- Grid List
Filter
Plasticizers Database
$295.00
{"id":11242211268,"title":"Plasticizers Database","handle":"978-1-895198-57-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1-895198-57-7 \u003cbr\u003e\u003cbr\u003eversion 3.0 \u003cbr\u003eNumber of plasticizers: 1475\u003cbr\u003eNumber of data fields: 105\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePlasticizer Database V.3 is a new edition of database last published in 2004. The new edition has the same structure as the previous database but it is completely updated to the present status of plasticizer production. Since 2004, substantial changes occurred in plasticizer market, caused by health and environmental concerns, which were followed by appropriate regulations. These new regulations and new product developments caused changes in plasticizer production and applications.\u003cbr\u003eSince 2004, 498 plasticizers included in the previous edition of Plasticizer Database were discontinued. Over 200 new plasticizers were added. Also, a number of major plasticizer manufacturers changed from 98 to 85, which shows consolidation of plasticizer production and offering.\u003cbr\u003eAll these changes are clearly reflected in the new edition of Plasticizer Database, which is required by both new readers and owners of the previous edition of the database. Plasticizer Database V.3 is the largest database on plasticizers ever published. The information about its contents is given below.\u003cbr\u003eThe plasticizer database was developed to contain data required in plasticizers application. Attempts were made to include a large number of plasticizers used in various sectors of industry to provide information for all users and to help in finding new solutions and formulations. Plasticizers included in the database can be divided into two categories: generic chemical name compounds and commercial plasticizers which are either mixture of several components, industrial grades of the particular compound, polymeric materials, or products having unknown, complex composition. In most cases, plasticizers differ from solvents by boiling point, which is above 250oC, but some plasticizers are used as temporary plasticizers or are expected to react with other components of the mixture. These substances will not meet the boiling temperature criterion but will still be included since they play the role of plasticizers. A large number of the plasticizers and the data fields makes this database the most comprehensive database on plasticizers ever available in any source.\u003c\/p\u003e\n\u003cp\u003eThe plasticizer database is divided into five general sections: General information, Physical properties, Health \u0026amp; safety, Ecological properties, and Use \u0026amp; performance. Information on the selected plasticizer can be accessed by clicking on any of the above tabs. The database has a large number of data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains plasticizer name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003c\/p\u003e\n\u003cp\u003eIn \u003cb\u003eGeneral Information\u003c\/b\u003e section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical Formula, Molecular mass, RTECS Number, Chemical Category, Mixture, EC number, Ester Content, Phosphorus Content, Bromine Content, Solids Content, Oxirane Oxygen Content, Paraffinic Content, Naphthenic Content, Moisture Content, Chlorine Content, Bound Acrylonitrile, Sulfur Content, Butadiene Content, Aromatic Carbon, Total Aromatic Content, and Hydroxyl Number.\u003cbr\u003ePhysical Properties section contains data on State, Odor, Color (Gardner, Saybolt, and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine Value, Refractive indices at different temperatures, Specific gravity at different temperatures, Density at different temperatures, Vapor pressure at different temperatures, Coefficients of Antoine equation, Temperature range of accuracy of Antoine equation, Vapor Density, Volume Resistivity, Acid number, Acidity(acetic acid), Saponification value, pH, Viscosity at different temperatures, Kinematic viscosity at different temperatures, Absolute viscosity at 25C, Surface tension at different temperatures, Solubility in water, and Water solubility.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eHealth \u0026amp; Safety\u003c\/b\u003e data section contains data on NFPA Classification, Canadian WHMIS Classification, HMIS Personal Protection, OSHA Hazard Class, UN Risk Phrases, US Safety Phrases, UN\/NA Class, DOT Class, ADR\/RIC Class, ICAO\/IATA Class, IMDG Class, Food Approval(s), Autoignition Temperature, Flash Point, Flash Point Method, Explosive LEL, Explosive UEL, TLV - TWA 8h (ACGIH, NIOSH, OSHA), Max Exposure Concentration NIOSH-IDLH, Toxicological Information, acute, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Dermal LD50 (guinea pig), LD50 dermal rat, Inhalation, LC50, (rat, mouse, 4h (mist)), Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, and Mutagenicity.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eEcological Properties\u003c\/b\u003e section includes Biological Oxygen Demand, Chemical Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Sheepshead minnow, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc and log Kow).\u003cbr\u003e\u003cb\u003e\u003cbr\u003eUse \u0026amp; Performance\u003c\/b\u003e section contains the following information: Manufacturer, Recommended for Polymers, Recommended for Products, Outstanding Properties, Limiting Oxygen Index, Tensile Strength at different concentrations of plasticizer, Ultimate Elongation at different concentrations of plasticizer, Elastic Elongation, 100% Modulus at different concentrations of plasticizer, Brittle Temperature at different concentrations of plasticizer, Low Temperature Flexibility at different concentrations of plasticizer, Clash-Berg at different concentrations of plasticizer, Shore A Hardness at different concentrations of plasticizer, and Volatility at different concentrations of plasticizer and different temperatures.\u003c\/p\u003e\n\u003cp\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search finds plasticizers by typing the first letter or two of their name which moves list to the location of a searched compound. Plasticizers can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual plasticizers, plasticizers can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of plasticizers for which data exist for the selected property. The plasticizer property can be viewed on the screen and used for evaluation of plasticizer suitability for the chosen task or plasticizer selection for application as well as plasticizer comparison.\u003c\/p\u003e\n\u003cp\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer operating under Windows XP or higher. The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of plasticizers. The database is an excellent companion to the \u003ca href=\"..\/proddetail.php?prod=1-895198-29-1\"\u003e\u003cb\u003eHandbook of Plasticizers\u003c\/b\u003e\u003c\/a\u003e because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.","published_at":"2017-06-22T21:13:11-04:00","created_at":"2017-06-22T21:13:11-04:00","vendor":"Chemtec Publishing","type":"CD","tags":["2012","abbreviations","absorption","acceptor","acid number","acidity","additives","alectrical conductivity","Antoine equation","autoignition","boiling point","cd","CD-ROM","coefficients","color","combustion","conductivity","density","dissociation","Donor","dor","DOT","EINECS","environment","EPA","ester","explosive","fire","flammability","flash","formula","freezing","Gardner","gravity","Hansen","health","Henry's law","Hildebrand","HMIS","hydroxyl number","iodine value","IUPAC","LEL","melting","moisture","molecular mass","NFPA","OSHA","p-additives","p-properties","pH","phosphorus","pKa","plasticizers","Platinum-cobalt","polarity","polymer","pour","protection","reactivity","refractive","risk phrases","RTECS Number","safety","saponification","solubility","surface","synonyms","tension","UEL","UN","UV","vapor","vaporization","viscosity","volatility","WHMIS"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378334852,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plasticizers Database","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-57-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086","options":["Title"],"media":[{"alt":null,"id":409013289053,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1-895198-57-7 \u003cbr\u003e\u003cbr\u003eversion 3.0 \u003cbr\u003eNumber of plasticizers: 1475\u003cbr\u003eNumber of data fields: 105\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePlasticizer Database V.3 is a new edition of database last published in 2004. The new edition has the same structure as the previous database but it is completely updated to the present status of plasticizer production. Since 2004, substantial changes occurred in plasticizer market, caused by health and environmental concerns, which were followed by appropriate regulations. These new regulations and new product developments caused changes in plasticizer production and applications.\u003cbr\u003eSince 2004, 498 plasticizers included in the previous edition of Plasticizer Database were discontinued. Over 200 new plasticizers were added. Also, a number of major plasticizer manufacturers changed from 98 to 85, which shows consolidation of plasticizer production and offering.\u003cbr\u003eAll these changes are clearly reflected in the new edition of Plasticizer Database, which is required by both new readers and owners of the previous edition of the database. Plasticizer Database V.3 is the largest database on plasticizers ever published. The information about its contents is given below.\u003cbr\u003eThe plasticizer database was developed to contain data required in plasticizers application. Attempts were made to include a large number of plasticizers used in various sectors of industry to provide information for all users and to help in finding new solutions and formulations. Plasticizers included in the database can be divided into two categories: generic chemical name compounds and commercial plasticizers which are either mixture of several components, industrial grades of the particular compound, polymeric materials, or products having unknown, complex composition. In most cases, plasticizers differ from solvents by boiling point, which is above 250oC, but some plasticizers are used as temporary plasticizers or are expected to react with other components of the mixture. These substances will not meet the boiling temperature criterion but will still be included since they play the role of plasticizers. A large number of the plasticizers and the data fields makes this database the most comprehensive database on plasticizers ever available in any source.\u003c\/p\u003e\n\u003cp\u003eThe plasticizer database is divided into five general sections: General information, Physical properties, Health \u0026amp; safety, Ecological properties, and Use \u0026amp; performance. Information on the selected plasticizer can be accessed by clicking on any of the above tabs. The database has a large number of data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains plasticizer name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003c\/p\u003e\n\u003cp\u003eIn \u003cb\u003eGeneral Information\u003c\/b\u003e section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical Formula, Molecular mass, RTECS Number, Chemical Category, Mixture, EC number, Ester Content, Phosphorus Content, Bromine Content, Solids Content, Oxirane Oxygen Content, Paraffinic Content, Naphthenic Content, Moisture Content, Chlorine Content, Bound Acrylonitrile, Sulfur Content, Butadiene Content, Aromatic Carbon, Total Aromatic Content, and Hydroxyl Number.\u003cbr\u003ePhysical Properties section contains data on State, Odor, Color (Gardner, Saybolt, and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine Value, Refractive indices at different temperatures, Specific gravity at different temperatures, Density at different temperatures, Vapor pressure at different temperatures, Coefficients of Antoine equation, Temperature range of accuracy of Antoine equation, Vapor Density, Volume Resistivity, Acid number, Acidity(acetic acid), Saponification value, pH, Viscosity at different temperatures, Kinematic viscosity at different temperatures, Absolute viscosity at 25C, Surface tension at different temperatures, Solubility in water, and Water solubility.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eHealth \u0026amp; Safety\u003c\/b\u003e data section contains data on NFPA Classification, Canadian WHMIS Classification, HMIS Personal Protection, OSHA Hazard Class, UN Risk Phrases, US Safety Phrases, UN\/NA Class, DOT Class, ADR\/RIC Class, ICAO\/IATA Class, IMDG Class, Food Approval(s), Autoignition Temperature, Flash Point, Flash Point Method, Explosive LEL, Explosive UEL, TLV - TWA 8h (ACGIH, NIOSH, OSHA), Max Exposure Concentration NIOSH-IDLH, Toxicological Information, acute, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Dermal LD50 (guinea pig), LD50 dermal rat, Inhalation, LC50, (rat, mouse, 4h (mist)), Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, and Mutagenicity.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eEcological Properties\u003c\/b\u003e section includes Biological Oxygen Demand, Chemical Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Sheepshead minnow, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc and log Kow).\u003cbr\u003e\u003cb\u003e\u003cbr\u003eUse \u0026amp; Performance\u003c\/b\u003e section contains the following information: Manufacturer, Recommended for Polymers, Recommended for Products, Outstanding Properties, Limiting Oxygen Index, Tensile Strength at different concentrations of plasticizer, Ultimate Elongation at different concentrations of plasticizer, Elastic Elongation, 100% Modulus at different concentrations of plasticizer, Brittle Temperature at different concentrations of plasticizer, Low Temperature Flexibility at different concentrations of plasticizer, Clash-Berg at different concentrations of plasticizer, Shore A Hardness at different concentrations of plasticizer, and Volatility at different concentrations of plasticizer and different temperatures.\u003c\/p\u003e\n\u003cp\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search finds plasticizers by typing the first letter or two of their name which moves list to the location of a searched compound. Plasticizers can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual plasticizers, plasticizers can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of plasticizers for which data exist for the selected property. The plasticizer property can be viewed on the screen and used for evaluation of plasticizer suitability for the chosen task or plasticizer selection for application as well as plasticizer comparison.\u003c\/p\u003e\n\u003cp\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer operating under Windows XP or higher. The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of plasticizers. The database is an excellent companion to the \u003ca href=\"..\/proddetail.php?prod=1-895198-29-1\"\u003e\u003cb\u003eHandbook of Plasticizers\u003c\/b\u003e\u003c\/a\u003e because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment."}
Plastics and the Envir...
$165.00
{"id":11242239364,"title":"Plastics and the Environment","handle":"978-1-84735-491-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eleanor Garmson and Frances Gardiner \u003cbr\u003eISBN 978-1-84735-491-4 \u003cbr\u003e\u003cbr\u003ePages: 142, Hard cover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis multi-authored book - from some of the leading researchers and practitioners on this topic - is a distinctive look at how to maximize profitability through environmental compliance in the plastics supply chain, a topic of great and ever-growing interest in the industry.\u003cbr\u003e\u003cbr\u003eThis distinguished assembly of authors from across the global - and from both industry and academia - provides the reader with a distinctive perspective on this topic. Plastics and the Environment provide readers with a look into the environmental issues of plastics products throughout the complete product lifecycle - from material selection to product design to recycling.\u003cbr\u003e\u003cbr\u003eTopics covered include Plastics Materials and Sustainability, Environmental Design for Plastics Products, Energy Efficiency, Plastics, Recycling and Technology, and Life Cycle Assessment.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Developments in Polymer Technology Driven by the Need for Sustainability\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 What Drives Developments Forward?\u003cbr\u003e1.3 How can we save the World?\u003cbr\u003e1.4 Getting the Science Right\u003cbr\u003e1.5 Legislation and Design\u003cbr\u003e1.6 New Materials\u003cbr\u003e1.7 New Processes\u003cbr\u003e1.8 Conclusions\u003cbr\u003e\u003cbr\u003e2 A Medium Voltage Switchgear Mechanism which is Insensitive to its Environment \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Selection of the Most Appropriate Material\u003cbr\u003e2.3 Design of a New Range of Mechanisms\u003cbr\u003e2.4 Environmental Studies\u003cbr\u003e2.5 Material Balance Analysis\u003cbr\u003e2.6 LCA18\u003cbr\u003e2.7 Conclusion.20\u003cbr\u003e\u003cbr\u003e3 From Industrial Polymerisation Wastes to High Valued Material: Interfacial Agents for Polymer Blends and Composites based on Chemically Modified Atactic\u003cbr\u003ePolypropylenes\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Chemical Modification \u003cbr\u003e3.3 Role in Heterogeneous Materials Based on Polymers \u003cbr\u003e3.4 Conclusions and Perspectives \u003cbr\u003e\u003cbr\u003e4 Energy Efficiency Index for Plastic Processing Machines \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Aim and Benefits of the Energy Efficiency Label\u003cbr\u003e4.3 Definition of Energy Efficiency Labels\u003cbr\u003e4.4 Label Development Process\u003cbr\u003e4.4.1 Define the Kind of Label: Which Type of Label do we Need?\u003cbr\u003e4.4.2 Form a Project Team: Who should be Involved in the Label Development Process? Which Steps have to be Done and When?\u003cbr\u003e4.4.3 Definition of the Product Groups: Which Product Groups\/Segments can be Defined and Considered Together?\u003cbr\u003e4.4.4 Definition of Criteria: Which Efficiency Criterion can be used for the Evaluation of the Energy Efficiency?\u003cbr\u003e4.4.5 Developing Measurement Standards: How to Measure the Energy Consumption of the Product?\u003cbr\u003e4.4.6 Calculate the Energy Efficiency Index (EEI) How to Define an EEI?\u003cbr\u003e4.4.7 Classification of Energy Classes: How Can Products be Classified?\u003cbr\u003e4.4.8 Label Design: How the Label is Designed and which Information is Included?\u003cbr\u003e4.4.9 Energy Measurements: How to Provide Data for the Definition of the Measurement Standard and the Definition of the Energy Classes?\u003cbr\u003e4.4.10 Energy Efficiency Improvement: What are Possible Improvement Strategies for a Higher Energy Class?\u003cbr\u003e4.4.11 Label Introduction\u003cbr\u003e4.4.12 Label Monitoring\u003cbr\u003e4.5 Example: Plastic Extrusion Machines\u003cbr\u003e4.5.1 Label Definition and Project Team\u003cbr\u003e4.5.2 Label Development\u003cbr\u003e4.5.3 Energy Efficiency Criteria \u003cbr\u003e4.5.4 Energy Measurement and Measurement Standard\u003cbr\u003e4.5.5 Energy Efficiency Index\u003cbr\u003e4.5.6 Energy Efficiency Classes\u003cbr\u003e4.5.7 Label Design\u003cbr\u003e4.5.8 Market Introduction and Communication\u003cbr\u003e4.6 Product Improvement and Ecodesign\u003cbr\u003e4.7 Summary\u003cbr\u003e\u003cbr\u003e5 Comparative Analysis of the Carbon Footprint of Wood and Plastic Lumber Railway Sleepers in Brazil and Germany \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Waste Management System\u003cbr\u003e5.2.1 Brazil\u003cbr\u003e5.2.2 Germany\u003cbr\u003e5.3 Railway Sleepers Market\u003cbr\u003e5.3.1 Brazil\u003cbr\u003e5.3.2 Germany\u003cbr\u003e5.4 Scope Definition and Life Cycle Inventory (LCI)\u003cbr\u003e5.4.1 Functional Unit\u003cbr\u003e5.4.2 Intended Audience \u003cbr\u003e5.4.3 Product Systems and System Boundaries \u003cbr\u003e5.4.4 Data Collection\u003cbr\u003e5.5 Results \u003cbr\u003e5.5.1 Brazil\u003cbr\u003e5.5.2 Germany\u003cbr\u003e5.5.3 Scenario Analysis\u003cbr\u003e5.5.4 Brazilian Case\u003cbr\u003e5.5.5 German Case\u003cbr\u003e5.6 Discussions and Conclusions \u003cbr\u003e\u003cbr\u003e6 Perfect Sorting Solutions for Packaging Recycling \u003cbr\u003e6.1 Post-consumer Polyethylene Terephthalate Through the Ages \u003cbr\u003e6.2 Bottle Sorting, the First Step in the Recycling Process \u003cbr\u003e6.3 Quality Improvement and Decontamination during the Flake Washing and Sorting Process \u003cbr\u003e6.4 Bottle to Bottle Recycling - The Ecological Alternative \u003cbr\u003e\u003cbr\u003e7 UK Household Plastic Packaging Collection Survey 2009\u003cbr\u003e7.1 UK Household Plastics Packaging Recycling Survey Background\u003cbr\u003e7.2 UK Plastic Packaging Consumption Statistics\u003cbr\u003e7.3 Household Plastic Packaging Recycling Rates in 2008\u003cbr\u003e7.4 Plastic Bottle Collection Infrastructure Summary\u003cbr\u003e7.5 Bring Scheme Performance\u003cbr\u003e7.6 Kerbside Scheme Performance\u003cbr\u003e7.7 Reported Perceptions of Running Plastic Bottle Collections\u003cbr\u003e7.8 Collection of Non Bottle Plastics Packaging for Recycling\u003cbr\u003e7.9 Sale of Material\u003cbr\u003e7.10 Planned Developments\u003cbr\u003e7.10.1 Bring Schemes \u003cbr\u003e7.10.2 Kerbside Schemes \u003cbr\u003e7.11 Development of Non Bottle Plastics Packaging Collections\u003cbr\u003e\u003cbr\u003e8 Vinyl 2010: Experience and Perspectives in Polyvinyl Chloride (PVC) Sustainable Development\u003cbr\u003e8.1 PVC: Strengths and Concerns\u003cbr\u003e8.2 The Vinyl 2010 Initiative\u003cbr\u003e8.2.1 Vinyl 2010: Foundation, Structure, and Organisation\u003cbr\u003e8.2.2 Commitments \u003cbr\u003e8.2.2.1 Manufacturing\u003cbr\u003e8.2.2.2 Plasticisers \u003cbr\u003e8.2.2.3 Stabilisers\u003cbr\u003e8.2.2.4 Waste Management\u003cbr\u003e8.3 Activities and Achievements of Vinyl 2010 \u003cbr\u003e8.3.1 Manufacturing\u003cbr\u003e8.3.2 Stabilisers \u003cbr\u003e8.3.3 Plasticisers\u003cbr\u003e8.3.4 Waste Management\u003cbr\u003e8.3.4.1 Collection and Recycling for Specific Applications \u003cbr\u003e8.3.4.2 Mixed PVC Recycling \u003cbr\u003e8.3.4.3 Recovinyl\u003cbr\u003e8.3.4.4 Mechanical Recycling \u003cbr\u003e8.3.4.5 Feedstock Recycling\u003cbr\u003e8.3.4.6 Energy Recovery\u003cbr\u003e8.3.4.7 PVC Waste Statistics\u003cbr\u003e8.3.4.8 Partnership with Local Authorities\u003cbr\u003e8.3.4.9 Other Partnerships\u003cbr\u003e8.4 Lessons Learnt\u003cbr\u003e8.4.1 Manufacturing\u003cbr\u003e8.4.2 Additives\u003cbr\u003e8.4.3 Waste Management\u003cbr\u003e8.4.4 Recycling Technologies\u003cbr\u003e8.5 Future Challenges \u003cbr\u003e8.6 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","carbon footprint","composites","environment","life cycle assessment","plastic processing machines","plastics","polymer blends","Polyvinyl Chloride (PVC)","recycling"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics and the Environment","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-491-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851","options":["Title"],"media":[{"alt":null,"id":358534905949,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eleanor Garmson and Frances Gardiner \u003cbr\u003eISBN 978-1-84735-491-4 \u003cbr\u003e\u003cbr\u003ePages: 142, Hard cover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis multi-authored book - from some of the leading researchers and practitioners on this topic - is a distinctive look at how to maximize profitability through environmental compliance in the plastics supply chain, a topic of great and ever-growing interest in the industry.\u003cbr\u003e\u003cbr\u003eThis distinguished assembly of authors from across the global - and from both industry and academia - provides the reader with a distinctive perspective on this topic. Plastics and the Environment provide readers with a look into the environmental issues of plastics products throughout the complete product lifecycle - from material selection to product design to recycling.\u003cbr\u003e\u003cbr\u003eTopics covered include Plastics Materials and Sustainability, Environmental Design for Plastics Products, Energy Efficiency, Plastics, Recycling and Technology, and Life Cycle Assessment.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Developments in Polymer Technology Driven by the Need for Sustainability\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 What Drives Developments Forward?\u003cbr\u003e1.3 How can we save the World?\u003cbr\u003e1.4 Getting the Science Right\u003cbr\u003e1.5 Legislation and Design\u003cbr\u003e1.6 New Materials\u003cbr\u003e1.7 New Processes\u003cbr\u003e1.8 Conclusions\u003cbr\u003e\u003cbr\u003e2 A Medium Voltage Switchgear Mechanism which is Insensitive to its Environment \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Selection of the Most Appropriate Material\u003cbr\u003e2.3 Design of a New Range of Mechanisms\u003cbr\u003e2.4 Environmental Studies\u003cbr\u003e2.5 Material Balance Analysis\u003cbr\u003e2.6 LCA18\u003cbr\u003e2.7 Conclusion.20\u003cbr\u003e\u003cbr\u003e3 From Industrial Polymerisation Wastes to High Valued Material: Interfacial Agents for Polymer Blends and Composites based on Chemically Modified Atactic\u003cbr\u003ePolypropylenes\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Chemical Modification \u003cbr\u003e3.3 Role in Heterogeneous Materials Based on Polymers \u003cbr\u003e3.4 Conclusions and Perspectives \u003cbr\u003e\u003cbr\u003e4 Energy Efficiency Index for Plastic Processing Machines \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Aim and Benefits of the Energy Efficiency Label\u003cbr\u003e4.3 Definition of Energy Efficiency Labels\u003cbr\u003e4.4 Label Development Process\u003cbr\u003e4.4.1 Define the Kind of Label: Which Type of Label do we Need?\u003cbr\u003e4.4.2 Form a Project Team: Who should be Involved in the Label Development Process? Which Steps have to be Done and When?\u003cbr\u003e4.4.3 Definition of the Product Groups: Which Product Groups\/Segments can be Defined and Considered Together?\u003cbr\u003e4.4.4 Definition of Criteria: Which Efficiency Criterion can be used for the Evaluation of the Energy Efficiency?\u003cbr\u003e4.4.5 Developing Measurement Standards: How to Measure the Energy Consumption of the Product?\u003cbr\u003e4.4.6 Calculate the Energy Efficiency Index (EEI) How to Define an EEI?\u003cbr\u003e4.4.7 Classification of Energy Classes: How Can Products be Classified?\u003cbr\u003e4.4.8 Label Design: How the Label is Designed and which Information is Included?\u003cbr\u003e4.4.9 Energy Measurements: How to Provide Data for the Definition of the Measurement Standard and the Definition of the Energy Classes?\u003cbr\u003e4.4.10 Energy Efficiency Improvement: What are Possible Improvement Strategies for a Higher Energy Class?\u003cbr\u003e4.4.11 Label Introduction\u003cbr\u003e4.4.12 Label Monitoring\u003cbr\u003e4.5 Example: Plastic Extrusion Machines\u003cbr\u003e4.5.1 Label Definition and Project Team\u003cbr\u003e4.5.2 Label Development\u003cbr\u003e4.5.3 Energy Efficiency Criteria \u003cbr\u003e4.5.4 Energy Measurement and Measurement Standard\u003cbr\u003e4.5.5 Energy Efficiency Index\u003cbr\u003e4.5.6 Energy Efficiency Classes\u003cbr\u003e4.5.7 Label Design\u003cbr\u003e4.5.8 Market Introduction and Communication\u003cbr\u003e4.6 Product Improvement and Ecodesign\u003cbr\u003e4.7 Summary\u003cbr\u003e\u003cbr\u003e5 Comparative Analysis of the Carbon Footprint of Wood and Plastic Lumber Railway Sleepers in Brazil and Germany \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Waste Management System\u003cbr\u003e5.2.1 Brazil\u003cbr\u003e5.2.2 Germany\u003cbr\u003e5.3 Railway Sleepers Market\u003cbr\u003e5.3.1 Brazil\u003cbr\u003e5.3.2 Germany\u003cbr\u003e5.4 Scope Definition and Life Cycle Inventory (LCI)\u003cbr\u003e5.4.1 Functional Unit\u003cbr\u003e5.4.2 Intended Audience \u003cbr\u003e5.4.3 Product Systems and System Boundaries \u003cbr\u003e5.4.4 Data Collection\u003cbr\u003e5.5 Results \u003cbr\u003e5.5.1 Brazil\u003cbr\u003e5.5.2 Germany\u003cbr\u003e5.5.3 Scenario Analysis\u003cbr\u003e5.5.4 Brazilian Case\u003cbr\u003e5.5.5 German Case\u003cbr\u003e5.6 Discussions and Conclusions \u003cbr\u003e\u003cbr\u003e6 Perfect Sorting Solutions for Packaging Recycling \u003cbr\u003e6.1 Post-consumer Polyethylene Terephthalate Through the Ages \u003cbr\u003e6.2 Bottle Sorting, the First Step in the Recycling Process \u003cbr\u003e6.3 Quality Improvement and Decontamination during the Flake Washing and Sorting Process \u003cbr\u003e6.4 Bottle to Bottle Recycling - The Ecological Alternative \u003cbr\u003e\u003cbr\u003e7 UK Household Plastic Packaging Collection Survey 2009\u003cbr\u003e7.1 UK Household Plastics Packaging Recycling Survey Background\u003cbr\u003e7.2 UK Plastic Packaging Consumption Statistics\u003cbr\u003e7.3 Household Plastic Packaging Recycling Rates in 2008\u003cbr\u003e7.4 Plastic Bottle Collection Infrastructure Summary\u003cbr\u003e7.5 Bring Scheme Performance\u003cbr\u003e7.6 Kerbside Scheme Performance\u003cbr\u003e7.7 Reported Perceptions of Running Plastic Bottle Collections\u003cbr\u003e7.8 Collection of Non Bottle Plastics Packaging for Recycling\u003cbr\u003e7.9 Sale of Material\u003cbr\u003e7.10 Planned Developments\u003cbr\u003e7.10.1 Bring Schemes \u003cbr\u003e7.10.2 Kerbside Schemes \u003cbr\u003e7.11 Development of Non Bottle Plastics Packaging Collections\u003cbr\u003e\u003cbr\u003e8 Vinyl 2010: Experience and Perspectives in Polyvinyl Chloride (PVC) Sustainable Development\u003cbr\u003e8.1 PVC: Strengths and Concerns\u003cbr\u003e8.2 The Vinyl 2010 Initiative\u003cbr\u003e8.2.1 Vinyl 2010: Foundation, Structure, and Organisation\u003cbr\u003e8.2.2 Commitments \u003cbr\u003e8.2.2.1 Manufacturing\u003cbr\u003e8.2.2.2 Plasticisers \u003cbr\u003e8.2.2.3 Stabilisers\u003cbr\u003e8.2.2.4 Waste Management\u003cbr\u003e8.3 Activities and Achievements of Vinyl 2010 \u003cbr\u003e8.3.1 Manufacturing\u003cbr\u003e8.3.2 Stabilisers \u003cbr\u003e8.3.3 Plasticisers\u003cbr\u003e8.3.4 Waste Management\u003cbr\u003e8.3.4.1 Collection and Recycling for Specific Applications \u003cbr\u003e8.3.4.2 Mixed PVC Recycling \u003cbr\u003e8.3.4.3 Recovinyl\u003cbr\u003e8.3.4.4 Mechanical Recycling \u003cbr\u003e8.3.4.5 Feedstock Recycling\u003cbr\u003e8.3.4.6 Energy Recovery\u003cbr\u003e8.3.4.7 PVC Waste Statistics\u003cbr\u003e8.3.4.8 Partnership with Local Authorities\u003cbr\u003e8.3.4.9 Other Partnerships\u003cbr\u003e8.4 Lessons Learnt\u003cbr\u003e8.4.1 Manufacturing\u003cbr\u003e8.4.2 Additives\u003cbr\u003e8.4.3 Waste Management\u003cbr\u003e8.4.4 Recycling Technologies\u003cbr\u003e8.5 Future Challenges \u003cbr\u003e8.6 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e"}
Plastics and the Envir...
$72.00
{"id":11242256004,"title":"Plastics and the Environment","handle":"978-1-85957-016-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: I. Boustead \u003cbr\u003eISBN 978-1-85957-016-6 \u003cbr\u003e\u003cbr\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe plastics industry, like most others, was slow to respond to environmental pressures. Partly as a consequence of this it now faces irrational prejudices and demands which may lead to inappropriate decisions in response to undoubtedly real problems. Plastics possess some special characteristics but most of the potential environmental problems and their solutions are common to other materials and industries.\u003cbr\u003e\u003cbr\u003eThis review considers their environmental impact in terms of industrial systems (e.g. eco-profile and life-cycle systems) and looks at energy consumption and recovery, as well as recycling. It is supported by an extensive bibliography compiled from the Polymer Library.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:32-04:00","created_at":"2017-06-22T21:15:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","book","energy consumption","environment","plastic","plastics","recovery","recycling"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378496580,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics and the Environment","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-016-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-016-6.jpg?v=1499725948"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-016-6.jpg?v=1499725948","options":["Title"],"media":[{"alt":null,"id":358535528541,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-016-6.jpg?v=1499725948"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-016-6.jpg?v=1499725948","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: I. Boustead \u003cbr\u003eISBN 978-1-85957-016-6 \u003cbr\u003e\u003cbr\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe plastics industry, like most others, was slow to respond to environmental pressures. Partly as a consequence of this it now faces irrational prejudices and demands which may lead to inappropriate decisions in response to undoubtedly real problems. Plastics possess some special characteristics but most of the potential environmental problems and their solutions are common to other materials and industries.\u003cbr\u003e\u003cbr\u003eThis review considers their environmental impact in terms of industrial systems (e.g. eco-profile and life-cycle systems) and looks at energy consumption and recovery, as well as recycling. It is supported by an extensive bibliography compiled from the Polymer Library.\u003cbr\u003e\u003cbr\u003e"}
Polymers and the REACH...
$126.00
{"id":11242241796,"title":"Polymers and the REACH Legislation","handle":"978-1-84735-086-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Smithers Rapra by Suzanne Wilkinson \u003cbr\u003eISBN 978-1-84735-086-2 \u003cbr\u003e\u003cbr\u003ePublished: 2008\u003cbr\u003eSoft-backed, 297 x 210 mm, 40 pages.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nREACH, the EU regulation for the Registration, Evaluation, Authorisation, and Restriction of Chemicals, entered into force in June 2007. Its central aim is to protect human health and the environment from the risks arising from the use of chemicals. REACH has become one of the most complex and far-reaching pieces of regulation ever to originate from the European Commission. \u003cbr\u003e\u003cbr\u003eWithin the polymer industry, it will affect producers of chemicals or preparations, importers of chemicals or finished products to the EU, producers of finished products and downstream users. Its effects will truly give it global reach, within and beyond the boundaries of Europe! \u003cbr\u003e\u003cbr\u003eRapra Limited, on behalf of its Members, commissioned Smithers Rapra to produce this guide to illustrate to organisations in these industries and sectors how REACH will affect them.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction to REACH \u003cbr\u003e2. REACH Basics \u003cbr\u003e3. The Legal Text \u003cbr\u003e4. Key Milestones \u003cbr\u003e5. Monomers and Polymers \u003cbr\u003e6. Pre-registration, Registration, and Compliance \u003cbr\u003e7. Information Sharing and Confidentiality \u003cbr\u003e8. Financial Implications \u003cbr\u003e9. Glossary, Abbreviations, and Acronyms \u003cbr\u003e10. Other Resources\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:49-04:00","created_at":"2017-06-22T21:14:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","authorisation","book","environment","EU regulations","Europe","health","p-properties","polymer","REACH","restriction of chemicals","risks"],"price":12600,"price_min":12600,"price_max":12600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378442692,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers and the REACH Legislation","public_title":null,"options":["Default Title"],"price":12600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-086-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Smithers Rapra by Suzanne Wilkinson \u003cbr\u003eISBN 978-1-84735-086-2 \u003cbr\u003e\u003cbr\u003ePublished: 2008\u003cbr\u003eSoft-backed, 297 x 210 mm, 40 pages.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nREACH, the EU regulation for the Registration, Evaluation, Authorisation, and Restriction of Chemicals, entered into force in June 2007. Its central aim is to protect human health and the environment from the risks arising from the use of chemicals. REACH has become one of the most complex and far-reaching pieces of regulation ever to originate from the European Commission. \u003cbr\u003e\u003cbr\u003eWithin the polymer industry, it will affect producers of chemicals or preparations, importers of chemicals or finished products to the EU, producers of finished products and downstream users. Its effects will truly give it global reach, within and beyond the boundaries of Europe! \u003cbr\u003e\u003cbr\u003eRapra Limited, on behalf of its Members, commissioned Smithers Rapra to produce this guide to illustrate to organisations in these industries and sectors how REACH will affect them.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction to REACH \u003cbr\u003e2. REACH Basics \u003cbr\u003e3. The Legal Text \u003cbr\u003e4. Key Milestones \u003cbr\u003e5. Monomers and Polymers \u003cbr\u003e6. Pre-registration, Registration, and Compliance \u003cbr\u003e7. Information Sharing and Confidentiality \u003cbr\u003e8. Financial Implications \u003cbr\u003e9. Glossary, Abbreviations, and Acronyms \u003cbr\u003e10. Other Resources\u003cbr\u003e\u003cbr\u003e"}
Polypropylene
$361.00
{"id":11242244036,"title":"Polypropylene","handle":"1-884207-58-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Clive Maier, Teresa Calafut \u003cbr\u003e10-ISBN 1-884207-58-8 \u003cbr\u003e13-\u003cspan\u003eISBN 978-1-884207-58-7\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 425, Figures: 315 , Tables: 115\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolypropylene, The Definitive User's Guide and Databook present in a single volume a panoramic and up-to-the-minute user's guide for today's most important thermoplastic. The book examines every aspect - science, technology, engineering, properties, design, processing, applications - of the continuing development and use of polypropylene. The unique treatment means that specialists can not only find what they want but for the first time can relate to and understand the needs and requirements of others in the product development chain. The entire work is underpinned by very extensive collections of property data that allow the reader to put the information to real industrial and commercial use.\u003cbr\u003eDespite the preeminence and unrivaled versatility of polypropylene as a thermoplastic material to manufacture, relatively few books have been devoted to its study. Polypropylene, The Definitive User's Guide, and Databook not only fills the gap but breaks new ground in doing so. Polypropylene is the most popular thermoplastic in use today, and still one of the fastest growing. Polypropylene, The Definitive User's Guide and Databook is the complete workbook and reference resource for all those who work with the material. Its comprehensive scope uniquely caters to polymer scientists, plastics engineers, processing technologists, product designers, machinery and mold makers, product managers, end users, researchers and students alike.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChemical Properties\u003cbr\u003eMorphology\u003cbr\u003eCommercial Forms\u003cbr\u003eAdditives\u003cbr\u003eData Sheet Properties\u003cbr\u003eDesign\u003cbr\u003eFilms, Sheets, Fibers \u0026amp; Foams\u003cbr\u003e\u003cstrong\u003eExtensive Processing Data On\u003c\/strong\u003e\u003cbr\u003ePre-Processing\u003cbr\u003eInjection Extrusion \u0026amp; Blow Molding\u003cbr\u003eThermoforming\u003cbr\u003eCalendering\u003cbr\u003eCompression\u003cbr\u003eMachining\u003cbr\u003eJoining\u003cbr\u003eDecorating\u003cbr\u003e\u003cstrong\u003eFunctions Including\u003c\/strong\u003e\u003cbr\u003eMechanical, Thermal \u0026amp; Electrical Properties\u003cbr\u003ePermeability\u003cbr\u003eUV Light and Weathering\u003cbr\u003eSterilization\u003cbr\u003eViscosity\u003cbr\u003eChemical Resistance\u003cbr\u003eFlammability\u003cbr\u003eToxicity\u003cbr\u003eAlso Included\u003cbr\u003eEnvironmental Considerations\u003cbr\u003eAgency Approvals\u003cbr\u003eApplications\u003cbr\u003eCommercial Suppliers\u003cbr\u003eAvailable Grades\u003cbr\u003e\u003cstrong\u003eInformation Presented As\u003c\/strong\u003e\u003cbr\u003eTextual\u003cbr\u003eDiscussions\u003cbr\u003eImages\u003cbr\u003eGraphs\u003cbr\u003eTables","published_at":"2017-06-22T21:14:56-04:00","created_at":"2017-06-22T21:14:56-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","additives","blow molding","book","calendering","chemical resistance","compression","decorating","electrical","Environment","extrusion","fibers","films","flammability","foams","injection","joining","mechanical","morphology","moulding","p-chemistry","permeability","polymer","polypropylene","processing","properties","sheets","sterilization","thermal","thermoforming","thermoplastic","toxicity","UV","viscosity","weathering"],"price":36100,"price_min":36100,"price_max":36100,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378446532,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polypropylene","public_title":null,"options":["Default Title"],"price":36100,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-884207-58-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990","options":["Title"],"media":[{"alt":null,"id":358710083677,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Clive Maier, Teresa Calafut \u003cbr\u003e10-ISBN 1-884207-58-8 \u003cbr\u003e13-\u003cspan\u003eISBN 978-1-884207-58-7\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 425, Figures: 315 , Tables: 115\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolypropylene, The Definitive User's Guide and Databook present in a single volume a panoramic and up-to-the-minute user's guide for today's most important thermoplastic. The book examines every aspect - science, technology, engineering, properties, design, processing, applications - of the continuing development and use of polypropylene. The unique treatment means that specialists can not only find what they want but for the first time can relate to and understand the needs and requirements of others in the product development chain. The entire work is underpinned by very extensive collections of property data that allow the reader to put the information to real industrial and commercial use.\u003cbr\u003eDespite the preeminence and unrivaled versatility of polypropylene as a thermoplastic material to manufacture, relatively few books have been devoted to its study. Polypropylene, The Definitive User's Guide, and Databook not only fills the gap but breaks new ground in doing so. Polypropylene is the most popular thermoplastic in use today, and still one of the fastest growing. Polypropylene, The Definitive User's Guide and Databook is the complete workbook and reference resource for all those who work with the material. Its comprehensive scope uniquely caters to polymer scientists, plastics engineers, processing technologists, product designers, machinery and mold makers, product managers, end users, researchers and students alike.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChemical Properties\u003cbr\u003eMorphology\u003cbr\u003eCommercial Forms\u003cbr\u003eAdditives\u003cbr\u003eData Sheet Properties\u003cbr\u003eDesign\u003cbr\u003eFilms, Sheets, Fibers \u0026amp; Foams\u003cbr\u003e\u003cstrong\u003eExtensive Processing Data On\u003c\/strong\u003e\u003cbr\u003ePre-Processing\u003cbr\u003eInjection Extrusion \u0026amp; Blow Molding\u003cbr\u003eThermoforming\u003cbr\u003eCalendering\u003cbr\u003eCompression\u003cbr\u003eMachining\u003cbr\u003eJoining\u003cbr\u003eDecorating\u003cbr\u003e\u003cstrong\u003eFunctions Including\u003c\/strong\u003e\u003cbr\u003eMechanical, Thermal \u0026amp; Electrical Properties\u003cbr\u003ePermeability\u003cbr\u003eUV Light and Weathering\u003cbr\u003eSterilization\u003cbr\u003eViscosity\u003cbr\u003eChemical Resistance\u003cbr\u003eFlammability\u003cbr\u003eToxicity\u003cbr\u003eAlso Included\u003cbr\u003eEnvironmental Considerations\u003cbr\u003eAgency Approvals\u003cbr\u003eApplications\u003cbr\u003eCommercial Suppliers\u003cbr\u003eAvailable Grades\u003cbr\u003e\u003cstrong\u003eInformation Presented As\u003c\/strong\u003e\u003cbr\u003eTextual\u003cbr\u003eDiscussions\u003cbr\u003eImages\u003cbr\u003eGraphs\u003cbr\u003eTables"}
Practical Guide to Che...
$180.00
{"id":11242214724,"title":"Practical Guide to Chemical Safety Testing","handle":"978-1-85957-372-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.J. Knight and M.B. Thomas \u003cbr\u003eISBN 978-1-85957-372-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are many different chemicals and materials in use today. These are subject to stringent regulations, which include a requirement for physicochemical and toxicity testing. In some countries, existing chemicals are also undergoing safety checks. The aim is to determine their hazardous properties and the risks involved in using substances. \u003cbr\u003e\u003cbr\u003eHealth and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R\u0026amp;D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required. \u003cbr\u003e\u003cbr\u003eA Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results. \u003cbr\u003e\u003cbr\u003eThere is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment. \u003cbr\u003e\u003cbr\u003eEcotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals. \u003cbr\u003e\u003cbr\u003eRegulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers. \u003cbr\u003e\u003cbr\u003eThis book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Purpose of the Book\u003cbr\u003e1.2 Purpose of Safety Evaluation\u003cbr\u003e1.3 Safety Studies\u003cbr\u003e1.4 Risk Assessment and Safety Data\u003cbr\u003e1.5 Regulatory Schemes\u003cbr\u003e1.6 Summary \u003cbr\u003e2 Mammalian Toxicology\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Acute Toxicity Studies\u003cbr\u003e2.2.1 Nature and Relevance of Tests\u003cbr\u003e2.2.2 Methodology\u003cbr\u003e2.2.3 Acute Oral Toxicity Studies\u003cbr\u003e2.2.4 Dermal Toxicity Studies\u003cbr\u003e2.2.5 Inhalation Toxicity Studies\u003cbr\u003e2.2.6 Alternative Acute Oral Toxicity Methods\u003cbr\u003e2.2.7 Local Tolerance Tests\u003cbr\u003e2.2.8 Contact Sensitisation\u003cbr\u003e2.3 Repeated Dose Toxicity Studies\u003cbr\u003e2.3.1 Nature and Relevance of Tests\u003cbr\u003e2.3.2 Importance of Repeated Dose Toxicity\u003cbr\u003e2.3.3 Methodology\u003cbr\u003e2.4 Reproduction Toxicology\u003cbr\u003e2.4.1 Nature and Relevance of Tests\u003cbr\u003e2.4.2 Methodology\u003cbr\u003e2.4.3 Alternative Approaches\u003cbr\u003e2.5 Carcinogenicity\u003cbr\u003e2.5.1 Nature and Relevance of Tests\u003cbr\u003e2.5.2 Methodology\u003cbr\u003e2.5.3 Dose Levels\u003cbr\u003e2.5.4 Conduct of Study\u003cbr\u003e2.5.5 Data Evaluation\u003cbr\u003e2.5.6 Risk Assessment\u003cbr\u003e2.5.7 Alternative Approaches\u003cbr\u003e2.6 Medical Device Testing\u003cbr\u003e2.6.1 Exposure Routes\u003cbr\u003e2.6.2 Dose Preparation\u003cbr\u003e2.6.3 Cytotoxicity Testing of Medical Devices \u003cbr\u003e3 Genetic Toxicology\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Mechanisms of Mutation – Genes and Chromosomes\u003cbr\u003e3.3 Standard Genetic Toxicology Assays\u003cbr\u003e3.4 Bacterial Mutagenicity Assays\u003cbr\u003e3.5 Chromosome Aberration Tests In Vitro\u003cbr\u003e3.6 Mammalian Cell Gene Mutation Assays In Vitro\u003cbr\u003e3.7 The In Vivo Micronucleus Test\u003cbr\u003e3.8 The Unscheduled DNA Synthesis Assay\u003cbr\u003e3.9 Conclusions \u003cbr\u003e4 Ecotoxicology\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Bacterial Toxicity Testing\u003cbr\u003e4.3 Biodegradation Tests\u003cbr\u003e4.3.1 Ready Biodegradation Tests\u003cbr\u003e4.3.2 Inherent Biodegradation Tests\u003cbr\u003e4.3.3 Simulation Tests\u003cbr\u003e4.3.4 Anaerobic Biodegradation Tests\u003cbr\u003e4.4 Aquatic Toxicity Testing\u003cbr\u003e4.4.1 Acute Tests\u003cbr\u003e4.4.2 Analytical Measurements\u003cbr\u003e4.4.3 Difficult Substances\u003cbr\u003e4.4.4 Chronic Tests\u003cbr\u003e4.5 Fish Bioaccumulation Test\u003cbr\u003e4.6 Sediment Toxicity Tests\u003cbr\u003e4.7 Terrestrial Toxicity Tests\u003cbr\u003e4.7.1 Earthworms\u003cbr\u003e4.7.2 Bees and Beneficial\u003cbr\u003e4.7.3 Plant Growth Tests\u003cbr\u003e4.8 Microcosm and Mesocosm Studies\u003cbr\u003e4.9 Conclusion \u003cbr\u003e5 Physico-Chemical Properties\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Performance of the General Physico-Chemical Tests\u003cbr\u003e5.2.1 Melting Temperature\/Melting Range (OECD Test Guideline 102)\u003cbr\u003e5.2.2 Boiling Point (OECD Test Guideline 103)\u003cbr\u003e5.2.3 Vapour Pressure (OECD Test Guideline 104)\u003cbr\u003e5.2.4 Water Solubility (OECD Test Guideline 105)\u003cbr\u003e5.2.5 Partition Coefficient (OECD Test Guidelines and 117)\u003cbr\u003e5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)\u003cbr\u003e5.2.7 Density\/Relative Density (OECD Test Guideline 109)\u003cbr\u003e5.2.8 Particle Size Distribution (OECD Test Guideline 110)\u003cbr\u003e5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)\u003cbr\u003e5.2.10 Dissociation Constant (OECD Test Guideline 112)\u003cbr\u003e5.2.11 Surface Tension (OECD Test Guideline 115)\u003cbr\u003e5.2.12 Fat Solubility (OECD Test Guideline 116)\u003cbr\u003e5.3 Performance of the Polymer Specific Physico-Chemical Tests\u003cbr\u003e5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)\u003cbr\u003e5.3.2 Solution\/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)\u003cbr\u003e5.4 Performance of the Hazardous Physico-Chemical Tests\u003cbr\u003e5.4.1 Flash Point (EC Method A9)\u003cbr\u003e5.4.2 Flammable Solids (EC Method A10)\u003cbr\u003e5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)\u003cbr\u003e5.4.4 Explosive Properties (EC Method A14)\u003cbr\u003e5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)\u003cbr\u003e5.4.6 Oxidising Properties (EC Method A17)\u003cbr\u003e5.5 Order in which Physico-Chemical Tests are Performed\u003cbr\u003e5.6 Conclusion \u003cbr\u003e6 Alternatives to Animal Testing for Safety Evaluation\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Validation of Alternative Methods\u003cbr\u003e6.3 Aspects of Human Toxicity Targeted By In Vitro Assays\u003cbr\u003e6.3.1 Systemic Toxicological Properties\u003cbr\u003e6.3.2 Validated Tests Currently in Use in the EU\u003cbr\u003e6.4 Structure-Activity Relationships and Prediction of Properties\u003cbr\u003e6.5 Strategies to Minimise Use of Animals\u003cbr\u003e6.6 Future Developments and Conclusions \u003cbr\u003e7 Toxicological Assessment within a Risk Assessment Framework\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Definitions and Concepts\u003cbr\u003e7.2.1 Risk\u003cbr\u003e7.2.2 Toxicology\u003cbr\u003e7.3 Exposure Scenarios\u003cbr\u003e7.3.1 Routes of Administration\u003cbr\u003e7.3.2 Exposure Prediction\u003cbr\u003e7.4 Judgements\u003cbr\u003e7.4.1 The ‘Precautionary Principle’\u003cbr\u003e7.4.2 What Test and When?\u003cbr\u003e7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes\u003cbr\u003e7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity\u003cbr\u003e7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity\u003cbr\u003e7.5 Risk Management\u003cbr\u003e7.6 Final Word \u003cbr\u003e8 Environmental Risk Assessment\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Exposure Assessment\u003cbr\u003e8.2.1 Identification of the Target Compartments\u003cbr\u003e8.2.2 Estimation of Emissions or Releases\u003cbr\u003e8.2.3 Distribution and Degradation in the Environment (Environmental Fate)\u003cbr\u003e8.2.4 Predicted Environmental Concentrations\u003cbr\u003e8.3 Effects Assessment\u003cbr\u003e8.3.1 Estimating PNECs by Applying Uncertainty Factors\u003cbr\u003e8.3.2 The Statistical Extrapolation Method\u003cbr\u003e8.4 Risk Characterisation\u003cbr\u003e8.5 Conclusion \u003cbr\u003ePART 2: REGULATORY FRAMEWORK \u003cbr\u003e9 EU Chemical Legislation\u003cbr\u003e9.1 EU Legislation within the European Economic Area and Europe\u003cbr\u003e9.2 Notification of New Substances\u003cbr\u003e9.2.1 History of the Notification Process\u003cbr\u003e9.2.2 Data Sharing\u003cbr\u003e9.2.3 Base Set Studies for Full Notification\u003cbr\u003e9.2.4 Reduced Notification Studies\u003cbr\u003e9.2.5 Level 1 and Level 2 Notification Studies\u003cbr\u003e9.2.6 The Notification Summary Form\u003cbr\u003e9.2.7 The Sole-Representative Facility\u003cbr\u003e9.2.8 Polymers\u003cbr\u003e9.2.9 Derogations\/Exemptions from Notification\u003cbr\u003e9.2.10 Confidentiality\u003cbr\u003e9.3 Risk Assessment\u003cbr\u003e9.3.1 Human Health Risk Assessment\u003cbr\u003e9.3.2 Environment Risk Assessment\u003cbr\u003e9.4 Existing Chemicals Regulation\u003cbr\u003e9.4.1 Data Collection\u003cbr\u003e9.4.2 Priority Setting\u003cbr\u003e9.4.3 Risk Assessment\u003cbr\u003e9.5 Chemical Hazard Communication\u003cbr\u003e9.5.1 Classification and Labelling of Dangerous Substances\u003cbr\u003e9.5.2 Classification and Labelling of Dangerous Preparations\u003cbr\u003e9.5.3 Safety Data Sheets\u003cbr\u003e9.6 Transport Regulations\u003cbr\u003e9.6.1 Introduction\u003cbr\u003e9.6.2 The United Nations Transportation Classification Scheme\u003cbr\u003e9.6.3 Transport of Marine Pollutants\u003cbr\u003e9.7 National Chemical Control Measures\u003cbr\u003e9.7.1 National Product Registers\u003cbr\u003e9.7.2 German Water Hazard Classification Scheme\u003cbr\u003e9.8 Other EU Legislation for Specific Product Types\u003cbr\u003e9.8.1 Control of Cosmetics in the EU\u003cbr\u003e9.8.2 Detergents\u003cbr\u003e9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic\u003cbr\u003e9.9 Summary and Future Developments \u003cbr\u003e10 Chemical Control in Japan\u003cbr\u003e10.1 Introduction to the Japanese Regulatory Culture\u003cbr\u003e10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law\u003cbr\u003e10.2.1 Introduction\u003cbr\u003e10.2.2 The Inventory of Existing Substances\u003cbr\u003e10.2.3 Exemptions from Notification\u003cbr\u003e10.2.4 Standard Notification\u003cbr\u003e10.2.5 Polymer Notification\u003cbr\u003e10.2.6 Class I and II Specified and Designated Substances\u003cbr\u003e10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law\u003cbr\u003e10.4 Hazard Communication and Product Liability\u003cbr\u003e10.5 Other Chemical Legislation\u003cbr\u003e10.6 Summary \u003cbr\u003e11 Chemical Control in the US and the Rest of the World\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)\u003cbr\u003e11.2.1 Key Objectives of TSCA\u003cbr\u003e11.2.2 The TSCA Inventory\u003cbr\u003e11.2.3 Testing of Existing Substances\u003cbr\u003e11.2.4 Manufacturing and Processing Notices\u003cbr\u003e11.2.5 PMN Requirements\u003cbr\u003e11.2.6 Significant New Use Rules (SNURs)\u003cbr\u003e11.2.7 Exemptions from PMN\u003cbr\u003e11.3 US Occupational Safety and Health Act (OSHA)\u003cbr\u003e11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals\u003cbr\u003e11.4.1 Voluntary Challenge Programme\u003cbr\u003e11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals\u003cbr\u003e11.4.3 US Voluntary Children’s Chemical Evaluation Program\u003cbr\u003e11.5 Chemical Control Legislation in Canada\u003cbr\u003e11.5.1 The Canadian Environmental Protection Act\u003cbr\u003e11.5.2 Inventories\u003cbr\u003e11.5.3 Environmental Assessment Regulations\u003cbr\u003e11.5.4 Data Requirements for Notification\u003cbr\u003e11.5.5 Significant New Activity Notice\u003cbr\u003e11.5.6 Administration\u003cbr\u003e11.5.7 Inspection, Enforcement and Penalties\u003cbr\u003e11.5.8 Future Changes\u003cbr\u003e11.5.9 The Workplace Hazardous Materials Information System\u003cbr\u003e11.6 Chemical Control Legislation in Switzerland\u003cbr\u003e11.6.1 The Federal Law on Trade in Toxic Substances\u003cbr\u003e11.6.2 The Federal Law on Environmental Protection\u003cbr\u003e11.7 Notification of New Chemical Substances in Australia\u003cbr\u003e11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme\u003cbr\u003e11.7.2 Inventory\u003cbr\u003e11.7.3 Data Requirements for Notification\u003cbr\u003e11.7.4 Existing Substances\u003cbr\u003e11.7.5 Hazard Communication\u003cbr\u003e11.8 Chemical Control in Korea\u003cbr\u003e11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification\u003cbr\u003e11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination\u003cbr\u003e11.8.3 Hazard Communication\u003cbr\u003e11.9 Chemical Control in the Philippines\u003cbr\u003e11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act\u003cbr\u003e11.9.2 Inventory\u003cbr\u003e11.9.3 Data Requirements for Notification\u003cbr\u003e11.9.4 Administration\u003cbr\u003e11.9.5 Priority Chemicals List (PCL)\u003cbr\u003e11.10 Chemical Control in The People’s Republic of China\u003cbr\u003e11.10.1 Latest Developments\u003cbr\u003e11.10.2 First Import and Toxic Chemicals Regulations\u003cbr\u003e11.10.3 Inventory\u003cbr\u003e11.10.4 Hazard Communication\u003cbr\u003e11.11 Chemical Control in New Zealand\u003cbr\u003e11.11.1 Toxic Substances Act\u003cbr\u003e11.11.2 Resource Management Act\u003cbr\u003e11.11.3 Hazardous Substances and New Organisms Act\u003cbr\u003e11.11.4 Data Requirements for Notification\u003cbr\u003e11.11.5 Hazard Communication\u003cbr\u003e11.12 Mexico\u003cbr\u003e11.12.1 Legislation\u003cbr\u003e11.12.2 Safety Data Sheets\u003cbr\u003e11.13 Singapore\u003cbr\u003e11.14 Malaysia\u003cbr\u003e11.15 Thailand\u003cbr\u003e11.16 Indonesia\u003cbr\u003e11.17 Taiwan\u003cbr\u003e11.18 HPV Programmes\u003cbr\u003e11.18.1 OECD\u003cbr\u003e11.18.2 International Council of Chemical Associations Global Initiative\u003cbr\u003e11.19 Useful Web Sites \u003cbr\u003e12 Notification of Polymers Worldwide\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 North America\u003cbr\u003e12.2.1 USA\u003cbr\u003e12.2.2 Canada\u003cbr\u003e12.3 Asia Pacific\u003cbr\u003e12.3.1 Japan\u003cbr\u003e12.3.2 Australia\u003cbr\u003e12.3.3 New Zealand\u003cbr\u003e12.3.4 Korea\u003cbr\u003e12.3.5 Philippines\u003cbr\u003e12.3.6 China\u003cbr\u003e12.4 Europe\u003cbr\u003e12.4.1 EU\u003cbr\u003e12.4.2 Switzerland\u003cbr\u003e12.5 Overall Comparison of the Nine Polymer Notification Schemes \u003cbr\u003e13 Medical Device Regulation\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 European Economic Area\u003cbr\u003e13.2.1 Background\u003cbr\u003e13.2.2 Before Marketing\u003cbr\u003e13.2.3 After Marketing\u003cbr\u003e13.3 United States of America\u003cbr\u003e13.3.1 Background\u003cbr\u003e13.3.2 Before Marketing\u003cbr\u003e13.3.3 After Marketing\u003cbr\u003e13.4 Japan\u003cbr\u003e13.4.1 Background\u003cbr\u003e13.4.2 Before Marketing\u003cbr\u003e13.4.3 After Marketing\u003cbr\u003e13.5 Conclusion \u003cbr\u003e14 Regulation of Food Packaging in the EU and US\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Control of Food Packaging in the EU\u003cbr\u003e14.2.1 EU Framework Directive\u003cbr\u003e14.2.2 Food Contact Plastics in the EU\u003cbr\u003e14.2.3 Future Developments for Food Plastics in the EU\u003cbr\u003e14.2.4 Other EU Food Packaging Measures\u003cbr\u003e14.2.5 Strategy for Food Contact Plastic Approval in the EU\u003cbr\u003e14.3 National Controls on Food Packaging in EU Countries\u003cbr\u003e14.3.1 Germany\u003cbr\u003e14.3.2 France\u003cbr\u003e14.3.3 The Netherlands\u003cbr\u003e14.3.4 Belgium\u003cbr\u003e14.3.5 Italy\u003cbr\u003e14.4 Council of Europe Work on Food Packaging\u003cbr\u003e14.4.1 Introduction\u003cbr\u003e14.4.2 Completed Council of Europe Resolutions\u003cbr\u003e14.4.3 Council of Europe Ongoing Work\u003cbr\u003e14.5 Food Packaging in the USA\u003cbr\u003e14.5.1 Introduction\u003cbr\u003e14.5.2 History and Development of US Food Packaging Legislation\u003cbr\u003e14.5.3 The FDA Petition\u003cbr\u003e14.5.4 Threshold of Regulation Process\u003cbr\u003e14.5.5 The Pre-Marketing Notification Scheme \u003cbr\u003e15 Regulation of Biocides\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 Control of Biocides in the EU\u003cbr\u003e15.2.1 Introduction\u003cbr\u003e15.2.2 Main Features of the Directive\u003cbr\u003e15.2.3 System of Approval\u003cbr\u003e15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive\u003cbr\u003e15.2.5 Authorisation of Biocidal Products\u003cbr\u003e15.2.6 Hazard Communication\u003cbr\u003e15.2.7 The Review Programme for Existing Active Substances\u003cbr\u003e15.2.8 Technical Guidance\u003cbr\u003e15.3 Control of Biocides in the USA\u003cbr\u003e15.3.1 Introduction\u003cbr\u003e15.3.2 Data Requirements for Registration\u003cbr\u003e15.3.3 Registration Applications\u003cbr\u003e15.3.4 Data Compensation\u003cbr\u003e15.3.5 Re-Registration of Existing Pesticides\u003cbr\u003e15.3.6 Petition for a Pesticide Tolerance\u003cbr\u003e15.3.7 Regulation of Food Contact Biocides\u003cbr\u003e15.4 Regulation of Biocides in Other Countries\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Derek Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd. He is an expert in regulatory requirements, providing advice on testing and document submission to regulatory authorities. He has a doctorate in chemistry from Oxford University and is a Fellow of the Royal Society of Chemistry and the British Institute of Regulatory Affairs. He has published extensively on regulatory issues, alternatives to animal testing, food contact materials, and biocides. \u003cbr\u003e\u003cbr\u003eMike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:23-04:00","created_at":"2017-06-22T21:13:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","acute","air monitoring","book","classification","dose","environment","food","hazard","health","inhalation","labelling","legislation","marine","medical","methodology","oral","p-testing","packaging","pesticide","plastics","pollutants","polymer","rubber","safety","substances control","toxic","toxicity","transport","TSCA","UN"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Chemical Safety Testing","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-372-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043","options":["Title"],"media":[{"alt":null,"id":358716768349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.J. Knight and M.B. Thomas \u003cbr\u003eISBN 978-1-85957-372-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are many different chemicals and materials in use today. These are subject to stringent regulations, which include a requirement for physicochemical and toxicity testing. In some countries, existing chemicals are also undergoing safety checks. The aim is to determine their hazardous properties and the risks involved in using substances. \u003cbr\u003e\u003cbr\u003eHealth and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R\u0026amp;D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required. \u003cbr\u003e\u003cbr\u003eA Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results. \u003cbr\u003e\u003cbr\u003eThere is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment. \u003cbr\u003e\u003cbr\u003eEcotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals. \u003cbr\u003e\u003cbr\u003eRegulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers. \u003cbr\u003e\u003cbr\u003eThis book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Purpose of the Book\u003cbr\u003e1.2 Purpose of Safety Evaluation\u003cbr\u003e1.3 Safety Studies\u003cbr\u003e1.4 Risk Assessment and Safety Data\u003cbr\u003e1.5 Regulatory Schemes\u003cbr\u003e1.6 Summary \u003cbr\u003e2 Mammalian Toxicology\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Acute Toxicity Studies\u003cbr\u003e2.2.1 Nature and Relevance of Tests\u003cbr\u003e2.2.2 Methodology\u003cbr\u003e2.2.3 Acute Oral Toxicity Studies\u003cbr\u003e2.2.4 Dermal Toxicity Studies\u003cbr\u003e2.2.5 Inhalation Toxicity Studies\u003cbr\u003e2.2.6 Alternative Acute Oral Toxicity Methods\u003cbr\u003e2.2.7 Local Tolerance Tests\u003cbr\u003e2.2.8 Contact Sensitisation\u003cbr\u003e2.3 Repeated Dose Toxicity Studies\u003cbr\u003e2.3.1 Nature and Relevance of Tests\u003cbr\u003e2.3.2 Importance of Repeated Dose Toxicity\u003cbr\u003e2.3.3 Methodology\u003cbr\u003e2.4 Reproduction Toxicology\u003cbr\u003e2.4.1 Nature and Relevance of Tests\u003cbr\u003e2.4.2 Methodology\u003cbr\u003e2.4.3 Alternative Approaches\u003cbr\u003e2.5 Carcinogenicity\u003cbr\u003e2.5.1 Nature and Relevance of Tests\u003cbr\u003e2.5.2 Methodology\u003cbr\u003e2.5.3 Dose Levels\u003cbr\u003e2.5.4 Conduct of Study\u003cbr\u003e2.5.5 Data Evaluation\u003cbr\u003e2.5.6 Risk Assessment\u003cbr\u003e2.5.7 Alternative Approaches\u003cbr\u003e2.6 Medical Device Testing\u003cbr\u003e2.6.1 Exposure Routes\u003cbr\u003e2.6.2 Dose Preparation\u003cbr\u003e2.6.3 Cytotoxicity Testing of Medical Devices \u003cbr\u003e3 Genetic Toxicology\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Mechanisms of Mutation – Genes and Chromosomes\u003cbr\u003e3.3 Standard Genetic Toxicology Assays\u003cbr\u003e3.4 Bacterial Mutagenicity Assays\u003cbr\u003e3.5 Chromosome Aberration Tests In Vitro\u003cbr\u003e3.6 Mammalian Cell Gene Mutation Assays In Vitro\u003cbr\u003e3.7 The In Vivo Micronucleus Test\u003cbr\u003e3.8 The Unscheduled DNA Synthesis Assay\u003cbr\u003e3.9 Conclusions \u003cbr\u003e4 Ecotoxicology\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Bacterial Toxicity Testing\u003cbr\u003e4.3 Biodegradation Tests\u003cbr\u003e4.3.1 Ready Biodegradation Tests\u003cbr\u003e4.3.2 Inherent Biodegradation Tests\u003cbr\u003e4.3.3 Simulation Tests\u003cbr\u003e4.3.4 Anaerobic Biodegradation Tests\u003cbr\u003e4.4 Aquatic Toxicity Testing\u003cbr\u003e4.4.1 Acute Tests\u003cbr\u003e4.4.2 Analytical Measurements\u003cbr\u003e4.4.3 Difficult Substances\u003cbr\u003e4.4.4 Chronic Tests\u003cbr\u003e4.5 Fish Bioaccumulation Test\u003cbr\u003e4.6 Sediment Toxicity Tests\u003cbr\u003e4.7 Terrestrial Toxicity Tests\u003cbr\u003e4.7.1 Earthworms\u003cbr\u003e4.7.2 Bees and Beneficial\u003cbr\u003e4.7.3 Plant Growth Tests\u003cbr\u003e4.8 Microcosm and Mesocosm Studies\u003cbr\u003e4.9 Conclusion \u003cbr\u003e5 Physico-Chemical Properties\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Performance of the General Physico-Chemical Tests\u003cbr\u003e5.2.1 Melting Temperature\/Melting Range (OECD Test Guideline 102)\u003cbr\u003e5.2.2 Boiling Point (OECD Test Guideline 103)\u003cbr\u003e5.2.3 Vapour Pressure (OECD Test Guideline 104)\u003cbr\u003e5.2.4 Water Solubility (OECD Test Guideline 105)\u003cbr\u003e5.2.5 Partition Coefficient (OECD Test Guidelines and 117)\u003cbr\u003e5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)\u003cbr\u003e5.2.7 Density\/Relative Density (OECD Test Guideline 109)\u003cbr\u003e5.2.8 Particle Size Distribution (OECD Test Guideline 110)\u003cbr\u003e5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)\u003cbr\u003e5.2.10 Dissociation Constant (OECD Test Guideline 112)\u003cbr\u003e5.2.11 Surface Tension (OECD Test Guideline 115)\u003cbr\u003e5.2.12 Fat Solubility (OECD Test Guideline 116)\u003cbr\u003e5.3 Performance of the Polymer Specific Physico-Chemical Tests\u003cbr\u003e5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)\u003cbr\u003e5.3.2 Solution\/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)\u003cbr\u003e5.4 Performance of the Hazardous Physico-Chemical Tests\u003cbr\u003e5.4.1 Flash Point (EC Method A9)\u003cbr\u003e5.4.2 Flammable Solids (EC Method A10)\u003cbr\u003e5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)\u003cbr\u003e5.4.4 Explosive Properties (EC Method A14)\u003cbr\u003e5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)\u003cbr\u003e5.4.6 Oxidising Properties (EC Method A17)\u003cbr\u003e5.5 Order in which Physico-Chemical Tests are Performed\u003cbr\u003e5.6 Conclusion \u003cbr\u003e6 Alternatives to Animal Testing for Safety Evaluation\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Validation of Alternative Methods\u003cbr\u003e6.3 Aspects of Human Toxicity Targeted By In Vitro Assays\u003cbr\u003e6.3.1 Systemic Toxicological Properties\u003cbr\u003e6.3.2 Validated Tests Currently in Use in the EU\u003cbr\u003e6.4 Structure-Activity Relationships and Prediction of Properties\u003cbr\u003e6.5 Strategies to Minimise Use of Animals\u003cbr\u003e6.6 Future Developments and Conclusions \u003cbr\u003e7 Toxicological Assessment within a Risk Assessment Framework\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Definitions and Concepts\u003cbr\u003e7.2.1 Risk\u003cbr\u003e7.2.2 Toxicology\u003cbr\u003e7.3 Exposure Scenarios\u003cbr\u003e7.3.1 Routes of Administration\u003cbr\u003e7.3.2 Exposure Prediction\u003cbr\u003e7.4 Judgements\u003cbr\u003e7.4.1 The ‘Precautionary Principle’\u003cbr\u003e7.4.2 What Test and When?\u003cbr\u003e7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes\u003cbr\u003e7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity\u003cbr\u003e7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity\u003cbr\u003e7.5 Risk Management\u003cbr\u003e7.6 Final Word \u003cbr\u003e8 Environmental Risk Assessment\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Exposure Assessment\u003cbr\u003e8.2.1 Identification of the Target Compartments\u003cbr\u003e8.2.2 Estimation of Emissions or Releases\u003cbr\u003e8.2.3 Distribution and Degradation in the Environment (Environmental Fate)\u003cbr\u003e8.2.4 Predicted Environmental Concentrations\u003cbr\u003e8.3 Effects Assessment\u003cbr\u003e8.3.1 Estimating PNECs by Applying Uncertainty Factors\u003cbr\u003e8.3.2 The Statistical Extrapolation Method\u003cbr\u003e8.4 Risk Characterisation\u003cbr\u003e8.5 Conclusion \u003cbr\u003ePART 2: REGULATORY FRAMEWORK \u003cbr\u003e9 EU Chemical Legislation\u003cbr\u003e9.1 EU Legislation within the European Economic Area and Europe\u003cbr\u003e9.2 Notification of New Substances\u003cbr\u003e9.2.1 History of the Notification Process\u003cbr\u003e9.2.2 Data Sharing\u003cbr\u003e9.2.3 Base Set Studies for Full Notification\u003cbr\u003e9.2.4 Reduced Notification Studies\u003cbr\u003e9.2.5 Level 1 and Level 2 Notification Studies\u003cbr\u003e9.2.6 The Notification Summary Form\u003cbr\u003e9.2.7 The Sole-Representative Facility\u003cbr\u003e9.2.8 Polymers\u003cbr\u003e9.2.9 Derogations\/Exemptions from Notification\u003cbr\u003e9.2.10 Confidentiality\u003cbr\u003e9.3 Risk Assessment\u003cbr\u003e9.3.1 Human Health Risk Assessment\u003cbr\u003e9.3.2 Environment Risk Assessment\u003cbr\u003e9.4 Existing Chemicals Regulation\u003cbr\u003e9.4.1 Data Collection\u003cbr\u003e9.4.2 Priority Setting\u003cbr\u003e9.4.3 Risk Assessment\u003cbr\u003e9.5 Chemical Hazard Communication\u003cbr\u003e9.5.1 Classification and Labelling of Dangerous Substances\u003cbr\u003e9.5.2 Classification and Labelling of Dangerous Preparations\u003cbr\u003e9.5.3 Safety Data Sheets\u003cbr\u003e9.6 Transport Regulations\u003cbr\u003e9.6.1 Introduction\u003cbr\u003e9.6.2 The United Nations Transportation Classification Scheme\u003cbr\u003e9.6.3 Transport of Marine Pollutants\u003cbr\u003e9.7 National Chemical Control Measures\u003cbr\u003e9.7.1 National Product Registers\u003cbr\u003e9.7.2 German Water Hazard Classification Scheme\u003cbr\u003e9.8 Other EU Legislation for Specific Product Types\u003cbr\u003e9.8.1 Control of Cosmetics in the EU\u003cbr\u003e9.8.2 Detergents\u003cbr\u003e9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic\u003cbr\u003e9.9 Summary and Future Developments \u003cbr\u003e10 Chemical Control in Japan\u003cbr\u003e10.1 Introduction to the Japanese Regulatory Culture\u003cbr\u003e10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law\u003cbr\u003e10.2.1 Introduction\u003cbr\u003e10.2.2 The Inventory of Existing Substances\u003cbr\u003e10.2.3 Exemptions from Notification\u003cbr\u003e10.2.4 Standard Notification\u003cbr\u003e10.2.5 Polymer Notification\u003cbr\u003e10.2.6 Class I and II Specified and Designated Substances\u003cbr\u003e10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law\u003cbr\u003e10.4 Hazard Communication and Product Liability\u003cbr\u003e10.5 Other Chemical Legislation\u003cbr\u003e10.6 Summary \u003cbr\u003e11 Chemical Control in the US and the Rest of the World\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)\u003cbr\u003e11.2.1 Key Objectives of TSCA\u003cbr\u003e11.2.2 The TSCA Inventory\u003cbr\u003e11.2.3 Testing of Existing Substances\u003cbr\u003e11.2.4 Manufacturing and Processing Notices\u003cbr\u003e11.2.5 PMN Requirements\u003cbr\u003e11.2.6 Significant New Use Rules (SNURs)\u003cbr\u003e11.2.7 Exemptions from PMN\u003cbr\u003e11.3 US Occupational Safety and Health Act (OSHA)\u003cbr\u003e11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals\u003cbr\u003e11.4.1 Voluntary Challenge Programme\u003cbr\u003e11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals\u003cbr\u003e11.4.3 US Voluntary Children’s Chemical Evaluation Program\u003cbr\u003e11.5 Chemical Control Legislation in Canada\u003cbr\u003e11.5.1 The Canadian Environmental Protection Act\u003cbr\u003e11.5.2 Inventories\u003cbr\u003e11.5.3 Environmental Assessment Regulations\u003cbr\u003e11.5.4 Data Requirements for Notification\u003cbr\u003e11.5.5 Significant New Activity Notice\u003cbr\u003e11.5.6 Administration\u003cbr\u003e11.5.7 Inspection, Enforcement and Penalties\u003cbr\u003e11.5.8 Future Changes\u003cbr\u003e11.5.9 The Workplace Hazardous Materials Information System\u003cbr\u003e11.6 Chemical Control Legislation in Switzerland\u003cbr\u003e11.6.1 The Federal Law on Trade in Toxic Substances\u003cbr\u003e11.6.2 The Federal Law on Environmental Protection\u003cbr\u003e11.7 Notification of New Chemical Substances in Australia\u003cbr\u003e11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme\u003cbr\u003e11.7.2 Inventory\u003cbr\u003e11.7.3 Data Requirements for Notification\u003cbr\u003e11.7.4 Existing Substances\u003cbr\u003e11.7.5 Hazard Communication\u003cbr\u003e11.8 Chemical Control in Korea\u003cbr\u003e11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification\u003cbr\u003e11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination\u003cbr\u003e11.8.3 Hazard Communication\u003cbr\u003e11.9 Chemical Control in the Philippines\u003cbr\u003e11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act\u003cbr\u003e11.9.2 Inventory\u003cbr\u003e11.9.3 Data Requirements for Notification\u003cbr\u003e11.9.4 Administration\u003cbr\u003e11.9.5 Priority Chemicals List (PCL)\u003cbr\u003e11.10 Chemical Control in The People’s Republic of China\u003cbr\u003e11.10.1 Latest Developments\u003cbr\u003e11.10.2 First Import and Toxic Chemicals Regulations\u003cbr\u003e11.10.3 Inventory\u003cbr\u003e11.10.4 Hazard Communication\u003cbr\u003e11.11 Chemical Control in New Zealand\u003cbr\u003e11.11.1 Toxic Substances Act\u003cbr\u003e11.11.2 Resource Management Act\u003cbr\u003e11.11.3 Hazardous Substances and New Organisms Act\u003cbr\u003e11.11.4 Data Requirements for Notification\u003cbr\u003e11.11.5 Hazard Communication\u003cbr\u003e11.12 Mexico\u003cbr\u003e11.12.1 Legislation\u003cbr\u003e11.12.2 Safety Data Sheets\u003cbr\u003e11.13 Singapore\u003cbr\u003e11.14 Malaysia\u003cbr\u003e11.15 Thailand\u003cbr\u003e11.16 Indonesia\u003cbr\u003e11.17 Taiwan\u003cbr\u003e11.18 HPV Programmes\u003cbr\u003e11.18.1 OECD\u003cbr\u003e11.18.2 International Council of Chemical Associations Global Initiative\u003cbr\u003e11.19 Useful Web Sites \u003cbr\u003e12 Notification of Polymers Worldwide\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 North America\u003cbr\u003e12.2.1 USA\u003cbr\u003e12.2.2 Canada\u003cbr\u003e12.3 Asia Pacific\u003cbr\u003e12.3.1 Japan\u003cbr\u003e12.3.2 Australia\u003cbr\u003e12.3.3 New Zealand\u003cbr\u003e12.3.4 Korea\u003cbr\u003e12.3.5 Philippines\u003cbr\u003e12.3.6 China\u003cbr\u003e12.4 Europe\u003cbr\u003e12.4.1 EU\u003cbr\u003e12.4.2 Switzerland\u003cbr\u003e12.5 Overall Comparison of the Nine Polymer Notification Schemes \u003cbr\u003e13 Medical Device Regulation\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 European Economic Area\u003cbr\u003e13.2.1 Background\u003cbr\u003e13.2.2 Before Marketing\u003cbr\u003e13.2.3 After Marketing\u003cbr\u003e13.3 United States of America\u003cbr\u003e13.3.1 Background\u003cbr\u003e13.3.2 Before Marketing\u003cbr\u003e13.3.3 After Marketing\u003cbr\u003e13.4 Japan\u003cbr\u003e13.4.1 Background\u003cbr\u003e13.4.2 Before Marketing\u003cbr\u003e13.4.3 After Marketing\u003cbr\u003e13.5 Conclusion \u003cbr\u003e14 Regulation of Food Packaging in the EU and US\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Control of Food Packaging in the EU\u003cbr\u003e14.2.1 EU Framework Directive\u003cbr\u003e14.2.2 Food Contact Plastics in the EU\u003cbr\u003e14.2.3 Future Developments for Food Plastics in the EU\u003cbr\u003e14.2.4 Other EU Food Packaging Measures\u003cbr\u003e14.2.5 Strategy for Food Contact Plastic Approval in the EU\u003cbr\u003e14.3 National Controls on Food Packaging in EU Countries\u003cbr\u003e14.3.1 Germany\u003cbr\u003e14.3.2 France\u003cbr\u003e14.3.3 The Netherlands\u003cbr\u003e14.3.4 Belgium\u003cbr\u003e14.3.5 Italy\u003cbr\u003e14.4 Council of Europe Work on Food Packaging\u003cbr\u003e14.4.1 Introduction\u003cbr\u003e14.4.2 Completed Council of Europe Resolutions\u003cbr\u003e14.4.3 Council of Europe Ongoing Work\u003cbr\u003e14.5 Food Packaging in the USA\u003cbr\u003e14.5.1 Introduction\u003cbr\u003e14.5.2 History and Development of US Food Packaging Legislation\u003cbr\u003e14.5.3 The FDA Petition\u003cbr\u003e14.5.4 Threshold of Regulation Process\u003cbr\u003e14.5.5 The Pre-Marketing Notification Scheme \u003cbr\u003e15 Regulation of Biocides\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 Control of Biocides in the EU\u003cbr\u003e15.2.1 Introduction\u003cbr\u003e15.2.2 Main Features of the Directive\u003cbr\u003e15.2.3 System of Approval\u003cbr\u003e15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive\u003cbr\u003e15.2.5 Authorisation of Biocidal Products\u003cbr\u003e15.2.6 Hazard Communication\u003cbr\u003e15.2.7 The Review Programme for Existing Active Substances\u003cbr\u003e15.2.8 Technical Guidance\u003cbr\u003e15.3 Control of Biocides in the USA\u003cbr\u003e15.3.1 Introduction\u003cbr\u003e15.3.2 Data Requirements for Registration\u003cbr\u003e15.3.3 Registration Applications\u003cbr\u003e15.3.4 Data Compensation\u003cbr\u003e15.3.5 Re-Registration of Existing Pesticides\u003cbr\u003e15.3.6 Petition for a Pesticide Tolerance\u003cbr\u003e15.3.7 Regulation of Food Contact Biocides\u003cbr\u003e15.4 Regulation of Biocides in Other Countries\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Derek Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd. He is an expert in regulatory requirements, providing advice on testing and document submission to regulatory authorities. He has a doctorate in chemistry from Oxford University and is a Fellow of the Royal Society of Chemistry and the British Institute of Regulatory Affairs. He has published extensively on regulatory issues, alternatives to animal testing, food contact materials, and biocides. \u003cbr\u003e\u003cbr\u003eMike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.\u003cbr\u003e\u003cbr\u003e"}
Protection of Material...
$329.00
{"id":11242233412,"title":"Protection of Materials and Structures from the Space Environment","handle":"978-1-4020-4281-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Jacob I. Kleiman \u003cbr\u003eISBN 978-1-4020-4281-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 462, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition, the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on the development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour are continued from the past meetings.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction. Acknowledgements. Organization. \u003cbr\u003e\u003cstrong\u003eSection A. \u003c\/strong\u003eRadiation effects of protons and electrons on Back-field silicon solar cells; \u003cem\u003eZ. Hu, S. He, D. Yang\u003c\/em\u003e. Solar array arcing in LEO: how much charge is discharged? \u003cem\u003eD.C. Ferguson, B.V. Vayner, J.T. Galofaro. \u003c\/em\u003eSelf-restoration as SEU protection mechanism for re-configurable on-board computing platform; \u003cem\u003eL. Kirischian, et al\u003c\/em\u003e. Synergistic effects of protons and electrons on radiation damage of methyl silicone rubber; \u003cem\u003eL. Zhang et al\u003c\/em\u003e. Influence of electron radiation on outgassing of spacecraft materials; \u003cem\u003eR. H. Khassanchineet al\u003c\/em\u003e. Effect of surface charging on the erosion rate of polyimide under 5 eV atomic oxygen beam exposure; \u003cem\u003eM. Tagawa et al\u003c\/em\u003e. Influence of space environment on spectral optical properties of thermal control coatings; \u003cem\u003eV.M. Prosvirikov, et al.\u003c\/em\u003e Mitigation of thruster plume-induced erosion of ISS sensitive hardware; \u003cem\u003eC. Pankop, J. Alred, P. Boeder\u003c\/em\u003e. Degradation of thermal control coatings under influence of proton irradiation; \u003cem\u003eL.S. Noviko et al\u003c\/em\u003e. Mitigation of damage to the international space station (ISS) from water dumps; \u003cem\u003eW. Schmidl, J. Visentine, R. Mikatarian\u003c\/em\u003e. Investigation of synergistic effects of proton and electron radiation on the dyeing of optical quartz glass; \u003cem\u003eH. Liu et al\u003c\/em\u003e. The role of \"abnormal\" electron fluxes with energy \u0026lt; 1 MeV in the surface charging dose of spacecraft; \u003cem\u003eO.R. Grigoryan et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection B. \u003c\/strong\u003eVacuum ultraviolet radiation effects on DC93-500 silicone film; \u003cem\u003eJ.A. Dever, B.A. Banks, L. Yan\u003c\/em\u003e. Enhancement of atomic oxygen-induced erosion of spacecraft polymeric materials by simultaneous ultraviolet exposure; \u003cem\u003eK. Yokota, N. Ohmae, M. Tagawa.\u003c\/em\u003e Ground simulation of hypervelocity space debris impacts on polymers; \u003cem\u003eR. Verker et al. \u003c\/em\u003eTesting of spacecraft materials for long duration flights in low earth orbit; \u003cem\u003eL.S. Novikov et al. \u003c\/em\u003eM\/OD impacts on the multi-purpose logistics module: post-flight inspection results; \u003cem\u003eJ.L. Hyde, R.P. Bernhard, E.L. Christiansen. \u003c\/em\u003eFuel oxidizer reaction products (FORP) contamination of service module and release of N-nitrosodimethylamine in a humid environment from crew EVA suits contaminated with FORP; \u003cem\u003eW. Schmidt et al. \u003c\/em\u003eEffect of vacuum thermocycling on properties of unidirectional M40J\/AG-80 Composites; \u003cem\u003eY. Gao et al. \u003c\/em\u003eDamage characteristics of Zr\u003csub\u003e41\u003c\/sub\u003eTi\u003csub\u003e14\u003c\/sub\u003eCu\u003csub\u003e12.5\u003c\/sub\u003eNi\u003csub\u003e10\u003c\/sub\u003eBe\u003csub\u003e22.5 \u003c\/sub\u003ebulk metallic glass impacted by hypervelocity projectiles; \u003cem\u003eC. Yang et al\u003c\/em\u003e. Effect of VUV radiation on properties and chemical structure of polyethylene terephthalate film; \u003cem\u003eG. Peng, D. Yang, S. Y. He. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection C. \u003c\/strong\u003eStatus of solar sail material characterization at NASA’s Marshall Space Flight Center; \u003cem\u003eD. Edwards et al. \u003c\/em\u003eAtomic oxygen durability evaluation of a UV curable ceramer protective coating ; \u003cem\u003eB.A. Banks et al\u003c\/em\u003e. Cermet thermal conversion coatings for space applications; \u003cem\u003eB. W. Woods et al. \u003c\/em\u003eMulti-function smart coatings for space applications; \u003cem\u003eR.V. Kruzelecky et al. \u003c\/em\u003eEffects of space environment exposure on the blocking force of silicone adhesive; \u003cem\u003eP. Boeder et al. \u003c\/em\u003eDry sliding wear of Ti-6Al-4V Alloy at low temperature in vacuum; \u003cem\u003eY. Liu et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection D. \u003c\/strong\u003eErosion of Kapton H by hyperthermal atomic oxygen: Dependence on O-atom fluence and surface temperature; \u003cem\u003eD.M. Buczala, T. K. Minton. \u003c\/em\u003eTransparent arc-proof protective coatings - performance and manufacturability issues; \u003cem\u003eJ. Griffin et al. \u003c\/em\u003eThe study of the effects of atomic oxygen erosion on the microstructure and property of VO\u003csub\u003e2\u003c\/sub\u003e thermochromic coating using CSA’s space simulation apparatus; \u003cem\u003eX.X. Jiang et al.\u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection E. \u003c\/strong\u003eDamage kinetics of quartz glass by proton radiation; \u003cem\u003eQ. Wei, S.Y. He, D. Yang.\u003c\/em\u003e Microscopic mechanisms and dynamics simulations of O\u003csup\u003e+\u003c\/sup\u003e(\u003csup\u003e4\u003c\/sup\u003eS\u003csub\u003e3\/2\u003c\/sub\u003e) reacting with methane; \u003cem\u003eL. Sun, G. Schatz. \u003c\/em\u003eTheoretical study of reactions of hyperthermal O(\u003csup\u003e3\u003c\/sup\u003eP) with perfluorinated hydrocarbons; \u003cem\u003eD. Troya, G.C. Schatz.\u003c\/em\u003e Simulation of UV influence on outgassing of polymer composites; \u003cem\u003eR.H. Khassanchine et al. \u003c\/em\u003eThe impact of high-velocity particles on thermal pipelines in spacecraft; \u003cem\u003eN.D. Semkin, K.E. Voronov, L.S. Novikov. \u003c\/em\u003ePhysical mechanism of solar cell shunting under the high-velocity impact of solid particles; \u003cem\u003eV.A. Letin, A.B. Nadiradze, L.S. Novikov. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection F. \u003c\/strong\u003eDetermination of round-laboratory to in-space effective atomic oxygen fluence for DC 93-500 silicone; \u003cem\u003eK.K. DeGroh, B.A. Banks, D. Ma.\u003c\/em\u003e Atomic oxygen concentration using reflecting mirrors; \u003cem\u003eM. Tagawa et al. \u003c\/em\u003eAtomic oxygen source calibration issues: A universal approach; \u003cem\u003eC. White et al. \u003c\/em\u003eLow-cost space missions for scientific and technological investigations; \u003cem\u003eD. Rankin et al. \u003cbr\u003e\u003c\/em\u003eSubject index. Author index.\u003c\/p\u003e","published_at":"2017-06-22T21:14:23-04:00","created_at":"2017-06-22T21:14:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","atomic oxygen","back-field","book","ceramer","charging","curable","durability","effects","environment","erosion of spacecraft","meteoroid showers","micrometeoroids","p-properties","polyethylene terephthalate","polymer","polymer composites","polymeric materials","protective coatings","radiation","silicon","silicone film","solar cells","space","ultraviolet","UV","vacuum ultraviolet radiation","weathering"],"price":32900,"price_min":32900,"price_max":32900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Protection of Materials and Structures from the Space Environment","public_title":null,"options":["Default Title"],"price":32900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4020-4281-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142","options":["Title"],"media":[{"alt":null,"id":358725419101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Jacob I. Kleiman \u003cbr\u003eISBN 978-1-4020-4281-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 462, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition, the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on the development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour are continued from the past meetings.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction. Acknowledgements. Organization. \u003cbr\u003e\u003cstrong\u003eSection A. \u003c\/strong\u003eRadiation effects of protons and electrons on Back-field silicon solar cells; \u003cem\u003eZ. Hu, S. He, D. Yang\u003c\/em\u003e. Solar array arcing in LEO: how much charge is discharged? \u003cem\u003eD.C. Ferguson, B.V. Vayner, J.T. Galofaro. \u003c\/em\u003eSelf-restoration as SEU protection mechanism for re-configurable on-board computing platform; \u003cem\u003eL. Kirischian, et al\u003c\/em\u003e. Synergistic effects of protons and electrons on radiation damage of methyl silicone rubber; \u003cem\u003eL. Zhang et al\u003c\/em\u003e. Influence of electron radiation on outgassing of spacecraft materials; \u003cem\u003eR. H. Khassanchineet al\u003c\/em\u003e. Effect of surface charging on the erosion rate of polyimide under 5 eV atomic oxygen beam exposure; \u003cem\u003eM. Tagawa et al\u003c\/em\u003e. Influence of space environment on spectral optical properties of thermal control coatings; \u003cem\u003eV.M. Prosvirikov, et al.\u003c\/em\u003e Mitigation of thruster plume-induced erosion of ISS sensitive hardware; \u003cem\u003eC. Pankop, J. Alred, P. Boeder\u003c\/em\u003e. Degradation of thermal control coatings under influence of proton irradiation; \u003cem\u003eL.S. Noviko et al\u003c\/em\u003e. Mitigation of damage to the international space station (ISS) from water dumps; \u003cem\u003eW. Schmidl, J. Visentine, R. Mikatarian\u003c\/em\u003e. Investigation of synergistic effects of proton and electron radiation on the dyeing of optical quartz glass; \u003cem\u003eH. Liu et al\u003c\/em\u003e. The role of \"abnormal\" electron fluxes with energy \u0026lt; 1 MeV in the surface charging dose of spacecraft; \u003cem\u003eO.R. Grigoryan et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection B. \u003c\/strong\u003eVacuum ultraviolet radiation effects on DC93-500 silicone film; \u003cem\u003eJ.A. Dever, B.A. Banks, L. Yan\u003c\/em\u003e. Enhancement of atomic oxygen-induced erosion of spacecraft polymeric materials by simultaneous ultraviolet exposure; \u003cem\u003eK. Yokota, N. Ohmae, M. Tagawa.\u003c\/em\u003e Ground simulation of hypervelocity space debris impacts on polymers; \u003cem\u003eR. Verker et al. \u003c\/em\u003eTesting of spacecraft materials for long duration flights in low earth orbit; \u003cem\u003eL.S. Novikov et al. \u003c\/em\u003eM\/OD impacts on the multi-purpose logistics module: post-flight inspection results; \u003cem\u003eJ.L. Hyde, R.P. Bernhard, E.L. Christiansen. \u003c\/em\u003eFuel oxidizer reaction products (FORP) contamination of service module and release of N-nitrosodimethylamine in a humid environment from crew EVA suits contaminated with FORP; \u003cem\u003eW. Schmidt et al. \u003c\/em\u003eEffect of vacuum thermocycling on properties of unidirectional M40J\/AG-80 Composites; \u003cem\u003eY. Gao et al. \u003c\/em\u003eDamage characteristics of Zr\u003csub\u003e41\u003c\/sub\u003eTi\u003csub\u003e14\u003c\/sub\u003eCu\u003csub\u003e12.5\u003c\/sub\u003eNi\u003csub\u003e10\u003c\/sub\u003eBe\u003csub\u003e22.5 \u003c\/sub\u003ebulk metallic glass impacted by hypervelocity projectiles; \u003cem\u003eC. Yang et al\u003c\/em\u003e. Effect of VUV radiation on properties and chemical structure of polyethylene terephthalate film; \u003cem\u003eG. Peng, D. Yang, S. Y. He. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection C. \u003c\/strong\u003eStatus of solar sail material characterization at NASA’s Marshall Space Flight Center; \u003cem\u003eD. Edwards et al. \u003c\/em\u003eAtomic oxygen durability evaluation of a UV curable ceramer protective coating ; \u003cem\u003eB.A. Banks et al\u003c\/em\u003e. Cermet thermal conversion coatings for space applications; \u003cem\u003eB. W. Woods et al. \u003c\/em\u003eMulti-function smart coatings for space applications; \u003cem\u003eR.V. Kruzelecky et al. \u003c\/em\u003eEffects of space environment exposure on the blocking force of silicone adhesive; \u003cem\u003eP. Boeder et al. \u003c\/em\u003eDry sliding wear of Ti-6Al-4V Alloy at low temperature in vacuum; \u003cem\u003eY. Liu et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection D. \u003c\/strong\u003eErosion of Kapton H by hyperthermal atomic oxygen: Dependence on O-atom fluence and surface temperature; \u003cem\u003eD.M. Buczala, T. K. Minton. \u003c\/em\u003eTransparent arc-proof protective coatings - performance and manufacturability issues; \u003cem\u003eJ. Griffin et al. \u003c\/em\u003eThe study of the effects of atomic oxygen erosion on the microstructure and property of VO\u003csub\u003e2\u003c\/sub\u003e thermochromic coating using CSA’s space simulation apparatus; \u003cem\u003eX.X. Jiang et al.\u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection E. \u003c\/strong\u003eDamage kinetics of quartz glass by proton radiation; \u003cem\u003eQ. Wei, S.Y. He, D. Yang.\u003c\/em\u003e Microscopic mechanisms and dynamics simulations of O\u003csup\u003e+\u003c\/sup\u003e(\u003csup\u003e4\u003c\/sup\u003eS\u003csub\u003e3\/2\u003c\/sub\u003e) reacting with methane; \u003cem\u003eL. Sun, G. Schatz. \u003c\/em\u003eTheoretical study of reactions of hyperthermal O(\u003csup\u003e3\u003c\/sup\u003eP) with perfluorinated hydrocarbons; \u003cem\u003eD. Troya, G.C. Schatz.\u003c\/em\u003e Simulation of UV influence on outgassing of polymer composites; \u003cem\u003eR.H. Khassanchine et al. \u003c\/em\u003eThe impact of high-velocity particles on thermal pipelines in spacecraft; \u003cem\u003eN.D. Semkin, K.E. Voronov, L.S. Novikov. \u003c\/em\u003ePhysical mechanism of solar cell shunting under the high-velocity impact of solid particles; \u003cem\u003eV.A. Letin, A.B. Nadiradze, L.S. Novikov. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection F. \u003c\/strong\u003eDetermination of round-laboratory to in-space effective atomic oxygen fluence for DC 93-500 silicone; \u003cem\u003eK.K. DeGroh, B.A. Banks, D. Ma.\u003c\/em\u003e Atomic oxygen concentration using reflecting mirrors; \u003cem\u003eM. Tagawa et al. \u003c\/em\u003eAtomic oxygen source calibration issues: A universal approach; \u003cem\u003eC. White et al. \u003c\/em\u003eLow-cost space missions for scientific and technological investigations; \u003cem\u003eD. Rankin et al. \u003cbr\u003e\u003c\/em\u003eSubject index. Author index.\u003c\/p\u003e"}
PVC - World Markets an...
$430.00
{"id":11242226052,"title":"PVC - World Markets and Prospects","handle":"978-1-85957-311-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002, G. Pritchard, Emeritus Professor of Kingston University, Surrey, UK \u003cbr\u003eISBN 978-1-85957-311-2 \u003cbr\u003e\u003cbr\u003eKingston University, Surrey, UK\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 200\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n20% of all the resin sold in the world today, 26 million tonnes, consists of PVC. It is the second most used plastics material in the world. \u003cbr\u003e\u003cbr\u003eThis report discusses PVC from a business perspective, looking at its supply and demand, price, markets and applications, environmental issues and the future prospects of the industry. \u003cbr\u003e\u003cbr\u003eProfessor Pritchard is an exceptional author. He has successfully covered the broad sweep of the PVC industry, describing raw materials and synthesis, additives and compounding, and processing. Current issues have been highlighted including new technology and market forces. \u003cbr\u003e\u003cbr\u003eApplications are dealt with by sector with emphasis on the building and construction industry, the predominant user of PVC in applications such as window profiles. Other key application areas include medical, wire and cable and packaging. The trends in different global regions are addressed to indicate where markets are mature and where they are likely to expand. \u003cbr\u003e\u003cbr\u003eThere is also an extensive section describing individual global regions, including North America, Europe and China, and indicating areas of over-capacity and of growth. Population size, local legislation, free trade areas and degree of industrialization are all relevant factors here. \u003cbr\u003e\u003cbr\u003eThe individual companies in the PVC industry are diverse in their range of activities. Besides listings in appropriate sections of the book, there is a chapter giving individual company descriptions, citing useful information such as capacity and prospects. \u003cbr\u003e\u003cbr\u003eThere have been campaigns by environmentalists against the use of PVC. There are also concerns about the safety of some of the additives, which have been used in plastics to date, primarily heavy metal stabilisers and phthalate plasticisers. This report outlines these concerns, the effects on the industry and the efforts of PVC manufacturers to address these issues. \u003cbr\u003e\u003cbr\u003eRecycling of plastics is a major issue for all resins, particularly those used in packaging and vehicles, which are increasingly being targeted by legislation. End-of-life PVC is discussed here. \u003cbr\u003e\u003cbr\u003eThis report is accessible to both technical and non-technical personnel with an interest in the PVC industry. It will provide an excellent overview for market researchers, and analysts, whilst providing key information on the marketplace and prospects to those in the industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. About this Report \u003cbr\u003e2. Executive Summary \u003cbr\u003e3. Brief History of the PVC Industry \u003cbr\u003e4. Advantages and Disadvantages of PVC \u003cbr\u003e5. World Consumption of PVC \u003cbr\u003e6. The Price of PVC \u003cbr\u003e7. How PVC is Made \u003cbr\u003e8. Additives for PVC formulations \u003cbr\u003e9. Compounding and Shaping \u003cbr\u003e10. Environmental Issues \u003cbr\u003e11. End-of-Life Disposal of PVC Products \u003cbr\u003e12. PVC in Building and Construction \u003cbr\u003e13. Floorcoverings \u003cbr\u003e14. Packaging \u003cbr\u003e15. Wire and Cable \u003cbr\u003e16. Medical Products \u003cbr\u003e17. Toys and Other Children's Products \u003cbr\u003e18. Gloves \u003cbr\u003e19. Footwear \u003cbr\u003e20. Automotive Applications of PVC \u003cbr\u003e21. Coatings, Paints and Coated Substrates \u003cbr\u003e22. Other Applications of PVC \u003cbr\u003e23. The PVC Industry in Key Global Regions \u003cbr\u003e24. Some Representative Companies in the PVC Industry \u003cbr\u003e25. Prospects for PVC - A Brief Summary \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eReferences \u003cbr\u003eAppendix: Additional Sources of Information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Geoff Pritchard is Emeritus Professor of Kingston University in Surrey, UK. He has extensive knowledge of the PVC industry. He is the editor of several books on plastics and is also the editor of the monthly newsletter Focus on Polyvinyl Chloride, which provides regular updates of events in the PVC industry worldwide, as well as of Rapra's Focus on Plastics Additives, much of which relates to PVC.","published_at":"2017-06-22T21:14:01-04:00","created_at":"2017-06-22T21:14:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","additives","automotive","book","building","cable","coatings","compounding","construction","copolymers","disposal","emulsion","environment","floorcoverings","footwear","global production","gloves","market","marketing","medical","packaging","paints","price","PVC","report","shaping","solution","suspension","toys","wire"],"price":43000,"price_min":43000,"price_max":43000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC - World Markets and Prospects","public_title":null,"options":["Default Title"],"price":43000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-311-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197","options":["Title"],"media":[{"alt":null,"id":358725943389,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002, G. Pritchard, Emeritus Professor of Kingston University, Surrey, UK \u003cbr\u003eISBN 978-1-85957-311-2 \u003cbr\u003e\u003cbr\u003eKingston University, Surrey, UK\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 200\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n20% of all the resin sold in the world today, 26 million tonnes, consists of PVC. It is the second most used plastics material in the world. \u003cbr\u003e\u003cbr\u003eThis report discusses PVC from a business perspective, looking at its supply and demand, price, markets and applications, environmental issues and the future prospects of the industry. \u003cbr\u003e\u003cbr\u003eProfessor Pritchard is an exceptional author. He has successfully covered the broad sweep of the PVC industry, describing raw materials and synthesis, additives and compounding, and processing. Current issues have been highlighted including new technology and market forces. \u003cbr\u003e\u003cbr\u003eApplications are dealt with by sector with emphasis on the building and construction industry, the predominant user of PVC in applications such as window profiles. Other key application areas include medical, wire and cable and packaging. The trends in different global regions are addressed to indicate where markets are mature and where they are likely to expand. \u003cbr\u003e\u003cbr\u003eThere is also an extensive section describing individual global regions, including North America, Europe and China, and indicating areas of over-capacity and of growth. Population size, local legislation, free trade areas and degree of industrialization are all relevant factors here. \u003cbr\u003e\u003cbr\u003eThe individual companies in the PVC industry are diverse in their range of activities. Besides listings in appropriate sections of the book, there is a chapter giving individual company descriptions, citing useful information such as capacity and prospects. \u003cbr\u003e\u003cbr\u003eThere have been campaigns by environmentalists against the use of PVC. There are also concerns about the safety of some of the additives, which have been used in plastics to date, primarily heavy metal stabilisers and phthalate plasticisers. This report outlines these concerns, the effects on the industry and the efforts of PVC manufacturers to address these issues. \u003cbr\u003e\u003cbr\u003eRecycling of plastics is a major issue for all resins, particularly those used in packaging and vehicles, which are increasingly being targeted by legislation. End-of-life PVC is discussed here. \u003cbr\u003e\u003cbr\u003eThis report is accessible to both technical and non-technical personnel with an interest in the PVC industry. It will provide an excellent overview for market researchers, and analysts, whilst providing key information on the marketplace and prospects to those in the industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. About this Report \u003cbr\u003e2. Executive Summary \u003cbr\u003e3. Brief History of the PVC Industry \u003cbr\u003e4. Advantages and Disadvantages of PVC \u003cbr\u003e5. World Consumption of PVC \u003cbr\u003e6. The Price of PVC \u003cbr\u003e7. How PVC is Made \u003cbr\u003e8. Additives for PVC formulations \u003cbr\u003e9. Compounding and Shaping \u003cbr\u003e10. Environmental Issues \u003cbr\u003e11. End-of-Life Disposal of PVC Products \u003cbr\u003e12. PVC in Building and Construction \u003cbr\u003e13. Floorcoverings \u003cbr\u003e14. Packaging \u003cbr\u003e15. Wire and Cable \u003cbr\u003e16. Medical Products \u003cbr\u003e17. Toys and Other Children's Products \u003cbr\u003e18. Gloves \u003cbr\u003e19. Footwear \u003cbr\u003e20. Automotive Applications of PVC \u003cbr\u003e21. Coatings, Paints and Coated Substrates \u003cbr\u003e22. Other Applications of PVC \u003cbr\u003e23. The PVC Industry in Key Global Regions \u003cbr\u003e24. Some Representative Companies in the PVC Industry \u003cbr\u003e25. Prospects for PVC - A Brief Summary \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eReferences \u003cbr\u003eAppendix: Additional Sources of Information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Geoff Pritchard is Emeritus Professor of Kingston University in Surrey, UK. He has extensive knowledge of the PVC industry. He is the editor of several books on plastics and is also the editor of the monthly newsletter Focus on Polyvinyl Chloride, which provides regular updates of events in the PVC industry worldwide, as well as of Rapra's Focus on Plastics Additives, much of which relates to PVC."}
Recycling of Plastic M...
$109.00
{"id":11242238468,"title":"Recycling of Plastic Materials","handle":"1-895198-03-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","book","bottles","car","environment","film","packing","paper","PE","PET","plastic materials","plastics","polyamide-6. blends","polyethylene","polymer","pvc","recycling","rubber","tires","waste"],"price":10900,"price_min":10900,"price_max":10900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378428868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Recycling of Plastic Materials","public_title":null,"options":["Default Title"],"price":10900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-03-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Rubber Bonding 2001
$160.00
{"id":11242235524,"title":"Rubber Bonding 2001","handle":"978-1-85957-298-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-298-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003epages 224\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFollowing the three very successful conferences dealing with the subject of bonding rubbers of all types to a wide variety of substrates, Rapra Technology Ltd and European Rubber Journal held this further broad-based conference on the subject. \u003cbr\u003e\u003cbr\u003ePapers presented at this fourth conference discuss technical updates of the current state of the art in bonding technology, and also introduce some of the developments that have taken place with bonding systems. A number of papers examine many aspects of the theoretical background of the science of adhesion theory to enable the factory practitioner to understand more fully the establishment of the best possible bonds between rubbers and substrates, and to achieve best service life from the products manufactured.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePerformance of Bonding to Conform to Environmental Requirements. Mike Rooke, Henkel Industrial Adhesive, UK\u003c\/li\u003e\n\u003cli\u003eAdhesion: Analysis by Fracture Mechanics. Chris Stevens, NGF Europe Ltd.\u003c\/li\u003e\n\u003cli\u003eThe adhesive Role of Particulate Filler between Incompatible Rubbers. Jane Clarke, RuPEC, Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eInvestigation of the Kinetics of Bond Formation and Durability of New Multifunctional Bonding System. Mark Weih, Lord Corporation, USA\u003c\/li\u003e\n\u003cli\u003eTime-dependent Failure of Bonded Elastomer to Rigid Substrate Joints. Marina Fernando, Virginia Geldhill, MRPRA Rubber Consultants, UK\u003c\/li\u003e\n\u003cli\u003eBonding Silica Filled Natural Rubber Compounds to Rigid Substrate Joints. Ali Ansarifar, IPTME Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eNew Generation of Adhesion Activated Yarn- A Key product for Innovative Solutions. Hans Janssen, Teijin Twaron BV, The Netherlands\u003c\/li\u003e\n\u003cli\u003eThe Improvement of Interfacial Adhesion of a Reinforced Polyurethane and Steel via Silane Coupling Agents. Mohammed Reza Moghbeli, N Mohannadi, E Zangirian, Polymer Engineering Science Dept., Amir Kabir University, Iran\u003c\/li\u003e\n\u003cli\u003eKey Elements in the Interface of Rubber to Metal Bonds. Stefan Dehnicke, Chemetall GmBH, Germany\u003c\/li\u003e\n\u003cli\u003eSome Applications of Analytical and Spectroscopic Techniques in the Study of Rubber Bonding. John Sidwell, Rapra Technology Limited, UK\u003c\/li\u003e\n\u003cli\u003eAutomation of Rubber Injection Presses. Peter Stenl, LWB Steinl GmBH \u0026amp; Co Kg, Germany\u003c\/li\u003e\n\u003cli\u003eMulti Component Injection Moulding of Liquid Silicone Rubber\/Thermoplastic Combinations. Christoph Lettowsky, IKV, Germany\u003c\/li\u003e\n\u003cli\u003eAdhesion of Rubber to Brass – The Influence of Cobalt on Interface Morphology. Steve Fulton, Rhodia Industrial Specialities, UK\u003c\/li\u003e\n\u003cli\u003ePost Vulcanisation Bonding. Keith Worthington, Compound Ingredients Ltd., UK\u003c\/li\u003e\n\u003cli\u003eRubber Bonding between EPDM Sheets with Various Percent Peroxide. Jean-Maurice Vergnaud, University St. Etienne, France\u003c\/li\u003e\n\u003cli\u003eReaction Kinetics of Rubber to Metal Bonding Agents and its Implications on Bond Durability. Sture Persson, Svedala Skega AB, Sweden\u003c\/li\u003e\n\u003cli\u003eInterfacial Bonding Heterogeneity \u0026amp; Synergism in Polymer-Polymer Adhesion Strength. Nasser Mohammadi, A Sharif, M R Moghbeli, E Zangirian, Polymer Engineering Science Dept.,\u003c\/li\u003e\n\u003cli\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:29-04:00","created_at":"2017-06-22T21:14:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","air monitoring","bonding","book","compounds","coupling agents","environment","fillers","health","injection moulding","joints. adhesion","liquid silicone","molding","natural rubber","plastics","polyurethane","r-properties","reinforced","rigid","rubber","safety","silane","silica"],"price":16000,"price_min":16000,"price_max":16000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378419460,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Bonding 2001","public_title":null,"options":["Default Title"],"price":16000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-298-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-298-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003epages 224\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFollowing the three very successful conferences dealing with the subject of bonding rubbers of all types to a wide variety of substrates, Rapra Technology Ltd and European Rubber Journal held this further broad-based conference on the subject. \u003cbr\u003e\u003cbr\u003ePapers presented at this fourth conference discuss technical updates of the current state of the art in bonding technology, and also introduce some of the developments that have taken place with bonding systems. A number of papers examine many aspects of the theoretical background of the science of adhesion theory to enable the factory practitioner to understand more fully the establishment of the best possible bonds between rubbers and substrates, and to achieve best service life from the products manufactured.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePerformance of Bonding to Conform to Environmental Requirements. Mike Rooke, Henkel Industrial Adhesive, UK\u003c\/li\u003e\n\u003cli\u003eAdhesion: Analysis by Fracture Mechanics. Chris Stevens, NGF Europe Ltd.\u003c\/li\u003e\n\u003cli\u003eThe adhesive Role of Particulate Filler between Incompatible Rubbers. Jane Clarke, RuPEC, Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eInvestigation of the Kinetics of Bond Formation and Durability of New Multifunctional Bonding System. Mark Weih, Lord Corporation, USA\u003c\/li\u003e\n\u003cli\u003eTime-dependent Failure of Bonded Elastomer to Rigid Substrate Joints. Marina Fernando, Virginia Geldhill, MRPRA Rubber Consultants, UK\u003c\/li\u003e\n\u003cli\u003eBonding Silica Filled Natural Rubber Compounds to Rigid Substrate Joints. Ali Ansarifar, IPTME Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eNew Generation of Adhesion Activated Yarn- A Key product for Innovative Solutions. Hans Janssen, Teijin Twaron BV, The Netherlands\u003c\/li\u003e\n\u003cli\u003eThe Improvement of Interfacial Adhesion of a Reinforced Polyurethane and Steel via Silane Coupling Agents. Mohammed Reza Moghbeli, N Mohannadi, E Zangirian, Polymer Engineering Science Dept., Amir Kabir University, Iran\u003c\/li\u003e\n\u003cli\u003eKey Elements in the Interface of Rubber to Metal Bonds. Stefan Dehnicke, Chemetall GmBH, Germany\u003c\/li\u003e\n\u003cli\u003eSome Applications of Analytical and Spectroscopic Techniques in the Study of Rubber Bonding. John Sidwell, Rapra Technology Limited, UK\u003c\/li\u003e\n\u003cli\u003eAutomation of Rubber Injection Presses. Peter Stenl, LWB Steinl GmBH \u0026amp; Co Kg, Germany\u003c\/li\u003e\n\u003cli\u003eMulti Component Injection Moulding of Liquid Silicone Rubber\/Thermoplastic Combinations. Christoph Lettowsky, IKV, Germany\u003c\/li\u003e\n\u003cli\u003eAdhesion of Rubber to Brass – The Influence of Cobalt on Interface Morphology. Steve Fulton, Rhodia Industrial Specialities, UK\u003c\/li\u003e\n\u003cli\u003ePost Vulcanisation Bonding. Keith Worthington, Compound Ingredients Ltd., UK\u003c\/li\u003e\n\u003cli\u003eRubber Bonding between EPDM Sheets with Various Percent Peroxide. Jean-Maurice Vergnaud, University St. Etienne, France\u003c\/li\u003e\n\u003cli\u003eReaction Kinetics of Rubber to Metal Bonding Agents and its Implications on Bond Durability. Sture Persson, Svedala Skega AB, Sweden\u003c\/li\u003e\n\u003cli\u003eInterfacial Bonding Heterogeneity \u0026amp; Synergism in Polymer-Polymer Adhesion Strength. Nasser Mohammadi, A Sharif, M R Moghbeli, E Zangirian, Polymer Engineering Science Dept.,\u003c\/li\u003e\n\u003cli\u003e\n\u003c\/ul\u003e"}
RubberChem 2008
$140.00
{"id":11242236804,"title":"RubberChem 2008","handle":"978-1-8473-5077-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra \u003cbr\u003eISBN 978-1-8473-5077-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePrague, Czech Republic, 3-4 December 2008\u003c\/p\u003e\n\u003cp\u003e20 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe sixth international conference took place in December 2008, it ensured all who atteneded were kept up to date with the new regulations, applications and, of course, the ever changing composition of competitive products. \u003cbr\u003e\u003cbr\u003eThe rubber industry continues to face the ongoing challenges of cost-down pressures from the automotive industry, low-price competition from suppliers in China and Eastern Europe and an array of environmental issues.\u003cbr\u003e\u003cbr\u003eThe conference proceedings are now availabe for general release, all 20 papers presented at this conference are featured ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 THE BUSINESS ENVIRONMENT AND LEGISLATION\u003cbr\u003ePaper 1\u003c\/strong\u003e Outlook for rubber chemicals: current conditions and future prospects\u003cbr\u003ePaul Ita, Notch Consulting Group, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 2\u003c\/strong\u003e Impact of REACH on company and sector product stewardship efforts - some predictions for the future\u003cbr\u003eUrsula Schliessner, McKenna Long \u0026amp; Aldridge LLP, Belgium \u003cbr\u003eSESSION 2 FILLERS\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 3\u003c\/strong\u003e Carbon nanotubes\/silicone elastomer nanocomposites: multi-functional and high performance products; review and trends of their applications \u003cbr\u003eMichael Claes, Daniel Bonduel \u0026amp; Frédéric Luizi, Nanocyl SA, Belgium; Alexandre Beigbeder \u0026amp; Philippe Dubois, Université of Mons-Hainaut UMH, Belgium\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 4\u003c\/strong\u003e High performance silicas in the tire industry: sustainable mobility interest - wide specific surface area range interest\u003cbr\u003eLaurent Guy, Rhodia, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 5\u003c\/strong\u003e Carbon black fundamental properties and their effect on elastomer performance\u003cbr\u003eDr Joe Hallett, Columbian Chemicals Company, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 6\u003c\/strong\u003e Novel electrical conductive material based on natural rubber: preparation \u0026amp; characterisation\u003cbr\u003eK C Yong \u0026amp; Md Aris Ahmad, Rubber Research Institute of Malaysia, Malaysia; P J S Foot \u0026amp; H Morgan, Kingston University, UK; S Cook \u0026amp; A J Tinker, Tun Abdul Razak Research Centre, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 VULCANISATION \u0026amp; CURE SYSTEMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 7\u003c\/strong\u003e How process aids help\u003cbr\u003eMario Kuschnerus \u0026amp; Colin Clarke, Schill \u0026amp; Seilacher 'Struktol' AG, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 8\u003c\/strong\u003e Improved processing stabilizer systems for rubber compounding\u003cbr\u003eDr Ing André le Gal \u0026amp; Eva Peregi, CIBA Inc, Switzerland\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 9 \u003c\/strong\u003eActivated curing systems for IIR, CR and ECO\u003cbr\u003eDr Andreas Schröder, C Bergmann, D Hoff \u0026amp; M Säwe, Rhein Chemie Rheinau GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 10 \u003c\/strong\u003eThe effect of special chemicals on the aging resistance behavior of NR based tyre tread compounds\u003cbr\u003eProf Dipak Khastgir, P Sachdeva, IIT Kharagpur, India; S Dasgupta, S Bhattacharya \u0026amp; R Mukhopadhyay, J K Tyres Ltd, India\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 POLYMERS \u0026amp; COMPOUNDING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 11\u003c\/strong\u003e Compounding of silica filled rubber in a twin-screw extruder\u003cbr\u003eDipl-Ing Hannah Köppen, Prof Dr-Ing, Dr-Ing Eh Walter Michaeli \u0026amp; Edmund Haberstroh, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 12\u003c\/strong\u003e High and very high molecular weight EPDM polymers with 2-VINYL-5-NORBORNENE as third monomer\u003cbr\u003eChris Twigg, Michiel Dees \u0026amp; Herman Dikland, DSM Elastomers, The Netherlands; Martin van Duin, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13\u003c\/strong\u003e A futuristic material for improving tire performance: addressing rolling resistance, durability and wear characteristics\u003cbr\u003eDr Nico Huntink, Rabin Datta, Vincent Siebes, Bas Pierik \u0026amp; Peter de Lange, Teijin Twaron BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14\u003c\/strong\u003e Extrusion of physically foamed rubber profiles\u003cbr\u003eKira Epping \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 5 TESTING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15 \u003c\/strong\u003eTesting perfluoroelastomers for oil field applications\u003cbr\u003eLillian Guo, Paul McElfresh \u0026amp; Jim Fraser, Baker Hughes Inc, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 16 \u003c\/strong\u003eAccelerated test of thermoplastic elastomers under multiaxial dynamic load regarding the lifetime\u003cbr\u003eAndreas Schobel \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 17 \u003c\/strong\u003eInfluence of nature and type of flaw on the properties of a natural rubber compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Martyn Bennett, Artis, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 6 APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 18 \u003c\/strong\u003eExploring novel ways to utilise recycled tyre rubber\u003cbr\u003eGary Crutchley \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 19\u003c\/strong\u003e Revulcanisation - excellent, easy and cheap method for recycling worn-out rubber\u003cbr\u003eStanislaw Pasynkiewicz, Ewa Kowalska \u0026amp; Magdalena Zubrowska, Industrial Chemistry Research Institute, Poland\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 20 \u003c\/strong\u003eEffect of ageing on the fracture properties of a natural rubber engine mount compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:33-04:00","created_at":"2017-06-22T21:14:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","carbon black","carbon nanotubes","compounding","Environment","r-compounding","REACH","rubber","rubber formulary","silicas","silicone"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"RubberChem 2008","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-8473-5077-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239","options":["Title"],"media":[{"alt":null,"id":358742917213,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra \u003cbr\u003eISBN 978-1-8473-5077-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePrague, Czech Republic, 3-4 December 2008\u003c\/p\u003e\n\u003cp\u003e20 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe sixth international conference took place in December 2008, it ensured all who atteneded were kept up to date with the new regulations, applications and, of course, the ever changing composition of competitive products. \u003cbr\u003e\u003cbr\u003eThe rubber industry continues to face the ongoing challenges of cost-down pressures from the automotive industry, low-price competition from suppliers in China and Eastern Europe and an array of environmental issues.\u003cbr\u003e\u003cbr\u003eThe conference proceedings are now availabe for general release, all 20 papers presented at this conference are featured ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 THE BUSINESS ENVIRONMENT AND LEGISLATION\u003cbr\u003ePaper 1\u003c\/strong\u003e Outlook for rubber chemicals: current conditions and future prospects\u003cbr\u003ePaul Ita, Notch Consulting Group, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 2\u003c\/strong\u003e Impact of REACH on company and sector product stewardship efforts - some predictions for the future\u003cbr\u003eUrsula Schliessner, McKenna Long \u0026amp; Aldridge LLP, Belgium \u003cbr\u003eSESSION 2 FILLERS\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 3\u003c\/strong\u003e Carbon nanotubes\/silicone elastomer nanocomposites: multi-functional and high performance products; review and trends of their applications \u003cbr\u003eMichael Claes, Daniel Bonduel \u0026amp; Frédéric Luizi, Nanocyl SA, Belgium; Alexandre Beigbeder \u0026amp; Philippe Dubois, Université of Mons-Hainaut UMH, Belgium\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 4\u003c\/strong\u003e High performance silicas in the tire industry: sustainable mobility interest - wide specific surface area range interest\u003cbr\u003eLaurent Guy, Rhodia, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 5\u003c\/strong\u003e Carbon black fundamental properties and their effect on elastomer performance\u003cbr\u003eDr Joe Hallett, Columbian Chemicals Company, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 6\u003c\/strong\u003e Novel electrical conductive material based on natural rubber: preparation \u0026amp; characterisation\u003cbr\u003eK C Yong \u0026amp; Md Aris Ahmad, Rubber Research Institute of Malaysia, Malaysia; P J S Foot \u0026amp; H Morgan, Kingston University, UK; S Cook \u0026amp; A J Tinker, Tun Abdul Razak Research Centre, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 VULCANISATION \u0026amp; CURE SYSTEMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 7\u003c\/strong\u003e How process aids help\u003cbr\u003eMario Kuschnerus \u0026amp; Colin Clarke, Schill \u0026amp; Seilacher 'Struktol' AG, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 8\u003c\/strong\u003e Improved processing stabilizer systems for rubber compounding\u003cbr\u003eDr Ing André le Gal \u0026amp; Eva Peregi, CIBA Inc, Switzerland\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 9 \u003c\/strong\u003eActivated curing systems for IIR, CR and ECO\u003cbr\u003eDr Andreas Schröder, C Bergmann, D Hoff \u0026amp; M Säwe, Rhein Chemie Rheinau GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 10 \u003c\/strong\u003eThe effect of special chemicals on the aging resistance behavior of NR based tyre tread compounds\u003cbr\u003eProf Dipak Khastgir, P Sachdeva, IIT Kharagpur, India; S Dasgupta, S Bhattacharya \u0026amp; R Mukhopadhyay, J K Tyres Ltd, India\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 POLYMERS \u0026amp; COMPOUNDING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 11\u003c\/strong\u003e Compounding of silica filled rubber in a twin-screw extruder\u003cbr\u003eDipl-Ing Hannah Köppen, Prof Dr-Ing, Dr-Ing Eh Walter Michaeli \u0026amp; Edmund Haberstroh, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 12\u003c\/strong\u003e High and very high molecular weight EPDM polymers with 2-VINYL-5-NORBORNENE as third monomer\u003cbr\u003eChris Twigg, Michiel Dees \u0026amp; Herman Dikland, DSM Elastomers, The Netherlands; Martin van Duin, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13\u003c\/strong\u003e A futuristic material for improving tire performance: addressing rolling resistance, durability and wear characteristics\u003cbr\u003eDr Nico Huntink, Rabin Datta, Vincent Siebes, Bas Pierik \u0026amp; Peter de Lange, Teijin Twaron BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14\u003c\/strong\u003e Extrusion of physically foamed rubber profiles\u003cbr\u003eKira Epping \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 5 TESTING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15 \u003c\/strong\u003eTesting perfluoroelastomers for oil field applications\u003cbr\u003eLillian Guo, Paul McElfresh \u0026amp; Jim Fraser, Baker Hughes Inc, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 16 \u003c\/strong\u003eAccelerated test of thermoplastic elastomers under multiaxial dynamic load regarding the lifetime\u003cbr\u003eAndreas Schobel \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 17 \u003c\/strong\u003eInfluence of nature and type of flaw on the properties of a natural rubber compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Martyn Bennett, Artis, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 6 APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 18 \u003c\/strong\u003eExploring novel ways to utilise recycled tyre rubber\u003cbr\u003eGary Crutchley \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 19\u003c\/strong\u003e Revulcanisation - excellent, easy and cheap method for recycling worn-out rubber\u003cbr\u003eStanislaw Pasynkiewicz, Ewa Kowalska \u0026amp; Magdalena Zubrowska, Industrial Chemistry Research Institute, Poland\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 20 \u003c\/strong\u003eEffect of ageing on the fracture properties of a natural rubber engine mount compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e"}
Sittig's Handbook of T...
$655.00
{"id":11242226948,"title":"Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens","handle":"978-0-8155-1553-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Richard P. Pohanish \u003cbr\u003eISBN 978-0-8155-1553-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003cbr\u003e\u003c\/span\u003e5th Edition, 3,000 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor more than a quarter-century, \u003cstrong\u003eSittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens\u003c\/strong\u003e has continued to gather an ever-widening audience of users because it has proven to be among the most reliable, easy-to-use and essential reference works on hazardous materials. \u003cstrong\u003eSittig’s 5th Edition\u003c\/strong\u003e remains the lone comprehensive work providing a vast array of critical information on the 2,100 most heavily used, transported, and regulated chemical substances of both occupational and environmental concern.\n\u003cp class=\"style5\"\u003eEach year in the United States alone, over 350 billion pounds of toxic chemicals are manufactured and more than 8 billion pounds of these hazardous materials are transported through populated areas. It is not surprising that commercial chemical incidents occur tens of thousands of times each year, often with devastating and exorbitantly expensive consequences.\u003c\/p\u003e\n\u003cp\u003eGiven the reality of problems related to chemical hazards, including accidents and spills, the advent of new threats to our way of life, and the challenges of communicating complex data; \u003cstrong\u003eSittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens, 5th Edition\u003c\/strong\u003e provides data so that responsible decisions can be made by all who may have contact with the chemicals covered in this reference work.\u003c\/p\u003e\n\u003cp\u003eInformation is the most vital resource anyone can have when dealing with potential hazardous substance accidents or acts of terror. \u003cstrong\u003eSittig’s \u003c\/strong\u003eprovides extensive data for each of the 2,100 chemicals in a uniform format, enabling fast and accurate decisions in any situation. The chemicals are presented alphabetically and classified as a carcinogen, hazardous substance, hazardous waste, or toxic pollutant. This new edition contains extensively expanded information in all 28 fields for each chemical \u003cem\u003e(see the table of contents)\u003c\/em\u003e and has been updated to keep pace with world events. Chemicals classified as WMD have been included in the new edition as has more information frequently queried by first responders and frontline industrial safety personnel.\u003c\/p\u003e\n\u003cp\u003eToxic and hazardous chemicals are manufactured in nearly every country in the world. They are a critical part of the global economy and also one of the greatest threats to our safety and security. \u003cstrong\u003eSittig’s Handbook\u003c\/strong\u003e has proven itself, year after year, to be one of the most important major references anyone dealing with these substances can have at their disposal. This \u003cstrong\u003e5th Edition\u003c\/strong\u003e will prove that it is, once again, the lone comprehensive work available.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul type=\"disc\"\u003e\n\u003cli\u003eMolecular Formula\u003c\/li\u003e\n\u003cli\u003eCommon Formula\u003c\/li\u003e\n\u003cli\u003eSynonyms\u003c\/li\u003e\n\u003cli\u003eCAS Registry Number\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eWhen alternate numbers exist, these have been added to the 5th Edition and will also appear in the CAS Index.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDOT ID\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eDOT information has been updated to comply with the 2004 US Department of Transportation (DOT) \u003cem\u003eEmergency Response Guide\u003c\/em\u003e and classifications.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eEEC Number\u003c\/li\u003e\n\u003cli\u003eRegulatory Authority\n\u003cul type=\"circle\"\u003e\n\u003cli\u003e\n\u003cp\u003eThe \u003cem\u003eCarcinogenicity\u003c\/em\u003e subsection has been simplified to contain the latest information from the National Cancer Institute (NCI), the National Toxicology Program (NCP), and the International Agency for Research on Cancer (IARC) with assessments and Cancer Groups 1 – 4. This is fortified with additional information on cancer in the Permissible Exposure in Air section (see below) as OSHA, NIOSH, ACGIH (American Conference of Governmental Hygienists) and the German Research Society (Deutsche Forchungsgemeinshaft) list their assessments.\u003c\/p\u003e\n\u003cul type=\"square\"\u003e\n\u003cli\u003eTesting information from the EPA follows carcinogen information.\u003c\/li\u003e\n\u003cli\u003eIf the chemical is used as a pesticide, the EPA status is listed as supported, canceled, etc.\u003c\/li\u003e\n\u003cli\u003eCanada’s Workplace Hazardous Material Information System (WHMIS) values have been added.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eCited in U.S. State Regulations\u003c\/li\u003e\n\u003cli\u003eDescription\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eAdditional Physical Properties information has been added. Molecular weights are now present, as is vapor pressure, specific gravity, vapor density, and more.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePotential Exposure\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow Contains the RTECS Compound Description, and more precise usage information has been added to most entries. Also in this section, the top 50 chemicals and some production figures have been added. For example, Phenol is shown as “Top 50 chemical production; 3.71 billion pounds in 1992, 3.60 billion pounds in 1991.”\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eIncompatibilities\u003c\/li\u003e\n\u003cli\u003ePermissible Exposure Limits in Air\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThis section has been completely reorganized and rewritten to harmonize with the various agencies and advisory providers. It is much more readable than the 4th Edition and now shows OSHA PELs, NIOSH RELs, ACGIH TLVs and Germany’s MAKs and BATs, and NIOSH IDLHs (levels at which chemicals are immediately dangerous to life and health). This section also contains updated permissible exposure limits for countries around the world.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDetermination in Air\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThis has been updated with more OSHA and NIOSH testing information.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePermissible Concentration in Water\u003c\/li\u003e\n\u003cli\u003eDetermination in Water\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThe Log Kow (Octanol\/water partition coefficient) has been added to this section. This is a simple, easily understood number and an indicator of potential pollution. Also, where there is information on Fish Toxicity numerical levels and ratings (LOW, INTERMEDIATE, HIGH, EXTRA HIGH) from the \u003cem\u003eNational Agricultural Risk Analysis Database\u003c\/em\u003e, it is included here.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eRoutes of Entry\u003c\/li\u003e\n\u003cli\u003eHarmful Effects and Symptoms\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eShort Term Exposure\u003c\/li\u003e\n\u003cli\u003eLong Term Exposure\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains Human Toxicity numerical levels and ratings (LOW, INTERMEDIATE, HIGH, EXTRA HIGH) from the \u003cem\u003eNational Agricultural Risk Analysis Database.\u003c\/em\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePoints of Attack\u003c\/li\u003e\n\u003cli\u003eMedical Surveillance\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains recommended testing from NIOSH and \u003cu\u003erequired\u003c\/u\u003e testing mandated by OSHA.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePersonal Protective Methods\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains more specific information on protective materials for suits and gloves.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eRespirator Selection\n\u003cul type=\"square\"\u003e\n\u003cli\u003eThis section has been brought up-to-date extensively with information from the NIOSH Pocket Guide (2006 edition).\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eStorage\u003c\/li\u003e\n\u003cli\u003eShipping\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eDOT information has been updated to comply with the 2004 US Department of Transportation (DOT) \u003cem\u003eEmergency Response Guide\u003c\/em\u003e and classifications.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eSpill Handling\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow contains the Soil Absorption Index from the \u003cem\u003eEPA National Agricultural Risk Analysis Database\u003c\/em\u003e.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eFire Extinguishing\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow contains information on specific products of combustion. For example, many otherwise mildly hazardous chemicals can emit highly toxic fumes and gasses in the heat of fire such as sulfur oxides, nitrogen oxides, arsenic, mercury, nickel, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDisposal Method Suggested\u003c\/li\u003e\n\u003cli\u003eReferences\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRichard P. Pohanish is the author of numerous articles and professional reference works including (with Stanley Greene) four books and two CD-ROMs for the environmental, health and safety field. Mr. Pohanish has been active in the environmental field since 1980, is the President and Publisher of Chem-Data Systems, cofounder of Chemtox, Inc., and co-author of Sittig’s Pesticides and Agricultural Chemicals (2005).","published_at":"2017-06-22T21:14:03-04:00","created_at":"2017-06-22T21:14:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","ACGIH","arsenic","book","cancer","carcinogens","CAS","chemicals","disposal","DOT","EEC","effects","EINECS","environment","environmental","EPA","equipment manufacturers","exposure limits","firefighters","first aid","gasses","Germany’s MAKs and BATs","gloves","harmful","harmful effects","hazardous","hazardous waste","health","hygienists","long exposure","mercury","nickel","NIOSH","nitrogen oxides","OSHA","paramedics","police","polymer","protective materials","respiratory","routes of entry","RTECS Number","s hipping","safety","short exposure","storage","suits","sulfur oxides","symptoms","toxic","toxic fumes","toxic pollutant","toxicologists","waste disposal","WHMIS"],"price":65500,"price_min":65500,"price_max":65500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens","public_title":null,"options":["Default Title"],"price":65500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1553-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1553-1.jpg?v=1499955671"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1553-1.jpg?v=1499955671","options":["Title"],"media":[{"alt":null,"id":358754156637,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1553-1.jpg?v=1499955671"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1553-1.jpg?v=1499955671","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Richard P. Pohanish \u003cbr\u003eISBN 978-0-8155-1553-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003cbr\u003e\u003c\/span\u003e5th Edition, 3,000 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor more than a quarter-century, \u003cstrong\u003eSittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens\u003c\/strong\u003e has continued to gather an ever-widening audience of users because it has proven to be among the most reliable, easy-to-use and essential reference works on hazardous materials. \u003cstrong\u003eSittig’s 5th Edition\u003c\/strong\u003e remains the lone comprehensive work providing a vast array of critical information on the 2,100 most heavily used, transported, and regulated chemical substances of both occupational and environmental concern.\n\u003cp class=\"style5\"\u003eEach year in the United States alone, over 350 billion pounds of toxic chemicals are manufactured and more than 8 billion pounds of these hazardous materials are transported through populated areas. It is not surprising that commercial chemical incidents occur tens of thousands of times each year, often with devastating and exorbitantly expensive consequences.\u003c\/p\u003e\n\u003cp\u003eGiven the reality of problems related to chemical hazards, including accidents and spills, the advent of new threats to our way of life, and the challenges of communicating complex data; \u003cstrong\u003eSittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens, 5th Edition\u003c\/strong\u003e provides data so that responsible decisions can be made by all who may have contact with the chemicals covered in this reference work.\u003c\/p\u003e\n\u003cp\u003eInformation is the most vital resource anyone can have when dealing with potential hazardous substance accidents or acts of terror. \u003cstrong\u003eSittig’s \u003c\/strong\u003eprovides extensive data for each of the 2,100 chemicals in a uniform format, enabling fast and accurate decisions in any situation. The chemicals are presented alphabetically and classified as a carcinogen, hazardous substance, hazardous waste, or toxic pollutant. This new edition contains extensively expanded information in all 28 fields for each chemical \u003cem\u003e(see the table of contents)\u003c\/em\u003e and has been updated to keep pace with world events. Chemicals classified as WMD have been included in the new edition as has more information frequently queried by first responders and frontline industrial safety personnel.\u003c\/p\u003e\n\u003cp\u003eToxic and hazardous chemicals are manufactured in nearly every country in the world. They are a critical part of the global economy and also one of the greatest threats to our safety and security. \u003cstrong\u003eSittig’s Handbook\u003c\/strong\u003e has proven itself, year after year, to be one of the most important major references anyone dealing with these substances can have at their disposal. This \u003cstrong\u003e5th Edition\u003c\/strong\u003e will prove that it is, once again, the lone comprehensive work available.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul type=\"disc\"\u003e\n\u003cli\u003eMolecular Formula\u003c\/li\u003e\n\u003cli\u003eCommon Formula\u003c\/li\u003e\n\u003cli\u003eSynonyms\u003c\/li\u003e\n\u003cli\u003eCAS Registry Number\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eWhen alternate numbers exist, these have been added to the 5th Edition and will also appear in the CAS Index.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDOT ID\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eDOT information has been updated to comply with the 2004 US Department of Transportation (DOT) \u003cem\u003eEmergency Response Guide\u003c\/em\u003e and classifications.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eEEC Number\u003c\/li\u003e\n\u003cli\u003eRegulatory Authority\n\u003cul type=\"circle\"\u003e\n\u003cli\u003e\n\u003cp\u003eThe \u003cem\u003eCarcinogenicity\u003c\/em\u003e subsection has been simplified to contain the latest information from the National Cancer Institute (NCI), the National Toxicology Program (NCP), and the International Agency for Research on Cancer (IARC) with assessments and Cancer Groups 1 – 4. This is fortified with additional information on cancer in the Permissible Exposure in Air section (see below) as OSHA, NIOSH, ACGIH (American Conference of Governmental Hygienists) and the German Research Society (Deutsche Forchungsgemeinshaft) list their assessments.\u003c\/p\u003e\n\u003cul type=\"square\"\u003e\n\u003cli\u003eTesting information from the EPA follows carcinogen information.\u003c\/li\u003e\n\u003cli\u003eIf the chemical is used as a pesticide, the EPA status is listed as supported, canceled, etc.\u003c\/li\u003e\n\u003cli\u003eCanada’s Workplace Hazardous Material Information System (WHMIS) values have been added.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eCited in U.S. State Regulations\u003c\/li\u003e\n\u003cli\u003eDescription\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eAdditional Physical Properties information has been added. Molecular weights are now present, as is vapor pressure, specific gravity, vapor density, and more.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePotential Exposure\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow Contains the RTECS Compound Description, and more precise usage information has been added to most entries. Also in this section, the top 50 chemicals and some production figures have been added. For example, Phenol is shown as “Top 50 chemical production; 3.71 billion pounds in 1992, 3.60 billion pounds in 1991.”\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eIncompatibilities\u003c\/li\u003e\n\u003cli\u003ePermissible Exposure Limits in Air\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThis section has been completely reorganized and rewritten to harmonize with the various agencies and advisory providers. It is much more readable than the 4th Edition and now shows OSHA PELs, NIOSH RELs, ACGIH TLVs and Germany’s MAKs and BATs, and NIOSH IDLHs (levels at which chemicals are immediately dangerous to life and health). This section also contains updated permissible exposure limits for countries around the world.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDetermination in Air\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThis has been updated with more OSHA and NIOSH testing information.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePermissible Concentration in Water\u003c\/li\u003e\n\u003cli\u003eDetermination in Water\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThe Log Kow (Octanol\/water partition coefficient) has been added to this section. This is a simple, easily understood number and an indicator of potential pollution. Also, where there is information on Fish Toxicity numerical levels and ratings (LOW, INTERMEDIATE, HIGH, EXTRA HIGH) from the \u003cem\u003eNational Agricultural Risk Analysis Database\u003c\/em\u003e, it is included here.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eRoutes of Entry\u003c\/li\u003e\n\u003cli\u003eHarmful Effects and Symptoms\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eShort Term Exposure\u003c\/li\u003e\n\u003cli\u003eLong Term Exposure\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains Human Toxicity numerical levels and ratings (LOW, INTERMEDIATE, HIGH, EXTRA HIGH) from the \u003cem\u003eNational Agricultural Risk Analysis Database.\u003c\/em\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePoints of Attack\u003c\/li\u003e\n\u003cli\u003eMedical Surveillance\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains recommended testing from NIOSH and \u003cu\u003erequired\u003c\/u\u003e testing mandated by OSHA.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePersonal Protective Methods\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains more specific information on protective materials for suits and gloves.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eRespirator Selection\n\u003cul type=\"square\"\u003e\n\u003cli\u003eThis section has been brought up-to-date extensively with information from the NIOSH Pocket Guide (2006 edition).\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eStorage\u003c\/li\u003e\n\u003cli\u003eShipping\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eDOT information has been updated to comply with the 2004 US Department of Transportation (DOT) \u003cem\u003eEmergency Response Guide\u003c\/em\u003e and classifications.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eSpill Handling\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow contains the Soil Absorption Index from the \u003cem\u003eEPA National Agricultural Risk Analysis Database\u003c\/em\u003e.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eFire Extinguishing\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow contains information on specific products of combustion. For example, many otherwise mildly hazardous chemicals can emit highly toxic fumes and gasses in the heat of fire such as sulfur oxides, nitrogen oxides, arsenic, mercury, nickel, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDisposal Method Suggested\u003c\/li\u003e\n\u003cli\u003eReferences\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRichard P. Pohanish is the author of numerous articles and professional reference works including (with Stanley Greene) four books and two CD-ROMs for the environmental, health and safety field. Mr. Pohanish has been active in the environmental field since 1980, is the President and Publisher of Chem-Data Systems, cofounder of Chemtox, Inc., and co-author of Sittig’s Pesticides and Agricultural Chemicals (2005)."}
Supercritical Fluid Cl...
$231.00
{"id":11242207812,"title":"Supercritical Fluid Cleaning","handle":"0-8155-1416-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: John McHardy, Samuel P. Sawan \u003cbr\u003e10-ISBN 0-8155-1416-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-0-8155-1416-9 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 290, Figures: 51, Tables: 42\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAlthough supercritical fluid (SCF) technology is now widely used in extraction and purification processes (in the petrochemical, food and pharmaceuticals industries), this book is the first to address the new application of cleaning. The objective is to provide a roadmap for readers who want to know whether SCF technology can meet their own processing and cleaning needs. It is particularly helpful to those striving to balance the requirements for a clean product and a clean environment. The interdisciplinary subject matter will appeal to scientists and engineers in all specialties ranging from materials and polymer sciences to chemistry and physics. It is also useful to those developing new processes for other applications, and references given at the end of each chapter provide links to the wider body of SCF literature.\u003cbr\u003eThe book is organized with topics progressing from the fundamental nature of the supercritical state, through process conditions and materials interactions, to economic considerations. Practical examples are included to show how the technology has been successfully applied. The first four chapters consider principles governing SCF processing, detailing issues such as solubility, design for cleanability, and the dynamics of particle removal. The next three chapters discuss surfactants and microemulsions, SCF interaction with polymers, and the use of supercritical carbon dioxide as a cleaning solvent. The closing chapters focus on more practical considerations such as scale-up, equipment costs, and financial analysis.\u003cbr\u003eMany contributors to this book belong to the \"Joint Association for the Advancement of SCF Technology: (JAAST). A primary motivation for the formation of JAAST was the growing worldwide need to replace ozone-depleting compounds (ODCs) and smog-forming volatile organic compounds (VOCs) in manufacturing processes. Although aqueous cleaning has been adopted successfully for many applications, water is not a panacea and SCF technology has emerged as a leading alternative.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nThe Supercritical State\u003cbr\u003eSolubility in Supercritical Fluid Cleaning\u003cbr\u003eDesign for Cleanability\u003cbr\u003eDynamics of Particle Removal by Supercritical Carbon Dioxide\u003cbr\u003eSurfactants and Microemulsions in Supercritical Fluids\u003cbr\u003eEvaluation of Supercritical Fluid Interactions with Polymeric Materials\u003cbr\u003eA Survey on the Use of Supercritical Carbon Dioxide as a Cleaning Solvent\u003cbr\u003ePrecision Cleaning with Supercritical Fluid: A Case Study\u003cbr\u003eScaleup Considerations\u003cbr\u003eEquipment Cost Considerations and Financial Analysis of Supercritical Fluid Processing\u003cbr\u003eA Practical Guide to Supercritical Fluid Cleaning\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eJohn McHardy\u003c\/strong\u003e is presently scientist Component and Materials Laboratory Hughes Aircraft Company, where he has played a major role in the technical and commercial development of supercritical fluid cleaning. He has made many contributions to environmental and electrochemical technology and has acted as an internal consultant in the area: such as corrosion, metal migration batteries, heterogeneous catalysis and solid state materials. Dr. McHardy has to his credit over twenty-five research publications, one book, and seven patents.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSamuel P. Sawan\u003c\/strong\u003e is professor, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts. He is a member of the American Chemical Society, the Society of Plastic Engineers, Sigma Xi and SPIE.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:01-04:00","created_at":"2017-06-22T21:13:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","book","cleanability","environment","extraction","particle removal","poly","purification","solubility","supercritical fluid"],"price":23100,"price_min":23100,"price_max":23100,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Supercritical Fluid Cleaning","public_title":null,"options":["Default Title"],"price":23100,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1416-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1416-6_be3faffa-f496-438c-bb3a-467f9ae9b513.jpg?v=1499956058"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1416-6_be3faffa-f496-438c-bb3a-467f9ae9b513.jpg?v=1499956058","options":["Title"],"media":[{"alt":null,"id":358772408413,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1416-6_be3faffa-f496-438c-bb3a-467f9ae9b513.jpg?v=1499956058"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1416-6_be3faffa-f496-438c-bb3a-467f9ae9b513.jpg?v=1499956058","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: John McHardy, Samuel P. Sawan \u003cbr\u003e10-ISBN 0-8155-1416-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-0-8155-1416-9 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 290, Figures: 51, Tables: 42\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAlthough supercritical fluid (SCF) technology is now widely used in extraction and purification processes (in the petrochemical, food and pharmaceuticals industries), this book is the first to address the new application of cleaning. The objective is to provide a roadmap for readers who want to know whether SCF technology can meet their own processing and cleaning needs. It is particularly helpful to those striving to balance the requirements for a clean product and a clean environment. The interdisciplinary subject matter will appeal to scientists and engineers in all specialties ranging from materials and polymer sciences to chemistry and physics. It is also useful to those developing new processes for other applications, and references given at the end of each chapter provide links to the wider body of SCF literature.\u003cbr\u003eThe book is organized with topics progressing from the fundamental nature of the supercritical state, through process conditions and materials interactions, to economic considerations. Practical examples are included to show how the technology has been successfully applied. The first four chapters consider principles governing SCF processing, detailing issues such as solubility, design for cleanability, and the dynamics of particle removal. The next three chapters discuss surfactants and microemulsions, SCF interaction with polymers, and the use of supercritical carbon dioxide as a cleaning solvent. The closing chapters focus on more practical considerations such as scale-up, equipment costs, and financial analysis.\u003cbr\u003eMany contributors to this book belong to the \"Joint Association for the Advancement of SCF Technology: (JAAST). A primary motivation for the formation of JAAST was the growing worldwide need to replace ozone-depleting compounds (ODCs) and smog-forming volatile organic compounds (VOCs) in manufacturing processes. Although aqueous cleaning has been adopted successfully for many applications, water is not a panacea and SCF technology has emerged as a leading alternative.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nThe Supercritical State\u003cbr\u003eSolubility in Supercritical Fluid Cleaning\u003cbr\u003eDesign for Cleanability\u003cbr\u003eDynamics of Particle Removal by Supercritical Carbon Dioxide\u003cbr\u003eSurfactants and Microemulsions in Supercritical Fluids\u003cbr\u003eEvaluation of Supercritical Fluid Interactions with Polymeric Materials\u003cbr\u003eA Survey on the Use of Supercritical Carbon Dioxide as a Cleaning Solvent\u003cbr\u003ePrecision Cleaning with Supercritical Fluid: A Case Study\u003cbr\u003eScaleup Considerations\u003cbr\u003eEquipment Cost Considerations and Financial Analysis of Supercritical Fluid Processing\u003cbr\u003eA Practical Guide to Supercritical Fluid Cleaning\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eJohn McHardy\u003c\/strong\u003e is presently scientist Component and Materials Laboratory Hughes Aircraft Company, where he has played a major role in the technical and commercial development of supercritical fluid cleaning. He has made many contributions to environmental and electrochemical technology and has acted as an internal consultant in the area: such as corrosion, metal migration batteries, heterogeneous catalysis and solid state materials. Dr. McHardy has to his credit over twenty-five research publications, one book, and seven patents.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSamuel P. Sawan\u003c\/strong\u003e is professor, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts. He is a member of the American Chemical Society, the Society of Plastic Engineers, Sigma Xi and SPIE.\u003cbr\u003e\u003cbr\u003e"}
Thermoforming of Singl...
$149.00
{"id":11242249476,"title":"Thermoforming of Single and Multilayer Laminates, 1st Edition","handle":"9781455731725","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ashter \u003cbr\u003eISBN 9781455731725 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePlastic Films Technologies, Testing, and Applications\u003cbr\u003ePublished: 2013\u003c\/p\u003e\n\u003cp\u003ePages: 352\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• First comprehensive source of information and hands-on guide for the thermoforming of multilayered laminates\u003cbr\u003e\u003cbr\u003e• Covers applications across such sectors as automotive, packaging, home goods, and construction\u003cbr\u003e\u003cbr\u003e• Introduces new testing methods leveraging protocols used for metals\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermoforming of Single and Multilayer Laminates explains the fundamentals of lamination and plastics thermoforming technologies along with current and new developments. It focuses on properties and thermoforming mechanics of plastic films and in particular single and multilayered laminates, including barrier films.\u003cbr\u003e\u003cbr\u003eFor environmental and economic reasons, laminates are becoming increasingly important as a replacement for solid sheets and paint finishes in many industries, including transportation, packaging, and construction. Yet the processes of film formability during the extensive deformation and elevated temperatures experienced in conventional processing technologies, such as thermoforming, are poorly understood by most engineers.\u003cbr\u003e\u003cbr\u003eThis book covers production processes, such as extrusion, calendaring, and casting, as well as mechanical and impact testing methods. It also describes how testing protocols developed for metals can be leveraged for plastic films and laminates and includes a thorough discussion on methods for performing optical strain analysis.\u003cbr\u003e\u003cbr\u003eApplications in transportation vehicles and packaging, including packaging for food, medical and electronics applications, sports equipment, and household appliances, are discussed. Safety, recycling and environmental aspects of thermoforming and its products complete the book.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEngineers working with plastics films or products using plastic films (OEM level to the actual part manufacturer of thermoforming) in industries such as Automotive\/ transportation manufacturing, Packaging, Plastics Industry, Paint Industry; Personnel involved in testing and QA of products using plastics films, and managers; Academic Institutions\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eAcknowledgments\u003cbr\u003e1. Introduction to Thermoforming\u003cbr\u003e1.1 History\u003cbr\u003e1.2 Market and Applications\u003cbr\u003eReferences\u003cbr\u003e2. The Thermoforming Process\u003cbr\u003e2.1 Background\u003cbr\u003e2.2 Basic Principles of Thermoforming\u003cbr\u003e2.3 Difference between Plastic Sheets and Laminates\u003cbr\u003e2.4 Theory of Forming Process\u003cbr\u003e2.5 Forming Characteristics\u003cbr\u003e2.6 Machinery\u003cbr\u003eReferences\u003cbr\u003e3. Review of Characteristics of Common Plastics for Thermoforming\u003cbr\u003e3.1 Impact of Main Variables\u003cbr\u003eReferences\u003cbr\u003e4. Lamination\u003cbr\u003e4.1 Why Laminates?\u003cbr\u003e4.2 Elements of Laminates\u003cbr\u003e4.3 Typical Commercial Laminates\u003cbr\u003e4.4 Hot-Roll Lamination\u003cbr\u003e4.5 Extrusion Lamination\u003cbr\u003e4.6 Flame Lamination\u003cbr\u003e4.7 Adhesive Lamination\u003cbr\u003eReferences\u003cbr\u003e5. New Developments\u003cbr\u003e5.1 Heating Technology\u003cbr\u003e5.2 Trimming Technology\u003cbr\u003e5.3 Thickness Reduction\u003cbr\u003e5.4 Pressure Forming\u003cbr\u003e5.5 Vacuum Forming\u003cbr\u003e5.6 Twin-Sheet Forming\u003cbr\u003e5.7 Reinforced-Sheet Forming\u003cbr\u003e5.8 Multilayer Sheet Forming\u003cbr\u003e5.9 Biaxial Bulge\u003cbr\u003e5.10 Biaxial Strain\u003cbr\u003e5.11 Bulge Test Models\u003cbr\u003eReferences\u003cbr\u003e6. Mechanics of Materials\u003cbr\u003e6.1 Stress\u003cbr\u003e6.2 Strain\u003cbr\u003e6.3 Stress Relaxation and Creep\u003cbr\u003e6.4 Creep and Stress Relaxation Models\u003cbr\u003e6.5 Peeling\u003cbr\u003e6.6 Delamination\u003cbr\u003eReferences\u003cbr\u003e7. Characterization\u003cbr\u003e7.1 Mechanical Testing\u003cbr\u003e7.2 Impact Testing\u003cbr\u003e7.3 Biaxial Bulge Testing\u003cbr\u003e7.4 Rheological Testing\u003cbr\u003e7.5 Differential Scanning Calorimetry (DSC)\u003cbr\u003e7.6 Color Test\u003cbr\u003e7.7 Specular Gloss Test\u003cbr\u003eReferences\u003cbr\u003e8. Matching Material Characteristics to Commercial Thermoforming\u003cbr\u003e8.1 Packaging\u003cbr\u003e8.2 Appliances\u003cbr\u003e8.3 Bathroom\u003cbr\u003e8.4 Transportation\u003cbr\u003e8.5 Sports\u003cbr\u003eReferences\u003cbr\u003e9. Safety, Recycling and Environmental Issues of Thermoforming and its Products\u003cbr\u003e9.1 Safety\u003cbr\u003e9.2 Safety Guards\u003cbr\u003e9.3 Recycling\u003cbr\u003e9.4 The Economics of Recycling\u003cbr\u003e9.5 Handling of Scrap\u003cbr\u003e9.6 Contamination\u003cbr\u003e9.7 Environmental Impact\u003cbr\u003eReferences\u003cbr\u003e10. Other Processing Approaches\u003cbr\u003e10.1 Melt Extrusion\u003cbr\u003e10.2 Coextrusion\u003cbr\u003e10.3 Calendering\u003cbr\u003e10.4 Casting\u003cbr\u003e10.5 Coating\u003cbr\u003eReferences\u003cbr\u003e11. Modeling of Thermoforming: A Literature Review\u003cbr\u003e11.1 Models\u003cbr\u003eReferences\u003cbr\u003e12. Troubleshooting\u003cbr\u003e12.1 Thermoforming\u003cbr\u003e12.2 Hot-Roll Lamination\u003cbr\u003eReferences\u003cbr\u003eIndex","published_at":"2017-06-22T21:15:13-04:00","created_at":"2017-06-22T21:15:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","biaxial","book","characterization","environment","laminates","lamination","market and applications","p-processing","plastics","polymer","recycling","safety","technology","thermoforming","troubleshooting"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378469828,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermoforming of Single and Multilayer Laminates, 1st Edition","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781455731725","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280","options":["Title"],"media":[{"alt":null,"id":358810157149,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ashter \u003cbr\u003eISBN 9781455731725 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePlastic Films Technologies, Testing, and Applications\u003cbr\u003ePublished: 2013\u003c\/p\u003e\n\u003cp\u003ePages: 352\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• First comprehensive source of information and hands-on guide for the thermoforming of multilayered laminates\u003cbr\u003e\u003cbr\u003e• Covers applications across such sectors as automotive, packaging, home goods, and construction\u003cbr\u003e\u003cbr\u003e• Introduces new testing methods leveraging protocols used for metals\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermoforming of Single and Multilayer Laminates explains the fundamentals of lamination and plastics thermoforming technologies along with current and new developments. It focuses on properties and thermoforming mechanics of plastic films and in particular single and multilayered laminates, including barrier films.\u003cbr\u003e\u003cbr\u003eFor environmental and economic reasons, laminates are becoming increasingly important as a replacement for solid sheets and paint finishes in many industries, including transportation, packaging, and construction. Yet the processes of film formability during the extensive deformation and elevated temperatures experienced in conventional processing technologies, such as thermoforming, are poorly understood by most engineers.\u003cbr\u003e\u003cbr\u003eThis book covers production processes, such as extrusion, calendaring, and casting, as well as mechanical and impact testing methods. It also describes how testing protocols developed for metals can be leveraged for plastic films and laminates and includes a thorough discussion on methods for performing optical strain analysis.\u003cbr\u003e\u003cbr\u003eApplications in transportation vehicles and packaging, including packaging for food, medical and electronics applications, sports equipment, and household appliances, are discussed. Safety, recycling and environmental aspects of thermoforming and its products complete the book.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEngineers working with plastics films or products using plastic films (OEM level to the actual part manufacturer of thermoforming) in industries such as Automotive\/ transportation manufacturing, Packaging, Plastics Industry, Paint Industry; Personnel involved in testing and QA of products using plastics films, and managers; Academic Institutions\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eAcknowledgments\u003cbr\u003e1. Introduction to Thermoforming\u003cbr\u003e1.1 History\u003cbr\u003e1.2 Market and Applications\u003cbr\u003eReferences\u003cbr\u003e2. The Thermoforming Process\u003cbr\u003e2.1 Background\u003cbr\u003e2.2 Basic Principles of Thermoforming\u003cbr\u003e2.3 Difference between Plastic Sheets and Laminates\u003cbr\u003e2.4 Theory of Forming Process\u003cbr\u003e2.5 Forming Characteristics\u003cbr\u003e2.6 Machinery\u003cbr\u003eReferences\u003cbr\u003e3. Review of Characteristics of Common Plastics for Thermoforming\u003cbr\u003e3.1 Impact of Main Variables\u003cbr\u003eReferences\u003cbr\u003e4. Lamination\u003cbr\u003e4.1 Why Laminates?\u003cbr\u003e4.2 Elements of Laminates\u003cbr\u003e4.3 Typical Commercial Laminates\u003cbr\u003e4.4 Hot-Roll Lamination\u003cbr\u003e4.5 Extrusion Lamination\u003cbr\u003e4.6 Flame Lamination\u003cbr\u003e4.7 Adhesive Lamination\u003cbr\u003eReferences\u003cbr\u003e5. New Developments\u003cbr\u003e5.1 Heating Technology\u003cbr\u003e5.2 Trimming Technology\u003cbr\u003e5.3 Thickness Reduction\u003cbr\u003e5.4 Pressure Forming\u003cbr\u003e5.5 Vacuum Forming\u003cbr\u003e5.6 Twin-Sheet Forming\u003cbr\u003e5.7 Reinforced-Sheet Forming\u003cbr\u003e5.8 Multilayer Sheet Forming\u003cbr\u003e5.9 Biaxial Bulge\u003cbr\u003e5.10 Biaxial Strain\u003cbr\u003e5.11 Bulge Test Models\u003cbr\u003eReferences\u003cbr\u003e6. Mechanics of Materials\u003cbr\u003e6.1 Stress\u003cbr\u003e6.2 Strain\u003cbr\u003e6.3 Stress Relaxation and Creep\u003cbr\u003e6.4 Creep and Stress Relaxation Models\u003cbr\u003e6.5 Peeling\u003cbr\u003e6.6 Delamination\u003cbr\u003eReferences\u003cbr\u003e7. Characterization\u003cbr\u003e7.1 Mechanical Testing\u003cbr\u003e7.2 Impact Testing\u003cbr\u003e7.3 Biaxial Bulge Testing\u003cbr\u003e7.4 Rheological Testing\u003cbr\u003e7.5 Differential Scanning Calorimetry (DSC)\u003cbr\u003e7.6 Color Test\u003cbr\u003e7.7 Specular Gloss Test\u003cbr\u003eReferences\u003cbr\u003e8. Matching Material Characteristics to Commercial Thermoforming\u003cbr\u003e8.1 Packaging\u003cbr\u003e8.2 Appliances\u003cbr\u003e8.3 Bathroom\u003cbr\u003e8.4 Transportation\u003cbr\u003e8.5 Sports\u003cbr\u003eReferences\u003cbr\u003e9. Safety, Recycling and Environmental Issues of Thermoforming and its Products\u003cbr\u003e9.1 Safety\u003cbr\u003e9.2 Safety Guards\u003cbr\u003e9.3 Recycling\u003cbr\u003e9.4 The Economics of Recycling\u003cbr\u003e9.5 Handling of Scrap\u003cbr\u003e9.6 Contamination\u003cbr\u003e9.7 Environmental Impact\u003cbr\u003eReferences\u003cbr\u003e10. Other Processing Approaches\u003cbr\u003e10.1 Melt Extrusion\u003cbr\u003e10.2 Coextrusion\u003cbr\u003e10.3 Calendering\u003cbr\u003e10.4 Casting\u003cbr\u003e10.5 Coating\u003cbr\u003eReferences\u003cbr\u003e11. Modeling of Thermoforming: A Literature Review\u003cbr\u003e11.1 Models\u003cbr\u003eReferences\u003cbr\u003e12. Troubleshooting\u003cbr\u003e12.1 Thermoforming\u003cbr\u003e12.2 Hot-Roll Lamination\u003cbr\u003eReferences\u003cbr\u003eIndex"}
Toxicology of Solvents
$135.00
{"id":11242245764,"title":"Toxicology of Solvents","handle":"978-1-85957-296-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by M. McParland and N. Bates, National Poisons Information Service (London Center) \u003cbr\u003eISBN 978-1-85957-296-2\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e \u003cbr\u003ePages 400\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHealth and safety have become priority issues in industries across the world. Cases of neglect have cost companies dearly. This book reviews the evidence on the effects of exposure to common industrial solvents. \u003cbr\u003e\u003cbr\u003eSolvents have been the cause of occupational health problems for many years. Workers have been exposed through skin contact, by breathing in vapours, by splashes in the eye and, in extreme cases, by ingestion. This book examines the clinical consequences of exposure to different solvents, particularly in the workplace. \u003cbr\u003e\u003cbr\u003eThe authors have examined material from key medical and toxicological libraries, books, databases and their own case studies, to find the key effects of solvent exposure. They have gone back to original case reports to verify facts. The information is summarised here in ordered sections, including cancer-causing activity, skin and eye exposure effects, inhalation effects, reproductive effects and potential genetic effects. Both acute (short-term) and chronic (long-term) exposures are reviewed. Glycol ethers and esters are covered in one chapter, other common solvents are reviewed in individual chapters. \u003cbr\u003e\u003cbr\u003eA very useful section on first aid is included, with precautions to be taken to avoid rescuers being affected. Medical professionals will find useful information about antidotes, tests for exposure, and hospital management of affected patients. A glossary of medical terms is included to assist non-medical readers in understanding the text.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eFirst aid \u003cbr\u003eAcetone \u003cbr\u003eBenzene \u003cbr\u003eCarbon disulphide \u003cbr\u003eCarbon tetrachloride \u003cbr\u003eChloroform \u003cbr\u003eDiacetone alcohol \u003cbr\u003eDiisobutyl ketone \u003cbr\u003eDimethylformamide (DMF) \u003cbr\u003eEthanol \u003cbr\u003eEthyl amyl ketone \u003cbr\u003eGlycol ethers and esters \u003cbr\u003eHexane\/n-hexane \u003cbr\u003eIsopropanol \u003cbr\u003eMethanol \u003cbr\u003eMethylene chloride \u003cbr\u003eMethyl n-butyl ketone (MnBK) \u003cbr\u003eMethyl ethyl ketone (MEK) \u003cbr\u003eMethyl isobutyl ketone (MIBK) \u003cbr\u003eN-methyl-2-pyrrolidone (NMP) \u003cbr\u003eTetrachloroethylene \u003cbr\u003eToluene \u003cbr\u003e1,1,1-Trichloroethane (1,1,1-TCE) \u003cbr\u003eTrichloroethylene \u003cbr\u003eWhite spirit \u003cbr\u003eXylene \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eGlossary \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:01-04:00","created_at":"2017-06-22T21:15:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","acute","book","cancer","chronic","environment","esters","exposure","eye exposure","genetic effects","glycol ethers","health","inhalation effects","isopropanol","MEK","methanol","methyl ethyl ketone","methylene chloride Methyl n-butyl ketone","MnBK","n-hexane","polymer","reproductive effects","safety","skin","solvents"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378452292,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Toxicology of Solvents","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by M. McParland and N. Bates, National Poisons Information Service (London Center) \u003cbr\u003eISBN 978-1-85957-296-2\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e \u003cbr\u003ePages 400\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHealth and safety have become priority issues in industries across the world. Cases of neglect have cost companies dearly. This book reviews the evidence on the effects of exposure to common industrial solvents. \u003cbr\u003e\u003cbr\u003eSolvents have been the cause of occupational health problems for many years. Workers have been exposed through skin contact, by breathing in vapours, by splashes in the eye and, in extreme cases, by ingestion. This book examines the clinical consequences of exposure to different solvents, particularly in the workplace. \u003cbr\u003e\u003cbr\u003eThe authors have examined material from key medical and toxicological libraries, books, databases and their own case studies, to find the key effects of solvent exposure. They have gone back to original case reports to verify facts. The information is summarised here in ordered sections, including cancer-causing activity, skin and eye exposure effects, inhalation effects, reproductive effects and potential genetic effects. Both acute (short-term) and chronic (long-term) exposures are reviewed. Glycol ethers and esters are covered in one chapter, other common solvents are reviewed in individual chapters. \u003cbr\u003e\u003cbr\u003eA very useful section on first aid is included, with precautions to be taken to avoid rescuers being affected. Medical professionals will find useful information about antidotes, tests for exposure, and hospital management of affected patients. A glossary of medical terms is included to assist non-medical readers in understanding the text.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eFirst aid \u003cbr\u003eAcetone \u003cbr\u003eBenzene \u003cbr\u003eCarbon disulphide \u003cbr\u003eCarbon tetrachloride \u003cbr\u003eChloroform \u003cbr\u003eDiacetone alcohol \u003cbr\u003eDiisobutyl ketone \u003cbr\u003eDimethylformamide (DMF) \u003cbr\u003eEthanol \u003cbr\u003eEthyl amyl ketone \u003cbr\u003eGlycol ethers and esters \u003cbr\u003eHexane\/n-hexane \u003cbr\u003eIsopropanol \u003cbr\u003eMethanol \u003cbr\u003eMethylene chloride \u003cbr\u003eMethyl n-butyl ketone (MnBK) \u003cbr\u003eMethyl ethyl ketone (MEK) \u003cbr\u003eMethyl isobutyl ketone (MIBK) \u003cbr\u003eN-methyl-2-pyrrolidone (NMP) \u003cbr\u003eTetrachloroethylene \u003cbr\u003eToluene \u003cbr\u003e1,1,1-Trichloroethane (1,1,1-TCE) \u003cbr\u003eTrichloroethylene \u003cbr\u003eWhite spirit \u003cbr\u003eXylene \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eGlossary \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}