11.60.3 Main functions performed by plasticizers \u003cbr\u003e11.60.4 Effect of plasticizer on polymer and other additives \u003cbr\u003e11.61 Starch \u003cbr\u003e11.61.1 Frequently used plasticizers \u003cbr\u003e11.61.2 Practical concentrations \u003cbr\u003e11.61.3 Main functions performed by plasticizers \u003cbr\u003e11.61.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.61.5 Typical formulations\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.1.1 Plasticizer types \u003cbr\u003e13.1.2 Plasticizer concentration \u003cbr\u003e13.1.3 Reasons for plasticizer use \u003cbr\u003e13.1.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.1.5 Effect of plasticizers on product properties \u003cbr\u003e13.1.6 Examples of formulations \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive \u003cbr\u003e13.4.1 Plasticizer types \u003cbr\u003e13.4.2 Plasticizer concentration \u003cbr\u003e13.4.3 Reasons for plasticizer use \u003cbr\u003e13.4.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.4.5 Effect of plasticizers on product properties \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.5.1 Plasticizer types \u003cbr\u003e13.5.2 Plasticizer concentration \u003cbr\u003e13.5.3 Reasons for plasticizer use \u003cbr\u003e13.5.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.5.5 Effect of plasticizers on product properties \u003cbr\u003e13.5.6 Examples of formulations \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.6.1 Plasticizer types \u003cbr\u003e13.6.2 Plasticizer concentration \u003cbr\u003e13.6.3 Reasons for plasticizer use \u003cbr\u003e13.6.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.6.5 Effect of plasticizers on product properties \u003cbr\u003e13.6.6 Examples of formulations \u003cbr\u003e13.7 Composites \u003cbr\u003e13.7.1 Plasticizer types \u003cbr\u003e13.7.2 Plasticizer concentrations \u003cbr\u003e13.7.3 Reasons for addition \u003cbr\u003e13.7.4 Effect of plasticizers on product properties \u003cbr\u003e13.8 Cosmetics \u003cbr\u003e13.8.1 Plasticizer types \u003cbr\u003e13.8.2 Plasticizer concentration \u003cbr\u003e13.8.3 Reasons for plasticizer use \u003cbr\u003e13.8.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.8.5 Effect of plasticizers on product properties \u003cbr\u003e13.8.6 Examples of formulations \u003cbr\u003e13.9 Cultural heritage \u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.10.1 Plasticizer types \u003cbr\u003e13.10.2 Plasticizer concentration \u003cbr\u003e13.10.3 Reasons for plasticizer use \u003cbr\u003e13.10.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.11.1 Plasticizer types \u003cbr\u003e13.11.2 Plasticizer concentration \u003cbr\u003e13.11.3 Reasons for plasticizer use \u003cbr\u003e13.11.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.11.5 Effect of plasticizers on product properties \u003cbr\u003e13.12 Fibers \u003cbr\u003e13.12.1 Plasticizer types \u003cbr\u003e13.12.2 Plasticizer concentration \u003cbr\u003e13.12.3 Reasons for plasticizer use \u003cbr\u003e13.12.4 Effect of plasticizers on product properties \u003cbr\u003e13.13 Film \u003cbr\u003e13.13.1 Plasticizer types \u003cbr\u003e13.13.2 Plasticizer concentration \u003cbr\u003e13.13.3 Reasons for plasticizer use \u003cbr\u003e13.13.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.13.5 Effect of plasticizers on product properties \u003cbr\u003e13.14 Food \u003cbr\u003e13.14.1 Plasticizer types \u003cbr\u003e13.14.2 Plasticizer concentration \u003cbr\u003e13.14.3 Reasons for plasticizer use \u003cbr\u003e13.14.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.14.5 Effect of plasticizers on product properties \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.15.1 Plasticizer types \u003cbr\u003e13.15.2 Plasticizer concentration \u003cbr\u003e13.15.3 Reasons for plasticizer use \u003cbr\u003e13.15.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.15.5 Effect of plasticizers on product properties \u003cbr\u003e13.15.6 Examples of formulations \u003cbr\u003e13.16 Foams \u003cbr\u003e13.16.1 Plasticizer types \u003cbr\u003e13.16.2 Plasticizer concentration \u003cbr\u003e13.16.3 Reasons for plasticizer use \u003cbr\u003e13.16.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.16.5 Effect of plasticizers on product properties \u003cbr\u003e13.16.6 Examples of formulations \u003cbr\u003e13.17 Footwear \u003cbr\u003e13.17.1 Plasticizer types \u003cbr\u003e13.17.2 Plasticizer concentration \u003cbr\u003e13.17.3 Reasons for plasticizer use \u003cbr\u003e13.17.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.17.5 Example of formulation \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.18.1 Plasticizer types \u003cbr\u003e13.18.2 Plasticizer concentration \u003cbr\u003e13.18.3 Reasons for plasticizer use \u003cbr\u003e13.19 Gaskets \u003cbr\u003e13.19.1 Plasticizer types \u003cbr\u003e13.19.2 Plasticizer concentration \u003cbr\u003e13.19.3 Reasons for plasticizer use \u003cbr\u003e13.19.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.19.5 Examples of formulations \u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.21.1 Plasticizer types \u003cbr\u003e13.21.2 Plasticizer concentration \u003cbr\u003e13.21.3 Reasons for plasticizer use \u003cbr\u003e13.21.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.21.5 Effect of plasticizers on product properties \u003cbr\u003e13.21.6 Examples of formulations \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.22.1 Plasticizer types \u003cbr\u003e13.22.2 Plasticizer concentration \u003cbr\u003e13.22.3 Reasons for plasticizer use \u003cbr\u003e13.22.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.22.5 Effect of plasticizers on product properties \u003cbr\u003e13.22.6 Examples of formulations \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.23.1 Plasticizer types \u003cbr\u003e13.23.2 Plasticizer concentration \u003cbr\u003e13.23.3 Reasons for plasticizer use \u003cbr\u003e13.23.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.24.1 Plasticizer types \u003cbr\u003e13.24.2 Plasticizer concentration \u003cbr\u003e13.24.3 Reasons for plasticizer use \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.25.1 Plasticizer types \u003cbr\u003e13.25.2 Plasticizer concentration \u003cbr\u003e13.25.3 Reasons for plasticizer use \u003cbr\u003e13.25.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.25.5 Effect of plasticizers on product properties \u003cbr\u003e13.25.6 Examples of formulations \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.26.1 Plasticizer types \u003cbr\u003e13.26.2 Plasticizer concentration \u003cbr\u003e13.26.3 Reasons for plasticizer use \u003cbr\u003e13.26.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.26.5 Effect of plasticizers on product properties \u003cbr\u003e13.26.6 Examples of formulations \u003cbr\u003e13.27 Photographic materials \u003cbr\u003e13.27.1 Plasticizer types \u003cbr\u003e13.27.2 Plasticizer concentration \u003cbr\u003e13.27.3 Reasons for plasticizer use \u003cbr\u003e13.27.4 Effect of plasticizers on product properties \u003cbr\u003e13.28 Pipes \u003cbr\u003e13.28.1 Plasticizer types \u003cbr\u003e13.28.2 Plasticizer concentration \u003cbr\u003e13.28.3 Reasons for plasticizer use \u003cbr\u003e13.28.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.28.5 Effect of plasticizers on product properties \u003cbr\u003e13.28.6 Examples of formulations \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.29.1 Plasticizer types \u003cbr\u003e13.29.2 Plasticizer concentration \u003cbr\u003e13.29.3 Reasons for plasticizer use \u003cbr\u003e13.29.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.29.5 Effect of plasticizers on product properties \u003cbr\u003e13.29.6 Examples of formulations \u003cbr\u003e13.30 Tires \u003cbr\u003e13.30.1 Plasticizer types \u003cbr\u003e13.30.2 Plasticizer concentration \u003cbr\u003e13.30.3 Reasons for plasticizer use \u003cbr\u003e13.30.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.30.5 Effect of plasticizers on product properties \u003cbr\u003e13.30.6 Examples of formulations \u003cbr\u003e13.31 Toys \u003cbr\u003e13.31.1 Plasticizer types \u003cbr\u003e13.31.2 Plasticizer concentration \u003cbr\u003e13.31.3 Reasons for plasticizer use \u003cbr\u003e13.31.4 Effect of plasticizers on product properties \u003cbr\u003e13.32 Tubing \u003cbr\u003e13.32.1 Plasticizer types \u003cbr\u003e13.32.2 Plasticizer concentration \u003cbr\u003e13.32.3 Reasons for plasticizer use \u003cbr\u003e13.32.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.32.5 Effect of plasticizers on product properties \u003cbr\u003e13.32.6 Examples of formulations \u003cbr\u003e13.33 Wire and cable \u003cbr\u003e13.33.1 Plasticizer types \u003cbr\u003e13.33.2 Plasticizer concentration \u003cbr\u003e13.33.3 Reasons for plasticizer use \u003cbr\u003e13.33.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.33.5 Effect of plasticizers on product properties \u003cbr\u003e13.33.6 Examples of formulations \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 MATHEMATICAL MODELING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation \u003cbr\u003e16.3 Migration \u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition \u003cbr\u003e16.7 Potential health risk of exposure to DEHP from glove \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e MATERIALS\u003c\/strong\u003e \u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e Søren Thor Larsen \u003cbr\u003e17.1.1 Introduction \u003cbr\u003e17.1.2 Airway allergy \u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers \u003cbr\u003e 17.1.4.1 Epidemiological studies \u003cbr\u003e17.1.4.2 In vivo (animal) studies \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers\u003cbr\u003e : basic biology and human extrapolation \u003cbr\u003e Abigail L Walker and Ruth A Roberts\u003cbr\u003e17.2.1 Introduction \u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression \u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Developing areas of interest in hepatocarcinogenesis \u003cbr\u003e17.2.2.4 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic\u003cbr\u003e hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPAR \u003cbr\u003e17.2.4 Species differences in response to peroxisome proliferators \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.5.1 Challenges in alternative models \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e Janet Y. Uriu-Adams1 and Carl L. Keen\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP \u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal \u003cbr\u003e17.3.4 Concluding comments \u003cbr\u003e17.3.5 Recent findings \u003cbr\u003e17.3.6 Acknowledgments \u003cbr\u003e17.4 Public health implications of phthalates: A review of U.S. actions\u003cbr\u003e to protect those most vulnerable \u003cbr\u003e Stephanie R. Miles-Richardson and Dhara Richardson\u003cbr\u003e17.4.1 Introduction \u003cbr\u003e17.4.2 Implications of the COVID-19 pandemic on phthalate exposure \u003cbr\u003e17.4.3 The U.S. response to phthalate exposure \u003cbr\u003e17.4.3 Some U.S. State-level actions \u003cbr\u003e17.4.4 2008 Consumer Product Safety Improvement Act \u003cbr\u003e17.4.5 Food and Drug Administration (FDA) petition, lawsuit, and final ruling \u003cbr\u003e17.4.6 Preventing Harmful Exposure to Phthalates Act 117th Congress\u003cbr\u003e (2021-2022) \u003cbr\u003e17.4.7 Other U.S. Federal Agencies \u003cbr\u003e17.4.8 Conclusion \u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e Werner Butte\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.3.1 Indoor air \u003cbr\u003e17.5.3.2 House dust \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.4.1 Indoor plasticizers and health \u003cbr\u003e17.5.4.2 Human exposure assessment for plasticizers in the indoor\u003cbr\u003e environment \u003cbr\u003e17.5.4.3 Reference and guideline values of plasticizers to assess indoor\u003cbr\u003e quality \u003cbr\u003e17.5.5 Summary \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e William R. Roy\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment \u003cbr\u003e18.1.2 Levels in the environment \u003cbr\u003e18.2 Plasticizers in water \u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water. \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water \u003cbr\u003e18.2.5 Adsorption from water \u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003e Summary and concluding remarks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 REGULATIONS AND DATA\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect \u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 PERSONAL PROTECTION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.","published_at":"2023-02-24T14:06:20-05:00","created_at":"2023-02-24T13:56:07-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["abiotic","adipates","adsorption","alkyl sulfonates","azelates","benzoates","biodegradation","book","chlorinated paraffins","citrates","coated fabrics","cosmetics","database","degradation","dental materials","electrical","electronics","energetic plasticizers","environment","epoxides","eye protection","fibers","film","flooring","foams","food","footwear","gaskets","gloves","inks","medical applications","membranes","p-additives","paints","pharmaceutical products","plasticisers","plasticizers additives","polymer","releases","solubility","varnishes","volatilization","water"],"price":39000,"price_min":39000,"price_max":39000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393978663069,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plasticizers, 4th Edition","public_title":null,"options":["Default Title"],"price":39000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-77467-022-4","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670224-Case.png?v=1677265546"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670224-Case.png?v=1677265546","options":["Title"],"media":[{"alt":null,"id":27340016779421,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670224-Case.png?v=1677265546"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670224-Case.png?v=1677265546","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1- 77467-022-4 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: Jan. 2023 \u003cbr data-mce-fragment=\"1\"\u003ePages 894+xxii\u003cbr data-mce-fragment=\"1\"\u003eTables 115, Figures 360\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Plasticizers brings together in one place all that is known about this vital and rapidly expanding field. The book serves both as a basic reference source for researchers, engineers, and others involved in plastics processing, research and development as well as a source of ideas regarding future developments.\u003cbr\u003e\u003cbr\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The information from the most recent sources was used to update information from previous editions. \u003cbr\u003eThe information available today permits the use of plasticizers more effectively and helps to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used to produce plasticizers is becoming one of the issues in their selection. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials that may have different reactions to the presence of plasticizers. Plasticizer choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database, should provide data and a broad background of theoretical information in a condensed form easy to search. \u003cbr\u003e\u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of the printed book entitled Databook of Plasticizers. \u003cbr\u003eTwenty-one chapters are included in the Handbook of Plasticizers. The full Table of Contents is given below. Only some chapters are discussed here to add more information that may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers that belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e\u003cbr\u003eChapters 5, 6, and 7 contain new and historical approaches, which explain the mechanisms of plasticizers’ action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies, which help in understanding these steps and the parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty-nine sections of Chapter 10 discuss plasticizers’ effect on the physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and the principles of their formulation. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. The use of such a consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilarly, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown, including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizer use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14, attempts are being made to discuss the following topics: The effect of plasticizers on process conditions, Processing defects formation and elimination with the use of plasticizers, In the fluence of rheological changes on the process, Equipment maintenance, and energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer’s effect on health, safety, and the environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers’ effect on health and safety. Chapter 18 contains information on plasticizers’ persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers, especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide the right answers. This book is best used in conjunction with the Plasticizer Database and\/or Databook of Plasticizers which give information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 PLASTICIZER TYPES\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates \u003cbr\u003e2.2.6 Benzoates \u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins, \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e2.2.12 Energetic plasticizers \u003cbr\u003e2.2.13 Epoxides \u003cbr\u003e2.2.14 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.15 Ether-ester plasticizers \u003cbr\u003e2.2.16 Glutarates \u003cbr\u003e2.2.17 Hydrocarbon oils \u003cbr\u003e2.2.18 Hydrocarbon resins \u003cbr\u003e2.2.19 Isobutyrates \u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.26.1 Esters \u003cbr\u003e2.2.26.2 Polybutenes \u003cbr\u003e2.26.3 Others \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Succinates \u003cbr\u003e2.2.30 Sulfonamides \u003cbr\u003e2.2.31 Superplasticizers and plasticizers for concrete \u003cbr\u003e2.2.32 Tri- and pyromellitates \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers \u003cbr\u003e2.4 Reactive plasticizers and internal plasticization \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging \u003cbr\u003e3.16 Fusion \u003cbr\u003e3.17 Gas chromatography \u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology \u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Polyvinylchloride standard specification \u003cbr\u003e3.25 Powder-mix time \u003cbr\u003e3.26 Purity \u003cbr\u003e3.27 Refractive index \u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value \u003cbr\u003e3.31 Saybolt viscosity \u003cbr\u003e3.32 Sorption of plasticizer \u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification \u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness \u003cbr\u003e3.37 Tensile properties \u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration \u003cbr\u003e3.42 Weight loss \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e \u003cbr\u003e A. Marcilla and M. Beltrán\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory \u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 COMPATIBILITY OF PLASTICIZERS 159\u003c\/strong\u003e\u003cbr\u003e George Wypych\u003cbr\u003e6.1 Prediction methods of plasticizer compatibility \u003cbr\u003e6.1.1 Flory-Huggins interaction parameter \u003cbr\u003e6.1.2 Prediction of Gibbs free energy of mixing UNIFAC-FV \u003cbr\u003e6.1.3 Molar volume \u003cbr\u003e6.1.4 Polarity \u003cbr\u003e6.1.5 Hansen solubility parameters \u003cbr\u003e6.1.6 Hoy solubility parameters and other methods based on solubility\u003cbr\u003e parameters \u003cbr\u003e6.1.7 Hildebrand solubility parameter \u003cbr\u003e6.1.8 Molecule charge density using COSMO \u003cbr\u003e6.1.9 Mesoscale simulation using DPD \u003cbr\u003e6.1.10 Ap\/Po ratio \u003cbr\u003e6.2 Validation methods \u003cbr\u003e6.2.1 DSC analysis \u003cbr\u003e6.2.2 Inverse gas chromatography \u003cbr\u003e6.2.3 Solid-gel transition temperature \u003cbr\u003e6.3 Effect of plasticizer structure and conditions of incorporation on\u003cbr\u003e compatibility \u003cbr\u003e6.3.1 Effect of plasticizer structure \u003cbr\u003e6.3.1.1 Aromaticity \u003cbr\u003e6.3.1.2 Branching \u003cbr\u003e6.3.1.3 Chain length \u003cbr\u003e6.3.1.4 Molecular weight \u003cbr\u003e6.3.1.5 Polarity \u003cbr\u003e6.3.2 Conditions of incorporation \u003cbr\u003e6.3.2.1 Amount (concentration) \u003cbr\u003e6.3.2.2 Method of processing \u003cbr\u003e6.3.2.3 Temperature \u003cbr\u003e6.4 Effect of plasticizer type on properties of plasticized material \u003cbr\u003e6.4.1 Crystallinity \u003cbr\u003e6.4.2 Exudation \u003cbr\u003e6.4.3 Permanence \u003cbr\u003e6.4.4 Thermal degradation \u003cbr\u003e6.4.5 Volatility \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study \u003cbr\u003e7.2 Plasticizer motion and distribution in the matrix \u003cbr\u003e7.3 Plasticizer migration \u003cbr\u003e7.4 Antiplasticization \u003cbr\u003e7.5 Effect of diffusion and mobility of plasticizers on their suitability \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of\u003cbr\u003e plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS\u003c\/strong\u003e \u003cbr\u003e A. Marcilla, J.C. García and M. Beltrán\u003cbr\u003e9.1 Plasticization steps \u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by Scanning Electron Microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS \u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by TG \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e George Wypych\u003cbr\u003e10.1 Mechanical properties \u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation \u003cbr\u003e10.1.3 Hardness \u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Glass transition temperature \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizers \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation \u003cbr\u003e10.11.4 Loss of plasticizer from the material due to chemical decomposition\u003cbr\u003e reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of materials \u003cbr\u003e10.12 Effect of UV and ionizing radiation on plasticized materials \u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology \u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling \u003cbr\u003e10.19 Fogging \u003cbr\u003e10.20 Hydrophobic\/hydrophilic properties \u003cbr\u003e10.21 Osmotic pressure of plasticizer in polymer \u003cbr\u003e10.22 Self-healing \u003cbr\u003e10.23 Shrinkage \u003cbr\u003e10.24 Soiling \u003cbr\u003e10.25 Free volume \u003cbr\u003e10.26 Dissolution \u003cbr\u003e10.27 Foaming \u003cbr\u003e10.28 Permeability \u003cbr\u003e10.29 Sorption \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e11.1 ABS \u003cbr\u003e11.1.1 Frequently used plasticizers \u003cbr\u003e11.1.2 Practical concentrations \u003cbr\u003e11.1.3 Main functions performed by plasticizers \u003cbr\u003e11.1.4 Mechanism of plasticizer action \u003cbr\u003e11.1.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.1.6 Typical formulations \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.2.1 Frequently used plasticizers \u003cbr\u003e11.2.2 Practical concentrations \u003cbr\u003e11.2.3 Main functions performed by plasticizers \u003cbr\u003e11.2.4 Mechanism of plasticizer action \u003cbr\u003e11.2.5 Typical formulations \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.3.1 Frequently used plasticizers \u003cbr\u003e11.3.2 Practical concentrations \u003cbr\u003e11.3.3 Main functions performed by plasticizers \u003cbr\u003e11.3.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.4 Butyl terpolymer \u003cbr\u003e11.4.1 Frequently used plasticizers \u003cbr\u003e11.4.2 Practical concentrations \u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.5.1 Frequently used plasticizers \u003cbr\u003e11.5.2 Practical concentrations \u003cbr\u003e11.5.3 Main functions performed by plasticizers \u003cbr\u003e11.5.4 Mechanism of plasticizer action \u003cbr\u003e11.5.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.6 Cellulose butyrate and propionate \u003cbr\u003e11.6.1 Frequently used plasticizers \u003cbr\u003e11.6.2 Practical concentrations \u003cbr\u003e11.6.3 Main functions performed by plasticizers \u003cbr\u003e11.6.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.7.1 Frequently used plasticizers \u003cbr\u003e11.7.2 Practical concentrations \u003cbr\u003e11.7.3 Main functions performed by plasticizers \u003cbr\u003e11.7.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.7.5 Typical formulations \u003cbr\u003e11.8 Chitosan \u003cbr\u003e11.8.1 Frequently used plasticizers \u003cbr\u003e11.8.2 Practical concentrations \u003cbr\u003e11.8.3 Main functions performed by plasticizers \u003cbr\u003e11.8.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.9 Chlorinated polyvinylchloride \u003cbr\u003e11.9.1 Frequently used plasticizers \u003cbr\u003e11.9.2 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.10.1 Frequently used plasticizers \u003cbr\u003e11.10.2 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.11.1 Frequently used plasticizers \u003cbr\u003e11.11.2 Practical concentrations \u003cbr\u003e11.11.3 Main functions performed by plasticizers \u003cbr\u003e11.11.4 Mechanism of plasticizer action \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.12.1 Frequently used plasticizers \u003cbr\u003e11.12.2 Practical concentrations \u003cbr\u003e11.12.3 Main functions performed by plasticizers \u003cbr\u003e11.12.4 Effect of plasticizer on polymer and other additives \u003cbr\u003e11.13 Ethylcellulose \u003cbr\u003e11.13.1 Frequently used plasticizers \u003cbr\u003e11.13.2 Practical concentrations \u003cbr\u003e11.13.3 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.14.1 Frequently used plasticizers \u003cbr\u003e11.14.2 Practical concentrations \u003cbr\u003e11.14.3 Main functions performed by plasticizers \u003cbr\u003e11.14.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.15 Ethylene-propylene-diene copolymer \u003cbr\u003e11.15.1 Frequently used plasticizers \u003cbr\u003e11.15.2 Practical concentrations \u003cbr\u003e11.15.3 Main functions performed by plasticizers \u003cbr\u003e11.15.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.15.5 Typical formulations \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.17.1 Frequently used plasticizers \u003cbr\u003e11.17.2 Practical concentrations \u003cbr\u003e11.17.3 Main functions performed by plasticizers \u003cbr\u003e11.17.4 Mechanism of plasticizer action \u003cbr\u003e11.17.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.18 Nitrile rubber \u003cbr\u003e11.18.1 Frequently used plasticizers \u003cbr\u003e11.18.2 Practical concentrations \u003cbr\u003e11.18.3 Main functions performed by plasticizers \u003cbr\u003e11.18.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.18.5 Typical formulations \u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile \u003cbr\u003e11.20.1 Frequently used plasticizers \u003cbr\u003e11.20.2 Practical concentrations \u003cbr\u003e11.20.3 Main functions performed by plasticizers \u003cbr\u003e11.20.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.21 Polyamide \u003cbr\u003e11.21.1 Frequently used plasticizers \u003cbr\u003e11.21.2 Practical concentrations \u003cbr\u003e11.21.3 Main functions performed by plasticizers \u003cbr\u003e11.21.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene \u003cbr\u003e11.24.1 Frequently used plasticizers \u003cbr\u003e11.24.2 Practical concentrations \u003cbr\u003e11.24.3 Main functions performed by plasticizers \u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.25.1 Frequently used plasticizers \u003cbr\u003e11.25.2 Practical concentrations \u003cbr\u003e11.25.3 Main functions performed by plasticizers \u003cbr\u003e11.26 Poly(butyl methacrylate) \u003cbr\u003e11.26.1 Frequently used plasticizers \u003cbr\u003e11.26.2 Practical concentrations \u003cbr\u003e11.26.3 Main functions performed by plasticizers \u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.27.1 Frequently used plasticizers \u003cbr\u003e11.27.2 Practical concentrations \u003cbr\u003e11.27.3 Main functions performed by plasticizers \u003cbr\u003e11.27.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.28.1 Frequently used plasticizers \u003cbr\u003e11.28.2 Practical concentrations \u003cbr\u003e11.28.3 Main functions performed by plasticizers \u003cbr\u003e11.28.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.28.5 Typical formulations \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.31.1 Frequently used plasticizers \u003cbr\u003e11.31.2 Practical concentrations \u003cbr\u003e11.31.3 Main functions performed by plasticizers \u003cbr\u003e11.31.4 Mechanism of plasticizer action \u003cbr\u003e11.31.5 Typical formulations \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.32.1 Frequently used plasticizers \u003cbr\u003e11.32.2 Practical concentrations \u003cbr\u003e11.32.3 Main functions performed by plasticizers \u003cbr\u003e11.32.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.33.1 Frequently used plasticizers \u003cbr\u003e11.33.2 Practical concentrations \u003cbr\u003e11.33.3 Main functions performed by plasticizers \u003cbr\u003e11.34 Polyisobutylene \u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.35.1 Frequently used plasticizers \u003cbr\u003e11.35.2 Practical concentrations \u003cbr\u003e11.35.3 Main functions performed by plasticizers \u003cbr\u003e11.35.4 Typical formulations \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.36.1 Frequently used plasticizers \u003cbr\u003e11.36.2 Practical concentrations \u003cbr\u003e11.36.3 Main functions performed by plasticizers \u003cbr\u003e11.36.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.37 Polylactide \u003cbr\u003e11.37.1 Frequently used plasticizers \u003cbr\u003e11.37.2 Practical concentrations \u003cbr\u003e11.37.3 Main functions performed by plasticizers \u003cbr\u003e11.37.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.38.1 Frequently used plasticizers \u003cbr\u003e11.38.2 Practical concentrations \u003cbr\u003e11.38.3 Main functions performed by plasticizers \u003cbr\u003e11.38.4 Mechanism of plasticizer action \u003cbr\u003e11.38.5 Typical formulations \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.39.1 Frequently used plasticizers \u003cbr\u003e11.39.2 Practical concentrations \u003cbr\u003e11.39.3 Main functions performed by plasticizers \u003cbr\u003e11.39.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.40.1 Frequently used plasticizers \u003cbr\u003e11.40.2 Practical concentrations \u003cbr\u003e11.40.3 Main functions performed by plasticizers \u003cbr\u003e11.40.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.42.1 Frequently used plasticizers \u003cbr\u003e11.42.2 Practical concentrations \u003cbr\u003e11.42.3 Main functions performed by plasticizers \u003cbr\u003e11.42.4 Mechanism of plasticizer action \u003cbr\u003e11.42.5 Typical formulations \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.43.1 Frequently used plasticizers \u003cbr\u003e11.43.2 Practical concentrations \u003cbr\u003e11.43.3 Main functions performed by plasticizers \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.45.1 Frequently used plasticizers \u003cbr\u003e11.45.2 Practical concentrations \u003cbr\u003e11.45.3 Main functions performed by plasticizers \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.46.1 Frequently used plasticizers \u003cbr\u003e11.46.2 Practical concentrations \u003cbr\u003e11.46.3 Main functions performed by plasticizers \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes \u003cbr\u003e11.48.1 Frequently used plasticizers \u003cbr\u003e11.48.2 Practical concentrations \u003cbr\u003e11.48.3 Main functions performed by plasticizers \u003cbr\u003e11.48.4 Mechanism of plasticizers action \u003cbr\u003e11.48.5 Effect of plasticizers on polymers and other additives \u003cbr\u003e11.48.6 Typical formulations \u003cbr\u003e11.49 Polyvinylacetate \u003cbr\u003e11.49.1 Frequently used plasticizers \u003cbr\u003e11.49.2 Practical concentrations \u003cbr\u003e11.49.3 Main functions performed by plasticizers \u003cbr\u003e11.49.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.50.1 Frequently used plasticizers \u003cbr\u003e11.50.2 Practical concentrations \u003cbr\u003e11.50.3 Main functions performed by plasticizers \u003cbr\u003e11.50.4 Mechanism of plasticizer action \u003cbr\u003e11.50.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.50.6 Typical formulations \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.51.1 Frequently used plasticizers \u003cbr\u003e11.51.2 Practical concentrations \u003cbr\u003e11.51.3 Main functions performed by plasticizers \u003cbr\u003e11.51.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.52.1 Frequently used plasticizers \u003cbr\u003e11.52.2 Practical concentrations \u003cbr\u003e11.52.3 Main functions performed by plasticizers \u003cbr\u003e11.52.4 Mechanism of plasticizer action \u003cbr\u003e11.52.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.52.6 Typical formulations \u003cbr\u003e11.53 Polyvinylfluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.54.1 Frequently used plasticizers \u003cbr\u003e11.54.2 Practical concentrations \u003cbr\u003e11.54.3 Main functions performed by plasticizers \u003cbr\u003e11.54.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.56.1 Frequently used plasticizers \u003cbr\u003e11.56.2 Practical concentrations \u003cbr\u003e11.56.3 Main functions performed by plasticizers \u003cbr\u003e11.56.4 Mechanism of plasticizer action \u003cbr\u003e11.56.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.57 Rubber, natural \u003cbr\u003e11.57.1 Frequently used plasticizers \u003cbr\u003e11.57.2 Practical concentrations \u003cbr\u003e11.57.3 Main functions performed by plasticizers \u003cbr\u003e11.57.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.57.5 Typical formulations \u003cbr\u003e11.58 Silicone \u003cbr\u003e11.58.1 Frequently used plasticizers \u003cbr\u003e11.58.2 Practical concentrations \u003cbr\u003e11.58.3 Main functions performed by plasticizers \u003cbr\u003e11.58.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.58.5 Typical formulations \u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.59.1 Frequently used plasticizers \u003cbr\u003e11.59.2 Practical concentrations \u003cbr\u003e11.59.3 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.59.4 Typical formulations \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.60.1 Frequently used plasticizers \u003cbr\u003e11.60.2 Practical concentrations \u003cbr\u003e11.60.3 Main functions performed by plasticizers \u003cbr\u003e11.60.4 Effect of plasticizer on polymer and other additives \u003cbr\u003e11.61 Starch \u003cbr\u003e11.61.1 Frequently used plasticizers \u003cbr\u003e11.61.2 Practical concentrations \u003cbr\u003e11.61.3 Main functions performed by plasticizers \u003cbr\u003e11.61.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.61.5 Typical formulations\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.1.1 Plasticizer types \u003cbr\u003e13.1.2 Plasticizer concentration \u003cbr\u003e13.1.3 Reasons for plasticizer use \u003cbr\u003e13.1.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.1.5 Effect of plasticizers on product properties \u003cbr\u003e13.1.6 Examples of formulations \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive \u003cbr\u003e13.4.1 Plasticizer types \u003cbr\u003e13.4.2 Plasticizer concentration \u003cbr\u003e13.4.3 Reasons for plasticizer use \u003cbr\u003e13.4.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.4.5 Effect of plasticizers on product properties \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.5.1 Plasticizer types \u003cbr\u003e13.5.2 Plasticizer concentration \u003cbr\u003e13.5.3 Reasons for plasticizer use \u003cbr\u003e13.5.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.5.5 Effect of plasticizers on product properties \u003cbr\u003e13.5.6 Examples of formulations \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.6.1 Plasticizer types \u003cbr\u003e13.6.2 Plasticizer concentration \u003cbr\u003e13.6.3 Reasons for plasticizer use \u003cbr\u003e13.6.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.6.5 Effect of plasticizers on product properties \u003cbr\u003e13.6.6 Examples of formulations \u003cbr\u003e13.7 Composites \u003cbr\u003e13.7.1 Plasticizer types \u003cbr\u003e13.7.2 Plasticizer concentrations \u003cbr\u003e13.7.3 Reasons for addition \u003cbr\u003e13.7.4 Effect of plasticizers on product properties \u003cbr\u003e13.8 Cosmetics \u003cbr\u003e13.8.1 Plasticizer types \u003cbr\u003e13.8.2 Plasticizer concentration \u003cbr\u003e13.8.3 Reasons for plasticizer use \u003cbr\u003e13.8.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.8.5 Effect of plasticizers on product properties \u003cbr\u003e13.8.6 Examples of formulations \u003cbr\u003e13.9 Cultural heritage \u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.10.1 Plasticizer types \u003cbr\u003e13.10.2 Plasticizer concentration \u003cbr\u003e13.10.3 Reasons for plasticizer use \u003cbr\u003e13.10.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.11.1 Plasticizer types \u003cbr\u003e13.11.2 Plasticizer concentration \u003cbr\u003e13.11.3 Reasons for plasticizer use \u003cbr\u003e13.11.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.11.5 Effect of plasticizers on product properties \u003cbr\u003e13.12 Fibers \u003cbr\u003e13.12.1 Plasticizer types \u003cbr\u003e13.12.2 Plasticizer concentration \u003cbr\u003e13.12.3 Reasons for plasticizer use \u003cbr\u003e13.12.4 Effect of plasticizers on product properties \u003cbr\u003e13.13 Film \u003cbr\u003e13.13.1 Plasticizer types \u003cbr\u003e13.13.2 Plasticizer concentration \u003cbr\u003e13.13.3 Reasons for plasticizer use \u003cbr\u003e13.13.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.13.5 Effect of plasticizers on product properties \u003cbr\u003e13.14 Food \u003cbr\u003e13.14.1 Plasticizer types \u003cbr\u003e13.14.2 Plasticizer concentration \u003cbr\u003e13.14.3 Reasons for plasticizer use \u003cbr\u003e13.14.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.14.5 Effect of plasticizers on product properties \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.15.1 Plasticizer types \u003cbr\u003e13.15.2 Plasticizer concentration \u003cbr\u003e13.15.3 Reasons for plasticizer use \u003cbr\u003e13.15.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.15.5 Effect of plasticizers on product properties \u003cbr\u003e13.15.6 Examples of formulations \u003cbr\u003e13.16 Foams \u003cbr\u003e13.16.1 Plasticizer types \u003cbr\u003e13.16.2 Plasticizer concentration \u003cbr\u003e13.16.3 Reasons for plasticizer use \u003cbr\u003e13.16.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.16.5 Effect of plasticizers on product properties \u003cbr\u003e13.16.6 Examples of formulations \u003cbr\u003e13.17 Footwear \u003cbr\u003e13.17.1 Plasticizer types \u003cbr\u003e13.17.2 Plasticizer concentration \u003cbr\u003e13.17.3 Reasons for plasticizer use \u003cbr\u003e13.17.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.17.5 Example of formulation \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.18.1 Plasticizer types \u003cbr\u003e13.18.2 Plasticizer concentration \u003cbr\u003e13.18.3 Reasons for plasticizer use \u003cbr\u003e13.19 Gaskets \u003cbr\u003e13.19.1 Plasticizer types \u003cbr\u003e13.19.2 Plasticizer concentration \u003cbr\u003e13.19.3 Reasons for plasticizer use \u003cbr\u003e13.19.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.19.5 Examples of formulations \u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.21.1 Plasticizer types \u003cbr\u003e13.21.2 Plasticizer concentration \u003cbr\u003e13.21.3 Reasons for plasticizer use \u003cbr\u003e13.21.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.21.5 Effect of plasticizers on product properties \u003cbr\u003e13.21.6 Examples of formulations \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.22.1 Plasticizer types \u003cbr\u003e13.22.2 Plasticizer concentration \u003cbr\u003e13.22.3 Reasons for plasticizer use \u003cbr\u003e13.22.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.22.5 Effect of plasticizers on product properties \u003cbr\u003e13.22.6 Examples of formulations \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.23.1 Plasticizer types \u003cbr\u003e13.23.2 Plasticizer concentration \u003cbr\u003e13.23.3 Reasons for plasticizer use \u003cbr\u003e13.23.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.24.1 Plasticizer types \u003cbr\u003e13.24.2 Plasticizer concentration \u003cbr\u003e13.24.3 Reasons for plasticizer use \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.25.1 Plasticizer types \u003cbr\u003e13.25.2 Plasticizer concentration \u003cbr\u003e13.25.3 Reasons for plasticizer use \u003cbr\u003e13.25.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.25.5 Effect of plasticizers on product properties \u003cbr\u003e13.25.6 Examples of formulations \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.26.1 Plasticizer types \u003cbr\u003e13.26.2 Plasticizer concentration \u003cbr\u003e13.26.3 Reasons for plasticizer use \u003cbr\u003e13.26.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.26.5 Effect of plasticizers on product properties \u003cbr\u003e13.26.6 Examples of formulations \u003cbr\u003e13.27 Photographic materials \u003cbr\u003e13.27.1 Plasticizer types \u003cbr\u003e13.27.2 Plasticizer concentration \u003cbr\u003e13.27.3 Reasons for plasticizer use \u003cbr\u003e13.27.4 Effect of plasticizers on product properties \u003cbr\u003e13.28 Pipes \u003cbr\u003e13.28.1 Plasticizer types \u003cbr\u003e13.28.2 Plasticizer concentration \u003cbr\u003e13.28.3 Reasons for plasticizer use \u003cbr\u003e13.28.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.28.5 Effect of plasticizers on product properties \u003cbr\u003e13.28.6 Examples of formulations \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.29.1 Plasticizer types \u003cbr\u003e13.29.2 Plasticizer concentration \u003cbr\u003e13.29.3 Reasons for plasticizer use \u003cbr\u003e13.29.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.29.5 Effect of plasticizers on product properties \u003cbr\u003e13.29.6 Examples of formulations \u003cbr\u003e13.30 Tires \u003cbr\u003e13.30.1 Plasticizer types \u003cbr\u003e13.30.2 Plasticizer concentration \u003cbr\u003e13.30.3 Reasons for plasticizer use \u003cbr\u003e13.30.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.30.5 Effect of plasticizers on product properties \u003cbr\u003e13.30.6 Examples of formulations \u003cbr\u003e13.31 Toys \u003cbr\u003e13.31.1 Plasticizer types \u003cbr\u003e13.31.2 Plasticizer concentration \u003cbr\u003e13.31.3 Reasons for plasticizer use \u003cbr\u003e13.31.4 Effect of plasticizers on product properties \u003cbr\u003e13.32 Tubing \u003cbr\u003e13.32.1 Plasticizer types \u003cbr\u003e13.32.2 Plasticizer concentration \u003cbr\u003e13.32.3 Reasons for plasticizer use \u003cbr\u003e13.32.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.32.5 Effect of plasticizers on product properties \u003cbr\u003e13.32.6 Examples of formulations \u003cbr\u003e13.33 Wire and cable \u003cbr\u003e13.33.1 Plasticizer types \u003cbr\u003e13.33.2 Plasticizer concentration \u003cbr\u003e13.33.3 Reasons for plasticizer use \u003cbr\u003e13.33.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.33.5 Effect of plasticizers on product properties \u003cbr\u003e13.33.6 Examples of formulations \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 MATHEMATICAL MODELING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation \u003cbr\u003e16.3 Migration \u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition \u003cbr\u003e16.7 Potential health risk of exposure to DEHP from glove \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e MATERIALS\u003c\/strong\u003e \u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e Søren Thor Larsen \u003cbr\u003e17.1.1 Introduction \u003cbr\u003e17.1.2 Airway allergy \u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers \u003cbr\u003e 17.1.4.1 Epidemiological studies \u003cbr\u003e17.1.4.2 In vivo (animal) studies \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers\u003cbr\u003e : basic biology and human extrapolation \u003cbr\u003e Abigail L Walker and Ruth A Roberts\u003cbr\u003e17.2.1 Introduction \u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression \u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Developing areas of interest in hepatocarcinogenesis \u003cbr\u003e17.2.2.4 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic\u003cbr\u003e hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPAR \u003cbr\u003e17.2.4 Species differences in response to peroxisome proliferators \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.5.1 Challenges in alternative models \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e Janet Y. Uriu-Adams1 and Carl L. Keen\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP \u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal \u003cbr\u003e17.3.4 Concluding comments \u003cbr\u003e17.3.5 Recent findings \u003cbr\u003e17.3.6 Acknowledgments \u003cbr\u003e17.4 Public health implications of phthalates: A review of U.S. actions\u003cbr\u003e to protect those most vulnerable \u003cbr\u003e Stephanie R. Miles-Richardson and Dhara Richardson\u003cbr\u003e17.4.1 Introduction \u003cbr\u003e17.4.2 Implications of the COVID-19 pandemic on phthalate exposure \u003cbr\u003e17.4.3 The U.S. response to phthalate exposure \u003cbr\u003e17.4.3 Some U.S. State-level actions \u003cbr\u003e17.4.4 2008 Consumer Product Safety Improvement Act \u003cbr\u003e17.4.5 Food and Drug Administration (FDA) petition, lawsuit, and final ruling \u003cbr\u003e17.4.6 Preventing Harmful Exposure to Phthalates Act 117th Congress\u003cbr\u003e (2021-2022) \u003cbr\u003e17.4.7 Other U.S. Federal Agencies \u003cbr\u003e17.4.8 Conclusion \u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e Werner Butte\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.3.1 Indoor air \u003cbr\u003e17.5.3.2 House dust \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.4.1 Indoor plasticizers and health \u003cbr\u003e17.5.4.2 Human exposure assessment for plasticizers in the indoor\u003cbr\u003e environment \u003cbr\u003e17.5.4.3 Reference and guideline values of plasticizers to assess indoor\u003cbr\u003e quality \u003cbr\u003e17.5.5 Summary \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e William R. Roy\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment \u003cbr\u003e18.1.2 Levels in the environment \u003cbr\u003e18.2 Plasticizers in water \u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water. \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water \u003cbr\u003e18.2.5 Adsorption from water \u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003e Summary and concluding remarks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 REGULATIONS AND DATA\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect \u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 PERSONAL PROTECTION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education."}
Handbook of Solvents -...
$295.00
{"id":2059094556765,"title":"Handbook of Solvents - 3rd Edition, Volume 1, Properties","handle":"handbook-of-solvents-3rd-edition-volume-1-properties","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-38-3 \u003cbr\u003e\u003cbr\u003ePublished: March 2019\u003cbr\u003ePages 900+x\u003cbr\u003eFigures: 315\u003cbr\u003eTables: 130\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 2 Use, Health \u0026amp; Environment, Databook of Green Solvents, and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003eEach chapter in this volume is focused on a specific aspect of solvent properties which determine its selection, such as effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. The detailed breakdown of the book contents is given in Table of contents.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databooks containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Solvation dynamics: theory and experiments\u003cbr\u003eYogita Silori and Arijit K. De, Indian Institute of Science Education and Research, Knowledge City, India\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e8.2 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Tatyana Rebrova and Alexander Rebrov, Institute for Scintillation Materials, Kharkov, Ukraine\u003cbr\u003e9.3 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski, Boguslaw Pilarski, Augustin Asuero, Anna Michalowska-Kaczmarczyk, Technical University of Cracow, Cracow, Poland and University of Seville Seville, Spain\u003cbr\u003e10 ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS\u003cbr\u003e10.1 Solvent effects on electronic and vibrational spectra\u003cbr\u003eGeorge Wypych\u003cbr\u003e10.2 Dielectric solvent effects on the intensity of light absorption and the radiative rate constant\u003cbr\u003eTai-ichi Shibuya\u003cbr\u003e10.3 Solvatochromic behavior\u003cbr\u003eMalgorzata Wielgus and Wojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e11 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e11.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12 EFFECT OF SOLVENTS ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e12.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfganG Linert, Markus Holzweber, and Roland Schmid, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e12.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia","published_at":"2019-03-18T15:00:01-04:00","created_at":"2019-03-18T14:49:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2019","acids","adsorption","aggregation","aldehydes","amine-amine","amines","amphoterism","binary solutions","book","brain","coating","coefficient","constant","contaminated air","degradation","dielectric","diffusion","dry-cleaning","drying rate","ecotoxicological","environment","equilibrium","esters","ethers","gas chromatography","H-acid-L-acid","Hamiltonian","handbook","Hansen solubility","health","Henry constant","Hildebrand","Hook law","hydrogen","in-door","industrial","ketons","kidneys","L-acids","latex","liquid","liquid-vapor","liver","lungs","mass transfer","nervous system","occupational","p-additives","permeability","phenols","physico-chemical","pollution","recycling","regulations","residual solvents","rheology","solubility","solvent","solvents","spectrometer","technologies","toxic","unborn babies","volatilization","wastes","workers"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":20181960851549,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents - 3rd Edition, Volume 1, Properties","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-64-5","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-38-3.jpg?v=1552935229"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-38-3.jpg?v=1552935229","options":["Title"],"media":[{"alt":null,"id":1423177613405,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-38-3.jpg?v=1552935229"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-927885-38-3.jpg?v=1552935229","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-38-3 \u003cbr\u003e\u003cbr\u003ePublished: March 2019\u003cbr\u003ePages 900+x\u003cbr\u003eFigures: 315\u003cbr\u003eTables: 130\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 2 Use, Health \u0026amp; Environment, Databook of Green Solvents, and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003eEach chapter in this volume is focused on a specific aspect of solvent properties which determine its selection, such as effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. The detailed breakdown of the book contents is given in Table of contents.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databooks containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Solvation dynamics: theory and experiments\u003cbr\u003eYogita Silori and Arijit K. De, Indian Institute of Science Education and Research, Knowledge City, India\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e8.2 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Tatyana Rebrova and Alexander Rebrov, Institute for Scintillation Materials, Kharkov, Ukraine\u003cbr\u003e9.3 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski, Boguslaw Pilarski, Augustin Asuero, Anna Michalowska-Kaczmarczyk, Technical University of Cracow, Cracow, Poland and University of Seville Seville, Spain\u003cbr\u003e10 ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS\u003cbr\u003e10.1 Solvent effects on electronic and vibrational spectra\u003cbr\u003eGeorge Wypych\u003cbr\u003e10.2 Dielectric solvent effects on the intensity of light absorption and the radiative rate constant\u003cbr\u003eTai-ichi Shibuya\u003cbr\u003e10.3 Solvatochromic behavior\u003cbr\u003eMalgorzata Wielgus and Wojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e11 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e11.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12 EFFECT OF SOLVENTS ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e12.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfganG Linert, Markus Holzweber, and Roland Schmid, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e12.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia"}
Handbook of Solvents, ...
$295.00
{"id":11242240516,"title":"Handbook of Solvents, Volume 1, Properties","handle":"978-1895198-64-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA","published_at":"2017-06-22T21:14:44-04:00","created_at":"2017-06-22T21:14:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","acids","adsorption","aggregation","aldehydes","amine-amine","amines","amphoterism","binary solutions","book","brain","coating","coefficient","constant","contaminated air","degradation","dielectric","diffusion","dry-cleaning","drying rate","ecotoxicological","environment","equilibrium","esters","ethers","gas chromatography","H-acid-L-acid","Hamiltonian","handbook","Hansen solubility","health","Henry constant","Hildebrand","Hook law","hydrogen","in-door","industrial","ketons","kidneys","L-acids","latex","liquid","liquid-vapor","liver","lungs","mass transfer","nervous system","occupational","p-additives","permeability","phenols","physico-chemical","pollution","recycling","regulations","residual solvents","rheology","solubility","solvent","solvents","spectrometer","technologies","toxic","unborn babies","volatilization","wastes","workers"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents, Volume 1, Properties","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-64-5","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1895198-64-5.jpg?v=1499472259"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1895198-64-5.jpg?v=1499472259","options":["Title"],"media":[{"alt":null,"id":356342956125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1895198-64-5.jpg?v=1499472259"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1895198-64-5.jpg?v=1499472259","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA"}
High Performance Plast...
$165.00
{"id":11242255364,"title":"High Performance Plastics 2011","handle":"978-1-84735-625-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-625-3 \u003cbr\u003e\u003cbr\u003eAvailable in April\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe event was dedicated to the advances in plastic materials that are tuned to excel even in harsh environments and tough service conditions. Some key driving factors for the continued growth of these materials include:\u003cbr\u003e\u003cbr\u003eOil and gas where the exploitation of hotter and deeper wells has necessitated the transition to new, higher performing plastics\u003cbr\u003eAerospace, a market which has seen the proliferation of lightweight composites to replace traditional materials like metal\u003cbr\u003eMicroelectronics and semiconductor applications where reliability, longevity and ultra-low contamination levels are needed for example in wafer and hard drive handling operations\u003cbr\u003eMembranes for water treatment, biomedical and fuel cell applications\u003cbr\u003ePhotovoltaics where extreme UV durability and inertness are prerequisites\u003cbr\u003eElectrical insulation for defense, aerospace and nuclear related applications\u003cbr\u003eWear resistant and self-lubricating materials for applications from CMP rings to gears and bearings\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis exciting and dynamic area is characterised by differentiation and diversity. The challenge is to create customised materials to meet the demands of today and to be ready for the new emerging applications of tomorrow.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered all aspects from the resins to blends, specialty fillers, stabilisers, compatibilisers and other modifiers.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:30-04:00","created_at":"2017-06-22T21:15:30-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","blends","book","compatibilisers","microelectronics","modifiers","p-additives","p-chemistry","plastics","polymer","resins","semiconductor","specialty fillers","stabilisers"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378491332,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"High Performance Plastics 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-625-3","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-625-3.jpg?v=1499477983"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-625-3.jpg?v=1499477983","options":["Title"],"media":[{"alt":null,"id":356418551901,"position":1,"preview_image":{"aspect_ratio":0.709,"height":499,"width":354,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-625-3.jpg?v=1499477983"},"aspect_ratio":0.709,"height":499,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-625-3.jpg?v=1499477983","width":354}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-625-3 \u003cbr\u003e\u003cbr\u003eAvailable in April\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe event was dedicated to the advances in plastic materials that are tuned to excel even in harsh environments and tough service conditions. Some key driving factors for the continued growth of these materials include:\u003cbr\u003e\u003cbr\u003eOil and gas where the exploitation of hotter and deeper wells has necessitated the transition to new, higher performing plastics\u003cbr\u003eAerospace, a market which has seen the proliferation of lightweight composites to replace traditional materials like metal\u003cbr\u003eMicroelectronics and semiconductor applications where reliability, longevity and ultra-low contamination levels are needed for example in wafer and hard drive handling operations\u003cbr\u003eMembranes for water treatment, biomedical and fuel cell applications\u003cbr\u003ePhotovoltaics where extreme UV durability and inertness are prerequisites\u003cbr\u003eElectrical insulation for defense, aerospace and nuclear related applications\u003cbr\u003eWear resistant and self-lubricating materials for applications from CMP rings to gears and bearings\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis exciting and dynamic area is characterised by differentiation and diversity. The challenge is to create customised materials to meet the demands of today and to be ready for the new emerging applications of tomorrow.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered all aspects from the resins to blends, specialty fillers, stabilisers, compatibilisers and other modifiers.\u003cbr\u003e\u003cbr\u003e"}
Plastic Flame Retardan...
$125.00
{"id":11242222724,"title":"Plastic Flame Retardants: Technology and Current Developments","handle":"978-1-85957-435-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Innes and A. Innes \u003cbr\u003eISBN 978-1-85957-435-5 \u003cbr\u003e\u003cbr\u003epages 148\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics are increasingly being used in applications where flame retardancy properties are critical. For example, in household appliances, car interiors, cable insulation and computer casings. \u003cbr\u003e\u003cbr\u003eThe earliest flame retardants comprised vinegar and alum, which were used on wood and textiles. Today there is a much wider range of chemicals available for compounding into plastics materials. This review sets out to describe the types of flame retardants available, mechanisms of action and uses. \u003cbr\u003e\u003cbr\u003eThere are many new regulations being issued on health, safety, and the environment. These have affected the flame retardant industry and influence the choice of the chemical in many applications. There has been particular concern about the use of brominated chemicals, and this report briefly discusses the environmental benefits versus the possible environmental effects of these materials. \u003cbr\u003e\u003cbr\u003eNew chemicals are being developed to improve the flame retardancy of plastics materials and these are outlined here. One of the most promising new substances is the class of polymer-clay nanocomposites, which can substantially improve performance at low levels of addition. \u003cbr\u003e\u003cbr\u003eThis review provides a clear overview of the state-of-the-art of flame retardancy for plastics. It highlights the new developments and the potential problems with the legislation, together with the benefits to end users of protection from fire hazards. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 What is a Plastic Flame Retardant and What are its Benefits?\u003cbr\u003e1.2 FR Market Overview\u003cbr\u003e1.2.1 Market Drivers\u003cbr\u003e1.2.2 Major FR Application Markets\u003cbr\u003e1.2.3 Fire Safety Standards, Governing and Regulatory Bodies \u003cbr\u003e2 Key Performance Standards\u003cbr\u003e2.1 Flammability Tests\u003cbr\u003e2.2 Smoke Tests \u003cbr\u003e3 Halogen Flame Retardants\u003cbr\u003e3.1 Commodity Halogen Flame Retardant Products\u003cbr\u003e3.2 Speciality Halogen Flame Retardant Products\u003cbr\u003e3.3 Recent Product Improvements\u003cbr\u003e3.4 Synergists\u003cbr\u003e3.5 Environmental Issues \u003cbr\u003e4 Metal Hydrate Flame Retardants\u003cbr\u003e4.1 Commodity Metal Hydrate Flame Retardant Products\u003cbr\u003e4.2 Speciality Metal Hydrate Products\u003cbr\u003e4.3 Metal Hydrate Product Improvements \u003cbr\u003e5 Phosphorus Flame Retardants\u003cbr\u003e5.1 Commodity Phosphorus Containing Flame Retardants\u003cbr\u003e5.2 Speciality Phosphorus Containing Flame Retardants\u003cbr\u003e5.2.1 Intumescent Phosphorus Flame Retardant Systems\u003cbr\u003e5.3 New Phosphorus FR Products and FR Product Improvements\u003cbr\u003e5.3.1 Organic Phosphinates\u003cbr\u003e5.4 Environmental Issues \u003cbr\u003e6 Smoke Suppressants\u003cbr\u003e6.1 Speciality Smoke Suppressants\u003cbr\u003e6.2 Smoke Suppressant Product Improvements\u003cbr\u003e6.3 Environmental Issues \u003cbr\u003e7 Other Flame Retardants and Recent FR Technology Advances\u003cbr\u003e7.1 Other Existing and Potential Flame Retardant Products\u003cbr\u003e7.2 Recent FR Technology Advances\u003cbr\u003e7.2.1 Nanotechnology and Flame Retardancy \u003cbr\u003e8 Conclusion\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJim and Ann Innes are President and Vice-President of Flame Retardants Associates Inc. Founded in 1992, this is a USA based corporation offering consulting services in the field of polymer additives, specialising in flame retardants and smoke suppressants. James Innes has over thirty years of executive and engineering experience in a variety of companies. Ann Innes brings over twenty years of polymer business experience including R\u0026amp;D, sales management, market development, and financial expertise. The company operates on a global basis serving clients in the USA, Europe, and Asia Pacific regions.","published_at":"2017-06-22T21:13:51-04:00","created_at":"2017-06-22T21:13:51-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","book","environmental","fire hazards","fire safety","flame retardants","flammability","halogen","p-additives","phosphinates","plastics","polymer","smoke","suppressants","tests"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378376516,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastic Flame Retardants: Technology and Current Developments","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-435-5.jpg?v=1499952238"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-435-5.jpg?v=1499952238","options":["Title"],"media":[{"alt":null,"id":358532382813,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-435-5.jpg?v=1499952238"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-435-5.jpg?v=1499952238","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Innes and A. Innes \u003cbr\u003eISBN 978-1-85957-435-5 \u003cbr\u003e\u003cbr\u003epages 148\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics are increasingly being used in applications where flame retardancy properties are critical. For example, in household appliances, car interiors, cable insulation and computer casings. \u003cbr\u003e\u003cbr\u003eThe earliest flame retardants comprised vinegar and alum, which were used on wood and textiles. Today there is a much wider range of chemicals available for compounding into plastics materials. This review sets out to describe the types of flame retardants available, mechanisms of action and uses. \u003cbr\u003e\u003cbr\u003eThere are many new regulations being issued on health, safety, and the environment. These have affected the flame retardant industry and influence the choice of the chemical in many applications. There has been particular concern about the use of brominated chemicals, and this report briefly discusses the environmental benefits versus the possible environmental effects of these materials. \u003cbr\u003e\u003cbr\u003eNew chemicals are being developed to improve the flame retardancy of plastics materials and these are outlined here. One of the most promising new substances is the class of polymer-clay nanocomposites, which can substantially improve performance at low levels of addition. \u003cbr\u003e\u003cbr\u003eThis review provides a clear overview of the state-of-the-art of flame retardancy for plastics. It highlights the new developments and the potential problems with the legislation, together with the benefits to end users of protection from fire hazards. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 What is a Plastic Flame Retardant and What are its Benefits?\u003cbr\u003e1.2 FR Market Overview\u003cbr\u003e1.2.1 Market Drivers\u003cbr\u003e1.2.2 Major FR Application Markets\u003cbr\u003e1.2.3 Fire Safety Standards, Governing and Regulatory Bodies \u003cbr\u003e2 Key Performance Standards\u003cbr\u003e2.1 Flammability Tests\u003cbr\u003e2.2 Smoke Tests \u003cbr\u003e3 Halogen Flame Retardants\u003cbr\u003e3.1 Commodity Halogen Flame Retardant Products\u003cbr\u003e3.2 Speciality Halogen Flame Retardant Products\u003cbr\u003e3.3 Recent Product Improvements\u003cbr\u003e3.4 Synergists\u003cbr\u003e3.5 Environmental Issues \u003cbr\u003e4 Metal Hydrate Flame Retardants\u003cbr\u003e4.1 Commodity Metal Hydrate Flame Retardant Products\u003cbr\u003e4.2 Speciality Metal Hydrate Products\u003cbr\u003e4.3 Metal Hydrate Product Improvements \u003cbr\u003e5 Phosphorus Flame Retardants\u003cbr\u003e5.1 Commodity Phosphorus Containing Flame Retardants\u003cbr\u003e5.2 Speciality Phosphorus Containing Flame Retardants\u003cbr\u003e5.2.1 Intumescent Phosphorus Flame Retardant Systems\u003cbr\u003e5.3 New Phosphorus FR Products and FR Product Improvements\u003cbr\u003e5.3.1 Organic Phosphinates\u003cbr\u003e5.4 Environmental Issues \u003cbr\u003e6 Smoke Suppressants\u003cbr\u003e6.1 Speciality Smoke Suppressants\u003cbr\u003e6.2 Smoke Suppressant Product Improvements\u003cbr\u003e6.3 Environmental Issues \u003cbr\u003e7 Other Flame Retardants and Recent FR Technology Advances\u003cbr\u003e7.1 Other Existing and Potential Flame Retardant Products\u003cbr\u003e7.2 Recent FR Technology Advances\u003cbr\u003e7.2.1 Nanotechnology and Flame Retardancy \u003cbr\u003e8 Conclusion\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJim and Ann Innes are President and Vice-President of Flame Retardants Associates Inc. Founded in 1992, this is a USA based corporation offering consulting services in the field of polymer additives, specialising in flame retardants and smoke suppressants. James Innes has over thirty years of executive and engineering experience in a variety of companies. Ann Innes brings over twenty years of polymer business experience including R\u0026amp;D, sales management, market development, and financial expertise. The company operates on a global basis serving clients in the USA, Europe, and Asia Pacific regions."}
Plasticisers: Selectio...
$72.00
{"id":11242257156,"title":"Plasticisers: Selection, Applications and Implications","handle":"978-1-85957-063-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.S. Wilson \u003cbr\u003eISBN 978-1-85957-063-0 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report considers the whole subject of external plasticizers. The following topics are included: function, mechanism and performance criteria, types, selection for application, health and safety issues. The abstract section is also included which contains the most relevant publications.","published_at":"2017-06-22T21:15:35-04:00","created_at":"2017-06-22T21:15:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","acrylics","additives","adipates","alkyl sulphonate esters","automotive","azelates","benzoates","book","cellulose esters","chlorinated paraffins","citrates","criteria","epoxies","esters glycols","external plasticizers. function","health","hydrocarbons","mechanism","p-additives","phosphates","phthalates","plasticizing","polyesters","polyhydric alcohols","polymer","polysulphides","polyurethanes","polyvinyl acetate","polyvinyl butyral","PVC","rubber","safety","sebacates","trimellitates","types"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378498564,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plasticisers: Selection, Applications and Implications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-063-0","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-063-0.jpg?v=1499727801"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-063-0.jpg?v=1499727801","options":["Title"],"media":[{"alt":null,"id":358532612189,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-063-0.jpg?v=1499727801"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-063-0.jpg?v=1499727801","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.S. Wilson \u003cbr\u003eISBN 978-1-85957-063-0 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report considers the whole subject of external plasticizers. The following topics are included: function, mechanism and performance criteria, types, selection for application, health and safety issues. The abstract section is also included which contains the most relevant publications."}
Plasticizer Databook
$285.00
{"id":11242210948,"title":"Plasticizer Databook","handle":"978-1-895198-58-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1-895198-58-4 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cdiv\u003ePages: 626\u003c\/div\u003e\n\u003cdiv\u003eTables: 356\u003c\/div\u003e\n\u003cdiv\u003eHardcover\u003c\/div\u003e\n\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlasticizer Databook contains data on selection of the most important plasticizers in use today. The selection includes 375 generic and commercial plasticizers. The generic plasticizers contain data for the particular chemical compound from numerous sources and these generic plasticizer tables usually contain the most extensive information. The commercial plasticizers include only data given by plasticizer manufacturers. This allows comparison of properties of commercial plasticizers coming from different sources. \u003cbr\u003e\u003cbr\u003ePlasticizer Databook was developed to contain data required in plasticizers application. Attempts were made to include plasticizers used in various sectors of industry to provide information for all users and to help in finding new solutions. Plasticizers included in the book differ from solvents by boiling point, which is above 250oC, but some plasticizers are used as temporary plasticizers or are expected to react with other components of the mixture. These substances will not meet the boiling temperature criterion but will still be included since they play the role of plasticizers. \u003cbr\u003e\u003cbr\u003eThe tables in the book are divided into five general sections: General information, Physical properties, Health \u0026amp; safety, Ecological properties, and Use \u0026amp; performance. Only available fields for particular plasticizer are included in the individual tables.\u003cbr\u003e\u003cbr\u003eIn General Information section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical Formula, Molecular mass, RTECS Number, Chemical Category, Mixture, EC number, Ester Content, Phosphorus Content, Bromine Content, Solids Content, Oxirane Oxygen Content, Paraffinic Content, Naphthenic Content, Moisture Content, Chlorine Content, Bound Acrylonitrile, Sulfur Content, Butadiene Content, Aromatic Carbon, Total Aromatic Content, and Hydroxyl Number.\u003cbr\u003e\u003cbr\u003ePhysical Properties section contains data on State, Odor, Color (Gardner, Saybolt, and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine Value, Refractive indices at different temperatures, Specific gravity at different temperatures, Density at different temperatures, Vapor pressure at different temperatures, Coefficients of Antoine equation, Temperature range of accuracy of Antoine equation, Vapor Density, Volume Resistivity, Acid number, Acidity(acetic acid), Saponification value, pH, Viscosity at different temperatures, Kinematic viscosity at different temperatures, Absolute viscosity at 25C, Surface tension at different temperatures, Solubility in water, and Water solubility.\u003cbr\u003e\u003cbr\u003eHealth \u0026amp; Safety data section contains data on NFPA Classification, Canadian WHMIS Classification, HMIS Personal Protection, OSHA Hazard Class, UN Risk Phrases, US Safety Phrases, UN\/NA Class, DOT Class, ADR\/RIC Class, ICAO\/IATA Class, IMDG Class, Food Approval(s), Autoignition Temperature, Flash Point, Flash Point Method, Explosive LEL, Explosive UEL, TLV - TWA 8h (ACGIH, NIOSH, OSHA), Max Exposure Concentration NIOSH-IDLH, Toxicological Information, acute, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Dermal LD50 (guinea pig), LD50 dermal rat, Inhalation, LC50, (rat, mouse, 4h (mist)), Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, and Mutagenicity. \u003cbr\u003e\u003cbr\u003eEcological Properties section includes Biological Oxygen Demand, Chemical Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Sheepshead minnow, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc and log Kow).\u003cbr\u003e\u003cbr\u003eUse \u0026amp; Performance section contains the following information: Manufacturer, Recommended for Polymers, Recommended for Products, Outstanding Properties, Limiting Oxygen Index, Tensile Strength at different concentrations of plasticizer, Ultimate Elongation at different concentrations of plasticizer, Elastic Elongation, 100% Modulus at different concentrations of plasticizer, Brittle Temperature at different concentrations of plasticizer, Low Temperature Flexibility at different concentrations of plasticizer, Clash-Berg at different concentrations of plasticizer, Shore A Hardness at different concentrations of plasticizer, and Volatility at different concentrations of plasticizer and different temperatures.\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Handbook of Plasticizers because data in the Plasticizer Databook do not repeat information or data included in the Handbook of Plasticizers. \u003cbr\u003e\u003cbr\u003eAuthor\u003cbr\u003e\u003cbr\u003eAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), several databases, 6 scientific papers, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e\u003cbr\u003e2 INFORMATION ON DATA FIELDS\u003cbr\u003e\u003cbr\u003e3 PLASTICIZERS\u003cbr\u003e\u003cbr\u003e3.1 Abietates\u003cbr\u003e\u003cbr\u003e3.2 Adipates\u003cbr\u003e\u003cbr\u003e3.3 Alkyl sulfonates\u003cbr\u003e\u003cbr\u003e3.4 Azelates\u003cbr\u003e\u003cbr\u003e3.5 Benzoates\u003cbr\u003e\u003cbr\u003e3.6 Bioplasticizers\u003cbr\u003e\u003cbr\u003e3.7 Biodegradable plasticizers\u003cbr\u003e\u003cbr\u003e3.8 Chlorinated paraffins\u003cbr\u003e\u003cbr\u003e3.9 Citrates\u003cbr\u003e\u003cbr\u003e3.10 Cyclohexane dicarboxylic acid, diisononyl ester\u003cbr\u003e\u003cbr\u003e3.11 Energetic plasticizers\u003cbr\u003e\u003cbr\u003e3.12 Epoxides\u003cbr\u003e\u003cbr\u003e3.13 Glutarates\u003cbr\u003e\u003cbr\u003e3.14 Glycols\u003cbr\u003e\u003cbr\u003e3.15 Hydrocarbon oils\u003cbr\u003e\u003cbr\u003e3.16 Isobutyrates\u003cbr\u003e\u003cbr\u003e3.17 Maleates\u003cbr\u003e\u003cbr\u003e3.18 Oleates\u003cbr\u003e\u003cbr\u003e3.19 Pentaerythritol derivatives\u003cbr\u003e\u003cbr\u003e3.20 Phosphates\u003cbr\u003e\u003cbr\u003e3.21 Phthalate-free plasticizers\u003cbr\u003e\u003cbr\u003e3.22 Phthalates\u003cbr\u003e\u003cbr\u003e3.23 Polymeric plasticizers\u003cbr\u003e\u003cbr\u003e3.24 Reactive plasticizers\u003cbr\u003e\u003cbr\u003e3.25 Ricinoleates\u003cbr\u003e\u003cbr\u003e3.26 Sebacates\u003cbr\u003e\u003cbr\u003e3.27 Sulfonamides\u003cbr\u003e\u003cbr\u003e3.27 Trimellitates\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), several databases, 6 scientific papers, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.","published_at":"2017-06-22T21:13:10-04:00","created_at":"2017-06-22T21:13:10-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","compounding","ecological properties","health and safety data","p-additives","p-properties","physical properties","plasticizers","polymer"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378332996,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plasticizer Databook","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-58-4","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-58-4.jpg?v=1499952288"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-58-4.jpg?v=1499952288","options":["Title"],"media":[{"alt":null,"id":358532644957,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-58-4.jpg?v=1499952288"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-58-4.jpg?v=1499952288","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1-895198-58-4 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cdiv\u003ePages: 626\u003c\/div\u003e\n\u003cdiv\u003eTables: 356\u003c\/div\u003e\n\u003cdiv\u003eHardcover\u003c\/div\u003e\n\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlasticizer Databook contains data on selection of the most important plasticizers in use today. The selection includes 375 generic and commercial plasticizers. The generic plasticizers contain data for the particular chemical compound from numerous sources and these generic plasticizer tables usually contain the most extensive information. The commercial plasticizers include only data given by plasticizer manufacturers. This allows comparison of properties of commercial plasticizers coming from different sources. \u003cbr\u003e\u003cbr\u003ePlasticizer Databook was developed to contain data required in plasticizers application. Attempts were made to include plasticizers used in various sectors of industry to provide information for all users and to help in finding new solutions. Plasticizers included in the book differ from solvents by boiling point, which is above 250oC, but some plasticizers are used as temporary plasticizers or are expected to react with other components of the mixture. These substances will not meet the boiling temperature criterion but will still be included since they play the role of plasticizers. \u003cbr\u003e\u003cbr\u003eThe tables in the book are divided into five general sections: General information, Physical properties, Health \u0026amp; safety, Ecological properties, and Use \u0026amp; performance. Only available fields for particular plasticizer are included in the individual tables.\u003cbr\u003e\u003cbr\u003eIn General Information section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical Formula, Molecular mass, RTECS Number, Chemical Category, Mixture, EC number, Ester Content, Phosphorus Content, Bromine Content, Solids Content, Oxirane Oxygen Content, Paraffinic Content, Naphthenic Content, Moisture Content, Chlorine Content, Bound Acrylonitrile, Sulfur Content, Butadiene Content, Aromatic Carbon, Total Aromatic Content, and Hydroxyl Number.\u003cbr\u003e\u003cbr\u003ePhysical Properties section contains data on State, Odor, Color (Gardner, Saybolt, and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine Value, Refractive indices at different temperatures, Specific gravity at different temperatures, Density at different temperatures, Vapor pressure at different temperatures, Coefficients of Antoine equation, Temperature range of accuracy of Antoine equation, Vapor Density, Volume Resistivity, Acid number, Acidity(acetic acid), Saponification value, pH, Viscosity at different temperatures, Kinematic viscosity at different temperatures, Absolute viscosity at 25C, Surface tension at different temperatures, Solubility in water, and Water solubility.\u003cbr\u003e\u003cbr\u003eHealth \u0026amp; Safety data section contains data on NFPA Classification, Canadian WHMIS Classification, HMIS Personal Protection, OSHA Hazard Class, UN Risk Phrases, US Safety Phrases, UN\/NA Class, DOT Class, ADR\/RIC Class, ICAO\/IATA Class, IMDG Class, Food Approval(s), Autoignition Temperature, Flash Point, Flash Point Method, Explosive LEL, Explosive UEL, TLV - TWA 8h (ACGIH, NIOSH, OSHA), Max Exposure Concentration NIOSH-IDLH, Toxicological Information, acute, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Dermal LD50 (guinea pig), LD50 dermal rat, Inhalation, LC50, (rat, mouse, 4h (mist)), Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, and Mutagenicity. \u003cbr\u003e\u003cbr\u003eEcological Properties section includes Biological Oxygen Demand, Chemical Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Sheepshead minnow, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc and log Kow).\u003cbr\u003e\u003cbr\u003eUse \u0026amp; Performance section contains the following information: Manufacturer, Recommended for Polymers, Recommended for Products, Outstanding Properties, Limiting Oxygen Index, Tensile Strength at different concentrations of plasticizer, Ultimate Elongation at different concentrations of plasticizer, Elastic Elongation, 100% Modulus at different concentrations of plasticizer, Brittle Temperature at different concentrations of plasticizer, Low Temperature Flexibility at different concentrations of plasticizer, Clash-Berg at different concentrations of plasticizer, Shore A Hardness at different concentrations of plasticizer, and Volatility at different concentrations of plasticizer and different temperatures.\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Handbook of Plasticizers because data in the Plasticizer Databook do not repeat information or data included in the Handbook of Plasticizers. \u003cbr\u003e\u003cbr\u003eAuthor\u003cbr\u003e\u003cbr\u003eAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), several databases, 6 scientific papers, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e\u003cbr\u003e2 INFORMATION ON DATA FIELDS\u003cbr\u003e\u003cbr\u003e3 PLASTICIZERS\u003cbr\u003e\u003cbr\u003e3.1 Abietates\u003cbr\u003e\u003cbr\u003e3.2 Adipates\u003cbr\u003e\u003cbr\u003e3.3 Alkyl sulfonates\u003cbr\u003e\u003cbr\u003e3.4 Azelates\u003cbr\u003e\u003cbr\u003e3.5 Benzoates\u003cbr\u003e\u003cbr\u003e3.6 Bioplasticizers\u003cbr\u003e\u003cbr\u003e3.7 Biodegradable plasticizers\u003cbr\u003e\u003cbr\u003e3.8 Chlorinated paraffins\u003cbr\u003e\u003cbr\u003e3.9 Citrates\u003cbr\u003e\u003cbr\u003e3.10 Cyclohexane dicarboxylic acid, diisononyl ester\u003cbr\u003e\u003cbr\u003e3.11 Energetic plasticizers\u003cbr\u003e\u003cbr\u003e3.12 Epoxides\u003cbr\u003e\u003cbr\u003e3.13 Glutarates\u003cbr\u003e\u003cbr\u003e3.14 Glycols\u003cbr\u003e\u003cbr\u003e3.15 Hydrocarbon oils\u003cbr\u003e\u003cbr\u003e3.16 Isobutyrates\u003cbr\u003e\u003cbr\u003e3.17 Maleates\u003cbr\u003e\u003cbr\u003e3.18 Oleates\u003cbr\u003e\u003cbr\u003e3.19 Pentaerythritol derivatives\u003cbr\u003e\u003cbr\u003e3.20 Phosphates\u003cbr\u003e\u003cbr\u003e3.21 Phthalate-free plasticizers\u003cbr\u003e\u003cbr\u003e3.22 Phthalates\u003cbr\u003e\u003cbr\u003e3.23 Polymeric plasticizers\u003cbr\u003e\u003cbr\u003e3.24 Reactive plasticizers\u003cbr\u003e\u003cbr\u003e3.25 Ricinoleates\u003cbr\u003e\u003cbr\u003e3.26 Sebacates\u003cbr\u003e\u003cbr\u003e3.27 Sulfonamides\u003cbr\u003e\u003cbr\u003e3.27 Trimellitates\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), several databases, 6 scientific papers, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment."}