Chemtec Publishing offers a large collection of books on polymers, plastics, and rubber.
- Grid List
Filter
Handbook of Polymer Pr...
$295.00
{"id":7703524278429,"title":"Handbook of Polymer Processing Additives","handle":"handbook-of-polymer-processing-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-77467-010-1 \u003cbr\u003e\u003cbr\u003eEdition: 1st\u003cbr data-mce-fragment=\"1\"\u003ePublished Jan. 2023\u003cbr data-mce-fragment=\"1\"\u003ePages: 120+iv\u003cbr data-mce-fragment=\"1\"\u003eTables 12\u003cbr data-mce-fragment=\"1\"\u003eFigures 36\u003cbr data-mce-fragment=\"1\"\u003eHardcover\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe handbook and the databook series include separate books on many commonly used additives, such as Antiblocking Agents, Antioxidants, Biocides, Flame Retardants, Nucleating Agents, Plasticizers, Solvents, UV Stabilizers, and many others. This Handbook contains a selection of minor additives used in the processing of polymeric and other materials, such as acid scavengers, air release, anticaking, antifoaming, antifreezing, antigassing, antigelling, defoaming, antisettling additives, hydrolysis stabilizers, moisture scavengers, and reprocessing aids. They are all very important additives, although less documented in the literature. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eInformation on the use of these additives in various products is divided into the following sections: Methods and mechanisms of additives use, Types and concentrations, Application data that emphasize reasons for their use, advantages and disadvantages of additive use, effect on product properties, and properties of final products.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above-listed additives are most frequently used in PVC resins, including rigid, flexible, and paste resin, PVC copolymers, other vinyl resins, and mixtures with other polymers, polyolefins (PE and PP), and their copolymers (e.g., EVA, EPDM), polystyrene and various styrene copolymers, epichlorohydrin rubber, fluoroelastomers, fluorinated rubbers, and fluoropolymers, polyesters (PBT, PET, PLA, PBAT, unsaturated polyesters, and TPE), polyamides, polyurethanes, acrylates, and their various copolymers, alkyds, polyoxymethylene, epoxy, melamine, and phenolic resins, cellulosic polymers (e.g., nitrocellulose, cellulose acetate butyrate), rubbers (butyl, chlorinated rubber, styrene-butadiene, chlorobutyl, chlorosulfonated polyethylene, nitrile, silicone, and polychloroprene), starch-based resins, and many others not mentioned by name.\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003eMany products and industries require these additives, including construction, automotive, aeronautic, electronic industries, glass coating, insulating glass manufacture, mineral wool insulation, adhesives, sealants and gaskets, cable and wire industry, paints, primers, and coatings, wind turbines, 3D printing, shoe industry, pneumatic pipe, film, conveyor belts, elevator wheel, home appliances, building decorative boards, shopping bags, agricultural film, food containers, toys and stationery, membranes, leather and coated fabrics, roof coatings, asphaltic felt, modified bitumen and single plies, printing with gravure and flexo on paper and vinyl wall coverings, foams, cast parts, cleaners, printing inks and toners, agrochemicals, cosmetics, and many others not mentioned by name. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above (incomplete) list of polymers and products, which use discussed in this book additives, shows how important they are for polymer processing and the production of many other products. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eA complete analysis of literature and patents is included in this book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and the environment. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHandbook of Polymer Processing Additives is a highly practical resource, covering the use and application of many processing additives. It assists engineers and scientists in the polymer industry in their applications and provides a reference book for those involved in research and development support. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThis book is an excellent companion to the Databook of Polymer Processing Additives because the data in the Handbook of Polymer Processing Additives do not repeat information, but Handbook gives a broader background for the selection of the additives, their performance mechanisms, and many essential application properties.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe combination of data and comprehensive analysis of the performance of these materials form a particularly important source of information for industry, research, academia, and legislature. These two books should be considered by any industrial, university, governmental, and public library because of the widespread applications of these additives in industry and everyday life.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2023-02-24T13:51:24-05:00","created_at":"2023-02-24T12:52:56-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","biodegradation","blends","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","monomers","physical properties","polymeric materials","polymerization","processing","processing methods","structure","structures","synthesis","toxicity","weather stability"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393827995805,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Processing Additives","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569","options":["Title"],"media":[{"alt":null,"id":27339963367581,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-77467-010-1 \u003cbr\u003e\u003cbr\u003eEdition: 1st\u003cbr data-mce-fragment=\"1\"\u003ePublished Jan. 2023\u003cbr data-mce-fragment=\"1\"\u003ePages: 120+iv\u003cbr data-mce-fragment=\"1\"\u003eTables 12\u003cbr data-mce-fragment=\"1\"\u003eFigures 36\u003cbr data-mce-fragment=\"1\"\u003eHardcover\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe handbook and the databook series include separate books on many commonly used additives, such as Antiblocking Agents, Antioxidants, Biocides, Flame Retardants, Nucleating Agents, Plasticizers, Solvents, UV Stabilizers, and many others. This Handbook contains a selection of minor additives used in the processing of polymeric and other materials, such as acid scavengers, air release, anticaking, antifoaming, antifreezing, antigassing, antigelling, defoaming, antisettling additives, hydrolysis stabilizers, moisture scavengers, and reprocessing aids. They are all very important additives, although less documented in the literature. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eInformation on the use of these additives in various products is divided into the following sections: Methods and mechanisms of additives use, Types and concentrations, Application data that emphasize reasons for their use, advantages and disadvantages of additive use, effect on product properties, and properties of final products.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above-listed additives are most frequently used in PVC resins, including rigid, flexible, and paste resin, PVC copolymers, other vinyl resins, and mixtures with other polymers, polyolefins (PE and PP), and their copolymers (e.g., EVA, EPDM), polystyrene and various styrene copolymers, epichlorohydrin rubber, fluoroelastomers, fluorinated rubbers, and fluoropolymers, polyesters (PBT, PET, PLA, PBAT, unsaturated polyesters, and TPE), polyamides, polyurethanes, acrylates, and their various copolymers, alkyds, polyoxymethylene, epoxy, melamine, and phenolic resins, cellulosic polymers (e.g., nitrocellulose, cellulose acetate butyrate), rubbers (butyl, chlorinated rubber, styrene-butadiene, chlorobutyl, chlorosulfonated polyethylene, nitrile, silicone, and polychloroprene), starch-based resins, and many others not mentioned by name.\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003eMany products and industries require these additives, including construction, automotive, aeronautic, electronic industries, glass coating, insulating glass manufacture, mineral wool insulation, adhesives, sealants and gaskets, cable and wire industry, paints, primers, and coatings, wind turbines, 3D printing, shoe industry, pneumatic pipe, film, conveyor belts, elevator wheel, home appliances, building decorative boards, shopping bags, agricultural film, food containers, toys and stationery, membranes, leather and coated fabrics, roof coatings, asphaltic felt, modified bitumen and single plies, printing with gravure and flexo on paper and vinyl wall coverings, foams, cast parts, cleaners, printing inks and toners, agrochemicals, cosmetics, and many others not mentioned by name. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above (incomplete) list of polymers and products, which use discussed in this book additives, shows how important they are for polymer processing and the production of many other products. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eA complete analysis of literature and patents is included in this book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and the environment. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHandbook of Polymer Processing Additives is a highly practical resource, covering the use and application of many processing additives. It assists engineers and scientists in the polymer industry in their applications and provides a reference book for those involved in research and development support. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThis book is an excellent companion to the Databook of Polymer Processing Additives because the data in the Handbook of Polymer Processing Additives do not repeat information, but Handbook gives a broader background for the selection of the additives, their performance mechanisms, and many essential application properties.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe combination of data and comprehensive analysis of the performance of these materials form a particularly important source of information for industry, research, academia, and legislature. These two books should be considered by any industrial, university, governmental, and public library because of the widespread applications of these additives in industry and everyday life.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Handbook of Surface Im...
$320.00
{"id":7703518052509,"title":"Handbook of Surface Improvement and Modification, 2nd Edition","handle":"handbook-of-surface-improvement-and-modification-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003e\n\u003cp\u003e\u003cspan\u003eISBN 978-1- 77467-024-8 (hardcover)\u003c\/span\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: Jan 2023\u003cbr\u003e\u003c\/span\u003ePages 258+iv\u003cbr data-mce-fragment=\"1\"\u003eFigures 129\u003cbr data-mce-fragment=\"1\"\u003eTables 44\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book covers the comprehensive study of surface improvement and modification, including the introduction of a range of processing methods such as physical, chemical, and electrochemical treatments. The fundamentals of theory, design and application are thoroughly discussed. It offers an authoritative view on surface improvement technology to both researchers and practitioners in various industry fields.\u003cbr\u003e\u003cbr\u003eSurface appearance is one of the most important properties of many products. It must be tailored to the product needs, which are frequently very different in various applications.\u003cbr\u003e\u003cbr\u003eThis book is devoted to additives used for surface modification of materials a technology used in the production and processing of adhesives, appliances, automotive, bookbinding, building and construction, business machines, caulks, cellular phones, coatings, concrete, dental applications, electronics, flooring, footwear, furniture, graphic arts, hot-melt adhesives, hygiene, labels, lacquers, leather, lithographic inks, medicine, nanofluids, nonwovens, optical films, packaging, paints, paper, plastics, pressure-sensitive adhesives, printing inks, rubber, sealants, sporting goods, tapes, varnish, wire and cable, wood and many other materials. This book is the first known published book on this subject. The second edition brings, in addition to the verified content of the first edition, the discussion of the most recent findings and achievements in the field. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHandbook of Surface Improvement and Modification\u003c\/strong\u003e contains information on eleven groups of additives that are commercially available for the improvement and surface modification of manufactured materials. These include additives improving scratch and mar resistance, gloss, surface flattening, tack reduction, tack increase (tackifiers), surface tension reduction and wetting, surface cleaning, dirt pickup resistance, hydrophobization, anti-cratering, and leveling, and coefficient of static friction. They are discussed in separate chapters in the same order as above. \u003cbr\u003e\u003cbr\u003eThe highlights for each chapter are as follows.\u003cbr\u003eScratch and mar resistance: many important influences combined form mechanism of protection; scratch features (ironing, transition, stick-slip, tearing) determination; texture patterning and scratch visibility; self-healing; damage observation on nanoscale; violet laser scanning confocal microscope cross-section profile of scratch damage; silsesquioxanes\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGloss enhancement:\u003c\/strong\u003e magnetic resonance imaging measurements of human brain reactions; instrumental measurements; meso- and micro-scale roughness; hyperbranched resins; durability of gloss\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface matting:\u003c\/strong\u003e powder coatings; roughness formation; dull black coatings; curing rate and flattening; low-gloss soft-touch; anti-glare coatings\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTack-free:\u003c\/strong\u003e abhesion features; instrumental surface tack measurement; surface tension; nature-inspired; completeness of cure; dental applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTackifiers:\u003c\/strong\u003e balance of elastic and viscous properties; structure and origin of rosins; phase structure of tackifying system; compatibility; environmental solutions; pharmaceutical, cosmetics, and medical applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface tension and wetting:\u003c\/strong\u003e bottlebrush polymers; rigid-rod polymeric fiber; superhydrophobicity; superhydrophilicity; surface tension prediction; porosity and morphology; wettability surface gradient; surface free energy; bacterial adhesion; photo-induced hydrophilicity; orthopedic implants; high-speed printing; dry-erase inks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface cleaning and stain inhibition:\u003c\/strong\u003e in-source cleaner regeneration; the negative impact of perfluorinated acids; bio-inspired cleaning methods; hole generation and pollutant decomposition; photocatalytic self-cleaning; anti-graffiti coating, graffiti removal\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDirt pickup resistance:\u003c\/strong\u003e HDPE and carnauba waxes; mark and scuff resistance; decorative paints, wood stains, leather lacquers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWater-repelling:\u003c\/strong\u003e biomimetic solutions; superhydrophobic coatings; self-hydrophobization; superamphiphobic surfaces; chemical functionalization, microtextured surface; building structure protection; protection against ice formation\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAnti-cratering and leveling:\u003c\/strong\u003e thixotropic behavior; nanoparticles; leveling agents; superplasticizers; powder coatings; sag-leveling balance; pinhole prevention\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCoefficient of friction:\u003c\/strong\u003e tribometers; speed effect; dwell time effect; surface patterns and textured surfaces; elemental mapping; capillary bridge; human skin; dangling bonds; polymer brushes; lamellar tribofilm; microspheres, release agents; a film with a consistent coefficient of friction\u003cbr\u003e\u003cbr\u003eA companion book entitled \u003cstrong\u003eDatabook of Surface Modification Additives\u003c\/strong\u003e has also been published. It contains information and data on the additives commercially available to improve materials by the above-listed modifications. Both books do not repeat information. In this book, the focus is on the methods and mechanisms which are known to be responsible for the enhancement of material properties with the use of additives. The readers of these books may also be interested in a recently published book entitled \u003cstrong\u003eSelf-healing Materials\u003c\/strong\u003e. Principles \u0026amp; Technology that helps to understand available options in new technologies of surface self-repair. All three books provide the most comprehensive information on the subject of surface improvement available today.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Scratch and Mar Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e2.1 Methods and mechanisms of protection\u003cbr data-mce-fragment=\"1\"\u003e2.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e2.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Gloss Enhancement\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e3.1 Gloss perception\u003cbr data-mce-fragment=\"1\"\u003e3.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e3.3 Methods and mechanisms of gloss enhancement\u003cbr data-mce-fragment=\"1\"\u003e3.4 Durability of gloss\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Surface Matting (Flattening)\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e4.1 Methods and mechanisms of flattening\u003cbr data-mce-fragment=\"1\"\u003e4.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e4.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Tack-free Surface\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e5.1 Methods and mechanisms of tack reduction\u003cbr data-mce-fragment=\"1\"\u003e5.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e5.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e6 Tackifiers\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e6.1 Methods and mechanisms of tack enhancement\u003cbr data-mce-fragment=\"1\"\u003e6.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e6.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e7 Surface Tension and Wetting\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e7.1 Methods and mechanisms of surface tension reduction\u003cbr data-mce-fragment=\"1\"\u003e7.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e7.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e8 Easy Surface Cleaning and Stain Inhibition\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e8.1 Methods and mechanisms of surface cleaning\u003cbr data-mce-fragment=\"1\"\u003e8.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e8.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e9 Dirt Pickup Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e9.1 Methods and mechanisms of dirt pickup prevention\u003cbr data-mce-fragment=\"1\"\u003e9.2 Additives use\u003cbr data-mce-fragment=\"1\"\u003e9.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e10 Water Repelling (Hydrophobization)\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e10.1 Methods and mechanisms of hydrophobization\u003cbr data-mce-fragment=\"1\"\u003e10.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e10.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e11 Anti-cratering and Leveling\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e11.1 Methods and mechanisms of anti-cratering and leveling\u003cbr data-mce-fragment=\"1\"\u003e11.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e11.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e12 The Coefficient of Friction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e12.1 Methods and mechanisms of improvement of the coefficient of friction\u003cbr data-mce-fragment=\"1\"\u003e12.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e12.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2023-02-24T12:51:04-05:00","created_at":"2023-02-24T12:41:36-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","additive","additives","anti-cratering","book","cleaning","coefficient of friction","gloss","leveling and anti-cratering","matting","polymer","polymers","surface tension","tack-free surface","tackifiers","wetting"],"price":32000,"price_min":32000,"price_max":32000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393801814173,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Surface Improvement and Modification, 2nd Edition","public_title":null,"options":["Default Title"],"price":32000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927","options":["Title"],"media":[{"alt":null,"id":27339983683741,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003e\n\u003cp\u003e\u003cspan\u003eISBN 978-1- 77467-024-8 (hardcover)\u003c\/span\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: Jan 2023\u003cbr\u003e\u003c\/span\u003ePages 258+iv\u003cbr data-mce-fragment=\"1\"\u003eFigures 129\u003cbr data-mce-fragment=\"1\"\u003eTables 44\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book covers the comprehensive study of surface improvement and modification, including the introduction of a range of processing methods such as physical, chemical, and electrochemical treatments. The fundamentals of theory, design and application are thoroughly discussed. It offers an authoritative view on surface improvement technology to both researchers and practitioners in various industry fields.\u003cbr\u003e\u003cbr\u003eSurface appearance is one of the most important properties of many products. It must be tailored to the product needs, which are frequently very different in various applications.\u003cbr\u003e\u003cbr\u003eThis book is devoted to additives used for surface modification of materials a technology used in the production and processing of adhesives, appliances, automotive, bookbinding, building and construction, business machines, caulks, cellular phones, coatings, concrete, dental applications, electronics, flooring, footwear, furniture, graphic arts, hot-melt adhesives, hygiene, labels, lacquers, leather, lithographic inks, medicine, nanofluids, nonwovens, optical films, packaging, paints, paper, plastics, pressure-sensitive adhesives, printing inks, rubber, sealants, sporting goods, tapes, varnish, wire and cable, wood and many other materials. This book is the first known published book on this subject. The second edition brings, in addition to the verified content of the first edition, the discussion of the most recent findings and achievements in the field. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHandbook of Surface Improvement and Modification\u003c\/strong\u003e contains information on eleven groups of additives that are commercially available for the improvement and surface modification of manufactured materials. These include additives improving scratch and mar resistance, gloss, surface flattening, tack reduction, tack increase (tackifiers), surface tension reduction and wetting, surface cleaning, dirt pickup resistance, hydrophobization, anti-cratering, and leveling, and coefficient of static friction. They are discussed in separate chapters in the same order as above. \u003cbr\u003e\u003cbr\u003eThe highlights for each chapter are as follows.\u003cbr\u003eScratch and mar resistance: many important influences combined form mechanism of protection; scratch features (ironing, transition, stick-slip, tearing) determination; texture patterning and scratch visibility; self-healing; damage observation on nanoscale; violet laser scanning confocal microscope cross-section profile of scratch damage; silsesquioxanes\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGloss enhancement:\u003c\/strong\u003e magnetic resonance imaging measurements of human brain reactions; instrumental measurements; meso- and micro-scale roughness; hyperbranched resins; durability of gloss\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface matting:\u003c\/strong\u003e powder coatings; roughness formation; dull black coatings; curing rate and flattening; low-gloss soft-touch; anti-glare coatings\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTack-free:\u003c\/strong\u003e abhesion features; instrumental surface tack measurement; surface tension; nature-inspired; completeness of cure; dental applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTackifiers:\u003c\/strong\u003e balance of elastic and viscous properties; structure and origin of rosins; phase structure of tackifying system; compatibility; environmental solutions; pharmaceutical, cosmetics, and medical applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface tension and wetting:\u003c\/strong\u003e bottlebrush polymers; rigid-rod polymeric fiber; superhydrophobicity; superhydrophilicity; surface tension prediction; porosity and morphology; wettability surface gradient; surface free energy; bacterial adhesion; photo-induced hydrophilicity; orthopedic implants; high-speed printing; dry-erase inks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface cleaning and stain inhibition:\u003c\/strong\u003e in-source cleaner regeneration; the negative impact of perfluorinated acids; bio-inspired cleaning methods; hole generation and pollutant decomposition; photocatalytic self-cleaning; anti-graffiti coating, graffiti removal\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDirt pickup resistance:\u003c\/strong\u003e HDPE and carnauba waxes; mark and scuff resistance; decorative paints, wood stains, leather lacquers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWater-repelling:\u003c\/strong\u003e biomimetic solutions; superhydrophobic coatings; self-hydrophobization; superamphiphobic surfaces; chemical functionalization, microtextured surface; building structure protection; protection against ice formation\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAnti-cratering and leveling:\u003c\/strong\u003e thixotropic behavior; nanoparticles; leveling agents; superplasticizers; powder coatings; sag-leveling balance; pinhole prevention\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCoefficient of friction:\u003c\/strong\u003e tribometers; speed effect; dwell time effect; surface patterns and textured surfaces; elemental mapping; capillary bridge; human skin; dangling bonds; polymer brushes; lamellar tribofilm; microspheres, release agents; a film with a consistent coefficient of friction\u003cbr\u003e\u003cbr\u003eA companion book entitled \u003cstrong\u003eDatabook of Surface Modification Additives\u003c\/strong\u003e has also been published. It contains information and data on the additives commercially available to improve materials by the above-listed modifications. Both books do not repeat information. In this book, the focus is on the methods and mechanisms which are known to be responsible for the enhancement of material properties with the use of additives. The readers of these books may also be interested in a recently published book entitled \u003cstrong\u003eSelf-healing Materials\u003c\/strong\u003e. Principles \u0026amp; Technology that helps to understand available options in new technologies of surface self-repair. All three books provide the most comprehensive information on the subject of surface improvement available today.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Scratch and Mar Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e2.1 Methods and mechanisms of protection\u003cbr data-mce-fragment=\"1\"\u003e2.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e2.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Gloss Enhancement\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e3.1 Gloss perception\u003cbr data-mce-fragment=\"1\"\u003e3.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e3.3 Methods and mechanisms of gloss enhancement\u003cbr data-mce-fragment=\"1\"\u003e3.4 Durability of gloss\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Surface Matting (Flattening)\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e4.1 Methods and mechanisms of flattening\u003cbr data-mce-fragment=\"1\"\u003e4.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e4.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Tack-free Surface\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e5.1 Methods and mechanisms of tack reduction\u003cbr data-mce-fragment=\"1\"\u003e5.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e5.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e6 Tackifiers\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e6.1 Methods and mechanisms of tack enhancement\u003cbr data-mce-fragment=\"1\"\u003e6.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e6.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e7 Surface Tension and Wetting\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e7.1 Methods and mechanisms of surface tension reduction\u003cbr data-mce-fragment=\"1\"\u003e7.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e7.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e8 Easy Surface Cleaning and Stain Inhibition\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e8.1 Methods and mechanisms of surface cleaning\u003cbr data-mce-fragment=\"1\"\u003e8.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e8.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e9 Dirt Pickup Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e9.1 Methods and mechanisms of dirt pickup prevention\u003cbr data-mce-fragment=\"1\"\u003e9.2 Additives use\u003cbr data-mce-fragment=\"1\"\u003e9.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e10 Water Repelling (Hydrophobization)\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e10.1 Methods and mechanisms of hydrophobization\u003cbr data-mce-fragment=\"1\"\u003e10.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e10.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e11 Anti-cratering and Leveling\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e11.1 Methods and mechanisms of anti-cratering and leveling\u003cbr data-mce-fragment=\"1\"\u003e11.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e11.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e12 The Coefficient of Friction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e12.1 Methods and mechanisms of improvement of the coefficient of friction\u003cbr data-mce-fragment=\"1\"\u003e12.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e12.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Sulfur. History, Techn...
$270.00
{"id":7703513366685,"title":"Sulfur. History, Technology, Applications \u0026 Industry, 3rd Edition","handle":"sulfur-history-technology-applications-industry-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Gerald Kutney \u003cbr\u003eISBN 978-1-77467-026-2\u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003ePublished: Jan. 2023\u003cbr\u003eThird Edition\u003cbr\u003ePages 238+viii \u003cbr\u003eTables 42\u003cbr\u003eFigures 33\u003cbr\u003e\n\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThis book, scientific and technical in nature, is written in a clear and concise style by the author who aims at presenting scholarly content to be understood by those who do not have a strong background in chemistry, and the text will be enjoyed until the last page by anyone. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe latest edition of this highly regarded book is a reference that brings the latest information on the evolving role of sulfur in several industrial processes, as well as its relationship to the environment. It is dedicated to those who need to know about the modalities and potentialities of sulfur use.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has seven chapters, each devoted to either method of production or a set of applications as they intertwined during different stages of industrial and technological developments. The first chapter is a brief introduction that provides an overview of the physical properties of sulfur, its natural sources, and its ancient markets.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eIt is followed by the “Sulfur Age,” also known as the Industrial Age, during which the dominant market for sulfur and sulfuric acid emerged, such as the Leblanc industry and phosphate fertilizers. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSicily was the first global supplier of sulfur. Sulfur demand soared, becoming the first global commodity industry. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eLarge sulfur deposits were discovered in Texas and Louisiana. Hidden under the quagmire, the elusive deposits remained beyond the technology of the day. A new inventive process was discovered by Herman Frasch. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHis technology created the great sulfur companies of the world, and America became the largest producer (and user) of sulfur (China is the major producer of sulfur today). Herman Frasch is less known but of similar stature as Edison. His patented inventions gave the edge to American industry, which went from 100% import to becoming the largest producer and exporter in less than one decade.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSulfur is a common contaminant of oil and natural gas. It must be removed from these materials before they can be used as energy sources. It is the basis of the most modern industry. Recovery of sulfur from oil sands is the further extension of the present process, and its future is discussed.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe sulfur industry is an excellent “case study” of entrepreneurship and its relationship with investors. This book reveals the characteristics of entrepreneurs and inventors and the approaches required to formulate goals. Most importantly, it shows how to succeed in new ventures. Rockefeller might have become a failed entrepreneur if Frasch had not rescued him from his “bad investment.” Frasch turned certain failures into successes through his technological expertise and determination. Frasch’s major expertise was in the oil industry and specifically in the removal of sulfur from oil.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSulfur deposits cover most regions of the world and their exploration techniques have been investigated in detail throughout this text.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe interested audience of this book goes far beyond the boundaries of sulfur applications and the oil industry, and as such, it should be found in every technical, university, and public library. \u003cbr data-mce-fragment=\"1\"\u003e \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Le Roi du Sol \u003cbr data-mce-fragment=\"1\"\u003e2 The Sulfur Age\u003cbr data-mce-fragment=\"1\"\u003e2.1 Sulfuric acid manufacturing\u003cbr data-mce-fragment=\"1\"\u003e2.1.1 The Nordhausen process\u003cbr data-mce-fragment=\"1\"\u003e2.1.2 The Bell \u003cbr data-mce-fragment=\"1\"\u003e2.1.3 The chamber \u003cbr data-mce-fragment=\"1\"\u003e2.1.4 The contact \u003cbr data-mce-fragment=\"1\"\u003e2.1.5 Metallurgical sulfuric \u003cbr data-mce-fragment=\"1\"\u003e2.1.6 Pyrites\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.1 Spain\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.2 Italy\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.3 Norway\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.4 Canada\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.5 China\u003cbr data-mce-fragment=\"1\"\u003e2.2 Sulfuric acid \u003cbr data-mce-fragment=\"1\"\u003e2.2.1 The Leblanc \u003cbr data-mce-fragment=\"1\"\u003e2.2.2 Phosphate \u003cbr data-mce-fragment=\"1\"\u003e3 Native Sulfur - Sicily\u003cbr data-mce-fragment=\"1\"\u003e3.1 Ancient sulfur\u003cbr data-mce-fragment=\"1\"\u003e3.2 Renaissance sulfur\u003cbr data-mce-fragment=\"1\"\u003e3.3 Industrial revolution (“Sulfur Age”)\u003cbr data-mce-fragment=\"1\"\u003e3.3.1 Sicily \u003cbr data-mce-fragment=\"1\"\u003e3.3.2 The Zolfare, the Solfatari \u0026amp; the Carusi\u003cbr data-mce-fragment=\"1\"\u003e3.3.3 The Doppioni, Calcarella, Calcaroni \u0026amp; the Gill furnace\u003cbr data-mce-fragment=\"1\"\u003e3.3.4 The Gabelloti \u003cbr data-mce-fragment=\"1\"\u003e3.3.5 The British wine merchants\u003cbr data-mce-fragment=\"1\"\u003e3.3.6 The Sulfur War of 1840\u003cbr data-mce-fragment=\"1\"\u003e3.3.7 The post-Sulfur War era \u0026amp; the rise of pyrites\u003cbr data-mce-fragment=\"1\"\u003e3.4 The cartels \u003cbr data-mce-fragment=\"1\"\u003e3.4.1 Anglo-Sicilian Sulfur Company (ASSC): 1896 to 1906\u003cbr data-mce-fragment=\"1\"\u003e3.4.2 Consorzio Obligatorio per D'Industrial Solfifera Siciliana (COISS): 1906 to 1932\u003cbr data-mce-fragment=\"1\"\u003e3.4.3 Ufficio per la Vendita dello Zolfo Italiano (UVZI): 1934 to 1940\u003cbr data-mce-fragment=\"1\"\u003e3.4.4 Ente Zolfi Italiani (EZI): 1940 to 1962\u003cbr data-mce-fragment=\"1\"\u003e3.4.5 Ente Minerario Siciliano (EMS): 1962 to 1985\u003cbr data-mce-fragment=\"1\"\u003e4 Frasch Sulfur – Texas\/Louisiana \u003cbr data-mce-fragment=\"1\"\u003e4.1 Native (non-Frasch) sulfur mines \u003cbr data-mce-fragment=\"1\"\u003e4.2 Herman Frasch \u003cbr data-mce-fragment=\"1\"\u003e4.2.1 His life \u0026amp; family\u003cbr data-mce-fragment=\"1\"\u003e4.2.2 His oil ventures \u003cbr data-mce-fragment=\"1\"\u003e4.2.3 His alkali venture\u003cbr data-mce-fragment=\"1\"\u003e4.2.4 His salt ventures\u003cbr data-mce-fragment=\"1\"\u003e4.2.5 His sulfur ventures: Union Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5 The other sulfur companies\u003cbr data-mce-fragment=\"1\"\u003e4.5.1 Freeport Sulfur \u003cbr data-mce-fragment=\"1\"\u003e4.5.2 Texas Gulf Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.3 Duval Texas Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.4 Jefferson Lake Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.5 Sulexco \u003cbr data-mce-fragment=\"1\"\u003e4.6 Liquid sulfur \u003cbr data-mce-fragment=\"1\"\u003e4.7 Non-U.S. Frasch mines\u003cbr data-mce-fragment=\"1\"\u003e4.7.1 Mexico \u003cbr data-mce-fragment=\"1\"\u003e4.7.2 Poland \u003cbr data-mce-fragment=\"1\"\u003e4.7.3 U.S.S.R.\u003cbr data-mce-fragment=\"1\"\u003e4.7.4 Iraq \u003cbr data-mce-fragment=\"1\"\u003e4.7.5 Brazil \u003cbr data-mce-fragment=\"1\"\u003e5 Recovered Sulfur - Alberta\u003cbr data-mce-fragment=\"1\"\u003e5.1 Sour, more sour, \u0026amp; sourest\u003cbr data-mce-fragment=\"1\"\u003e5.2 Alberta \u0026amp; the global sulfur market\u003cbr data-mce-fragment=\"1\"\u003e5.3 Sulfur blocks \u0026amp; broken sulfur\u003cbr data-mce-fragment=\"1\"\u003e5.4 Sulfur forming: slate \u0026amp; prills\u003cbr data-mce-fragment=\"1\"\u003e5.5 Marketing \u0026amp; \u003cbr data-mce-fragment=\"1\"\u003e5.5.1 Cansulex \u0026amp; Prism\u003cbr data-mce-fragment=\"1\"\u003e5.5.2 Alberta to Vancouver\u003cbr data-mce-fragment=\"1\"\u003e5.6 The global competition\u003cbr data-mce-fragment=\"1\"\u003e5.6.1 U.S. \u003cbr data-mce-fragment=\"1\"\u003e5.6.2 Western Europe \u003cbr data-mce-fragment=\"1\"\u003e5.6.3 Persian Gulf\u003cbr data-mce-fragment=\"1\"\u003e5.6.3.1 Iran \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.2 Iraq \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.3 Saudi Arabia \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.4 Other \u003cbr data-mce-fragment=\"1\"\u003e5.6.4 Caspian Sea \u003cbr data-mce-fragment=\"1\"\u003e5.6.5 Japan \u003cbr data-mce-fragment=\"1\"\u003e5.7 Sulfur pricing: the penny syndrome \u003cbr data-mce-fragment=\"1\"\u003e6 The Sulfur Entrepreneur \u003cbr data-mce-fragment=\"1\"\u003e6.1 The desperate entrepreneur \u0026amp; the reluctant investor\u003cbr data-mce-fragment=\"1\"\u003e6.1.1 Institutional investors\u003cbr data-mce-fragment=\"1\"\u003e6.1.2 Private investors \u003cbr data-mce-fragment=\"1\"\u003e6.1.3 Entrepreneurs \u003cbr data-mce-fragment=\"1\"\u003e6.2 The revolutionary technology: to switch or not to switch, that is the question\u003cbr data-mce-fragment=\"1\"\u003e6.3 The ultimate venture: the monopoly game\u003cbr data-mce-fragment=\"1\"\u003e6.4 Who killed the sulfur entrepreneur? \u003cbr data-mce-fragment=\"1\"\u003e6.5 Climate change will cause sulfur change\u003cbr data-mce-fragment=\"1\"\u003eReferences \u003cbr data-mce-fragment=\"1\"\u003eAppendix I. Sulexco Agreements\u003cbr data-mce-fragment=\"1\"\u003eAppendix II. FTC Review of Sulexco\u003cbr data-mce-fragment=\"1\"\u003eAppendix III. Global Sulfur Production\u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\n\u003c\/div\u003e","published_at":"2023-02-24T12:38:03-05:00","created_at":"2023-02-24T12:25:51-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","applications","book","fertilizers","general","natural sources","oil sands","physical properties","Sulfur","Sulfuric acid","Sulphur","technological developments"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393768095901,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Sulfur. History, Technology, Applications \u0026 Industry, 3rd Edition","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-026-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670262-Case.png?v=1677260232"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670262-Case.png?v=1677260232","options":["Title"],"media":[{"alt":null,"id":27339755061405,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670262-Case.png?v=1677260232"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670262-Case.png?v=1677260232","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Gerald Kutney \u003cbr\u003eISBN 978-1-77467-026-2\u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003ePublished: Jan. 2023\u003cbr\u003eThird Edition\u003cbr\u003ePages 238+viii \u003cbr\u003eTables 42\u003cbr\u003eFigures 33\u003cbr\u003e\n\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThis book, scientific and technical in nature, is written in a clear and concise style by the author who aims at presenting scholarly content to be understood by those who do not have a strong background in chemistry, and the text will be enjoyed until the last page by anyone. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe latest edition of this highly regarded book is a reference that brings the latest information on the evolving role of sulfur in several industrial processes, as well as its relationship to the environment. It is dedicated to those who need to know about the modalities and potentialities of sulfur use.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has seven chapters, each devoted to either method of production or a set of applications as they intertwined during different stages of industrial and technological developments. The first chapter is a brief introduction that provides an overview of the physical properties of sulfur, its natural sources, and its ancient markets.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eIt is followed by the “Sulfur Age,” also known as the Industrial Age, during which the dominant market for sulfur and sulfuric acid emerged, such as the Leblanc industry and phosphate fertilizers. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSicily was the first global supplier of sulfur. Sulfur demand soared, becoming the first global commodity industry. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eLarge sulfur deposits were discovered in Texas and Louisiana. Hidden under the quagmire, the elusive deposits remained beyond the technology of the day. A new inventive process was discovered by Herman Frasch. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHis technology created the great sulfur companies of the world, and America became the largest producer (and user) of sulfur (China is the major producer of sulfur today). Herman Frasch is less known but of similar stature as Edison. His patented inventions gave the edge to American industry, which went from 100% import to becoming the largest producer and exporter in less than one decade.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSulfur is a common contaminant of oil and natural gas. It must be removed from these materials before they can be used as energy sources. It is the basis of the most modern industry. Recovery of sulfur from oil sands is the further extension of the present process, and its future is discussed.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe sulfur industry is an excellent “case study” of entrepreneurship and its relationship with investors. This book reveals the characteristics of entrepreneurs and inventors and the approaches required to formulate goals. Most importantly, it shows how to succeed in new ventures. Rockefeller might have become a failed entrepreneur if Frasch had not rescued him from his “bad investment.” Frasch turned certain failures into successes through his technological expertise and determination. Frasch’s major expertise was in the oil industry and specifically in the removal of sulfur from oil.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSulfur deposits cover most regions of the world and their exploration techniques have been investigated in detail throughout this text.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe interested audience of this book goes far beyond the boundaries of sulfur applications and the oil industry, and as such, it should be found in every technical, university, and public library. \u003cbr data-mce-fragment=\"1\"\u003e \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Le Roi du Sol \u003cbr data-mce-fragment=\"1\"\u003e2 The Sulfur Age\u003cbr data-mce-fragment=\"1\"\u003e2.1 Sulfuric acid manufacturing\u003cbr data-mce-fragment=\"1\"\u003e2.1.1 The Nordhausen process\u003cbr data-mce-fragment=\"1\"\u003e2.1.2 The Bell \u003cbr data-mce-fragment=\"1\"\u003e2.1.3 The chamber \u003cbr data-mce-fragment=\"1\"\u003e2.1.4 The contact \u003cbr data-mce-fragment=\"1\"\u003e2.1.5 Metallurgical sulfuric \u003cbr data-mce-fragment=\"1\"\u003e2.1.6 Pyrites\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.1 Spain\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.2 Italy\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.3 Norway\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.4 Canada\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.5 China\u003cbr data-mce-fragment=\"1\"\u003e2.2 Sulfuric acid \u003cbr data-mce-fragment=\"1\"\u003e2.2.1 The Leblanc \u003cbr data-mce-fragment=\"1\"\u003e2.2.2 Phosphate \u003cbr data-mce-fragment=\"1\"\u003e3 Native Sulfur - Sicily\u003cbr data-mce-fragment=\"1\"\u003e3.1 Ancient sulfur\u003cbr data-mce-fragment=\"1\"\u003e3.2 Renaissance sulfur\u003cbr data-mce-fragment=\"1\"\u003e3.3 Industrial revolution (“Sulfur Age”)\u003cbr data-mce-fragment=\"1\"\u003e3.3.1 Sicily \u003cbr data-mce-fragment=\"1\"\u003e3.3.2 The Zolfare, the Solfatari \u0026amp; the Carusi\u003cbr data-mce-fragment=\"1\"\u003e3.3.3 The Doppioni, Calcarella, Calcaroni \u0026amp; the Gill furnace\u003cbr data-mce-fragment=\"1\"\u003e3.3.4 The Gabelloti \u003cbr data-mce-fragment=\"1\"\u003e3.3.5 The British wine merchants\u003cbr data-mce-fragment=\"1\"\u003e3.3.6 The Sulfur War of 1840\u003cbr data-mce-fragment=\"1\"\u003e3.3.7 The post-Sulfur War era \u0026amp; the rise of pyrites\u003cbr data-mce-fragment=\"1\"\u003e3.4 The cartels \u003cbr data-mce-fragment=\"1\"\u003e3.4.1 Anglo-Sicilian Sulfur Company (ASSC): 1896 to 1906\u003cbr data-mce-fragment=\"1\"\u003e3.4.2 Consorzio Obligatorio per D'Industrial Solfifera Siciliana (COISS): 1906 to 1932\u003cbr data-mce-fragment=\"1\"\u003e3.4.3 Ufficio per la Vendita dello Zolfo Italiano (UVZI): 1934 to 1940\u003cbr data-mce-fragment=\"1\"\u003e3.4.4 Ente Zolfi Italiani (EZI): 1940 to 1962\u003cbr data-mce-fragment=\"1\"\u003e3.4.5 Ente Minerario Siciliano (EMS): 1962 to 1985\u003cbr data-mce-fragment=\"1\"\u003e4 Frasch Sulfur – Texas\/Louisiana \u003cbr data-mce-fragment=\"1\"\u003e4.1 Native (non-Frasch) sulfur mines \u003cbr data-mce-fragment=\"1\"\u003e4.2 Herman Frasch \u003cbr data-mce-fragment=\"1\"\u003e4.2.1 His life \u0026amp; family\u003cbr data-mce-fragment=\"1\"\u003e4.2.2 His oil ventures \u003cbr data-mce-fragment=\"1\"\u003e4.2.3 His alkali venture\u003cbr data-mce-fragment=\"1\"\u003e4.2.4 His salt ventures\u003cbr data-mce-fragment=\"1\"\u003e4.2.5 His sulfur ventures: Union Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5 The other sulfur companies\u003cbr data-mce-fragment=\"1\"\u003e4.5.1 Freeport Sulfur \u003cbr data-mce-fragment=\"1\"\u003e4.5.2 Texas Gulf Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.3 Duval Texas Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.4 Jefferson Lake Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.5 Sulexco \u003cbr data-mce-fragment=\"1\"\u003e4.6 Liquid sulfur \u003cbr data-mce-fragment=\"1\"\u003e4.7 Non-U.S. Frasch mines\u003cbr data-mce-fragment=\"1\"\u003e4.7.1 Mexico \u003cbr data-mce-fragment=\"1\"\u003e4.7.2 Poland \u003cbr data-mce-fragment=\"1\"\u003e4.7.3 U.S.S.R.\u003cbr data-mce-fragment=\"1\"\u003e4.7.4 Iraq \u003cbr data-mce-fragment=\"1\"\u003e4.7.5 Brazil \u003cbr data-mce-fragment=\"1\"\u003e5 Recovered Sulfur - Alberta\u003cbr data-mce-fragment=\"1\"\u003e5.1 Sour, more sour, \u0026amp; sourest\u003cbr data-mce-fragment=\"1\"\u003e5.2 Alberta \u0026amp; the global sulfur market\u003cbr data-mce-fragment=\"1\"\u003e5.3 Sulfur blocks \u0026amp; broken sulfur\u003cbr data-mce-fragment=\"1\"\u003e5.4 Sulfur forming: slate \u0026amp; prills\u003cbr data-mce-fragment=\"1\"\u003e5.5 Marketing \u0026amp; \u003cbr data-mce-fragment=\"1\"\u003e5.5.1 Cansulex \u0026amp; Prism\u003cbr data-mce-fragment=\"1\"\u003e5.5.2 Alberta to Vancouver\u003cbr data-mce-fragment=\"1\"\u003e5.6 The global competition\u003cbr data-mce-fragment=\"1\"\u003e5.6.1 U.S. \u003cbr data-mce-fragment=\"1\"\u003e5.6.2 Western Europe \u003cbr data-mce-fragment=\"1\"\u003e5.6.3 Persian Gulf\u003cbr data-mce-fragment=\"1\"\u003e5.6.3.1 Iran \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.2 Iraq \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.3 Saudi Arabia \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.4 Other \u003cbr data-mce-fragment=\"1\"\u003e5.6.4 Caspian Sea \u003cbr data-mce-fragment=\"1\"\u003e5.6.5 Japan \u003cbr data-mce-fragment=\"1\"\u003e5.7 Sulfur pricing: the penny syndrome \u003cbr data-mce-fragment=\"1\"\u003e6 The Sulfur Entrepreneur \u003cbr data-mce-fragment=\"1\"\u003e6.1 The desperate entrepreneur \u0026amp; the reluctant investor\u003cbr data-mce-fragment=\"1\"\u003e6.1.1 Institutional investors\u003cbr data-mce-fragment=\"1\"\u003e6.1.2 Private investors \u003cbr data-mce-fragment=\"1\"\u003e6.1.3 Entrepreneurs \u003cbr data-mce-fragment=\"1\"\u003e6.2 The revolutionary technology: to switch or not to switch, that is the question\u003cbr data-mce-fragment=\"1\"\u003e6.3 The ultimate venture: the monopoly game\u003cbr data-mce-fragment=\"1\"\u003e6.4 Who killed the sulfur entrepreneur? \u003cbr data-mce-fragment=\"1\"\u003e6.5 Climate change will cause sulfur change\u003cbr data-mce-fragment=\"1\"\u003eReferences \u003cbr data-mce-fragment=\"1\"\u003eAppendix I. Sulexco Agreements\u003cbr data-mce-fragment=\"1\"\u003eAppendix II. FTC Review of Sulexco\u003cbr data-mce-fragment=\"1\"\u003eAppendix III. Global Sulfur Production\u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\n\u003c\/div\u003e"}
Self-healing Materials...
$325.00
{"id":7336424079517,"title":"Self-healing Materials. Principles \u0026 Technology, 2nd Edition","handle":"self-healing-materials-principles-technology-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1-77467-002-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 336\u003cbr data-mce-fragment=\"1\"\u003eFigures: 230\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe self-healing phenomenon, adapted from living things, was for a long time an exciting topic of discussion on the potential improvements of human-made products, but for quite a while, it became applicable reality useful in many manufactured products. Ironically, the expectations from the healing of commercial products are higher than in the case of living things (for example, skin healing leaves scars that would not be acceptable for self-healed phone, watch, radio receiver, etc.) The most up-to-date information presented in this book gives a full account of means, ways, and practical results to prevent discarding products because they were once damaged. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has three major sections organized into fifteen chapters. The first section contains a chapter that discusses the well-established mechanisms of self-healing, which can be potentially applied in the development of new materials that have the ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes, which occur during self-healing, is also part of this section. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe second part of this book compares the parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of applying the most important analytical techniques to the evaluation of the self-healing processes.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe final section of the book includes:\u003cbr data-mce-fragment=\"1\"\u003e• Practical advice on the selection of additives for self-healing formulation.\u003cbr data-mce-fragment=\"1\"\u003e• Methods of self-healing of different polymers.\u003cbr data-mce-fragment=\"1\"\u003e• Application of self-healing technology in different groups of products.\u003cbr data-mce-fragment=\"1\"\u003eThis part is based on practical knowledge, the existing patents, the published paper, and useful application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of applying the technology of self-healing.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe expected audience for this book includes people working in the industries listed in the table of contents (chapter 15) and on the polymers (chapter 14), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies, services, and research. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1 Introduction. Lessons from Living Things\u003cbr data-mce-fragment=\"1\"\u003e2 Mechanisms of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e2.1 Autonomic\u003cbr data-mce-fragment=\"1\"\u003e2.2 Click chemistry \u003cbr data-mce-fragment=\"1\"\u003e2.3 Crosslinking \u003cbr data-mce-fragment=\"1\"\u003e2.4 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.5 Luminescence \u003cbr data-mce-fragment=\"1\"\u003e2.6 Morphological features and organization \u003cbr data-mce-fragment=\"1\"\u003e2.7 Shape memory \u003cbr data-mce-fragment=\"1\"\u003e2.8 Thermal healing \u003cbr data-mce-fragment=\"1\"\u003e2.9 UV\u003cbr data-mce-fragment=\"1\"\u003e2.10 Water \u003cbr data-mce-fragment=\"1\"\u003e2.11 Other mechanisms \u003cbr data-mce-fragment=\"1\"\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr data-mce-fragment=\"1\"\u003e3.1 Chemical reactions\u003cbr data-mce-fragment=\"1\"\u003e3.2 Compositional changes \u003cbr data-mce-fragment=\"1\"\u003e3.3 Physical processes \u003cbr data-mce-fragment=\"1\"\u003e3.4 Self-assembly5\u003cbr data-mce-fragment=\"1\"\u003e4 Fault Detection Mechanisms \u003cbr data-mce-fragment=\"1\"\u003e5 Triggering and Tuning the Healing Processes \u003cbr data-mce-fragment=\"1\"\u003e6 Activation Energy of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr data-mce-fragment=\"1\"\u003e7.1 Autonomous \u003cbr data-mce-fragment=\"1\"\u003e7.2 Capsule and vascular carriers \u003cbr data-mce-fragment=\"1\"\u003e7.3 Environmental conditions \u003cbr data-mce-fragment=\"1\"\u003e7.4 Liquid flow \u003cbr data-mce-fragment=\"1\"\u003e7.5 Magnetic force \u003cbr data-mce-fragment=\"1\"\u003e7.6 Manual injection \u003cbr data-mce-fragment=\"1\"\u003e8 Self-healing Timescale \u003cbr data-mce-fragment=\"1\"\u003e9 Self-healing Extent\u003cbr data-mce-fragment=\"1\"\u003e10 Molecular Dynamics Simulation\u003cbr data-mce-fragment=\"1\"\u003e11 Morphology of Healing\u003cbr data-mce-fragment=\"1\"\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr data-mce-fragment=\"1\"\u003e12.1 X-ray computed tomography \u003cbr data-mce-fragment=\"1\"\u003e12.2 Raman correlation spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.3 Raman spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.4 Impedance spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.5 Water permeability \u003cbr data-mce-fragment=\"1\"\u003e12.6 Surface energy \u003cbr data-mce-fragment=\"1\"\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr data-mce-fragment=\"1\"\u003e13.1 Polymers \u003cbr data-mce-fragment=\"1\"\u003e13.1.1 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e13.1.2 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr data-mce-fragment=\"1\"\u003e13.1.4 Epoxy resins \u003cbr data-mce-fragment=\"1\"\u003e13.1.5 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e13.1.6 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e13.2 Capsule-based materials \u003cbr data-mce-fragment=\"1\"\u003e13.3 Catalysts \u003cbr data-mce-fragment=\"1\"\u003e13.4 Chemical structures \u003cbr data-mce-fragment=\"1\"\u003e13.5 Coupling agents \u003cbr data-mce-fragment=\"1\"\u003e13.6 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e13.7 Fibers \u003cbr data-mce-fragment=\"1\"\u003e13.8 Magneto-responsive components \u003cbr data-mce-fragment=\"1\"\u003e13.9 Metal complexes \u003cbr data-mce-fragment=\"1\"\u003e13.10 Nanoparticles \u003cbr data-mce-fragment=\"1\"\u003e13.11 Plasticizers \u003cbr data-mce-fragment=\"1\"\u003e13.12 Solvents \u003cbr data-mce-fragment=\"1\"\u003e13.13 Vascular self-healing materials \u003cbr data-mce-fragment=\"1\"\u003e14 Self-healing of Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr data-mce-fragment=\"1\"\u003e14.2 Acrylic resin \u003cbr data-mce-fragment=\"1\"\u003e14.3 Alkyd resin \u003cbr data-mce-fragment=\"1\"\u003e14.4 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e14.5 Chitosan \u003cbr data-mce-fragment=\"1\"\u003e14.6 Cyclodextrin \u003cbr data-mce-fragment=\"1\"\u003e14.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e14.8 Ethylene-vinyl acetate \u003cbr data-mce-fragment=\"1\"\u003e14.9 Natural rubber \u003cbr data-mce-fragment=\"1\"\u003e14.10 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e14.11 Poly(butyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.12 Polycyclooctene \u003cbr data-mce-fragment=\"1\"\u003e14.13 Poly(ε-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e14.14 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.16 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.18 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e14.19 Polyisobutylene \u003cbr data-mce-fragment=\"1\"\u003e14.20 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.21 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e14.22 Poly(phenylene oxide) \u003cbr data-mce-fragment=\"1\"\u003e14.23 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e14.24 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e14.25 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e14.26 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e14.27 Polyurethanes \u003cbr data-mce-fragment=\"1\"\u003e14.28 Poly(vinyl alcohol) \u003cbr data-mce-fragment=\"1\"\u003e14.29 Poly(vinyl butyral) \u003cbr data-mce-fragment=\"1\"\u003e14.30 Poly(vinylidene difluoride) \u003cbr data-mce-fragment=\"1\"\u003e15 Self-healing in Different Products \u003cbr data-mce-fragment=\"1\"\u003e15.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e15.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e15.3 Asphalt pavement \u003cbr data-mce-fragment=\"1\"\u003e15.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e15.5 Cementitious materials \u003cbr data-mce-fragment=\"1\"\u003e15.6 Ceramic materials \u003cbr data-mce-fragment=\"1\"\u003e15.7 Coatings \u003cbr data-mce-fragment=\"1\"\u003e15.8 Composites \u003cbr data-mce-fragment=\"1\"\u003e15.9 Corrosion prevention \u003cbr data-mce-fragment=\"1\"\u003e15.10 Dental \u003cbr data-mce-fragment=\"1\"\u003e15.11 Electrical insulation \u003cbr data-mce-fragment=\"1\"\u003e15.12 Electronics \u003cbr data-mce-fragment=\"1\"\u003e15.13 Fabrics \u003cbr data-mce-fragment=\"1\"\u003e15.14 Fibers \u003cbr data-mce-fragment=\"1\"\u003e15.15 Film \u003cbr data-mce-fragment=\"1\"\u003e15.16 Foam \u003cbr data-mce-fragment=\"1\"\u003e15.17 Hydrogels \u003cbr data-mce-fragment=\"1\"\u003e15.18 Laminates \u003cbr data-mce-fragment=\"1\"\u003e15.19 Lubricating oils \u003cbr data-mce-fragment=\"1\"\u003e15.20 Medical devices \u003cbr data-mce-fragment=\"1\"\u003e15.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e15.22 Mortars\u003cbr data-mce-fragment=\"1\"\u003e15.23 Pipes \u003cbr data-mce-fragment=\"1\"\u003e15.24 Sealants \u003cbr data-mce-fragment=\"1\"\u003e15.25 Solar cells \u003cbr data-mce-fragment=\"1\"\u003e15.26 Thermal barrier coatings \u003cbr data-mce-fragment=\"1\"\u003e15.27 Tires \u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2022-03-31T21:13:55-04:00","created_at":"2022-03-31T21:08:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","Materials"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165824716957,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Self-healing Materials. Principles \u0026 Technology, 2nd Edition","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-002-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611","options":["Title"],"media":[{"alt":null,"id":24734753849501,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1-77467-002-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 336\u003cbr data-mce-fragment=\"1\"\u003eFigures: 230\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe self-healing phenomenon, adapted from living things, was for a long time an exciting topic of discussion on the potential improvements of human-made products, but for quite a while, it became applicable reality useful in many manufactured products. Ironically, the expectations from the healing of commercial products are higher than in the case of living things (for example, skin healing leaves scars that would not be acceptable for self-healed phone, watch, radio receiver, etc.) The most up-to-date information presented in this book gives a full account of means, ways, and practical results to prevent discarding products because they were once damaged. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has three major sections organized into fifteen chapters. The first section contains a chapter that discusses the well-established mechanisms of self-healing, which can be potentially applied in the development of new materials that have the ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes, which occur during self-healing, is also part of this section. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe second part of this book compares the parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of applying the most important analytical techniques to the evaluation of the self-healing processes.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe final section of the book includes:\u003cbr data-mce-fragment=\"1\"\u003e• Practical advice on the selection of additives for self-healing formulation.\u003cbr data-mce-fragment=\"1\"\u003e• Methods of self-healing of different polymers.\u003cbr data-mce-fragment=\"1\"\u003e• Application of self-healing technology in different groups of products.\u003cbr data-mce-fragment=\"1\"\u003eThis part is based on practical knowledge, the existing patents, the published paper, and useful application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of applying the technology of self-healing.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe expected audience for this book includes people working in the industries listed in the table of contents (chapter 15) and on the polymers (chapter 14), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies, services, and research. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1 Introduction. Lessons from Living Things\u003cbr data-mce-fragment=\"1\"\u003e2 Mechanisms of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e2.1 Autonomic\u003cbr data-mce-fragment=\"1\"\u003e2.2 Click chemistry \u003cbr data-mce-fragment=\"1\"\u003e2.3 Crosslinking \u003cbr data-mce-fragment=\"1\"\u003e2.4 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.5 Luminescence \u003cbr data-mce-fragment=\"1\"\u003e2.6 Morphological features and organization \u003cbr data-mce-fragment=\"1\"\u003e2.7 Shape memory \u003cbr data-mce-fragment=\"1\"\u003e2.8 Thermal healing \u003cbr data-mce-fragment=\"1\"\u003e2.9 UV\u003cbr data-mce-fragment=\"1\"\u003e2.10 Water \u003cbr data-mce-fragment=\"1\"\u003e2.11 Other mechanisms \u003cbr data-mce-fragment=\"1\"\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr data-mce-fragment=\"1\"\u003e3.1 Chemical reactions\u003cbr data-mce-fragment=\"1\"\u003e3.2 Compositional changes \u003cbr data-mce-fragment=\"1\"\u003e3.3 Physical processes \u003cbr data-mce-fragment=\"1\"\u003e3.4 Self-assembly5\u003cbr data-mce-fragment=\"1\"\u003e4 Fault Detection Mechanisms \u003cbr data-mce-fragment=\"1\"\u003e5 Triggering and Tuning the Healing Processes \u003cbr data-mce-fragment=\"1\"\u003e6 Activation Energy of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr data-mce-fragment=\"1\"\u003e7.1 Autonomous \u003cbr data-mce-fragment=\"1\"\u003e7.2 Capsule and vascular carriers \u003cbr data-mce-fragment=\"1\"\u003e7.3 Environmental conditions \u003cbr data-mce-fragment=\"1\"\u003e7.4 Liquid flow \u003cbr data-mce-fragment=\"1\"\u003e7.5 Magnetic force \u003cbr data-mce-fragment=\"1\"\u003e7.6 Manual injection \u003cbr data-mce-fragment=\"1\"\u003e8 Self-healing Timescale \u003cbr data-mce-fragment=\"1\"\u003e9 Self-healing Extent\u003cbr data-mce-fragment=\"1\"\u003e10 Molecular Dynamics Simulation\u003cbr data-mce-fragment=\"1\"\u003e11 Morphology of Healing\u003cbr data-mce-fragment=\"1\"\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr data-mce-fragment=\"1\"\u003e12.1 X-ray computed tomography \u003cbr data-mce-fragment=\"1\"\u003e12.2 Raman correlation spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.3 Raman spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.4 Impedance spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.5 Water permeability \u003cbr data-mce-fragment=\"1\"\u003e12.6 Surface energy \u003cbr data-mce-fragment=\"1\"\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr data-mce-fragment=\"1\"\u003e13.1 Polymers \u003cbr data-mce-fragment=\"1\"\u003e13.1.1 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e13.1.2 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr data-mce-fragment=\"1\"\u003e13.1.4 Epoxy resins \u003cbr data-mce-fragment=\"1\"\u003e13.1.5 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e13.1.6 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e13.2 Capsule-based materials \u003cbr data-mce-fragment=\"1\"\u003e13.3 Catalysts \u003cbr data-mce-fragment=\"1\"\u003e13.4 Chemical structures \u003cbr data-mce-fragment=\"1\"\u003e13.5 Coupling agents \u003cbr data-mce-fragment=\"1\"\u003e13.6 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e13.7 Fibers \u003cbr data-mce-fragment=\"1\"\u003e13.8 Magneto-responsive components \u003cbr data-mce-fragment=\"1\"\u003e13.9 Metal complexes \u003cbr data-mce-fragment=\"1\"\u003e13.10 Nanoparticles \u003cbr data-mce-fragment=\"1\"\u003e13.11 Plasticizers \u003cbr data-mce-fragment=\"1\"\u003e13.12 Solvents \u003cbr data-mce-fragment=\"1\"\u003e13.13 Vascular self-healing materials \u003cbr data-mce-fragment=\"1\"\u003e14 Self-healing of Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr data-mce-fragment=\"1\"\u003e14.2 Acrylic resin \u003cbr data-mce-fragment=\"1\"\u003e14.3 Alkyd resin \u003cbr data-mce-fragment=\"1\"\u003e14.4 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e14.5 Chitosan \u003cbr data-mce-fragment=\"1\"\u003e14.6 Cyclodextrin \u003cbr data-mce-fragment=\"1\"\u003e14.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e14.8 Ethylene-vinyl acetate \u003cbr data-mce-fragment=\"1\"\u003e14.9 Natural rubber \u003cbr data-mce-fragment=\"1\"\u003e14.10 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e14.11 Poly(butyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.12 Polycyclooctene \u003cbr data-mce-fragment=\"1\"\u003e14.13 Poly(ε-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e14.14 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.16 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.18 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e14.19 Polyisobutylene \u003cbr data-mce-fragment=\"1\"\u003e14.20 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.21 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e14.22 Poly(phenylene oxide) \u003cbr data-mce-fragment=\"1\"\u003e14.23 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e14.24 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e14.25 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e14.26 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e14.27 Polyurethanes \u003cbr data-mce-fragment=\"1\"\u003e14.28 Poly(vinyl alcohol) \u003cbr data-mce-fragment=\"1\"\u003e14.29 Poly(vinyl butyral) \u003cbr data-mce-fragment=\"1\"\u003e14.30 Poly(vinylidene difluoride) \u003cbr data-mce-fragment=\"1\"\u003e15 Self-healing in Different Products \u003cbr data-mce-fragment=\"1\"\u003e15.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e15.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e15.3 Asphalt pavement \u003cbr data-mce-fragment=\"1\"\u003e15.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e15.5 Cementitious materials \u003cbr data-mce-fragment=\"1\"\u003e15.6 Ceramic materials \u003cbr data-mce-fragment=\"1\"\u003e15.7 Coatings \u003cbr data-mce-fragment=\"1\"\u003e15.8 Composites \u003cbr data-mce-fragment=\"1\"\u003e15.9 Corrosion prevention \u003cbr data-mce-fragment=\"1\"\u003e15.10 Dental \u003cbr data-mce-fragment=\"1\"\u003e15.11 Electrical insulation \u003cbr data-mce-fragment=\"1\"\u003e15.12 Electronics \u003cbr data-mce-fragment=\"1\"\u003e15.13 Fabrics \u003cbr data-mce-fragment=\"1\"\u003e15.14 Fibers \u003cbr data-mce-fragment=\"1\"\u003e15.15 Film \u003cbr data-mce-fragment=\"1\"\u003e15.16 Foam \u003cbr data-mce-fragment=\"1\"\u003e15.17 Hydrogels \u003cbr data-mce-fragment=\"1\"\u003e15.18 Laminates \u003cbr data-mce-fragment=\"1\"\u003e15.19 Lubricating oils \u003cbr data-mce-fragment=\"1\"\u003e15.20 Medical devices \u003cbr data-mce-fragment=\"1\"\u003e15.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e15.22 Mortars\u003cbr data-mce-fragment=\"1\"\u003e15.23 Pipes \u003cbr data-mce-fragment=\"1\"\u003e15.24 Sealants \u003cbr data-mce-fragment=\"1\"\u003e15.25 Solar cells \u003cbr data-mce-fragment=\"1\"\u003e15.26 Thermal barrier coatings \u003cbr data-mce-fragment=\"1\"\u003e15.27 Tires \u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Handbook of Rheologica...
$285.00
{"id":7336415821981,"title":"Handbook of Rheological Additives","handle":"handbook-of-rheological-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-97-0 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 240 + vi\u003cbr data-mce-fragment=\"1\"\u003eFigures: 38\u003cbr data-mce-fragment=\"1\"\u003eTables: 30\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eOnly a few books were ever published on rheological modifiers, with the last one published 20 years ago. This book contains all relevant research data on the subject available to date, and it is published together with the Databook of Rheological Additives, including data on commercial and generic additives used in the end-products available in the market.\u003cbr\u003eMore than 30 inorganic and organic groups of chemical compounds are in everyday use as rheological additives. These are characterized in tabular form in a special chapter designed for easy comparison of their main properties. \u003cbr\u003eThe following chapters of the Handbook discuss the essential theoretical knowledge required for proper selection and use of rheological additives. These include fundamental principles of rheology in relation to the application of rheological additives, the mechanisms of action of rheological additives, their effective methods of incorporation, and measuring techniques used in their assessment.\u003cbr\u003e\u003cbr\u003eApplication aspects and selection of additives are discussed in separate sub-chapters devoted to 45 different polymers and 36 different groups of products. Here extensive use is being made of patent literature and research papers available for various applications. Discussed are also polymer processing methods that require rheological agents. \u003cbr\u003e\u003cbr\u003eThe book was designed with the following industries in mind, including coatings \u0026amp; paints, adhesives \u0026amp; sealants, cosmetics (personal care), household products, pharmaceutical, mortars, agriculture, cementitious products, various polymer processing methods (e.g., knife coating, dip coating, injection molding extrusion, rotational molding, etc.), printing inks, greases, lubricants, drilling fluids, oil spills, foam stabilization of surfactant systems, explosives, paper coatings, wood finishes, leather coatings, textile sizing, rubber industry, food products.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n \u003c\/p\u003e\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\nIntroduction \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e2 Properties of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e2.1 Cellulose derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.2 Fat and oil derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.3 Inorganic \u003cbr data-mce-fragment=\"1\"\u003e2.4 Polymers \u003cbr data-mce-fragment=\"1\"\u003e2.5 Polysaccharides \u003cbr data-mce-fragment=\"1\"\u003e2.6 Protein \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e3 Some Rheology Principles \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e4 Mechanisms of Action of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e4.1 Gelling \u003cbr data-mce-fragment=\"1\"\u003e4.2 Egg-box model \u003cbr data-mce-fragment=\"1\"\u003e4.3 Domain model \u003cbr data-mce-fragment=\"1\"\u003e4.4 Fibril formation \u003cbr data-mce-fragment=\"1\"\u003e4.5 Adsorption mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.6 Network formation \u003cbr data-mce-fragment=\"1\"\u003e4.7 Thermogelation \u003cbr data-mce-fragment=\"1\"\u003e4.8 Hydration mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.9 Interaction \u003cbr data-mce-fragment=\"1\"\u003e4.10 Order-disorder and hydrocluster formation \u003cbr data-mce-fragment=\"1\"\u003e4.11 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e4.12 Effect of low temperature on the mechanism of action of rheological additives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e5 Effective Methods of Incorporation \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e6 Analytical Methods in Application to Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e6.1 Shear \u0026amp; oscillatory rheometry \u003cbr data-mce-fragment=\"1\"\u003e6.2 Extensional rheology \u003cbr data-mce-fragment=\"1\"\u003e6.3 Zeta potential \u003cbr data-mce-fragment=\"1\"\u003e6.4 Particle size analysis \u003cbr data-mce-fragment=\"1\"\u003e6.5 General methods \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e7 Rheological Additives in Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e7.1 Alkyd resins \u003cbr data-mce-fragment=\"1\"\u003e7.2 Cellulose acetate \u003cbr data-mce-fragment=\"1\"\u003e7.3 Chlorobutyl rubber \u003cbr data-mce-fragment=\"1\"\u003e7.4 Cyclic olefin copolymer \u003cbr data-mce-fragment=\"1\"\u003e7.5 Cyanoacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.6 Poly(ethylene-co-methyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e7.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e7.8 Ethylene-propylene-diene monomer \u003cbr data-mce-fragment=\"1\"\u003e7.9 Liquid crystalline polymers \u003cbr data-mce-fragment=\"1\"\u003e7.10 Polyamide \u003cbr data-mce-fragment=\"1\"\u003e7.11 Poly(acrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.12 Polyacrylamide \u003cbr data-mce-fragment=\"1\"\u003e7.13 Polyacrylonitrile \u003cbr data-mce-fragment=\"1\"\u003e7.14 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e7.15 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e7.16 Poly(butylene terephthalate) \u003cbr data-mce-fragment=\"1\"\u003e7.17 Polycarbonate \u003cbr data-mce-fragment=\"1\"\u003e7.18 Poly(-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e7.19 Polydicyclopentadiene \u003cbr data-mce-fragment=\"1\"\u003e7.20 Polylysine \u003cbr data-mce-fragment=\"1\"\u003e7.21 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e7.22 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e7.23 Poly(3,4-ethylenedioxythiophene) \u003cbr data-mce-fragment=\"1\"\u003e7.24 Polyetheretherketone \u003cbr data-mce-fragment=\"1\"\u003e7.25 Perfluoropolyether \u003cbr data-mce-fragment=\"1\"\u003e7.26 Polyhydroxybutyrate \u003cbr data-mce-fragment=\"1\"\u003e7.27 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.28 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.29 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e7.30 Polypropylene glycol \u003cbr data-mce-fragment=\"1\"\u003e7.31 Polyphenylsilsesquioxane \u003cbr data-mce-fragment=\"1\"\u003e7.32 Polyphenylenesulfone \u003cbr data-mce-fragment=\"1\"\u003e7.33 Poly(p-phenylene terephthalamide) \u003cbr data-mce-fragment=\"1\"\u003e7.34 Polypyrrole \u003cbr data-mce-fragment=\"1\"\u003e7.35 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e7.36 Polytetrafluoroethylene \u003cbr data-mce-fragment=\"1\"\u003e7.37 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e7.38 Polyvinylacetate \u003cbr data-mce-fragment=\"1\"\u003e7.39 Polyvinylalcohol \u003cbr data-mce-fragment=\"1\"\u003e7.40 Polyvinylchloride \u003cbr data-mce-fragment=\"1\"\u003e7.41 Poly(vinylidene fluoride) \u003cbr data-mce-fragment=\"1\"\u003e7.42 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e7.43 Poly(styrene-co-acrylonitrile) \u003cbr data-mce-fragment=\"1\"\u003e7.44 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e7.45 Unsaturated polyester \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e8 Use in Products \u003cbr data-mce-fragment=\"1\"\u003e8.1 Abrasives \u003cbr data-mce-fragment=\"1\"\u003e8.2 Adhesives \u0026amp; sealants \u003cbr data-mce-fragment=\"1\"\u003e8.3 Agricultural products \u003cbr data-mce-fragment=\"1\"\u003e8.4 Animal feed\u003cbr data-mce-fragment=\"1\"\u003e8.5 Automotive \u003cbr data-mce-fragment=\"1\"\u003e8.6 Binders \u003cbr data-mce-fragment=\"1\"\u003e8.7 Cables \u003cbr data-mce-fragment=\"1\"\u003e8.8 Casting \u003cbr data-mce-fragment=\"1\"\u003e8.9 Cementitious products \u003cbr data-mce-fragment=\"1\"\u003e8.10 Ceramics \u003cbr data-mce-fragment=\"1\"\u003e8.11 Coatings \u0026amp; paints \u003cbr data-mce-fragment=\"1\"\u003e8.12 Coil coating \u003cbr data-mce-fragment=\"1\"\u003e8.13 Composites \u003cbr data-mce-fragment=\"1\"\u003e8.14 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e8.15 Explosives \u003cbr data-mce-fragment=\"1\"\u003e8.16 Foams \u003cbr data-mce-fragment=\"1\"\u003e8.17 Food products \u003cbr data-mce-fragment=\"1\"\u003e8.18 Gels \u003cbr data-mce-fragment=\"1\"\u003e8.19 Grease \u003cbr data-mce-fragment=\"1\"\u003e8.20 Hand sanitizers \u003cbr data-mce-fragment=\"1\"\u003e8.21 Inks \u003cbr data-mce-fragment=\"1\"\u003e8.22 Leather coating \u003cbr data-mce-fragment=\"1\"\u003e8.23 Lubricants \u003cbr data-mce-fragment=\"1\"\u003e8.24 Medical \u003cbr data-mce-fragment=\"1\"\u003e8.25 Oil well drilling \u003cbr data-mce-fragment=\"1\"\u003e8.26 Papermaking \u003cbr data-mce-fragment=\"1\"\u003e8.27 Personal care products \u003cbr data-mce-fragment=\"1\"\u003e8.28 Pharmacological preparations \u003cbr data-mce-fragment=\"1\"\u003e8.29 Primers \u003cbr data-mce-fragment=\"1\"\u003e8.30 Roofing products \u003cbr data-mce-fragment=\"1\"\u003e8.31 Rubber industry \u003cbr data-mce-fragment=\"1\"\u003e8.32 Space \u003cbr data-mce-fragment=\"1\"\u003e8.33 Stucco \u003cbr data-mce-fragment=\"1\"\u003e8.34 Toners \u003cbr data-mce-fragment=\"1\"\u003e8.35 Water treatment \u003cbr data-mce-fragment=\"1\"\u003e8.36 Wood finishes and adhesives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e Index\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2022-03-31T21:05:56-04:00","created_at":"2022-03-31T21:01:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","additives","book","rheology"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165801222301,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Rheological Additives","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 927885-97-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885970-Case.png?v=1648775267"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885970-Case.png?v=1648775267","options":["Title"],"media":[{"alt":null,"id":24734691197085,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885970-Case.png?v=1648775267"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885970-Case.png?v=1648775267","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-97-0 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 240 + vi\u003cbr data-mce-fragment=\"1\"\u003eFigures: 38\u003cbr data-mce-fragment=\"1\"\u003eTables: 30\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eOnly a few books were ever published on rheological modifiers, with the last one published 20 years ago. This book contains all relevant research data on the subject available to date, and it is published together with the Databook of Rheological Additives, including data on commercial and generic additives used in the end-products available in the market.\u003cbr\u003eMore than 30 inorganic and organic groups of chemical compounds are in everyday use as rheological additives. These are characterized in tabular form in a special chapter designed for easy comparison of their main properties. \u003cbr\u003eThe following chapters of the Handbook discuss the essential theoretical knowledge required for proper selection and use of rheological additives. These include fundamental principles of rheology in relation to the application of rheological additives, the mechanisms of action of rheological additives, their effective methods of incorporation, and measuring techniques used in their assessment.\u003cbr\u003e\u003cbr\u003eApplication aspects and selection of additives are discussed in separate sub-chapters devoted to 45 different polymers and 36 different groups of products. Here extensive use is being made of patent literature and research papers available for various applications. Discussed are also polymer processing methods that require rheological agents. \u003cbr\u003e\u003cbr\u003eThe book was designed with the following industries in mind, including coatings \u0026amp; paints, adhesives \u0026amp; sealants, cosmetics (personal care), household products, pharmaceutical, mortars, agriculture, cementitious products, various polymer processing methods (e.g., knife coating, dip coating, injection molding extrusion, rotational molding, etc.), printing inks, greases, lubricants, drilling fluids, oil spills, foam stabilization of surfactant systems, explosives, paper coatings, wood finishes, leather coatings, textile sizing, rubber industry, food products.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n \u003c\/p\u003e\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\nIntroduction \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e2 Properties of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e2.1 Cellulose derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.2 Fat and oil derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.3 Inorganic \u003cbr data-mce-fragment=\"1\"\u003e2.4 Polymers \u003cbr data-mce-fragment=\"1\"\u003e2.5 Polysaccharides \u003cbr data-mce-fragment=\"1\"\u003e2.6 Protein \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e3 Some Rheology Principles \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e4 Mechanisms of Action of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e4.1 Gelling \u003cbr data-mce-fragment=\"1\"\u003e4.2 Egg-box model \u003cbr data-mce-fragment=\"1\"\u003e4.3 Domain model \u003cbr data-mce-fragment=\"1\"\u003e4.4 Fibril formation \u003cbr data-mce-fragment=\"1\"\u003e4.5 Adsorption mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.6 Network formation \u003cbr data-mce-fragment=\"1\"\u003e4.7 Thermogelation \u003cbr data-mce-fragment=\"1\"\u003e4.8 Hydration mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.9 Interaction \u003cbr data-mce-fragment=\"1\"\u003e4.10 Order-disorder and hydrocluster formation \u003cbr data-mce-fragment=\"1\"\u003e4.11 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e4.12 Effect of low temperature on the mechanism of action of rheological additives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e5 Effective Methods of Incorporation \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e6 Analytical Methods in Application to Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e6.1 Shear \u0026amp; oscillatory rheometry \u003cbr data-mce-fragment=\"1\"\u003e6.2 Extensional rheology \u003cbr data-mce-fragment=\"1\"\u003e6.3 Zeta potential \u003cbr data-mce-fragment=\"1\"\u003e6.4 Particle size analysis \u003cbr data-mce-fragment=\"1\"\u003e6.5 General methods \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e7 Rheological Additives in Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e7.1 Alkyd resins \u003cbr data-mce-fragment=\"1\"\u003e7.2 Cellulose acetate \u003cbr data-mce-fragment=\"1\"\u003e7.3 Chlorobutyl rubber \u003cbr data-mce-fragment=\"1\"\u003e7.4 Cyclic olefin copolymer \u003cbr data-mce-fragment=\"1\"\u003e7.5 Cyanoacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.6 Poly(ethylene-co-methyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e7.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e7.8 Ethylene-propylene-diene monomer \u003cbr data-mce-fragment=\"1\"\u003e7.9 Liquid crystalline polymers \u003cbr data-mce-fragment=\"1\"\u003e7.10 Polyamide \u003cbr data-mce-fragment=\"1\"\u003e7.11 Poly(acrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.12 Polyacrylamide \u003cbr data-mce-fragment=\"1\"\u003e7.13 Polyacrylonitrile \u003cbr data-mce-fragment=\"1\"\u003e7.14 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e7.15 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e7.16 Poly(butylene terephthalate) \u003cbr data-mce-fragment=\"1\"\u003e7.17 Polycarbonate \u003cbr data-mce-fragment=\"1\"\u003e7.18 Poly(-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e7.19 Polydicyclopentadiene \u003cbr data-mce-fragment=\"1\"\u003e7.20 Polylysine \u003cbr data-mce-fragment=\"1\"\u003e7.21 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e7.22 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e7.23 Poly(3,4-ethylenedioxythiophene) \u003cbr data-mce-fragment=\"1\"\u003e7.24 Polyetheretherketone \u003cbr data-mce-fragment=\"1\"\u003e7.25 Perfluoropolyether \u003cbr data-mce-fragment=\"1\"\u003e7.26 Polyhydroxybutyrate \u003cbr data-mce-fragment=\"1\"\u003e7.27 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.28 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.29 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e7.30 Polypropylene glycol \u003cbr data-mce-fragment=\"1\"\u003e7.31 Polyphenylsilsesquioxane \u003cbr data-mce-fragment=\"1\"\u003e7.32 Polyphenylenesulfone \u003cbr data-mce-fragment=\"1\"\u003e7.33 Poly(p-phenylene terephthalamide) \u003cbr data-mce-fragment=\"1\"\u003e7.34 Polypyrrole \u003cbr data-mce-fragment=\"1\"\u003e7.35 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e7.36 Polytetrafluoroethylene \u003cbr data-mce-fragment=\"1\"\u003e7.37 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e7.38 Polyvinylacetate \u003cbr data-mce-fragment=\"1\"\u003e7.39 Polyvinylalcohol \u003cbr data-mce-fragment=\"1\"\u003e7.40 Polyvinylchloride \u003cbr data-mce-fragment=\"1\"\u003e7.41 Poly(vinylidene fluoride) \u003cbr data-mce-fragment=\"1\"\u003e7.42 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e7.43 Poly(styrene-co-acrylonitrile) \u003cbr data-mce-fragment=\"1\"\u003e7.44 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e7.45 Unsaturated polyester \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e8 Use in Products \u003cbr data-mce-fragment=\"1\"\u003e8.1 Abrasives \u003cbr data-mce-fragment=\"1\"\u003e8.2 Adhesives \u0026amp; sealants \u003cbr data-mce-fragment=\"1\"\u003e8.3 Agricultural products \u003cbr data-mce-fragment=\"1\"\u003e8.4 Animal feed\u003cbr data-mce-fragment=\"1\"\u003e8.5 Automotive \u003cbr data-mce-fragment=\"1\"\u003e8.6 Binders \u003cbr data-mce-fragment=\"1\"\u003e8.7 Cables \u003cbr data-mce-fragment=\"1\"\u003e8.8 Casting \u003cbr data-mce-fragment=\"1\"\u003e8.9 Cementitious products \u003cbr data-mce-fragment=\"1\"\u003e8.10 Ceramics \u003cbr data-mce-fragment=\"1\"\u003e8.11 Coatings \u0026amp; paints \u003cbr data-mce-fragment=\"1\"\u003e8.12 Coil coating \u003cbr data-mce-fragment=\"1\"\u003e8.13 Composites \u003cbr data-mce-fragment=\"1\"\u003e8.14 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e8.15 Explosives \u003cbr data-mce-fragment=\"1\"\u003e8.16 Foams \u003cbr data-mce-fragment=\"1\"\u003e8.17 Food products \u003cbr data-mce-fragment=\"1\"\u003e8.18 Gels \u003cbr data-mce-fragment=\"1\"\u003e8.19 Grease \u003cbr data-mce-fragment=\"1\"\u003e8.20 Hand sanitizers \u003cbr data-mce-fragment=\"1\"\u003e8.21 Inks \u003cbr data-mce-fragment=\"1\"\u003e8.22 Leather coating \u003cbr data-mce-fragment=\"1\"\u003e8.23 Lubricants \u003cbr data-mce-fragment=\"1\"\u003e8.24 Medical \u003cbr data-mce-fragment=\"1\"\u003e8.25 Oil well drilling \u003cbr data-mce-fragment=\"1\"\u003e8.26 Papermaking \u003cbr data-mce-fragment=\"1\"\u003e8.27 Personal care products \u003cbr data-mce-fragment=\"1\"\u003e8.28 Pharmacological preparations \u003cbr data-mce-fragment=\"1\"\u003e8.29 Primers \u003cbr data-mce-fragment=\"1\"\u003e8.30 Roofing products \u003cbr data-mce-fragment=\"1\"\u003e8.31 Rubber industry \u003cbr data-mce-fragment=\"1\"\u003e8.32 Space \u003cbr data-mce-fragment=\"1\"\u003e8.33 Stucco \u003cbr data-mce-fragment=\"1\"\u003e8.34 Toners \u003cbr data-mce-fragment=\"1\"\u003e8.35 Water treatment \u003cbr data-mce-fragment=\"1\"\u003e8.36 Wood finishes and adhesives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e Index\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Handbook of Polymers, ...
$455.00
{"id":7336409235613,"title":"Handbook of Polymers, 3rd Edition","handle":"handbook-of-polymers-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e","published_at":"2022-03-31T21:01:23-04:00","created_at":"2022-03-31T20:57:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","best","book","material","Materials","polymer","polymers"],"price":45500,"price_min":45500,"price_max":45500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165789098141,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Polymers, 3rd Edition","public_title":null,"options":["Default Title"],"price":45500,"weight":1000,"compare_at_price":null,"inventory_quantity":-3,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 927885-95-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870","options":["Title"],"media":[{"alt":null,"id":24734620844189,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e"}
Handbook of Impact Mod...
$285.00
{"id":7336384692381,"title":"Handbook of Impact Modifiers","handle":"handbook-of-impact-modifiers","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 77467-004-0\u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 254+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Impact Modifiers provides information on how to modify structure and morphology, improve mechanical performance, and prevent changes during the use of polymeric products by proper selection of impact modifiers. Handbook of Impact Modifiers brings analyses of important publications found in open and patent literature. Special attention is given to the last five years' findings, which brought many new essential developments. \u003cbr\u003e\u003cbr\u003eThe book begins with an analysis of the chemical origin and related properties of impact modifiers, which are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in the companion Databook of Impact Modifiers, which has been published as a separate book to help select products available in the commercial markets and analyze different products. The information included in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe Handbook contains the essential theoretical knowledge required for proper selection and use of impact modifiers, including their morphological structure and distribution in a polymer matrix, the effect on polymer crystallization in the presence and without impact modifiers, important influences on impact modification, mechanisms of modification, and effective methods of incorporation of impact modifiers. \u003cbr\u003e\u003cbr\u003eDetails on selection and performance in different polymers, products, and processing methods are included in three major chapters. Here extensive use is being made of patent literature and research papers available for different applications. \u003cbr\u003e\u003cbr\u003eThe final three chapters discuss the effects of impact modifiers on physical and mechanical properties of materials, essential analytical techniques used to analyze systems containing impact modifiers, and the health and safety and environmental impact of impact modifiers.\u003cbr\u003e\u003cbr\u003eThe only monographic source on the application of impact modifiers was published in 1991. Later published information included chapters on their application in various branches of polymers and their processing. The most recent publication is a marketing report with a world outlook in 2021-2025 that predicts a rapid increase in consumption of impact modifiers. This lack of fundamental information and data requires current specialized publication, the aim which these two books expect to provide. \u003cbr\u003e\u003cbr\u003eIntroduction\u003cbr\u003eMain groups of impact modifiers\u003cbr\u003eGeneral laws describing impact resistance rate of impact, temperature during impact (glass transition temperature of material), and relative humidity (amount of absorbed moisture by the product)\u003cbr\u003eImpact modification mechanisms\u003cbr\u003eCrystallinity and morphology (homogeneity, crystallinity, degradation, internal stress, material form, presence of imperfections on the surface and within the bulk of a material)\u003cbr\u003eEffect of material composition (binder, fillers (their type, hardness, shape, and particle size distribution), interaction of matrix and fillers, crosslink density, plasticizers, impact modifiers, foaming agents, residual solvents), concentrations of additives\u003cbr\u003ePolymer blends (components of the blend and compatibilizers)\u003cbr\u003eEffect of processing on impact strength\u003cbr\u003eSelection of impact modifiers for different polymers\u003cbr\u003eSelection of impact modifiers for different end-products\u003cbr\u003eDurability of impact modification\u003cbr\u003e\u003cbr\u003eGroups of products, which consume most impact modifiers\u003cbr\u003eAdhesive, sealant, hotmelt, pressure-sensitive, bookbinding\u003cbr\u003eAerospace aviation\u003cbr\u003eAutomotive – body panel, accessories, under-the-hood, bumper, motor hosing\u003cbr\u003eBottles\u003cbr\u003eCoatings, paints\u003cbr\u003eCosmetics – fragrance caps, packaging\u003cbr\u003eElectrical – connectors, computer housing, conduit, switch, insulation, TV, monitor, phone\u003cbr\u003eEngineering plastics\u003cbr\u003eFilm\u003cbr\u003eFoam\u003cbr\u003eFootware\u003cbr\u003eFurniture also garden\u003cbr\u003eGeomembrane\u003cbr\u003eGolf balls\u003cbr\u003eHealthcare – medical gloves, medical device, drapery, intravenous bag, respiratory\u003cbr\u003eHouseware – household dinnerware, cabinets, small appliance, flowerpot, refrigerator\u003cbr\u003eInk\u003cbr\u003eMolded parts – containers, handle, grip\u003cbr\u003ePackaging - meat casing, trays, meat, pouches, stretch, milk, tape, cling\u003cbr\u003ePharmaceutical – drug delivery, packaging\u003cbr\u003ePipes and tubes, hose, fitting, fuel line\u003cbr\u003ePlayground running track\u003cbr\u003eProfiles - Windows and doors, fence, deck, rail\u003cbr\u003eRoads, pavement, asphalt modification\u003cbr\u003eRoofing roof sheet, roof covering, corrugated sheet, membrane\u003cbr\u003eSeals gaskets\u003cbr\u003eSheet\u003cbr\u003eSiding\u003cbr\u003eSporting – ski booth\u003cbr\u003eToys\u003cbr\u003eWire and cable\u003cbr\u003e\u003c\/p\u003e","published_at":"2022-03-31T20:52:45-04:00","created_at":"2022-03-31T20:45:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","impact modifiers","modifiers"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165743026333,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Impact Modifiers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 77467-004-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670040-Case.png?v=1648774608"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670040-Case.png?v=1648774608","options":["Title"],"media":[{"alt":null,"id":24734578540701,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670040-Case.png?v=1648774608"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670040-Case.png?v=1648774608","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 77467-004-0\u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 254+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Impact Modifiers provides information on how to modify structure and morphology, improve mechanical performance, and prevent changes during the use of polymeric products by proper selection of impact modifiers. Handbook of Impact Modifiers brings analyses of important publications found in open and patent literature. Special attention is given to the last five years' findings, which brought many new essential developments. \u003cbr\u003e\u003cbr\u003eThe book begins with an analysis of the chemical origin and related properties of impact modifiers, which are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in the companion Databook of Impact Modifiers, which has been published as a separate book to help select products available in the commercial markets and analyze different products. The information included in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe Handbook contains the essential theoretical knowledge required for proper selection and use of impact modifiers, including their morphological structure and distribution in a polymer matrix, the effect on polymer crystallization in the presence and without impact modifiers, important influences on impact modification, mechanisms of modification, and effective methods of incorporation of impact modifiers. \u003cbr\u003e\u003cbr\u003eDetails on selection and performance in different polymers, products, and processing methods are included in three major chapters. Here extensive use is being made of patent literature and research papers available for different applications. \u003cbr\u003e\u003cbr\u003eThe final three chapters discuss the effects of impact modifiers on physical and mechanical properties of materials, essential analytical techniques used to analyze systems containing impact modifiers, and the health and safety and environmental impact of impact modifiers.\u003cbr\u003e\u003cbr\u003eThe only monographic source on the application of impact modifiers was published in 1991. Later published information included chapters on their application in various branches of polymers and their processing. The most recent publication is a marketing report with a world outlook in 2021-2025 that predicts a rapid increase in consumption of impact modifiers. This lack of fundamental information and data requires current specialized publication, the aim which these two books expect to provide. \u003cbr\u003e\u003cbr\u003eIntroduction\u003cbr\u003eMain groups of impact modifiers\u003cbr\u003eGeneral laws describing impact resistance rate of impact, temperature during impact (glass transition temperature of material), and relative humidity (amount of absorbed moisture by the product)\u003cbr\u003eImpact modification mechanisms\u003cbr\u003eCrystallinity and morphology (homogeneity, crystallinity, degradation, internal stress, material form, presence of imperfections on the surface and within the bulk of a material)\u003cbr\u003eEffect of material composition (binder, fillers (their type, hardness, shape, and particle size distribution), interaction of matrix and fillers, crosslink density, plasticizers, impact modifiers, foaming agents, residual solvents), concentrations of additives\u003cbr\u003ePolymer blends (components of the blend and compatibilizers)\u003cbr\u003eEffect of processing on impact strength\u003cbr\u003eSelection of impact modifiers for different polymers\u003cbr\u003eSelection of impact modifiers for different end-products\u003cbr\u003eDurability of impact modification\u003cbr\u003e\u003cbr\u003eGroups of products, which consume most impact modifiers\u003cbr\u003eAdhesive, sealant, hotmelt, pressure-sensitive, bookbinding\u003cbr\u003eAerospace aviation\u003cbr\u003eAutomotive – body panel, accessories, under-the-hood, bumper, motor hosing\u003cbr\u003eBottles\u003cbr\u003eCoatings, paints\u003cbr\u003eCosmetics – fragrance caps, packaging\u003cbr\u003eElectrical – connectors, computer housing, conduit, switch, insulation, TV, monitor, phone\u003cbr\u003eEngineering plastics\u003cbr\u003eFilm\u003cbr\u003eFoam\u003cbr\u003eFootware\u003cbr\u003eFurniture also garden\u003cbr\u003eGeomembrane\u003cbr\u003eGolf balls\u003cbr\u003eHealthcare – medical gloves, medical device, drapery, intravenous bag, respiratory\u003cbr\u003eHouseware – household dinnerware, cabinets, small appliance, flowerpot, refrigerator\u003cbr\u003eInk\u003cbr\u003eMolded parts – containers, handle, grip\u003cbr\u003ePackaging - meat casing, trays, meat, pouches, stretch, milk, tape, cling\u003cbr\u003ePharmaceutical – drug delivery, packaging\u003cbr\u003ePipes and tubes, hose, fitting, fuel line\u003cbr\u003ePlayground running track\u003cbr\u003eProfiles - Windows and doors, fence, deck, rail\u003cbr\u003eRoads, pavement, asphalt modification\u003cbr\u003eRoofing roof sheet, roof covering, corrugated sheet, membrane\u003cbr\u003eSeals gaskets\u003cbr\u003eSheet\u003cbr\u003eSiding\u003cbr\u003eSporting – ski booth\u003cbr\u003eToys\u003cbr\u003eWire and cable\u003cbr\u003e\u003c\/p\u003e"}
Handbook of Foaming an...
$315.00
{"id":7336368570525,"title":"Handbook of Foaming and Blowing Agents, 2nd Edition","handle":"handbook-of-foaming-and-blowing-agents-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-77467-000-2 \u003cbr\u003ePages 300+viii\u003cbr data-mce-fragment=\"1\"\u003eTables 38\u003cbr data-mce-fragment=\"1\"\u003eFigures 194\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe second edition of the \u003cstrong\u003eHandbook of Foaming and Blowing Agents\u003c\/strong\u003e includes the most current information on these additives, which has been published between 2017 and 2021 in the open literature, scientific papers, and patents to complement already included information in the previous edition.\u003c\/p\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, such as the type and amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, the viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other diverse factors. \u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on the mechanisms of action of blowing agents and foaming mechanisms, as well as the dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology, which has been discussed in fourteen chapters, each devoted to a different aspect of foaming processes.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. The typical range of technical performance is given for each group of foaming agents in the tabulated form, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers. This information was compiled based on data for over 300 commercial additives. Here, average values for each group were included, unlike in the \u003cstrong\u003eDatabook\u003c\/strong\u003e \u003cstrong\u003eof Blowing and Auxiliary Agents, \u003c\/strong\u003ewhere full information for individual additives is presented.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses foaming mechanisms with the use of solid blowing agents, which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by chemical reactions and diagrams placed close to the text of the discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is the subject of Chapter 4, emphasizing the uniformity of foam produced and the foaming process's parameters. Evaluation of the importance of parameters of foaming, included in chapter 5, contains the influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume. \u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain the uniform structure of the foam and reinforce cell walls. Seven different, most frequently used foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including the production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in the production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating is discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eThe selection of foaming agents, their quantity, and the technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, the health and safety, and environmental impacts of foaming processes are discussed. \u003c\/p\u003e\n\u003cp\u003eThis book also has a companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e, which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information, which is repeated in both books. They do compliment each other giving readers comprehensive information on the subject never published before with such breadth.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e1 Introduction\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e2 Chemical origin of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e3 Mechanisms of action of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e4 Dispersion and solubility of foaming agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e5 Parameters of foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e6 Foam stabilization\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e7 Foaming efficiency measures\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e8 Morphology of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e9 Foaming in different processing methods\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e10 Selection of blowing agents for different polymers\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e11 Additives\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e12 Effect of foaming on physical-mechanical properties of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e13 Analytical techniques useful in foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e14 Health and safety and environmental impact of foaming processes\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003eIndex\u003c\/p\u003e\n\u003cbr\u003e","published_at":"2022-03-31T20:41:59-04:00","created_at":"2022-03-31T20:38:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","foam","foaming","foaming agents","foams"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165706555549,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Foaming and Blowing Agents, 2nd Edition","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-000-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670002-Case.png?v=1648773883"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670002-Case.png?v=1648773883","options":["Title"],"media":[{"alt":null,"id":24734443438237,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670002-Case.png?v=1648773883"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670002-Case.png?v=1648773883","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-77467-000-2 \u003cbr\u003ePages 300+viii\u003cbr data-mce-fragment=\"1\"\u003eTables 38\u003cbr data-mce-fragment=\"1\"\u003eFigures 194\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe second edition of the \u003cstrong\u003eHandbook of Foaming and Blowing Agents\u003c\/strong\u003e includes the most current information on these additives, which has been published between 2017 and 2021 in the open literature, scientific papers, and patents to complement already included information in the previous edition.\u003c\/p\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, such as the type and amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, the viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other diverse factors. \u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on the mechanisms of action of blowing agents and foaming mechanisms, as well as the dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology, which has been discussed in fourteen chapters, each devoted to a different aspect of foaming processes.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. The typical range of technical performance is given for each group of foaming agents in the tabulated form, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers. This information was compiled based on data for over 300 commercial additives. Here, average values for each group were included, unlike in the \u003cstrong\u003eDatabook\u003c\/strong\u003e \u003cstrong\u003eof Blowing and Auxiliary Agents, \u003c\/strong\u003ewhere full information for individual additives is presented.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses foaming mechanisms with the use of solid blowing agents, which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by chemical reactions and diagrams placed close to the text of the discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is the subject of Chapter 4, emphasizing the uniformity of foam produced and the foaming process's parameters. Evaluation of the importance of parameters of foaming, included in chapter 5, contains the influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume. \u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain the uniform structure of the foam and reinforce cell walls. Seven different, most frequently used foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including the production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in the production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating is discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eThe selection of foaming agents, their quantity, and the technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, the health and safety, and environmental impacts of foaming processes are discussed. \u003c\/p\u003e\n\u003cp\u003eThis book also has a companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e, which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information, which is repeated in both books. They do compliment each other giving readers comprehensive information on the subject never published before with such breadth.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e1 Introduction\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e2 Chemical origin of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e3 Mechanisms of action of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e4 Dispersion and solubility of foaming agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e5 Parameters of foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e6 Foam stabilization\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e7 Foaming efficiency measures\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e8 Morphology of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e9 Foaming in different processing methods\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e10 Selection of blowing agents for different polymers\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e11 Additives\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e12 Effect of foaming on physical-mechanical properties of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e13 Analytical techniques useful in foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e14 Health and safety and environmental impact of foaming processes\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003eIndex\u003c\/p\u003e\n\u003cbr\u003e"}
Databook of Rheologica...
$285.00
{"id":7336361459869,"title":"Databook of Rheological Additives","handle":"databook-of-rheological-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-91-8 \u003cbr\u003ePages 588+xii\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eRheological additives are of interest to many industries, including paints, coatings, cosmetics, mortars, cementitious products, various polymer processing methods, sealants, inks, greases, drilling, packaging, and food products, to name some of the most important. Their selection and applications change and require frequent updates. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe \u003cstrong\u003eDatabook of Rheological Additives\u003c\/strong\u003e is frequently used in combination with the \u003cstrong\u003eHandbook of Rheological Additives\u003c\/strong\u003e. Both books do not overlap but complement each other, providing together comprehensive information on rheological additives.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe information on over 330 organic and inorganic additives is presented in individual tables for each product (either commercial or generic). There are over 30 chemical groups of additives included in this review. The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eGeneral Information\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: name, CAS #, EC #, IUPAC name, common name, common synonyms, acronym, biobased, cellulose functionality, charge, degree of substitution, empirical formula, chemical structure, molecular mass, RTECS number, chemical category, product class, product composition, moisture content, and solids content.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: state, odor, color, bulk density, density, specific gravity, relative density, boiling point, melting point, pour point, decomposition temperature, glass transition temperature, refractive index, vapor pressure, vapor density, volume resistivity, relative permittivity, ash content, pH, viscosity, rheological behavior, absolute viscosity, surface tension, hydration time, solubility in solvents, solubility in water, the heat of combustion, the heat of decomposition, specific heat, thermal conductivity, Henry’s law constant, particle size, and volatility.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth \u0026amp; Safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN\/NA class, DOT class, ADR\/RIC class, ICAO\/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion, skin irritation, eye irritation, inhalation, first aid eye, skin, and inhalation, carcinogenicity IARC, NTP, OSHA, ACGIH, and mutagenicity.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: biological oxygen demand, chemical oxygen demand, theoretical oxygen demand, biodegradation probability, aquatic toxicity algae, \u003cem\u003eRainbow trout\u003c\/em\u003e, \u003cem\u003eSheepshead minnow\u003c\/em\u003e, \u003cem\u003eFathead minnow\u003c\/em\u003e, and \u003cem\u003eDaphnia magna\u003c\/em\u003e, and partition coefficient.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; Performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: manufacturer, product feature, recommended for polymers, recommended for products, outstanding properties, compatibility, limitations, a typical reason for use, processing methods, the concentration used, storage temperature, and food approval.\u003c\/span\u003e\u003c\/p\u003e","published_at":"2022-03-31T20:37:57-04:00","created_at":"2022-03-31T20:34:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","coating","foams","industrial paint","paint","painting","paints"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165690204317,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Databook of Rheological Additives","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-91-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885918-Case.png?v=1648773465"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885918-Case.png?v=1648773465","options":["Title"],"media":[{"alt":null,"id":24734374330525,"position":1,"preview_image":{"aspect_ratio":0.705,"height":420,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885918-Case.png?v=1648773465"},"aspect_ratio":0.705,"height":420,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885918-Case.png?v=1648773465","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-91-8 \u003cbr\u003ePages 588+xii\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eRheological additives are of interest to many industries, including paints, coatings, cosmetics, mortars, cementitious products, various polymer processing methods, sealants, inks, greases, drilling, packaging, and food products, to name some of the most important. Their selection and applications change and require frequent updates. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe \u003cstrong\u003eDatabook of Rheological Additives\u003c\/strong\u003e is frequently used in combination with the \u003cstrong\u003eHandbook of Rheological Additives\u003c\/strong\u003e. Both books do not overlap but complement each other, providing together comprehensive information on rheological additives.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe information on over 330 organic and inorganic additives is presented in individual tables for each product (either commercial or generic). There are over 30 chemical groups of additives included in this review. The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eGeneral Information\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: name, CAS #, EC #, IUPAC name, common name, common synonyms, acronym, biobased, cellulose functionality, charge, degree of substitution, empirical formula, chemical structure, molecular mass, RTECS number, chemical category, product class, product composition, moisture content, and solids content.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: state, odor, color, bulk density, density, specific gravity, relative density, boiling point, melting point, pour point, decomposition temperature, glass transition temperature, refractive index, vapor pressure, vapor density, volume resistivity, relative permittivity, ash content, pH, viscosity, rheological behavior, absolute viscosity, surface tension, hydration time, solubility in solvents, solubility in water, the heat of combustion, the heat of decomposition, specific heat, thermal conductivity, Henry’s law constant, particle size, and volatility.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth \u0026amp; Safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN\/NA class, DOT class, ADR\/RIC class, ICAO\/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion, skin irritation, eye irritation, inhalation, first aid eye, skin, and inhalation, carcinogenicity IARC, NTP, OSHA, ACGIH, and mutagenicity.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: biological oxygen demand, chemical oxygen demand, theoretical oxygen demand, biodegradation probability, aquatic toxicity algae, \u003cem\u003eRainbow trout\u003c\/em\u003e, \u003cem\u003eSheepshead minnow\u003c\/em\u003e, \u003cem\u003eFathead minnow\u003c\/em\u003e, and \u003cem\u003eDaphnia magna\u003c\/em\u003e, and partition coefficient.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; Performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: manufacturer, product feature, recommended for polymers, recommended for products, outstanding properties, compatibility, limitations, a typical reason for use, processing methods, the concentration used, storage temperature, and food approval.\u003c\/span\u003e\u003c\/p\u003e"}
Databook of Impact Mod...
$285.00
{"id":7336342716573,"title":"Databook of Impact Modifiers","handle":"databook-of-impact-modifiers","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-89-5\u003cbr\u003e\u003cspan\u003ePages 460+12\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThis book is a must-have for manufacturers of impact modifiers, manufacturers of products containing impact modifiers, regulating bodies, academia, and research laboratories. The databook contains information, which is complete, timely, up-to-date, and useful in numerous fields of application and for thousands of manufacturers and products.\u003c\/span\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eImpact modifiers are particularly recommended to improve mechanical and other properties, such as tensile, impact, flexural, stress whitening, stiffness, toughness, fracture behavior, etc., but they also influence adhesion, biodegradability, flammability, optical properties, thermal stability, and other properties of high-performance thermoplastic, polymer blends, and thermoset formulations.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe \u003cstrong\u003eDatabook of Impact Modifiers\u003c\/strong\u003e is more useful in combination with the \u003cstrong\u003eHandbook of Impact Modifiers\u003c\/strong\u003e. Both books do not overlap but complement each other.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe information on over 300 impact modifiers is presented in individual tables for each product (either commercial or generic). The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eGeneral Information\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Name, CAS #, EC #, Acronym, Antioxidant content, Biobased content, Butyl acrylate, Chemical category, Chemical\/polymer name, Chlorine content, Common name, Common synonym, Composition, Core-Shell (CSR) dispersed type, CSR particle size, Diblock content, Empirical formula, EPA code, Epoxide equivalent weight, Ethylene content, Grafting degree, HSBC type, IUPAC name, Methyl acrylate, Molecular mass, Masterbatch, Mixture, Moisture content, Polymer structure, Polystyrene content, Product contents, Purity, RTECS number, Solvent system\/content, Styrene\/rubber ratio, and Total extractables.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: State, Odor, Color, Abrasion resistance, Acid #, Boiling point, Brittleness temperature, Bulk density, Cloud point, Coefficient of thermal expansion, Crystallinity, Crystallization temperature peak, Decomposition temperature, Density, Drying loss, Elongation at break, Flexural modulus, Flexural strength, Flexural stress at break, Flexural stress at yield, Gardner impact, Glass transition temperature, Gloss, Graves tear, Hardness Rockwell, Hardness Shore A, Hardness Shore D, Haze, Heat distortion temperature, Heat of combustion, Impact strength dart drop, Izod impact, Loss on ignition, MAH content, Melt flow rate, Melt viscosity, Melting\/freezing point, Modulus 300%, Moisture absorption, Oxygen index LOI, Particle size, Particle size distribution, Pellets per gram, Permeability coefficient, pH, Refractive index, Relative permittivity, Ring and ball softening point, Set at break, Solubility in water and solvents, Specific gravity, Specific heat, Specific surface area, Spencer impact, Stiffness, Stress at yield, Surface hardness, Surface tension, Tear strength, Tensile elongation ultimate, Tensile impact strength, Tensile modulus, Tensile strain, Tensile strength, Thermal conductivity, Transmission visible, Vapor density, Vapor pressure, Vicat softening point, Viscosity, Viscosity index, Viscosity Mooney, Volatility, Volume resistivity, and Water vapor transmission rate.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth \u0026amp; Safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Autoignition temperature, Carcinogenicity, Dust explosion class, Eye irritation, Flash point, Flash point method, Flame characteristics, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, Hazards, ICAO\/IATA Class, IMDG Class, Mutagenicity, Rat oral LD\u003csub\u003e50\u003c\/sub\u003e, Rabbit dermal LD\u003csub\u003e50\u003c\/sub\u003e, Inhalation rat LC\u003csub\u003e50\u003c\/sub\u003e, Skin irritation, and TLV - TWA 8h (ACGIH and OSHA)\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Aquatic toxicity LC50 (Algae, Bluegill sunfish, Daphnia magna, Rainbow trout), Biodegradation probability, and Partition coefficient (log K\u003csub\u003eoc\u003c\/sub\u003e).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; Performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Manufacturer, Outstanding properties, General characteristics, Recommended for polymers, Recommended for products, Related end-markets Related functions, Processing methods, Concentrations used, Guideline for use, Process temperature, and Food contact.\u003c\/span\u003e\u003c\/p\u003e","published_at":"2022-03-31T20:34:20-04:00","created_at":"2022-03-31T20:26:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","foams","modifiers"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165647933597,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Databook of Impact Modifiers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-89-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885895-Case.png?v=1648773220"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885895-Case.png?v=1648773220","options":["Title"],"media":[{"alt":null,"id":24734341464221,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885895-Case.png?v=1648773220"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885895-Case.png?v=1648773220","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-89-5\u003cbr\u003e\u003cspan\u003ePages 460+12\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThis book is a must-have for manufacturers of impact modifiers, manufacturers of products containing impact modifiers, regulating bodies, academia, and research laboratories. The databook contains information, which is complete, timely, up-to-date, and useful in numerous fields of application and for thousands of manufacturers and products.\u003c\/span\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eImpact modifiers are particularly recommended to improve mechanical and other properties, such as tensile, impact, flexural, stress whitening, stiffness, toughness, fracture behavior, etc., but they also influence adhesion, biodegradability, flammability, optical properties, thermal stability, and other properties of high-performance thermoplastic, polymer blends, and thermoset formulations.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe \u003cstrong\u003eDatabook of Impact Modifiers\u003c\/strong\u003e is more useful in combination with the \u003cstrong\u003eHandbook of Impact Modifiers\u003c\/strong\u003e. Both books do not overlap but complement each other.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe information on over 300 impact modifiers is presented in individual tables for each product (either commercial or generic). The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eGeneral Information\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Name, CAS #, EC #, Acronym, Antioxidant content, Biobased content, Butyl acrylate, Chemical category, Chemical\/polymer name, Chlorine content, Common name, Common synonym, Composition, Core-Shell (CSR) dispersed type, CSR particle size, Diblock content, Empirical formula, EPA code, Epoxide equivalent weight, Ethylene content, Grafting degree, HSBC type, IUPAC name, Methyl acrylate, Molecular mass, Masterbatch, Mixture, Moisture content, Polymer structure, Polystyrene content, Product contents, Purity, RTECS number, Solvent system\/content, Styrene\/rubber ratio, and Total extractables.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: State, Odor, Color, Abrasion resistance, Acid #, Boiling point, Brittleness temperature, Bulk density, Cloud point, Coefficient of thermal expansion, Crystallinity, Crystallization temperature peak, Decomposition temperature, Density, Drying loss, Elongation at break, Flexural modulus, Flexural strength, Flexural stress at break, Flexural stress at yield, Gardner impact, Glass transition temperature, Gloss, Graves tear, Hardness Rockwell, Hardness Shore A, Hardness Shore D, Haze, Heat distortion temperature, Heat of combustion, Impact strength dart drop, Izod impact, Loss on ignition, MAH content, Melt flow rate, Melt viscosity, Melting\/freezing point, Modulus 300%, Moisture absorption, Oxygen index LOI, Particle size, Particle size distribution, Pellets per gram, Permeability coefficient, pH, Refractive index, Relative permittivity, Ring and ball softening point, Set at break, Solubility in water and solvents, Specific gravity, Specific heat, Specific surface area, Spencer impact, Stiffness, Stress at yield, Surface hardness, Surface tension, Tear strength, Tensile elongation ultimate, Tensile impact strength, Tensile modulus, Tensile strain, Tensile strength, Thermal conductivity, Transmission visible, Vapor density, Vapor pressure, Vicat softening point, Viscosity, Viscosity index, Viscosity Mooney, Volatility, Volume resistivity, and Water vapor transmission rate.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth \u0026amp; Safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Autoignition temperature, Carcinogenicity, Dust explosion class, Eye irritation, Flash point, Flash point method, Flame characteristics, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, Hazards, ICAO\/IATA Class, IMDG Class, Mutagenicity, Rat oral LD\u003csub\u003e50\u003c\/sub\u003e, Rabbit dermal LD\u003csub\u003e50\u003c\/sub\u003e, Inhalation rat LC\u003csub\u003e50\u003c\/sub\u003e, Skin irritation, and TLV - TWA 8h (ACGIH and OSHA)\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Aquatic toxicity LC50 (Algae, Bluegill sunfish, Daphnia magna, Rainbow trout), Biodegradation probability, and Partition coefficient (log K\u003csub\u003eoc\u003c\/sub\u003e).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; Performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Manufacturer, Outstanding properties, General characteristics, Recommended for polymers, Recommended for products, Related end-markets Related functions, Processing methods, Concentrations used, Guideline for use, Process temperature, and Food contact.\u003c\/span\u003e\u003c\/p\u003e"}
Databook of Blowing an...
$315.00
{"id":7336328069277,"title":"Databook of Blowing and Auxiliary Agents, 2nd Ed.","handle":"databook-of-blowing-and-auxiliary-agents-2nd-ed","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e\u003cspan data-mce-fragment=\"1\"\u003eGeorge Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-87-1\u003cbr\u003e\u003cspan\u003ePages 460+12\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book is a must-have for manufacturers of blowing agents, manufacturers of products containing blowing agents designed for various purposes, regulating bodies, academia, and research laboratories. The databook contains information, which is complete, timely, up-to-date, and useful in numerous fields of application and for thousands of manufactures and products.\u003cbr\u003e\u003cbr\u003eThe Databook of Blowing and Auxiliary Agents is more useful in combination with the Handbook of Foaming and Blowing Agents. Both books do not overlap but complement each other.\u003cbr\u003e\u003cbr\u003eThe information on over 360 blow molding and auxiliary agents is presented in individual tables for each product (either commercial or generic). The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003cbr\u003e\u003cbr\u003eGeneral Information: name, CAS #, EC #, IUPAC name, common name, common synonyms, acronym, empirical formula, chemical structure, molecular mass, RTECS number, chemical category, product class, product composition, masterbatch, blends, moisture content, solids content.\u003cbr\u003e\u003cbr\u003ePhysical Properties: state, odor, color, platinum-cobalt scale, bulk density, density, specific gravity, pKa, boiling point, melting point, pour point, decomposition temperature, maximum gas yield, total gas yield, TMA, blowing gas content, foam K factor, glass transition temperature, main gas, iodine value, aniline point, refractive index, vapor pressure, vapor density, vapor thermal conductivity, volume resistivity, relative permittivity, ash content, pH, viscosity, absolute viscosity, surface tension, solubility in solvents, solubility in water, the heat of vaporization, the heat of combustion, the heat of decomposition, specific heat, thermal conductivity, Henry’s law constant, particle size, and volatility.\u003cbr\u003e\u003cbr\u003eHealth \u0026amp; Safety: NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN\/NA class, DOT class, ADR\/RIC class, ICAO\/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion, skin irritation, eye irritation, inhalation, first aid eye, skin, and inhalation, carcinogenicity IARC, NTP, OSHA, ACGIH, and mutagenicity.\u003cbr\u003e\u003cbr\u003eEcological Properties: atmospheric lifetime, biological oxygen demand, chemical oxygen demand, theoretical oxygen demand, biodegradation probability, aquatic toxicity algae, Rainbow trout, Sheepshead minnow, Fathead minnow, and Daphnia magna, global warming potential, ozone depletion potential, VOC, Kyoto compliant, and partition coefficient.\u003cbr\u003e\u003cbr\u003eUse \u0026amp; Performance: manufacturer, product feature, recommended for polymers, recommended for products, outstanding properties, a typical reason for use, processing methods, not recommended for, the concentration used, food approval, and R-value.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nActivators\u003cbr data-mce-fragment=\"1\"\u003eAzodicarbonamides\u003cbr data-mce-fragment=\"1\"\u003eCrosslinkers\u003cbr data-mce-fragment=\"1\"\u003eDinitroso pentamethylene tetramines\u003cbr data-mce-fragment=\"1\"\u003eDispersions in polymer carriers\u003cbr data-mce-fragment=\"1\"\u003eFoaming agent mixtures with other additive(s)\u003cbr data-mce-fragment=\"1\"\u003eGases\u003cbr data-mce-fragment=\"1\"\u003eHydrazides\u003cbr data-mce-fragment=\"1\"\u003eHydrocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrochlorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrochlorofluorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrofluorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrofluoroolefins\u003cbr data-mce-fragment=\"1\"\u003eMasterbatches\u003cbr data-mce-fragment=\"1\"\u003eMicrospheres\u003cbr data-mce-fragment=\"1\"\u003eMixtures of foaming agents\u003cbr data-mce-fragment=\"1\"\u003eNucleating agents\u003cbr data-mce-fragment=\"1\"\u003eProprietary\u003cbr data-mce-fragment=\"1\"\u003eSalts of carbonic and polycarbonic acids\u003cbr data-mce-fragment=\"1\"\u003eSodium bicarbonate\u003cbr data-mce-fragment=\"1\"\u003eSulfonylsemicarbazides\u003cbr data-mce-fragment=\"1\"\u003eTetrazoles\u003cbr data-mce-fragment=\"1\"\u003eWater\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2022-03-31T20:26:05-04:00","created_at":"2022-03-31T20:19:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","Antiblocking agents","blow molding","blowing","blowing agents","book","foams"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165614772381,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Databook of Blowing and Auxiliary Agents, 2nd Ed.","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-87-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885871-Case.png?v=1648772646"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885871-Case.png?v=1648772646","options":["Title"],"media":[{"alt":null,"id":24734249975965,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885871-Case.png?v=1648772646"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885871-Case.png?v=1648772646","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e\u003cspan data-mce-fragment=\"1\"\u003eGeorge Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-87-1\u003cbr\u003e\u003cspan\u003ePages 460+12\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book is a must-have for manufacturers of blowing agents, manufacturers of products containing blowing agents designed for various purposes, regulating bodies, academia, and research laboratories. The databook contains information, which is complete, timely, up-to-date, and useful in numerous fields of application and for thousands of manufactures and products.\u003cbr\u003e\u003cbr\u003eThe Databook of Blowing and Auxiliary Agents is more useful in combination with the Handbook of Foaming and Blowing Agents. Both books do not overlap but complement each other.\u003cbr\u003e\u003cbr\u003eThe information on over 360 blow molding and auxiliary agents is presented in individual tables for each product (either commercial or generic). The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003cbr\u003e\u003cbr\u003eGeneral Information: name, CAS #, EC #, IUPAC name, common name, common synonyms, acronym, empirical formula, chemical structure, molecular mass, RTECS number, chemical category, product class, product composition, masterbatch, blends, moisture content, solids content.\u003cbr\u003e\u003cbr\u003ePhysical Properties: state, odor, color, platinum-cobalt scale, bulk density, density, specific gravity, pKa, boiling point, melting point, pour point, decomposition temperature, maximum gas yield, total gas yield, TMA, blowing gas content, foam K factor, glass transition temperature, main gas, iodine value, aniline point, refractive index, vapor pressure, vapor density, vapor thermal conductivity, volume resistivity, relative permittivity, ash content, pH, viscosity, absolute viscosity, surface tension, solubility in solvents, solubility in water, the heat of vaporization, the heat of combustion, the heat of decomposition, specific heat, thermal conductivity, Henry’s law constant, particle size, and volatility.\u003cbr\u003e\u003cbr\u003eHealth \u0026amp; Safety: NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN\/NA class, DOT class, ADR\/RIC class, ICAO\/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion, skin irritation, eye irritation, inhalation, first aid eye, skin, and inhalation, carcinogenicity IARC, NTP, OSHA, ACGIH, and mutagenicity.\u003cbr\u003e\u003cbr\u003eEcological Properties: atmospheric lifetime, biological oxygen demand, chemical oxygen demand, theoretical oxygen demand, biodegradation probability, aquatic toxicity algae, Rainbow trout, Sheepshead minnow, Fathead minnow, and Daphnia magna, global warming potential, ozone depletion potential, VOC, Kyoto compliant, and partition coefficient.\u003cbr\u003e\u003cbr\u003eUse \u0026amp; Performance: manufacturer, product feature, recommended for polymers, recommended for products, outstanding properties, a typical reason for use, processing methods, not recommended for, the concentration used, food approval, and R-value.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nActivators\u003cbr data-mce-fragment=\"1\"\u003eAzodicarbonamides\u003cbr data-mce-fragment=\"1\"\u003eCrosslinkers\u003cbr data-mce-fragment=\"1\"\u003eDinitroso pentamethylene tetramines\u003cbr data-mce-fragment=\"1\"\u003eDispersions in polymer carriers\u003cbr data-mce-fragment=\"1\"\u003eFoaming agent mixtures with other additive(s)\u003cbr data-mce-fragment=\"1\"\u003eGases\u003cbr data-mce-fragment=\"1\"\u003eHydrazides\u003cbr data-mce-fragment=\"1\"\u003eHydrocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrochlorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrochlorofluorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrofluorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrofluoroolefins\u003cbr data-mce-fragment=\"1\"\u003eMasterbatches\u003cbr data-mce-fragment=\"1\"\u003eMicrospheres\u003cbr data-mce-fragment=\"1\"\u003eMixtures of foaming agents\u003cbr data-mce-fragment=\"1\"\u003eNucleating agents\u003cbr data-mce-fragment=\"1\"\u003eProprietary\u003cbr data-mce-fragment=\"1\"\u003eSalts of carbonic and polycarbonic acids\u003cbr data-mce-fragment=\"1\"\u003eSodium bicarbonate\u003cbr data-mce-fragment=\"1\"\u003eSulfonylsemicarbazides\u003cbr data-mce-fragment=\"1\"\u003eTetrazoles\u003cbr data-mce-fragment=\"1\"\u003eWater\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Rheology. Concepts, Me...
$325.00
{"id":7289169084573,"title":"Rheology. Concepts, Methods, and Applications, 4th Edition","handle":"copy-of-rheology-concepts-methods-and-applications-4th-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-93-2 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2022\u003cbr\u003ePages 520+xvi\u003cbr\u003eFigures 300\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThe fourth edition of this excellent book, used by many universities and companies for teaching and research purposes, brings significant current information on new methods and applications based on recently published literature. The most notable new sections discuss non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how a particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids, but solid materials are also discussed in one full chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe rheological studies' goal is not to measure some rheological variables but to generate relevant data, which requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in materials studies. This is one powerful aspect of this book, which will help to avert costly confusion - common when data are generated under wrong conditions or data are wrongly used.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMethods of measurement and raw data treatment are included in one large, chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here, giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. The usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe authors are very meticulous in showing the historical sequence of developments, which led to the present advancements in rheology. This aspect is of interest to specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of many scientists' achievements give essential historical background of contributors to rheology as science and solve many practical problems.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them. We are fortunate that they intend to pass their knowledge to the next generations. Previous editions of this book were used as a textbook in many universities worldwide.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book is instrumental in industrial applications, but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIntroduction. Rheology: Subject and Goals\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.2 Deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.3 Kinematics of deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.4 Heterogeneity on flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.5 Summary − continuum mechanics in rheology \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e2 Viscoelasticity \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.1 Basic experiments \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3 Model interpretations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.5 Relationships among viscoelastic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.6 Viscoelasticity and molecular models \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.8 Non-linear effects in viscoelasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e3 Liquids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.2 Non-Newtonian shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.3 Equations for viscosity and flow curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.4 Elasticity in shear flows \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.5 Structure rearrangements induced by shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.6 Limits of shear flow − instabilities \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.7 Extensional flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.8 Conclusions − real liquid is a complex liquid \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e4 Solids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.1 Introduction and definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.2 Linear elastic (Hookean) materials \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.3 Linear anisotropic solids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.4 Large deformations in solids and non-linearity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.5 Limits of elasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e5 Rheometry Experimental Methods \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.1 Introduction − Classification of experimental methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.2 Capillary viscometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.3 Rotational rheometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.4 Plastometers \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.5 Method of falling sphere \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.6 Extension \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.8 Physical methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e6 Applications of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.1 Introduction \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.2 Rheological properties of real materials and their characterization \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.4 Solution of dynamic problems \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eNotation \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eSolutions \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIndex \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2022-02-21T11:26:15-05:00","created_at":"2022-02-21T11:11:16-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","boltzmann-volterra stresses","book","capillary viscometry","creep","deformation","elongation","equations","liquid","Newtonian liquids","non-Newtonian liquids","p-properties","plastometers","polymer","rheokinetics","rheological","rheology","rheometry","solids","viscoelasticity"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":41999155921053,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications, 4th Edition","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-927885-93-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764","options":["Title"],"media":[{"alt":null,"id":24441167478941,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-93-2 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2022\u003cbr\u003ePages 520+xvi\u003cbr\u003eFigures 300\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThe fourth edition of this excellent book, used by many universities and companies for teaching and research purposes, brings significant current information on new methods and applications based on recently published literature. The most notable new sections discuss non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how a particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids, but solid materials are also discussed in one full chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe rheological studies' goal is not to measure some rheological variables but to generate relevant data, which requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in materials studies. This is one powerful aspect of this book, which will help to avert costly confusion - common when data are generated under wrong conditions or data are wrongly used.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMethods of measurement and raw data treatment are included in one large, chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here, giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. The usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe authors are very meticulous in showing the historical sequence of developments, which led to the present advancements in rheology. This aspect is of interest to specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of many scientists' achievements give essential historical background of contributors to rheology as science and solve many practical problems.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them. We are fortunate that they intend to pass their knowledge to the next generations. Previous editions of this book were used as a textbook in many universities worldwide.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book is instrumental in industrial applications, but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIntroduction. Rheology: Subject and Goals\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.2 Deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.3 Kinematics of deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.4 Heterogeneity on flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.5 Summary − continuum mechanics in rheology \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e2 Viscoelasticity \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.1 Basic experiments \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3 Model interpretations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.5 Relationships among viscoelastic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.6 Viscoelasticity and molecular models \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.8 Non-linear effects in viscoelasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e3 Liquids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.2 Non-Newtonian shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.3 Equations for viscosity and flow curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.4 Elasticity in shear flows \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.5 Structure rearrangements induced by shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.6 Limits of shear flow − instabilities \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.7 Extensional flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.8 Conclusions − real liquid is a complex liquid \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e4 Solids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.1 Introduction and definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.2 Linear elastic (Hookean) materials \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.3 Linear anisotropic solids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.4 Large deformations in solids and non-linearity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.5 Limits of elasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e5 Rheometry Experimental Methods \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.1 Introduction − Classification of experimental methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.2 Capillary viscometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.3 Rotational rheometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.4 Plastometers \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.5 Method of falling sphere \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.6 Extension \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.8 Physical methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e6 Applications of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.1 Introduction \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.2 Rheological properties of real materials and their characterization \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.4 Solution of dynamic problems \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eNotation \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eSolutions \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIndex \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e"}
PVC Formulary
$300.00
{"id":4534955769949,"title":"PVC Formulary","handle":"pvc-formulary","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-63-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird edition\u003cbr\u003ePages: 410+x\u003cbr\u003eFigures: 132\u003cbr\u003eTables: 544\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In addition to the content of the previous edition, the book provides many new formulations which were introduced in the last six years. In the first introductory chapter, the new product development, product re-engineering tools and market for PVC products have been discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear way in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics needed by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains more than 600 formulations of products belonging to over 20 categories derived from typical methods of production. Formulations come from patents, publications in journals, and from the suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most critical parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This section results from a review of thousands of patents and research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, and use and application information. The data are based on information contained in over 1450 research papers, and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization also published in 2020) is to provide the reader with complete information and data required to formulate successful and durable products and\/or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Pharmaceutical products\u003cbr\u003e4.15 Powder coating \u003cbr\u003e4.16 Printing \u003cbr\u003e4.17 Rotational molding \u003cbr\u003e4.18 Sintering \u003cbr\u003e4.19 Slush molding \u003cbr\u003e4.20 Solvent casting \u003cbr\u003e4.21 Spraying \u003cbr\u003e4.22 Thermoforming \u003cbr\u003e4.23 Web coating \u003cbr\u003e4.23.1 General \u003cbr\u003e4.23.2 Coated fabrics \u003cbr\u003e4.23.3 Conveyor belts \u003cbr\u003e4.23.4 Flooring \u003cbr\u003e4.23.5 Swimming pool liners \u003cbr\u003e4.23.6 Tarpaulins \u003cbr\u003e4.23.7 Upholstery \u003cbr\u003e4.23.8 Wallcovering \u003cbr\u003e4.23.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 Wire \u0026amp; cable \u003cbr\u003e4.24.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.24.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.25 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:20:07-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","PVC"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943878705245,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Formulary","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-63-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885635-Case.png?v=1581110471"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885635-Case.png?v=1581110471","options":["Title"],"media":[{"alt":null,"id":6968064540765,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885635-Case.png?v=1581110471"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885635-Case.png?v=1581110471","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-63-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird edition\u003cbr\u003ePages: 410+x\u003cbr\u003eFigures: 132\u003cbr\u003eTables: 544\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In addition to the content of the previous edition, the book provides many new formulations which were introduced in the last six years. In the first introductory chapter, the new product development, product re-engineering tools and market for PVC products have been discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear way in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics needed by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains more than 600 formulations of products belonging to over 20 categories derived from typical methods of production. Formulations come from patents, publications in journals, and from the suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most critical parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This section results from a review of thousands of patents and research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, and use and application information. The data are based on information contained in over 1450 research papers, and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization also published in 2020) is to provide the reader with complete information and data required to formulate successful and durable products and\/or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Pharmaceutical products\u003cbr\u003e4.15 Powder coating \u003cbr\u003e4.16 Printing \u003cbr\u003e4.17 Rotational molding \u003cbr\u003e4.18 Sintering \u003cbr\u003e4.19 Slush molding \u003cbr\u003e4.20 Solvent casting \u003cbr\u003e4.21 Spraying \u003cbr\u003e4.22 Thermoforming \u003cbr\u003e4.23 Web coating \u003cbr\u003e4.23.1 General \u003cbr\u003e4.23.2 Coated fabrics \u003cbr\u003e4.23.3 Conveyor belts \u003cbr\u003e4.23.4 Flooring \u003cbr\u003e4.23.5 Swimming pool liners \u003cbr\u003e4.23.6 Tarpaulins \u003cbr\u003e4.23.7 Upholstery \u003cbr\u003e4.23.8 Wallcovering \u003cbr\u003e4.23.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 Wire \u0026amp; cable \u003cbr\u003e4.24.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.24.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.25 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
PVC Degradation and St...
$315.00
{"id":4534954426461,"title":"PVC Degradation and Stabilization","handle":"pvc-degradation-and-stabilization","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-61-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 510 + x\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 67\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFourth Edition of PVC Degradation and Stabilization is a wholly updated monographic source based on the most recent papers and patent literature. PVC stabilization, the most critical aspect of formulation and performance of this polymer, is discussed in detail. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains an analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by γ-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:17:36-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","PVC","PVC UV degradation"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943870808157,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":-2,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-61-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885611-Case.png?v=1581110423"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885611-Case.png?v=1581110423","options":["Title"],"media":[{"alt":null,"id":6968063197277,"position":1,"preview_image":{"aspect_ratio":0.66,"height":450,"width":297,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885611-Case.png?v=1581110423"},"aspect_ratio":0.66,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885611-Case.png?v=1581110423","width":297}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-61-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 510 + x\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 67\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFourth Edition of PVC Degradation and Stabilization is a wholly updated monographic source based on the most recent papers and patent literature. PVC stabilization, the most critical aspect of formulation and performance of this polymer, is discussed in detail. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains an analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by γ-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Handbook of UV Degrada...
$315.00
{"id":4534952853597,"title":"Handbook of UV Degradation and Stabilization, 3nd Edition","handle":"handbook-of-uv-degradation-and-stabilization-3nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-57-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird Edition\u003cbr\u003ePages: 518\u003cbr\u003eFigures 124\u003cbr\u003eTables 256\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains completely updated version of previous edition with the most recent literature and patents. It has 12 chapters, each discussing different aspect of UV related phenomena occurring when materials are exposed to UV radiation.\u003cbr\u003e\u003cbr\u003eIn the introduction the existing literature has been reviewed to find out how plants, animals and humans protect themselves against UV radiation. This review permits comparison of mechanisms of protection against UV used by living things and the effect of UV radiation on materials derived from natural products and polymers and rubber. \u003cbr\u003e\u003cbr\u003ePhotophysics, discussed in the second chapter, helps to build understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process. \u003cbr\u003e\u003cbr\u003eThese effects are combined with photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a sets of data prepared according to a systematic outline as listed in the Table of Contents. \u003cbr\u003e\u003cbr\u003eStability of UV stabilizers, important for predicting lifetime of their protection is discussed in Chapter 5. Different reasons of instability are pointed out in evaluation.\u003cbr\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003cbr\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7 and over 40 groups of final products, which use majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003cbr\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential in further understanding of UV degradation and stabilization.\u003cbr\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and commercial use of the products (Chapter 12).\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Databook of UV stabilizers which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential for automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and large number of industries which derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:14:49-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","UV stabilizers"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943861600349,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of UV Degradation and Stabilization, 3nd Edition","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-57-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885574-Case.png?v=1581110318"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885574-Case.png?v=1581110318","options":["Title"],"media":[{"alt":null,"id":6968061067357,"position":1,"preview_image":{"aspect_ratio":0.673,"height":450,"width":303,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885574-Case.png?v=1581110318"},"aspect_ratio":0.673,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885574-Case.png?v=1581110318","width":303}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-57-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird Edition\u003cbr\u003ePages: 518\u003cbr\u003eFigures 124\u003cbr\u003eTables 256\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains completely updated version of previous edition with the most recent literature and patents. It has 12 chapters, each discussing different aspect of UV related phenomena occurring when materials are exposed to UV radiation.\u003cbr\u003e\u003cbr\u003eIn the introduction the existing literature has been reviewed to find out how plants, animals and humans protect themselves against UV radiation. This review permits comparison of mechanisms of protection against UV used by living things and the effect of UV radiation on materials derived from natural products and polymers and rubber. \u003cbr\u003e\u003cbr\u003ePhotophysics, discussed in the second chapter, helps to build understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process. \u003cbr\u003e\u003cbr\u003eThese effects are combined with photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a sets of data prepared according to a systematic outline as listed in the Table of Contents. \u003cbr\u003e\u003cbr\u003eStability of UV stabilizers, important for predicting lifetime of their protection is discussed in Chapter 5. Different reasons of instability are pointed out in evaluation.\u003cbr\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003cbr\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7 and over 40 groups of final products, which use majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003cbr\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential in further understanding of UV degradation and stabilization.\u003cbr\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and commercial use of the products (Chapter 12).\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Databook of UV stabilizers which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential for automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and large number of industries which derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Handbook of Antioxidants
$285.00
{"id":4534951215197,"title":"Handbook of Antioxidants","handle":"handbook-of-antioxidants","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-59-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFirst Edition\u003cbr\u003eNumber of pages 238+vi\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Antioxidants contains information on both natural and man-made antioxidants available in natural products and added to numerous industrial applications. The book contains 5 chapters, each discussing different aspect of phenomena occurring when materials are exposed to ambient air which contains oxygen, ozone, singlet oxygen, and many other oxidizing species (radicals).\u003cbr\u003e\u003cbr\u003eThe introduction includes discussion of general concepts related to antioxidants and their application. This is followed in Chapter 2 by information on existing natural and synthetic antioxidants which are presented in the form of tables characterizing their general properties and applications. \u003cbr\u003e\u003cbr\u003eChapter 3 contains information on the physics and chemistry of oxidation and antioxidation, including the influence of UV radiation. In this chapter, peculiarities of oxidation and its prevention by antioxidants are discussed for different groups of antioxidants. In total, 25 groups of antioxidants are discussed in separate sections of this chapter. The focus of the evaluation of research findings is on the mechanism of action of antioxidants, their stability, and eventual methods of its improvement.\u003cbr\u003e\u003cbr\u003eA separate discussion of the effects of oxidation and photooxidation on living cells is included in Chapter 4. In the introduction, the differences and similarities between the behavior of polymers and livings things and their use of antioxidants are briefly outlined. The opening is followed by separate sections discussing oxidation phenomena in microorganisms, plants, fish, animals, and humans.\u003cbr\u003e\u003cbr\u003eChapter 5 constitutes the technological part of the book, which includes the analysis of progress and applications of antioxidants in different polymers and rubbers. In total, 66 polymers are discussed in separate sections of this chapter. The main subjects of this discussion include mechanisms of degradation and its prevention by antioxidants. Selection of the most suitable antioxidants and methods of their use constitutes one of the main subjects of discussion. This part of the book heavily relies on patent literature in addition to the scientific findings. The emphasis is given to the most recent applications rather than a historical review of applications.\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Databook of Antioxidants which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential in medicine, pharmaceutical science and technology, automotive industry, aerospace, oil industry, polymers and plastics, rubber, food preservation, cosmetics, natural oil production, lubrication, and many product groups derived from polymers and rubber.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 3 Typical Groups of Antioxidants\u003cbr\u003e2.1 Acids and their esters\u003cbr\u003e2.2 Algae\u003cbr\u003e2.3 Amines\u003cbr\u003e2.4 Anthocyanidins\u003cbr\u003e2.5 Ascorbates\u003cbr\u003e2.6 Benzofuranones\u003cbr\u003e2.7 Benzimidazoles\u003cbr\u003e2.8 Benzoquinones\u003cbr\u003e2.9 Biopolyphenols\u003cbr\u003e2.10 Curcumin\u003cbr\u003e2.11 Coumarin\u003cbr\u003e2.12 Enzymes\u003cbr\u003e2.13 Extracts\u003cbr\u003e2.14 Flavonoids\u003cbr\u003e2.15 Graphene\u003cbr\u003e2.16 Hydrazide metal deactivators\u003cbr\u003e2.17 Hydroquinidines\u003cbr\u003e2.18 Hydroquinone\u003cbr\u003e2.19 Hydroxylamines\u003cbr\u003e2.20 Isoflavones\u003cbr\u003e2.21 Lignanamide\u003cbr\u003e2.22 Liposomes\u003cbr\u003e2.23 Mitochondria-targeted antioxidants\u003cbr\u003e2.24 Oil-derivatives\u003cbr\u003e2.25 Peptides\u003cbr\u003e2.26 Phenolics\u003cbr\u003e2.27 Phosphites, diphosphite, and diphosphonites\u003cbr\u003e2.28 Polyphenols\u003cbr\u003e2.29 Stilbene derivatives\u003cbr\u003e2.30 Sulfur-containing compounds\u003cbr\u003e2.31 Terpenoids\u003cbr\u003e2.32 Tocopherols\u003cbr\u003e3 Physics and Chemistry of Oxidation and Antioxidants \u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Amines\u003cbr\u003e3.3 Anthocyanidins\u003cbr\u003e3.4 Ascorbates\u003cbr\u003e3.5 Benzofuranones\u003cbr\u003e3.6 Benzimidazoles\u003cbr\u003e3.7 Benzoquinones\u003cbr\u003e3.8 Curcumin\u003cbr\u003e3.9 Coumarin\u003cbr\u003e3.10 Enzymes\u003cbr\u003e3.11 Flavonoids\u003cbr\u003e3.12 Graphene\u003cbr\u003e3.13 Hydroquinones\u003cbr\u003e3.14 Hydroxylamines\u003cbr\u003e3.15 Isoflavones\u003cbr\u003e3.16 Lignanamide\u003cbr\u003e3.17 Oil components\u003cbr\u003e3.18 Peptides\u003cbr\u003e3.19 Phenolics\u003cbr\u003e3.20 Phosphites\u003cbr\u003e3.21 Polyphenols\u003cbr\u003e3.22 Stilbene derivatives\u003cbr\u003e3.23 Sulfur-containing compounds\u003cbr\u003e3.24 Terpenoids\u003cbr\u003e3.25 Tocopherols\u003cbr\u003e4 Oxidation in Living Cells\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Microorganisms\u003cbr\u003e4.3 Plants\u003cbr\u003e4.4 Fish\u003cbr\u003e4.5 Animals\u003cbr\u003e4.6 Humans\u003cbr\u003e5 Prevention of Oxidation of Selected Polymers and Rubbers\u003cbr\u003e5.1 ABS (Acrylonitrile-butadiene-styrene)\u003cbr\u003e5.2 AK (alkyd resin)\u003cbr\u003e5.3 C (cellulose)\u003cbr\u003e5.4 CA (cellulose acetate)\u003cbr\u003e5.5 CAR (carrageenan)\u003cbr\u003e5.6 CHI (chitosan)\u003cbr\u003e5.7 CMC (carboxymethyl cellulose)\u003cbr\u003e5.8 CN (cellulose nitrate)\u003cbr\u003e5.9 COC (cyclic olefin copolymer)\u003cbr\u003e5.10 CPE (chlorinated polyethylene)\u003cbr\u003e5.11 CPVC (chlorinated poly(vinyl chloride))\u003cbr\u003e5.12 CR (polychloroprene)\u003cbr\u003e5.13 CY (cyanoacrylate)\u003cbr\u003e5.14 EC (ethyl cellulose)\u003cbr\u003e5.15 ECTFE (poly(ethylene-co-chlorotrifluoroethylene))\u003cbr\u003e5.16 EP (epoxy resin)\u003cbr\u003e5.17 EPDM (ethylene-propylene diene terpolymer)\u003cbr\u003e5.18 EPR (ethylene-propylene rubber)\u003cbr\u003e5.19 EVAc (ethylene-vinyl acetate copolymer)\u003cbr\u003e5.20 EVOH (ethylene-vinyl alcohol copolymer)\u003cbr\u003e5.21 GEL (gelatin)\u003cbr\u003e5.22 HDPE (high-density polyethylene)\u003cbr\u003e5.23 LDPE (low-density polyethylene)\u003cbr\u003e5.24 LLDPE (linear low-density polyethylene)\u003cbr\u003e5.25 NBR (acrylonitrile-butadiene elastomer)\u003cbr\u003e5.26 PA (polyamide)\u003cbr\u003e5.27 PANI (polyaniline)\u003cbr\u003e5.28 PB (polybutylene)\u003cbr\u003e5.29 PBD (polybutadiene)\u003cbr\u003e5.30 PC (polycarbonate)\u003cbr\u003e5.31 PCL (poly(ε-caprolactone))\u003cbr\u003e5.32 PDL (polylysine)\u003cbr\u003e5.33 PDMS (polydimethylsiloxane)\u003cbr\u003e5.34 PEEK (polyetheretherketone)\u003cbr\u003e5.35 PET (poly(ethylene terephthalate))\u003cbr\u003e5.36 PEX (silane-crosslinkable polyethylene)\u003cbr\u003e5.37 PFPE (perfluoropolyether)\u003cbr\u003e5.38 PHB (poly(3-hydroxybutyrate))\u003cbr\u003e5.39 pHEMA (poly(2-hydroxyethyl methacrylate))\u003cbr\u003e5.40 PI (polyimide)\u003cbr\u003e5.41 PIB (polyisobutylene)\u003cbr\u003e5.42 PIP (polyisoprene)\u003cbr\u003e5.43 PK (polyketone)\u003cbr\u003e5.44 PLA (poly(lactic acid))\u003cbr\u003e5.45 PMMA (polymethylmethacrylate)\u003cbr\u003e5.46 PP (polypropylene)\u003cbr\u003e5.47 PPG (poly(propylene glycol))\u003cbr\u003e5.48 PPS (poly(p-phenylene sulfide))\u003cbr\u003e5.49 PPy (polypyrrole)\u003cbr\u003e5.50 PR (proteins)\u003cbr\u003e5.51 PS (polystyrene)\u003cbr\u003e5.52 PSR (polysulfide)\u003cbr\u003e5.53 PSU (polysulfone)\u003cbr\u003e5.54 PU (polyurethane)\u003cbr\u003e5.55 PVAl (poly(vinyl alcohol))\u003cbr\u003e5.56 PVB (poly(vinyl butyrate))\u003cbr\u003e5.57 PVC (poly(vinyl chloride))\u003cbr\u003e5.58 PVP (poly(N-vinyl pyrrolidone))\u003cbr\u003e5.59 SBC (styrene-butadiene block copolymer)\u003cbr\u003e5.60 SBR (poly(styrene-co-butadiene))\u003cbr\u003e5.61 SBS (styrene-butadiene-styrene triblock copolymer)\u003cbr\u003e5.62 SEBS (styrene-ethylene-butylene-styrene triblock copolymer)\u003cbr\u003e5.63 SIS (styrene-isoprene-styrene block copolymer)\u003cbr\u003e5.64 ST (starch)\u003cbr\u003e5.65 UHMWPE (ultrahigh molecular weight polyethylene)\u003cbr\u003e5.66 XG (xanthan gum)\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:12:19-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","plastics"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943855341661,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Antioxidants","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-59-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885598-Case.png?v=1581110181"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885598-Case.png?v=1581110181","options":["Title"],"media":[{"alt":null,"id":6968057430109,"position":1,"preview_image":{"aspect_ratio":0.651,"height":450,"width":293,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885598-Case.png?v=1581110181"},"aspect_ratio":0.651,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885598-Case.png?v=1581110181","width":293}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-59-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFirst Edition\u003cbr\u003eNumber of pages 238+vi\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Antioxidants contains information on both natural and man-made antioxidants available in natural products and added to numerous industrial applications. The book contains 5 chapters, each discussing different aspect of phenomena occurring when materials are exposed to ambient air which contains oxygen, ozone, singlet oxygen, and many other oxidizing species (radicals).\u003cbr\u003e\u003cbr\u003eThe introduction includes discussion of general concepts related to antioxidants and their application. This is followed in Chapter 2 by information on existing natural and synthetic antioxidants which are presented in the form of tables characterizing their general properties and applications. \u003cbr\u003e\u003cbr\u003eChapter 3 contains information on the physics and chemistry of oxidation and antioxidation, including the influence of UV radiation. In this chapter, peculiarities of oxidation and its prevention by antioxidants are discussed for different groups of antioxidants. In total, 25 groups of antioxidants are discussed in separate sections of this chapter. The focus of the evaluation of research findings is on the mechanism of action of antioxidants, their stability, and eventual methods of its improvement.\u003cbr\u003e\u003cbr\u003eA separate discussion of the effects of oxidation and photooxidation on living cells is included in Chapter 4. In the introduction, the differences and similarities between the behavior of polymers and livings things and their use of antioxidants are briefly outlined. The opening is followed by separate sections discussing oxidation phenomena in microorganisms, plants, fish, animals, and humans.\u003cbr\u003e\u003cbr\u003eChapter 5 constitutes the technological part of the book, which includes the analysis of progress and applications of antioxidants in different polymers and rubbers. In total, 66 polymers are discussed in separate sections of this chapter. The main subjects of this discussion include mechanisms of degradation and its prevention by antioxidants. Selection of the most suitable antioxidants and methods of their use constitutes one of the main subjects of discussion. This part of the book heavily relies on patent literature in addition to the scientific findings. The emphasis is given to the most recent applications rather than a historical review of applications.\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Databook of Antioxidants which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential in medicine, pharmaceutical science and technology, automotive industry, aerospace, oil industry, polymers and plastics, rubber, food preservation, cosmetics, natural oil production, lubrication, and many product groups derived from polymers and rubber.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 3 Typical Groups of Antioxidants\u003cbr\u003e2.1 Acids and their esters\u003cbr\u003e2.2 Algae\u003cbr\u003e2.3 Amines\u003cbr\u003e2.4 Anthocyanidins\u003cbr\u003e2.5 Ascorbates\u003cbr\u003e2.6 Benzofuranones\u003cbr\u003e2.7 Benzimidazoles\u003cbr\u003e2.8 Benzoquinones\u003cbr\u003e2.9 Biopolyphenols\u003cbr\u003e2.10 Curcumin\u003cbr\u003e2.11 Coumarin\u003cbr\u003e2.12 Enzymes\u003cbr\u003e2.13 Extracts\u003cbr\u003e2.14 Flavonoids\u003cbr\u003e2.15 Graphene\u003cbr\u003e2.16 Hydrazide metal deactivators\u003cbr\u003e2.17 Hydroquinidines\u003cbr\u003e2.18 Hydroquinone\u003cbr\u003e2.19 Hydroxylamines\u003cbr\u003e2.20 Isoflavones\u003cbr\u003e2.21 Lignanamide\u003cbr\u003e2.22 Liposomes\u003cbr\u003e2.23 Mitochondria-targeted antioxidants\u003cbr\u003e2.24 Oil-derivatives\u003cbr\u003e2.25 Peptides\u003cbr\u003e2.26 Phenolics\u003cbr\u003e2.27 Phosphites, diphosphite, and diphosphonites\u003cbr\u003e2.28 Polyphenols\u003cbr\u003e2.29 Stilbene derivatives\u003cbr\u003e2.30 Sulfur-containing compounds\u003cbr\u003e2.31 Terpenoids\u003cbr\u003e2.32 Tocopherols\u003cbr\u003e3 Physics and Chemistry of Oxidation and Antioxidants \u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Amines\u003cbr\u003e3.3 Anthocyanidins\u003cbr\u003e3.4 Ascorbates\u003cbr\u003e3.5 Benzofuranones\u003cbr\u003e3.6 Benzimidazoles\u003cbr\u003e3.7 Benzoquinones\u003cbr\u003e3.8 Curcumin\u003cbr\u003e3.9 Coumarin\u003cbr\u003e3.10 Enzymes\u003cbr\u003e3.11 Flavonoids\u003cbr\u003e3.12 Graphene\u003cbr\u003e3.13 Hydroquinones\u003cbr\u003e3.14 Hydroxylamines\u003cbr\u003e3.15 Isoflavones\u003cbr\u003e3.16 Lignanamide\u003cbr\u003e3.17 Oil components\u003cbr\u003e3.18 Peptides\u003cbr\u003e3.19 Phenolics\u003cbr\u003e3.20 Phosphites\u003cbr\u003e3.21 Polyphenols\u003cbr\u003e3.22 Stilbene derivatives\u003cbr\u003e3.23 Sulfur-containing compounds\u003cbr\u003e3.24 Terpenoids\u003cbr\u003e3.25 Tocopherols\u003cbr\u003e4 Oxidation in Living Cells\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Microorganisms\u003cbr\u003e4.3 Plants\u003cbr\u003e4.4 Fish\u003cbr\u003e4.5 Animals\u003cbr\u003e4.6 Humans\u003cbr\u003e5 Prevention of Oxidation of Selected Polymers and Rubbers\u003cbr\u003e5.1 ABS (Acrylonitrile-butadiene-styrene)\u003cbr\u003e5.2 AK (alkyd resin)\u003cbr\u003e5.3 C (cellulose)\u003cbr\u003e5.4 CA (cellulose acetate)\u003cbr\u003e5.5 CAR (carrageenan)\u003cbr\u003e5.6 CHI (chitosan)\u003cbr\u003e5.7 CMC (carboxymethyl cellulose)\u003cbr\u003e5.8 CN (cellulose nitrate)\u003cbr\u003e5.9 COC (cyclic olefin copolymer)\u003cbr\u003e5.10 CPE (chlorinated polyethylene)\u003cbr\u003e5.11 CPVC (chlorinated poly(vinyl chloride))\u003cbr\u003e5.12 CR (polychloroprene)\u003cbr\u003e5.13 CY (cyanoacrylate)\u003cbr\u003e5.14 EC (ethyl cellulose)\u003cbr\u003e5.15 ECTFE (poly(ethylene-co-chlorotrifluoroethylene))\u003cbr\u003e5.16 EP (epoxy resin)\u003cbr\u003e5.17 EPDM (ethylene-propylene diene terpolymer)\u003cbr\u003e5.18 EPR (ethylene-propylene rubber)\u003cbr\u003e5.19 EVAc (ethylene-vinyl acetate copolymer)\u003cbr\u003e5.20 EVOH (ethylene-vinyl alcohol copolymer)\u003cbr\u003e5.21 GEL (gelatin)\u003cbr\u003e5.22 HDPE (high-density polyethylene)\u003cbr\u003e5.23 LDPE (low-density polyethylene)\u003cbr\u003e5.24 LLDPE (linear low-density polyethylene)\u003cbr\u003e5.25 NBR (acrylonitrile-butadiene elastomer)\u003cbr\u003e5.26 PA (polyamide)\u003cbr\u003e5.27 PANI (polyaniline)\u003cbr\u003e5.28 PB (polybutylene)\u003cbr\u003e5.29 PBD (polybutadiene)\u003cbr\u003e5.30 PC (polycarbonate)\u003cbr\u003e5.31 PCL (poly(ε-caprolactone))\u003cbr\u003e5.32 PDL (polylysine)\u003cbr\u003e5.33 PDMS (polydimethylsiloxane)\u003cbr\u003e5.34 PEEK (polyetheretherketone)\u003cbr\u003e5.35 PET (poly(ethylene terephthalate))\u003cbr\u003e5.36 PEX (silane-crosslinkable polyethylene)\u003cbr\u003e5.37 PFPE (perfluoropolyether)\u003cbr\u003e5.38 PHB (poly(3-hydroxybutyrate))\u003cbr\u003e5.39 pHEMA (poly(2-hydroxyethyl methacrylate))\u003cbr\u003e5.40 PI (polyimide)\u003cbr\u003e5.41 PIB (polyisobutylene)\u003cbr\u003e5.42 PIP (polyisoprene)\u003cbr\u003e5.43 PK (polyketone)\u003cbr\u003e5.44 PLA (poly(lactic acid))\u003cbr\u003e5.45 PMMA (polymethylmethacrylate)\u003cbr\u003e5.46 PP (polypropylene)\u003cbr\u003e5.47 PPG (poly(propylene glycol))\u003cbr\u003e5.48 PPS (poly(p-phenylene sulfide))\u003cbr\u003e5.49 PPy (polypyrrole)\u003cbr\u003e5.50 PR (proteins)\u003cbr\u003e5.51 PS (polystyrene)\u003cbr\u003e5.52 PSR (polysulfide)\u003cbr\u003e5.53 PSU (polysulfone)\u003cbr\u003e5.54 PU (polyurethane)\u003cbr\u003e5.55 PVAl (poly(vinyl alcohol))\u003cbr\u003e5.56 PVB (poly(vinyl butyrate))\u003cbr\u003e5.57 PVC (poly(vinyl chloride))\u003cbr\u003e5.58 PVP (poly(N-vinyl pyrrolidone))\u003cbr\u003e5.59 SBC (styrene-butadiene block copolymer)\u003cbr\u003e5.60 SBR (poly(styrene-co-butadiene))\u003cbr\u003e5.61 SBS (styrene-butadiene-styrene triblock copolymer)\u003cbr\u003e5.62 SEBS (styrene-ethylene-butylene-styrene triblock copolymer)\u003cbr\u003e5.63 SIS (styrene-isoprene-styrene block copolymer)\u003cbr\u003e5.64 ST (starch)\u003cbr\u003e5.65 UHMWPE (ultrahigh molecular weight polyethylene)\u003cbr\u003e5.66 XG (xanthan gum)\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Databook of UV Stabili...
$320.00
{"id":4534948560989,"title":"Databook of UV Stabilizers","handle":"databook-of-uv-stabilizers","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych\u003cbr\u003eISBN 978-1-927885-55-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eSecond Edition\u003cbr\u003eNumber of pages: 630+xiv\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe databook contains information on the most frequently used UV stabilizers. Current UV stabilizers are the result of many recent changes, especially in application to cosmetics, polymers, and plastics. Many current issues are related to health. Skin penetration by nano-stabilizers, suitability of spray systems to nano-compounds, the formation of toxic degradation products, the stability of stabilizers, and the effect of converted energy of radiation to heat on the increased temperature of skin are the most studied factors in the evaluation of these products.\u003cbr\u003e\u003cbr\u003eMany new groups of UV stabilizers and their mixtures are now available, resulting in a drastic increase in the number of stabilizer groups from 20 to 28, which in part shows progress in developments and growing interest in the protection of engineered products. \u003cbr\u003e\u003cbr\u003eThe information on each stabilizer included in the Databook of UV Stabilizers is divided into five sections: General information, Physical properties, Health and safety, Environmental effect, and Use \u0026amp; performance. The data belong to over 100 data fields, which accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. \u003cbr\u003e\u003cbr\u003eIn General information section, the following data are displayed: Name, CAS #, EC number, Common name, Common synonym, Chemical formula, Chemical structure, Molecular weight, Chemical category, Product contents, and RTECS number.\u003cbr\u003e\u003cbr\u003ePhysical properties section contains data on State, Form, Odor, Color description, Platinum-cobalt scale number, Color CIE L, Acid dissociation constants, Base dissociation constant, Beginning of weight loss, Boiling point, Bulk density, Carbon black undertone, Enthalpy of vaporization, Freezing\/melting temperature, Maximum UV absorbance, pH, Particle size, Physical state, Product form, Refractive index, Specific gravity, Solubility in water and solvents, Surface tension, Thermogravimetric analysis, Transmittance, Vapor pressure, Viscosity, Volatility.\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on Flashpoint, Flashpoint method, Autoignition temperature, Hazardous decomposition products, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA hazard class, UN packaging group, UV number, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat LC50, Skin irritation, Eye irritation (human), Ingestion, First aid: eyes, skin, and inhalation, Chronic effects, Target organs, Carcinogenicity (ACGIH, NIOSH, OSHA), Mutagenicity, Reproduction\/developmental toxicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA).\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biodegradation probability, Aquatic toxicity LC (Algae, Rainbow trout, Bluegill sunfish, Fathead minnow, Zebrafish, and Daphnia magna), Bioaccumulation potential, Bioconcentration factor, Biodegradation probability, Hydroxyl rate, and Partition coefficients (log Koc, log Kow). \u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Potential substitute, Recommended for polymers, Typical applications, Processing methods, Concentrations used, Guidelines for use, Food approval, Conditions to avoid, and Costabilizers enhancing light stability.\u003cbr\u003e\u003cbr\u003eThe book also contains an introductory chapter in which general indicators of performance of UV stabilizers are discussed and a chapter containing information on the data fields included in the description of individual stabilizers.\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the \u003cstrong\u003eHandbook of UV stabilizers\u003c\/strong\u003e which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential for automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and large number of industries which derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Information on data fields\u003cbr\u003e3 UV Stabilizers\u003cbr\u003e3.1 Organic UV absorbers\u003cbr\u003e3.1.1 Benzimidazole\u003cbr\u003e3.1.2 Benzoates\u003cbr\u003e3.1.3 Benzophenones\u003cbr\u003e3.1.4 Benzotriazoles\u003cbr\u003e3.1.5 Benzotriazines\u003cbr\u003e3.1.6 Benzoxaxinones\u003cbr\u003e3.1.7 Camphor derivatives\u003cbr\u003e3.1.8 Cinnamates\u003cbr\u003e3.1.9 Cyanoacrylates\u003cbr\u003e3.1.10 Dibenzoylmethanes\u003cbr\u003e3.1.11 Epoxidized oils\u003cbr\u003e3.1.12 Malonates\u003cbr\u003e3.1.13 Oxanilides\u003cbr\u003e3.1.14 Salicylates\u003cbr\u003e3.1.15 Others\u003cbr\u003e3.2 Carbon black\u003cbr\u003e3.3 Inorganic UV absorbers\u003cbr\u003e3.4 Fibers\u003cbr\u003e3.5 Hindered amine stabilizers\u003cbr\u003e3.5.1 Monomeric\u003cbr\u003e3.5.2 Oligomeric \u0026amp; polymeric\u003cbr\u003e3.6 Secondary stabilizers\u003cbr\u003e3.6.1 Phenolic antioxidants\u003cbr\u003e3.6.2 Phosphites \u0026amp; phosphonites\u003cbr\u003e3.6.3 Thiosynergists\u003cbr\u003e3.6.4 Amines\u003cbr\u003e3.6.5 Quenchers\u003cbr\u003e3.6.6 Optical brighteners\u003cbr\u003e3.7 Synergistic mixtures of stabilizers (examples)\u003cbr\u003e3.7.1 HAS mixtures\u003cbr\u003e3.7.2 Cinnamate+benzoate mixtures\u003cbr\u003e3.7.3 HAS+UV absorber\u003cbr\u003e3.7.4 Phosphite+phenolic antioxidant\u003cbr\u003e3.7.5 HAS+UV absorber+phenolic antioxidant\u003cbr\u003e3.7.6 Quencher+UV absorber\u003cbr\u003e3.7.7 Others\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:08:21-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","polymers"],"price":32000,"price_min":32000,"price_max":32000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943844593757,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Databook of UV Stabilizers","public_title":null,"options":["Default Title"],"price":32000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-55-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885550-Case.png?v=1581110125"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885550-Case.png?v=1581110125","options":["Title"],"media":[{"alt":null,"id":6968056086621,"position":1,"preview_image":{"aspect_ratio":0.673,"height":450,"width":303,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885550-Case.png?v=1581110125"},"aspect_ratio":0.673,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885550-Case.png?v=1581110125","width":303}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych\u003cbr\u003eISBN 978-1-927885-55-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eSecond Edition\u003cbr\u003eNumber of pages: 630+xiv\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe databook contains information on the most frequently used UV stabilizers. Current UV stabilizers are the result of many recent changes, especially in application to cosmetics, polymers, and plastics. Many current issues are related to health. Skin penetration by nano-stabilizers, suitability of spray systems to nano-compounds, the formation of toxic degradation products, the stability of stabilizers, and the effect of converted energy of radiation to heat on the increased temperature of skin are the most studied factors in the evaluation of these products.\u003cbr\u003e\u003cbr\u003eMany new groups of UV stabilizers and their mixtures are now available, resulting in a drastic increase in the number of stabilizer groups from 20 to 28, which in part shows progress in developments and growing interest in the protection of engineered products. \u003cbr\u003e\u003cbr\u003eThe information on each stabilizer included in the Databook of UV Stabilizers is divided into five sections: General information, Physical properties, Health and safety, Environmental effect, and Use \u0026amp; performance. The data belong to over 100 data fields, which accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. \u003cbr\u003e\u003cbr\u003eIn General information section, the following data are displayed: Name, CAS #, EC number, Common name, Common synonym, Chemical formula, Chemical structure, Molecular weight, Chemical category, Product contents, and RTECS number.\u003cbr\u003e\u003cbr\u003ePhysical properties section contains data on State, Form, Odor, Color description, Platinum-cobalt scale number, Color CIE L, Acid dissociation constants, Base dissociation constant, Beginning of weight loss, Boiling point, Bulk density, Carbon black undertone, Enthalpy of vaporization, Freezing\/melting temperature, Maximum UV absorbance, pH, Particle size, Physical state, Product form, Refractive index, Specific gravity, Solubility in water and solvents, Surface tension, Thermogravimetric analysis, Transmittance, Vapor pressure, Viscosity, Volatility.\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on Flashpoint, Flashpoint method, Autoignition temperature, Hazardous decomposition products, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA hazard class, UN packaging group, UV number, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat LC50, Skin irritation, Eye irritation (human), Ingestion, First aid: eyes, skin, and inhalation, Chronic effects, Target organs, Carcinogenicity (ACGIH, NIOSH, OSHA), Mutagenicity, Reproduction\/developmental toxicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA).\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biodegradation probability, Aquatic toxicity LC (Algae, Rainbow trout, Bluegill sunfish, Fathead minnow, Zebrafish, and Daphnia magna), Bioaccumulation potential, Bioconcentration factor, Biodegradation probability, Hydroxyl rate, and Partition coefficients (log Koc, log Kow). \u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Potential substitute, Recommended for polymers, Typical applications, Processing methods, Concentrations used, Guidelines for use, Food approval, Conditions to avoid, and Costabilizers enhancing light stability.\u003cbr\u003e\u003cbr\u003eThe book also contains an introductory chapter in which general indicators of performance of UV stabilizers are discussed and a chapter containing information on the data fields included in the description of individual stabilizers.\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the \u003cstrong\u003eHandbook of UV stabilizers\u003c\/strong\u003e which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential for automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and large number of industries which derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Information on data fields\u003cbr\u003e3 UV Stabilizers\u003cbr\u003e3.1 Organic UV absorbers\u003cbr\u003e3.1.1 Benzimidazole\u003cbr\u003e3.1.2 Benzoates\u003cbr\u003e3.1.3 Benzophenones\u003cbr\u003e3.1.4 Benzotriazoles\u003cbr\u003e3.1.5 Benzotriazines\u003cbr\u003e3.1.6 Benzoxaxinones\u003cbr\u003e3.1.7 Camphor derivatives\u003cbr\u003e3.1.8 Cinnamates\u003cbr\u003e3.1.9 Cyanoacrylates\u003cbr\u003e3.1.10 Dibenzoylmethanes\u003cbr\u003e3.1.11 Epoxidized oils\u003cbr\u003e3.1.12 Malonates\u003cbr\u003e3.1.13 Oxanilides\u003cbr\u003e3.1.14 Salicylates\u003cbr\u003e3.1.15 Others\u003cbr\u003e3.2 Carbon black\u003cbr\u003e3.3 Inorganic UV absorbers\u003cbr\u003e3.4 Fibers\u003cbr\u003e3.5 Hindered amine stabilizers\u003cbr\u003e3.5.1 Monomeric\u003cbr\u003e3.5.2 Oligomeric \u0026amp; polymeric\u003cbr\u003e3.6 Secondary stabilizers\u003cbr\u003e3.6.1 Phenolic antioxidants\u003cbr\u003e3.6.2 Phosphites \u0026amp; phosphonites\u003cbr\u003e3.6.3 Thiosynergists\u003cbr\u003e3.6.4 Amines\u003cbr\u003e3.6.5 Quenchers\u003cbr\u003e3.6.6 Optical brighteners\u003cbr\u003e3.7 Synergistic mixtures of stabilizers (examples)\u003cbr\u003e3.7.1 HAS mixtures\u003cbr\u003e3.7.2 Cinnamate+benzoate mixtures\u003cbr\u003e3.7.3 HAS+UV absorber\u003cbr\u003e3.7.4 Phosphite+phenolic antioxidant\u003cbr\u003e3.7.5 HAS+UV absorber+phenolic antioxidant\u003cbr\u003e3.7.6 Quencher+UV absorber\u003cbr\u003e3.7.7 Others\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Chain Mobility and Pro...
$325.00
{"id":4534943449181,"title":"Chain Mobility and Progress in Medicine, Pharmaceutical, and Polymer Science and Technology","handle":"chain-mobility-and-progress-in-medicine-pharmaceutical-and-polymer-science-and-technology","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eTitle of series: Impact of Award\u003cbr\u003eISBN 978-1-927885-65-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages 236+vi\u003cbr\u003eFigures 66\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eChain movement, chain mobility, segmental mobility, segmental dynamics, chain orientation are the primary subjects of this monograph having utmost importance in polymer science and technology, medicine, pharmaceutical, and many other applications. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eNobel Prize committee awarded in 1991 Nobel Prize in Physics to Pierre-Gilles de Gennes of Collège de France \"for discovering that methods developed for studying order phenomena in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers\". “de Gennes’ models of polymer-chain motion” show “that a certain typical segment of a chain can move as if it were free, even in more concentrated solutions.” “The reptation model described the serpentine motion of a polymer chain within a “tangle” of surrounding polymer chains.”\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003cspan\u003eThe book goes far beyond the analysis of the effect of the Nobel Prize on how we interpret movement within materials today and how our present perception affects many aspects of science.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe introductory chapter defines principle terms and their semantics, followed by an introduction to Nobel Laureate and Award Justification and analysis of published materials until today. It is followed by the analysis of the effect of Nobel Prize on the frequency of publication of research papers and patents on the subject chain mobility.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains discussion of different mechanisms used for description and interpretation of results of chain motion of macromolecular substances, such as bead-chain, bond fluctuation, Brill transition, chain diffusion, chain orientation, chemo-responsive, coarse-grained, fluorescence blob, intra- vs. inter-chain, light activated, magnetic-activated, microwave, rod chain, Rouse, shape memory, slip-link, strain-induced, tube models which today form fabric of scientific explanation of applicable facts.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e will discuss conditions or, in other words, parameters under which chains move, including activation energy, annealing, chain absorption, chain scission, compaction pressure, configuration, confinement dimensions, crosslinks, crystallization, dynamic ratio, electrostatic interaction, entanglements, free surface, free volume, glass transition temperature, hydrophilicity, interaction length, interface layer, layer thickness, microstructure, miscible and immiscible blends, molecular weight, nanoparticles, packing density, presence of low molecular compounds (e.g., plasticizers, solvents), pressure, relaxation time, rotational motion, segmental dynamics, side chains, temperature, and time of chain movement. All these parameters are essential determinants of chain movement and their impact id discussed in separate sections of this chapter. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e includes information on the effect of chain movement on properties of materials, such as chain alignment, chain orientation, creation of free volume, crystallization, dimensional stability, formation of porous structures, ionic transport, mechanical properties, polymer blends, polymer redistribution, proton transfer, release rate of low molecular compounds, reinforcement, self-healing, sound attenuation, steric hindrance, storage modulus, swelling, thermal expansion, thermal stability, and wear. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eSeveral significant analytical methods have been briefly discussed in \u003cstrong\u003eChapter 6\u003c\/strong\u003e, including atomic force microscopy, \u003cem\u003ein situ\u003c\/em\u003e synchrotron X-ray, NMR imaging, NMR mouse, NMR solid-state, positron annihilation spectroscopy, SAXS, and WAXD in relation to their relevance for chain mobility studies. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 7\u003c\/strong\u003e contains information on significant contributions on chain mobility for 50 polymers. The polymers selected comprise about 25% of all polymers included in Handbook of Polymers, which means that chain mobility was important subject of studies in both theoretical and practical applications.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eAll above concepts, findings, and applications are narrated in a simple to understand language stripped of disciplinary slang which makes the book accessible to those interested in medicine, pharmacy, and polymer sciences. This book gives numerous examples on how to apply these findings in the development of cutting-edge products.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction. Nobel Prize Justification for Pierre-Gilles de Gennes\u003cbr\u003e2 Analysis of existing publications \u003cbr\u003e3 Mechanisms of chain motion of macromolecular substances\u003cbr\u003e4 Parameters (conditions) of chain movement\u003cbr\u003e5 The effect of chain movement on the properties of materials\u003cbr\u003e6 Significant analytical methods of study\u003cbr\u003e7 Chain mobility in different polymers \u003cbr\u003e8 Comparison of justification of Nobel Prize by the selection committee with actual results of research reported\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:04:06-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","polymers"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943825883229,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Chain Mobility and Progress in Medicine, Pharmaceutical, and Polymer Science and Technology","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-65-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885659-Case.png?v=1581109992"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885659-Case.png?v=1581109992","options":["Title"],"media":[{"alt":null,"id":6968050581597,"position":1,"preview_image":{"aspect_ratio":0.642,"height":450,"width":289,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885659-Case.png?v=1581109992"},"aspect_ratio":0.642,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885659-Case.png?v=1581109992","width":289}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eTitle of series: Impact of Award\u003cbr\u003eISBN 978-1-927885-65-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages 236+vi\u003cbr\u003eFigures 66\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eChain movement, chain mobility, segmental mobility, segmental dynamics, chain orientation are the primary subjects of this monograph having utmost importance in polymer science and technology, medicine, pharmaceutical, and many other applications. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eNobel Prize committee awarded in 1991 Nobel Prize in Physics to Pierre-Gilles de Gennes of Collège de France \"for discovering that methods developed for studying order phenomena in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers\". “de Gennes’ models of polymer-chain motion” show “that a certain typical segment of a chain can move as if it were free, even in more concentrated solutions.” “The reptation model described the serpentine motion of a polymer chain within a “tangle” of surrounding polymer chains.”\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003cspan\u003eThe book goes far beyond the analysis of the effect of the Nobel Prize on how we interpret movement within materials today and how our present perception affects many aspects of science.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe introductory chapter defines principle terms and their semantics, followed by an introduction to Nobel Laureate and Award Justification and analysis of published materials until today. It is followed by the analysis of the effect of Nobel Prize on the frequency of publication of research papers and patents on the subject chain mobility.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains discussion of different mechanisms used for description and interpretation of results of chain motion of macromolecular substances, such as bead-chain, bond fluctuation, Brill transition, chain diffusion, chain orientation, chemo-responsive, coarse-grained, fluorescence blob, intra- vs. inter-chain, light activated, magnetic-activated, microwave, rod chain, Rouse, shape memory, slip-link, strain-induced, tube models which today form fabric of scientific explanation of applicable facts.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e will discuss conditions or, in other words, parameters under which chains move, including activation energy, annealing, chain absorption, chain scission, compaction pressure, configuration, confinement dimensions, crosslinks, crystallization, dynamic ratio, electrostatic interaction, entanglements, free surface, free volume, glass transition temperature, hydrophilicity, interaction length, interface layer, layer thickness, microstructure, miscible and immiscible blends, molecular weight, nanoparticles, packing density, presence of low molecular compounds (e.g., plasticizers, solvents), pressure, relaxation time, rotational motion, segmental dynamics, side chains, temperature, and time of chain movement. All these parameters are essential determinants of chain movement and their impact id discussed in separate sections of this chapter. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e includes information on the effect of chain movement on properties of materials, such as chain alignment, chain orientation, creation of free volume, crystallization, dimensional stability, formation of porous structures, ionic transport, mechanical properties, polymer blends, polymer redistribution, proton transfer, release rate of low molecular compounds, reinforcement, self-healing, sound attenuation, steric hindrance, storage modulus, swelling, thermal expansion, thermal stability, and wear. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eSeveral significant analytical methods have been briefly discussed in \u003cstrong\u003eChapter 6\u003c\/strong\u003e, including atomic force microscopy, \u003cem\u003ein situ\u003c\/em\u003e synchrotron X-ray, NMR imaging, NMR mouse, NMR solid-state, positron annihilation spectroscopy, SAXS, and WAXD in relation to their relevance for chain mobility studies. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e\u003cstrong\u003eChapter 7\u003c\/strong\u003e contains information on significant contributions on chain mobility for 50 polymers. The polymers selected comprise about 25% of all polymers included in Handbook of Polymers, which means that chain mobility was important subject of studies in both theoretical and practical applications.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eAll above concepts, findings, and applications are narrated in a simple to understand language stripped of disciplinary slang which makes the book accessible to those interested in medicine, pharmacy, and polymer sciences. This book gives numerous examples on how to apply these findings in the development of cutting-edge products.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction. Nobel Prize Justification for Pierre-Gilles de Gennes\u003cbr\u003e2 Analysis of existing publications \u003cbr\u003e3 Mechanisms of chain motion of macromolecular substances\u003cbr\u003e4 Parameters (conditions) of chain movement\u003cbr\u003e5 The effect of chain movement on the properties of materials\u003cbr\u003e6 Significant analytical methods of study\u003cbr\u003e7 Chain mobility in different polymers \u003cbr\u003e8 Comparison of justification of Nobel Prize by the selection committee with actual results of research reported\u003cbr\u003e\u003cbr\u003e"}
Databook of Antioxidants
$285.00
{"id":4534938370141,"title":"Databook of Antioxidants","handle":"databook-of-antioxidants","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych\u003cbr\u003eISBN 978-1-927885-53-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFirst Edition\u003cbr\u003eNumber of pages: 500+xii\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn general terms, the antioxidants are expected to protect status quo by prevention of oxidation. Oxidation is a chain reaction involving free radicals and hydroperoxide intermediates. Antioxidants act by reacting and decomposing free radicals and hydroperoxide intermediate species.\u003cbr\u003e\u003cbr\u003eIn polymeric materials the oxidative changes may lead to a number of undesirable effects, including discoloration, changes in melt viscosity, and deterioration of mechanical properties, impacting useful life of a polymer or a final article. Plastics are susceptible to oxidative degradation during high-temperature melt processing operations and their end-use, as well as during long-term storage. Also, the oxidation processes are accelerated by exposure to UV radiation of sunlight.\u003cbr\u003e\u003cbr\u003eAntioxidants are likely to form the most crucial protective barrier for cells of living organisms against the effects of free radicals. If these processes are not adequately controlled, they lead to outcomes dangerous to wellbeing because the cancerous cells multiply with accelerating rates.\u003cbr\u003e\u003cbr\u003eRadical formation on ultraviolet light exposure leads to changes in human skin such as the formation of dark spots, lesions, and frequently skin cancer if radical processes are not stopped by preventive measures, such as UV radiation filtration and use of antioxidants.\u003cbr\u003e\u003cbr\u003eIn similar reactions to oxidation, food and pharmaceutical products deteriorate faster, which can be prevented by small additions of antioxidants. Food products lose their nutritive value and may drastically change color and flavor. Pharmaceutical products become inactive and potentially toxic. \u003cbr\u003e\u003cbr\u003eIn summary, the antioxidants form the most important group of compounds aiming at retardation of deterioration of organic materials and keeping living cells in their original conditions, which is the most common means to a healthy life.\u003cbr\u003e\u003cbr\u003eAntioxidants are typically divided into primary and secondary antioxidants. Primary antioxidants, such as hindered phenols, function mainly by scavenging the peroxy radical intermediates formed in the oxidation processes. They are effective over a wide temperature range, improving both the processing and long-term thermal stability of materials. Secondary antioxidants, such as phosphites and thioethers, function by decomposition of hydroperoxides. Phosphites are most effective at the high temperatures of melt processing operations, while thioethers operate best in the solid phase at long-term use temperatures.\u003cbr\u003e\u003cbr\u003eIn modern applications, synthetic antioxidants are slowly being replaced by products obtained from renewable resources, mostly of plant origin. This conversion in the area of cosmetics, medicine, pharmacy, food additives, and food protection is very advanced. In polymer processing, application of natural antioxidants is still on the development stage.\u003cbr\u003e\u003cbr\u003eConsidering the importance of antioxidants in medicine, cosmetics, pharmacy, food processing, this book gives the selection of both important synthetic and natural products, stressing on the commercially viable additives and most recent interest in the application and use of natural products.\u003cbr\u003e\u003cbr\u003eThe antioxidants included in this book belong to many groups of chemical products including acids and their esters, amines, anthocyanidines, ascorbates, benzofuranones, benzoimidazoles, benzoquinones, biopolyphenols, carotenoids, coumarines, enzymes, flavonoids, hydrazide metal deactivators, hydroquinidines, hydroquinones, hydroxylamines, isoflavones, lignanamides, liposomes, peptides, phenolics, phosphites, phospholipides, polyphenols, polysaccharides, sterically hindered phenolics, sulfur-containing compounds, tannin derivatives, terpenoids, thioethers, tocopherols, and quinolines. This shows that there is a wide variety of options and applications, which are emphasized in this book.\u003cbr\u003e\u003cbr\u003eThe data for each antioxidant are presented in a separate table. The information in the table is divided into five sections, including General, Physical properties, Health \u0026amp; safety, Ecological, and Use. The contents of these five sections is given below.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeneral\u003c\/strong\u003e section contains the following fields: product name, CAS #, EC number, acronym, chemical name, chemical synonym, chemical formula, molecular weight, chemical class, moisture contents, bio-origin, mixture, product contents, other properties, concentration of arsenic, heavy metals, molybdenum, nitrogen, phosphorus, sulfur, and zinc, and RTECS #.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePhysical\u003c\/strong\u003e section contains the following fields: acid #, ash, acid dissociation constant, base dissociation constant, boiling point, bulk density, color (description, Hazen scale), density, freezing\/melting point, kinematic viscosity, maximum UV absorbance, odor, particle size, pH, refractive index, solubility in solvents, specific gravity, state, specific optical rotation, thermogravimetric analysis, total plate count, transmittance, vapor density, vapor pressure, viscosity, volatility, and yeast \u0026amp; molds.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHealth \u0026amp; safety\u003c\/strong\u003e section contains the following fields: ADR\/RID class, autoignition temperature, HMIS (fire, health, reactivity), carcinogenicity, chronic effects, DOT class, explosive LEL \u0026amp; UEL, eye irritation, flash point and method, first aid (eye, skin, inhalation), ICAO\/IATA class, IMDG class, ingestion, inhalation (rat LC50), LD50 (dermal rat and rabbit, and oral rat), mutagenicity, NFPA (flammability, health, reactivity), proper shipping name, reproduction\/developmental toxicity, route of entry, skin irritation, target organs, teratogenicity, TLV (ACGIH, NIOSH, OSHA), UN packaging group, UN risk and safety phrases, and UN\/NA class.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eEcological\u003c\/strong\u003e section contains the following fields: aquatic toxicity algae, LC50 (Bluegill sunfish, Daphnia magna, Fathead minnow, Rainbow trout, Zebra fish), bioaccumulative and toxic assessment, bioconcentration factor, biodegradation probability, biological oxygen demand, chemical oxygen demand, hydroxyl rate constant, and partition coefficient.\u003cbr\u003e\u003c\/p\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T11:59:29-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","antioxidant","book","plastics"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943808516189,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Databook of Antioxidants","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-53-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885536-Case.png?v=1581110047"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885536-Case.png?v=1581110047","options":["Title"],"media":[{"alt":null,"id":6968053366877,"position":1,"preview_image":{"aspect_ratio":0.66,"height":450,"width":297,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885536-Case.png?v=1581110047"},"aspect_ratio":0.66,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885536-Case.png?v=1581110047","width":297}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych\u003cbr\u003eISBN 978-1-927885-53-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFirst Edition\u003cbr\u003eNumber of pages: 500+xii\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn general terms, the antioxidants are expected to protect status quo by prevention of oxidation. Oxidation is a chain reaction involving free radicals and hydroperoxide intermediates. Antioxidants act by reacting and decomposing free radicals and hydroperoxide intermediate species.\u003cbr\u003e\u003cbr\u003eIn polymeric materials the oxidative changes may lead to a number of undesirable effects, including discoloration, changes in melt viscosity, and deterioration of mechanical properties, impacting useful life of a polymer or a final article. Plastics are susceptible to oxidative degradation during high-temperature melt processing operations and their end-use, as well as during long-term storage. Also, the oxidation processes are accelerated by exposure to UV radiation of sunlight.\u003cbr\u003e\u003cbr\u003eAntioxidants are likely to form the most crucial protective barrier for cells of living organisms against the effects of free radicals. If these processes are not adequately controlled, they lead to outcomes dangerous to wellbeing because the cancerous cells multiply with accelerating rates.\u003cbr\u003e\u003cbr\u003eRadical formation on ultraviolet light exposure leads to changes in human skin such as the formation of dark spots, lesions, and frequently skin cancer if radical processes are not stopped by preventive measures, such as UV radiation filtration and use of antioxidants.\u003cbr\u003e\u003cbr\u003eIn similar reactions to oxidation, food and pharmaceutical products deteriorate faster, which can be prevented by small additions of antioxidants. Food products lose their nutritive value and may drastically change color and flavor. Pharmaceutical products become inactive and potentially toxic. \u003cbr\u003e\u003cbr\u003eIn summary, the antioxidants form the most important group of compounds aiming at retardation of deterioration of organic materials and keeping living cells in their original conditions, which is the most common means to a healthy life.\u003cbr\u003e\u003cbr\u003eAntioxidants are typically divided into primary and secondary antioxidants. Primary antioxidants, such as hindered phenols, function mainly by scavenging the peroxy radical intermediates formed in the oxidation processes. They are effective over a wide temperature range, improving both the processing and long-term thermal stability of materials. Secondary antioxidants, such as phosphites and thioethers, function by decomposition of hydroperoxides. Phosphites are most effective at the high temperatures of melt processing operations, while thioethers operate best in the solid phase at long-term use temperatures.\u003cbr\u003e\u003cbr\u003eIn modern applications, synthetic antioxidants are slowly being replaced by products obtained from renewable resources, mostly of plant origin. This conversion in the area of cosmetics, medicine, pharmacy, food additives, and food protection is very advanced. In polymer processing, application of natural antioxidants is still on the development stage.\u003cbr\u003e\u003cbr\u003eConsidering the importance of antioxidants in medicine, cosmetics, pharmacy, food processing, this book gives the selection of both important synthetic and natural products, stressing on the commercially viable additives and most recent interest in the application and use of natural products.\u003cbr\u003e\u003cbr\u003eThe antioxidants included in this book belong to many groups of chemical products including acids and their esters, amines, anthocyanidines, ascorbates, benzofuranones, benzoimidazoles, benzoquinones, biopolyphenols, carotenoids, coumarines, enzymes, flavonoids, hydrazide metal deactivators, hydroquinidines, hydroquinones, hydroxylamines, isoflavones, lignanamides, liposomes, peptides, phenolics, phosphites, phospholipides, polyphenols, polysaccharides, sterically hindered phenolics, sulfur-containing compounds, tannin derivatives, terpenoids, thioethers, tocopherols, and quinolines. This shows that there is a wide variety of options and applications, which are emphasized in this book.\u003cbr\u003e\u003cbr\u003eThe data for each antioxidant are presented in a separate table. The information in the table is divided into five sections, including General, Physical properties, Health \u0026amp; safety, Ecological, and Use. The contents of these five sections is given below.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeneral\u003c\/strong\u003e section contains the following fields: product name, CAS #, EC number, acronym, chemical name, chemical synonym, chemical formula, molecular weight, chemical class, moisture contents, bio-origin, mixture, product contents, other properties, concentration of arsenic, heavy metals, molybdenum, nitrogen, phosphorus, sulfur, and zinc, and RTECS #.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePhysical\u003c\/strong\u003e section contains the following fields: acid #, ash, acid dissociation constant, base dissociation constant, boiling point, bulk density, color (description, Hazen scale), density, freezing\/melting point, kinematic viscosity, maximum UV absorbance, odor, particle size, pH, refractive index, solubility in solvents, specific gravity, state, specific optical rotation, thermogravimetric analysis, total plate count, transmittance, vapor density, vapor pressure, viscosity, volatility, and yeast \u0026amp; molds.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHealth \u0026amp; safety\u003c\/strong\u003e section contains the following fields: ADR\/RID class, autoignition temperature, HMIS (fire, health, reactivity), carcinogenicity, chronic effects, DOT class, explosive LEL \u0026amp; UEL, eye irritation, flash point and method, first aid (eye, skin, inhalation), ICAO\/IATA class, IMDG class, ingestion, inhalation (rat LC50), LD50 (dermal rat and rabbit, and oral rat), mutagenicity, NFPA (flammability, health, reactivity), proper shipping name, reproduction\/developmental toxicity, route of entry, skin irritation, target organs, teratogenicity, TLV (ACGIH, NIOSH, OSHA), UN packaging group, UN risk and safety phrases, and UN\/NA class.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eEcological\u003c\/strong\u003e section contains the following fields: aquatic toxicity algae, LC50 (Bluegill sunfish, Daphnia magna, Fathead minnow, Rainbow trout, Zebra fish), bioaccumulative and toxic assessment, bioconcentration factor, biodegradation probability, biological oxygen demand, chemical oxygen demand, hydroxyl rate constant, and partition coefficient.\u003cbr\u003e\u003c\/p\u003e"}
Polymers in Organic El...
$350.00
{"id":4534925295709,"title":"Polymers in Organic Electronics. Polymer Selection for Electronic, Mechatronic \u0026 Optoelectronic Systems","handle":"polymers-in-organic-electronics","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sulaiman Khalifeh\u003cbr\u003eISBN 978-1-927885-67-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages: 606+x\u003cbr\u003eFigures: 189\u003cbr\u003eTables: 76\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eElectronics (including micro, nano, and quantum systems); mechanics (including MEMS, NEMS, MOEMS, and NOEMS); mechatronics (including robots, artificial muscles, and automated air vehicles); informatics (including software, hardware, and communication); materials science (including conjugated polymers, smart materials, and conducting small molecules); and optoelectronics (optical fibers and lenses) are the critical elements of development in science today. An integration is the practical concept by which these elements are combined and implemented; so that a new high performance, low cost, and lightweight organic electronic components (devices or systems) can be produced with shorter lead time.\u003c\/p\u003e\n\u003cp\u003eOrganic electronics or polymer electronics represent the important branch of material science dealing with electrically conductive polymers and small conductive molecules of carbon-based nature. This branch focuses on optimizing the semi-conductivity, conductivity, light emitting properties of organic materials (polymers, oligomers, and small molecules), and hybrid composites having organic-inorganic structures. That is because organic (p-conjugated) polymers exhibit the following attractive advantages:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003ecan be formed and shaped from solution depending on high-tech processes such as spin coating or inkjet printing at room temperature due to their lightweight and flexibility.\u003c\/li\u003e\n\u003cli\u003ethe capability of acting as electron donors and acceptors for structuring organic photovoltaics such as large scale, micro-, and nano-solar cells.\u003c\/li\u003e\n\u003cli\u003ethe ability to control their low band gaps energy levels makes them promising for fabricating developed organic electronic systems such as field-effect transistors, solar cells, light-emitting diodes, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eEvery year new conducting polymers, small molecules, composites, and complexes are being developed. Parallel to such development, the opportunities for additional electronic applications have increased. Included in this book are polymeric structures of the most familiar electronic devices (micro, opto, nano, etc.).\u003c\/p\u003e\n\u003cp\u003eThe main objective of this book is to help designers to optimize their design of organic electronic systems built out of novel polymers. For example, it is not enough to calculate the optical constants of an optoelectronic light-emitting diode LED using Afromowitz dielectric model starting from the calculation of real and imaginary part of the dielectric function, but its optical performance must be optimized by applying optical modeling of thin layers on a polymeric substrate.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 1\u003c\/strong\u003e is an introduction to polymers for electronic engineers. It provides identifications of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers. The chapter contains a classification of polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules. Several optimized ideas have been introduced to make this book a practical reference source.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 2\u003c\/strong\u003e is also introductory but explaining the principles of electronics to polymer engineers. It provides information on electronic theories of polymers. The theories are very important for undergraduate students in understanding mechanisms of polymer conductivity and studying theories governing electrical conductivity of polymers. This chapter was also illustrated with optimized ideas to facilitate practical applications.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains information on concepts and optimized types of electronic (polymers, small molecules, organic complexes, and elastomers). It contains a classification system of electronic polymers such as piezoelectric and pyroelectric, optoelectronic, electroactive, and mechatronics, and electronic small molecules, organic electronic complexes, and electronic elastomers. The chapter helps in the selection of the optimized electronic polymers, small molecules, complexes, and elastomers for structuring organic electronic systems.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e covers the most common properties of electronic polymers, such as electrical, electronic, and optical properties. The methods of optimization of electrical, electronic, and optical properties-dependent organic electronic structures are critical components of the chapter. For example, high occupied molecular orbital HOMO, low unoccupied molecular orbital LUMO, band gap, are essential concepts for understanding the electronic properties of electronic polymers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e is the location of discussion on polymeric structured printed circuit boards (PCBs). Here the reader may start building his own experience in creating polymer-based PCBs. Advanced PCBs and rapid PCB prototyping (a state of the art) are discussed. Optimizing the polymeric structures of organic printed circuit boards is broadly discussed here.\u003c\/p\u003e\n\u003cp\u003eBoth \u003cstrong\u003echapters 6 and 7\u003c\/strong\u003e are based on two crucial and advanced types of electronic components (polymer-based active and passive electronic components). Chapter 6 focuses on optimizing the polymeric structures of organic active electronic components, and chapter 7 on optimizing the polymeric structures of organic passive electronic components. The most critical systems listed in chapter 6 include integrated circuits ICs, organic thin-film transistors OTFT, organic light-emitting diodes OLEDs, optoelectronic devices, photovoltaic (or photo-electronic) systems, tandem or multi-junction organic solar cells, display technologies, discharge devices, organic thermo-electric generators, etc. The most important systems listed in chapter 7 include thin-film resistors, tantalum capacitors, axial inductor, fiber optic cable (fiber optic networks), optical sensors, flexible-skin contact antenna, flexible elastomeric actuators, etc.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 8\u003c\/strong\u003e describes the polymeric structures of optoelectronics and photonics supplied with the main optical and physical properties of conjugated polymers used for structuring the most developed optoelectronic devices and their optimization. Optoelectronic polymers such as optical electroactive conjugated polymers, optical organic photovoltaic polymers, and electro-phosphorescence polymers are used to emphasize the high efficiencies of the used optoelectronic devices.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 9\u003c\/strong\u003e has been designed to show the importance of polymeric structures for packaging of electronic devices, namely nanoelectronic packaging such as nanoelectronic circuits packaging and nanoelectromechanical packaging NEMS. Optimized polymeric structures of organic electronic packages are the subject of this chapter.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction to Polymers for Electronic Engineers\u003cbr\u003e1.1 Overview \u003cbr\u003e1.2 Synthetic electronic polymers\u003cbr\u003e1.3 Chemistry of electronic polymers \u003cbr\u003e1.3.1 Electronic resins\u003cbr\u003e1.3.2 Hydrocarbons (nature and electronic applications) \u003cbr\u003e1.4 Concepts of electronic polymers \u003cbr\u003e1. 4.1 Bond type of polymer\u003cbr\u003e1. 4.2 Chain geometry of polymers\u003cbr\u003e1. 4.3 Characteristics and properties of polymers \u003cbr\u003e1.4.4 Polymer morphology \u003cbr\u003e1.5 Classification of polymer families and types \u003cbr\u003e1.5.1 Electronic thermoplastic polymers \u003cbr\u003e1.5.2 Electronic thermosetting polymers \u003cbr\u003e1.5.3 Electronic elastomers \u003cbr\u003e1.6 Micro- and nano-electronic polymers \u003cbr\u003e1.7 Electronic copolymers and copolymerization \u003cbr\u003e1.8 Electronic oligomers\u003cbr\u003e1.9 Electronic polymer-based compounds \u003cbr\u003e1.9.1 Electronic inorganic polymers \u003cbr\u003e1.9.2 Electronic organometallic polymers \u003cbr\u003e1.9.3 Electronic complex polymers \u003cbr\u003e1.9.4 Electronic small molecules \u003cbr\u003e1.9.5 Electronic nanocomposites \u003cbr\u003e\u003cbr\u003e2 Electronics for Polymer Engineers\u003cbr\u003e2.1 Electrical conductivity of electronic polymers\u003cbr\u003e2.2 Electronic polymers “electrical conductivity” theory \u003cbr\u003e2.3 Electronic polymers “charge transport and charge transfer” theory \u003cbr\u003e2.4 Electronic polymers “molecular orbital” theory \u003cbr\u003e2.5 Electronic polymers “valence bond and Lewis structure” theory \u003cbr\u003e2.6 Electronic polymers “electroluminescent” theory \u003cbr\u003e2.7 Electronic polymers “piezoelectricity” theory \u003cbr\u003e2.8 Electronic polymers “electroactivity” theory \u003cbr\u003e2.9 Fundamentals of microelectronics for polymers \u003cbr\u003e2.10 Fundamentals of nanoelectronics for polymers \u003cbr\u003e2.11 Fundamentals of optoelectronics for polymers \u003cbr\u003e\u003cbr\u003e3 Optimized Electronic Polymers, Small Molecules, Complexes, \u003cbr\u003e and Elastomers for Organic Electronic Systems \u003cbr\u003e3.1 Electronic polymers \u003cbr\u003e3.2 Electroactive polymers \u003cbr\u003e3.2.1 Electronic-electroactive polymers \u003cbr\u003e3.2.2 Ionic-electroactive polymers \u003cbr\u003e3.3 Non-electroactive polymers \u003cbr\u003e3.3.1 Chemically activated polymers\u003cbr\u003e3.3.2 Shape memory polymers \u003cbr\u003e3.3.3 Electronic inflatable structure polymers \u003cbr\u003e3.3.4 Electronic light-activated polymers \u003cbr\u003e3.3.5 Magnetically activated polymers \u003cbr\u003e3.3.6 Electronic thermally activated gels \u003cbr\u003e3.4 Electronic conductive (conjugated and doped) polymers \u003cbr\u003e3.4.1 Electronic extrinsically conductive polymers \u003cbr\u003e3.4.2 Electronic intrinsically (inherently) conductive polymers \u003cbr\u003e3.5 Electronic piezoelectric and pyroelectric polymers \u003cbr\u003e3.5.1 Electronic bulk piezoelectric polymers \u003cbr\u003e3.5.2 Electronic piezoelectric\/polymeric composites \u003cbr\u003e3.5.3 Electronic voided charged piezoelectric polymers \u003cbr\u003e3.6 Microelectronic polymers \u003cbr\u003e3.6.1 Microelectronic three-dimensional conjugated macromolecules \u003cbr\u003e3.6.2 Microelectronic low-k polymers in microelectronics \u003cbr\u003e3.6.3 Organic\/inorganic hybrid nanocomposites for microelectronics \u003cbr\u003e3.7 Nanoelectronic polymers (nanopolymers) \u003cbr\u003e3.7.1 Electroactive nanostructured polymers \u003cbr\u003e3.7.2 Self-assembled nanostructured polymers \u003cbr\u003e3.7.3 Non-self-assembled nanostructured polymers \u003cbr\u003e3.7.4 Numbered nanoscale dimension polymers\u003cbr\u003e3.8 Optoelectronic polymers \u003cbr\u003e3.8.1 Optoelectronic light-emitting polymers \u003cbr\u003e3.8.2 Optoelectronic light transporting polymers \u003cbr\u003e3.8.3 Optoelectronic light receiving (absorbing) polymers \u003cbr\u003e3.9 Actuation polymers \u003cbr\u003e3.9.1 Stretchable electronic polymers \u003cbr\u003e3.9.2 Robotic polymers \u003cbr\u003e3.10 Electronic small molecules \u003cbr\u003e3.10.1 Electronic small molecules based on polycyclic aromatics \u003cbr\u003e3.10.2 Solution-processable electronic small molecules \u003cbr\u003e3.10.3 Electronic small molecule dyes \u003cbr\u003e3.10.4 Donor-p-acceptor structure electronic small molecules \u003cbr\u003e3.10.5 Optoelectronic small molecules \u003cbr\u003e3.10.6 Organic p-conjugated electronic small molecules \u003cbr\u003e3.11 Organic electronic complexes \u003cbr\u003e3.11.1 Polymeric metal complexes \u003cbr\u003e3.11.2 Small molecule complexes \u003cbr\u003e3.11.3 Heavy-metal complexes \u003cbr\u003e3.12 Electronic elastomers \u003cbr\u003e3.12.1 Electronic liquid crystalline elastomers \u003cbr\u003e3.12.2 Ferroelectric elastomers \u003cbr\u003e3.12.3 Electrostrictive grafted elastomers \u003cbr\u003e3.12.4 Optoelectronic elastomers \u003cbr\u003e3.12.5 Electrostatic elastomers \u003cbr\u003e3.12.6 Electroviscoelastic elastomers \u003cbr\u003e3.12.7 Electromagnetic-interference-shielding elastomers \u003cbr\u003e3.12.8 Electronic stretchable elastomers \u003cbr\u003e\u003cbr\u003e4 Optimization of Electrical, Electronic and Optical Properties of Organic Electronic Structures \u003cbr\u003e4.1 Overview \u003cbr\u003e4.2 Electrical properties \u003cbr\u003e4.3 Electronic properties \u003cbr\u003e4.3.1 HOMO-LUMO energy (band) gaps\u003cbr\u003e4.3.2 Electronic excitation energy \u003cbr\u003e4.3.3 Absorption wavelength \u003cbr\u003e4.4 Optical properties \u003cbr\u003e4.4.1 Transparency and colorlessness \u003cbr\u003e4.4.2 Refractive index \u003cbr\u003e4.4.3 Optical absorption \u003cbr\u003e4.4.4 Birefringence \u003cbr\u003e4.4.5 Optical transmission \u003cbr\u003e4.4.6 Polarizability\u003cbr\u003e4.4.7 Haze \u003cbr\u003e4.4.8 Photoconductivity \u003cbr\u003e4.4.9 Optical emission \u003cbr\u003e4.4.10 Luminescence \u003cbr\u003e\u003cbr\u003e5 Optimization of Polymeric Structures of Organic Printed Circuit Boards \u003cbr\u003e5.1 Overview \u003cbr\u003e5.2 Polymers for conventional printed circuit boards \u003cbr\u003e5.2.1 Dielectric substrate-based polymeric printed circuit boards \u003cbr\u003e5.2.2 Prepreg polymeric printed circuit boards \u003cbr\u003e5.2.3 Polymeric single-sided printed circuit boards \u003cbr\u003e5.2.4 Polymeric structures of double-sided printed circuit boards \u003cbr\u003e5.2.5 Polymeric structures of multilayered printed circuit boards\u003cbr\u003e5.3 Polymeric structures of flexible printed circuit boards \u003cbr\u003e5.3.1 Polymeric structures of single-sided flexible printed circuit boards \u003cbr\u003e5.3.2 Polymeric structures of double-sided flexible printed circuit boards \u003cbr\u003e5.3.3 Polymeric structures of multilayer flexible printed circuit boards \u003cbr\u003e5.3.4 Polymeric structures of rigid-flexible printed circuit boards \u003cbr\u003e5.3.5 Polymeric structures of dual access (back-bared) flexible printed circuit boards \u003cbr\u003e5.3.6 Polymeric structures of polymer thick-film flexible printed circuit boards \u003cbr\u003e5.4 Polymeric structures of ultra-multilayer printed circuit boards \u003cbr\u003e5.5 Polymeric structure of three-dimensional printed circuit boards \u003cbr\u003e5.5.1 Polymers in molded interconnected devices \u003cbr\u003e5.5.2 Combination of molded interconnected device polymers \u003cbr\u003e5.5.3 Manufacturing methods of molded interconnected devices \u003cbr\u003e5.6 Functions of advanced printed circuit boards optimized \u003cbr\u003e5.6.1 Printed circuit boards embedded in a polymeric substrate \u003cbr\u003e5.6.2 Polymeric microelectronic printed circuit boards \u003cbr\u003e5.6.3 Polymeric nanoelectronic printed circuit boards \u003cbr\u003e5.6.4 Polymeric optoelectronic printed circuit boards \u003cbr\u003e5.6.5 Polymeric structures of smart-textile printed circuit boards \u003cbr\u003e5.7 Polymeric structures of rapid printed circuit boards (state of the art) \u003cbr\u003e\u003cbr\u003e6 Optimized Polymeric Structures of Organic Active Electronic Components \u003cbr\u003e6.1 Overview \u003cbr\u003e6.2 Polymeric structures of organic semiconductors \u003cbr\u003e6.2.1 Polymeric structures of organic integrated circuits \u003cbr\u003e6.2.2 Polymeric structures of organic transistors \u003cbr\u003e6.2.3 Polymeric structures of organic diodes \u003cbr\u003e6.2.4 Polymeric structures of organic optoelectronic systems \u003cbr\u003e6.3 Polymeric structures of organic display technologies \u003cbr\u003e6.4 Polymeric structures of organic discharge devices \u003cbr\u003e6.5 Polymeric structures of organic power sources \u003cbr\u003e6.5.1 Polymeric structures of organic batteries \u003cbr\u003e6.5.2 Polymeric structures of organic fuel cells \u003cbr\u003e6.5.3 Polymeric structures of organic thermoelectric generators \u003cbr\u003e6.5.4 Polymeric structures for organic piezoelectric pressure \u003cbr\u003e\u003cbr\u003e7 Polymeric Structures Optimized for Organic Passive Electronic Components \u003cbr\u003e7.1 Overview \u003cbr\u003e7.2 Organic film resistors \u003cbr\u003e7.2.1 Thin film resistors \u003cbr\u003e7.2.2 Thick film resistors \u003cbr\u003e7.3 Organic capacitors \u003cbr\u003e7.3.1 Organic film capacitors \u003cbr\u003e7.3.2 Aluminum polymer capacitors \u003cbr\u003e7.3.3 Tantalum polymer capacitors \u003cbr\u003e7.3.4 Functional polymer capacitor \u003cbr\u003e7.4 Organic magnetic systems \u003cbr\u003e7.4.1 Magnetic polymers \u003cbr\u003e7.4.2 Organic\/polymeric magnets \u003cbr\u003e7.5 Organic networks \u003cbr\u003e7.6 Organic transducers \u003cbr\u003e7.6.1 Piezoelectric polymer transducers \u003cbr\u003e7.6.2 Ionic polymer transducers \u003cbr\u003e7.6.3 Elastomeric transducers \u003cbr\u003e7.7 Organic sensors \u003cbr\u003e7.7.1 Organic gas sensors \u003cbr\u003e7.7.2 Organic optical sensors \u003cbr\u003e7.7.3 Organic fiber optic-sensors \u003cbr\u003e7.7.4 Organic, flexible sensors \u003cbr\u003e7.8 Organic antennas \u003cbr\u003e7.9 Organic actuators \u003cbr\u003e7.9.1 All-organic\/polymeric actuators \u003cbr\u003e7.9.2 Conducting polymer actuators \u003cbr\u003e7.9.3 Ionomeric polymer-metal composite actuators \u003cbr\u003e7.9.4 Piezoelectric polymer actuators \u003cbr\u003e7.9.5 Flexible elastomeric actuators \u003cbr\u003e7.9.6 Conjugated polymer actuators \u003cbr\u003e7.9.7 Polymeric microactuators \u003cbr\u003e\u003cbr\u003e8 Optimizing Polymeric Structures in Organic Optoelectronics \u003cbr\u003e8.1 Overview \u003cbr\u003e8.2 Optical polymers\u003cbr\u003e8.2.1 Optical electroactive conjugated polymers \u003cbr\u003e8.2.2 Transparent (photonic) polymers \u003cbr\u003e8.2.3 Optical organic photovoltaic polymers \u003cbr\u003e8.2.4 Electroluminescent polymers \u003cbr\u003e8.2.5 Electro-phosphorescent polymers \u003cbr\u003e8.3 Properties of optical polymers \u003cbr\u003e8.4 Physical properties of optical polymers \u003cbr\u003e8.5 Organic optoelectronic systems \u003cbr\u003e8.5.1 Optical polymers for forming organic optoelectronic emitters \u003cbr\u003e8.5.2 Optical polymers for organic electroluminescent systems \u003cbr\u003e8.5.3 Organic photonics \u003cbr\u003e8.5.4 Organic optical amplifiers \u003cbr\u003e8.5.5 Organic optical detectors and receivers \u003cbr\u003e8.5.6 Organic optoelectronic thin-films \u003cbr\u003e8.5.7 Organic electro-optic modulators \u003cbr\u003e\u003cbr\u003e9 Optimizing Polymeric Structures of Organic Electronic Packages \u003cbr\u003e9.1 Overview \u003cbr\u003e9.2 Polymers in organic electronic packaging \u003cbr\u003e9.3 Polymeric structures of packaging systems \u003cbr\u003e9.3.1 Polymeric dual in-line package \u003cbr\u003e9.3.2 Polymeric single in-line package \u003cbr\u003e9.3.3 Polymeric zig-zag in-line package\u003cbr\u003e9.4 Structures of organic microelectronic packaging \u003cbr\u003e9.4.1 Practical concept of organic microelectronic packaging \u003cbr\u003e9.4.2 Organic microelectronic packages \u003cbr\u003e9.5 Electrically and thermally conductive polymer adhesives \u003cbr\u003e9.6 Organic microelectromechanical packaging \u003cbr\u003e9.6.1 Polymeric thin-film multilayer packaging \u003cbr\u003e9.6.2 Microelectromechanical packaging \u003cbr\u003e9.6.3 Vacuum and air cavity packaged organic microelectromechanical systems \u003cbr\u003e9.6.4 Organic encapsulation gels \u003cbr\u003e9.6.5 Organic near-hermetic (quasi-hermetic) materials \u003cbr\u003e9.7 Organic nanoelectronic packaging \u003cbr\u003e9.7.1 Polymeric system-on a-chip (or nanochip) \u003cbr\u003e9.7.2 Polymeric nanoscaled systems \u003cbr\u003e9.7.3 Nanoelectronic circuit packaging (nanopackaging) \u003cbr\u003e9.7.4 Organic nanoelectromechanical packaging \u003cbr\u003e9.8 Organic optoelectronic packaging \u003cbr\u003e9.8.1 Polymeric optoelectronic waveguides \u003cbr\u003e9.8.2 Organic optocoupler (optoisolator) packaging \u003cbr\u003e9.8.3 Organic microoptoelectromechanical systems packaging\u003cbr\u003e9.9 Polymeric packages \u003cbr\u003e9.10 Polymeric adhesive packages \u003cbr\u003e\u003cbr\u003e Index\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T11:44:58-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","electronics"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943766605917,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Organic Electronics. Polymer Selection for Electronic, Mechatronic \u0026 Optoelectronic Systems","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-67-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372","options":["Title"],"media":[{"alt":null,"id":6968062345309,"position":1,"preview_image":{"aspect_ratio":0.664,"height":450,"width":299,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372"},"aspect_ratio":0.664,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372","width":299}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sulaiman Khalifeh\u003cbr\u003eISBN 978-1-927885-67-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages: 606+x\u003cbr\u003eFigures: 189\u003cbr\u003eTables: 76\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eElectronics (including micro, nano, and quantum systems); mechanics (including MEMS, NEMS, MOEMS, and NOEMS); mechatronics (including robots, artificial muscles, and automated air vehicles); informatics (including software, hardware, and communication); materials science (including conjugated polymers, smart materials, and conducting small molecules); and optoelectronics (optical fibers and lenses) are the critical elements of development in science today. An integration is the practical concept by which these elements are combined and implemented; so that a new high performance, low cost, and lightweight organic electronic components (devices or systems) can be produced with shorter lead time.\u003c\/p\u003e\n\u003cp\u003eOrganic electronics or polymer electronics represent the important branch of material science dealing with electrically conductive polymers and small conductive molecules of carbon-based nature. This branch focuses on optimizing the semi-conductivity, conductivity, light emitting properties of organic materials (polymers, oligomers, and small molecules), and hybrid composites having organic-inorganic structures. That is because organic (p-conjugated) polymers exhibit the following attractive advantages:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003ecan be formed and shaped from solution depending on high-tech processes such as spin coating or inkjet printing at room temperature due to their lightweight and flexibility.\u003c\/li\u003e\n\u003cli\u003ethe capability of acting as electron donors and acceptors for structuring organic photovoltaics such as large scale, micro-, and nano-solar cells.\u003c\/li\u003e\n\u003cli\u003ethe ability to control their low band gaps energy levels makes them promising for fabricating developed organic electronic systems such as field-effect transistors, solar cells, light-emitting diodes, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eEvery year new conducting polymers, small molecules, composites, and complexes are being developed. Parallel to such development, the opportunities for additional electronic applications have increased. Included in this book are polymeric structures of the most familiar electronic devices (micro, opto, nano, etc.).\u003c\/p\u003e\n\u003cp\u003eThe main objective of this book is to help designers to optimize their design of organic electronic systems built out of novel polymers. For example, it is not enough to calculate the optical constants of an optoelectronic light-emitting diode LED using Afromowitz dielectric model starting from the calculation of real and imaginary part of the dielectric function, but its optical performance must be optimized by applying optical modeling of thin layers on a polymeric substrate.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 1\u003c\/strong\u003e is an introduction to polymers for electronic engineers. It provides identifications of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers. The chapter contains a classification of polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules. Several optimized ideas have been introduced to make this book a practical reference source.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 2\u003c\/strong\u003e is also introductory but explaining the principles of electronics to polymer engineers. It provides information on electronic theories of polymers. The theories are very important for undergraduate students in understanding mechanisms of polymer conductivity and studying theories governing electrical conductivity of polymers. This chapter was also illustrated with optimized ideas to facilitate practical applications.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains information on concepts and optimized types of electronic (polymers, small molecules, organic complexes, and elastomers). It contains a classification system of electronic polymers such as piezoelectric and pyroelectric, optoelectronic, electroactive, and mechatronics, and electronic small molecules, organic electronic complexes, and electronic elastomers. The chapter helps in the selection of the optimized electronic polymers, small molecules, complexes, and elastomers for structuring organic electronic systems.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e covers the most common properties of electronic polymers, such as electrical, electronic, and optical properties. The methods of optimization of electrical, electronic, and optical properties-dependent organic electronic structures are critical components of the chapter. For example, high occupied molecular orbital HOMO, low unoccupied molecular orbital LUMO, band gap, are essential concepts for understanding the electronic properties of electronic polymers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e is the location of discussion on polymeric structured printed circuit boards (PCBs). Here the reader may start building his own experience in creating polymer-based PCBs. Advanced PCBs and rapid PCB prototyping (a state of the art) are discussed. Optimizing the polymeric structures of organic printed circuit boards is broadly discussed here.\u003c\/p\u003e\n\u003cp\u003eBoth \u003cstrong\u003echapters 6 and 7\u003c\/strong\u003e are based on two crucial and advanced types of electronic components (polymer-based active and passive electronic components). Chapter 6 focuses on optimizing the polymeric structures of organic active electronic components, and chapter 7 on optimizing the polymeric structures of organic passive electronic components. The most critical systems listed in chapter 6 include integrated circuits ICs, organic thin-film transistors OTFT, organic light-emitting diodes OLEDs, optoelectronic devices, photovoltaic (or photo-electronic) systems, tandem or multi-junction organic solar cells, display technologies, discharge devices, organic thermo-electric generators, etc. The most important systems listed in chapter 7 include thin-film resistors, tantalum capacitors, axial inductor, fiber optic cable (fiber optic networks), optical sensors, flexible-skin contact antenna, flexible elastomeric actuators, etc.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 8\u003c\/strong\u003e describes the polymeric structures of optoelectronics and photonics supplied with the main optical and physical properties of conjugated polymers used for structuring the most developed optoelectronic devices and their optimization. Optoelectronic polymers such as optical electroactive conjugated polymers, optical organic photovoltaic polymers, and electro-phosphorescence polymers are used to emphasize the high efficiencies of the used optoelectronic devices.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 9\u003c\/strong\u003e has been designed to show the importance of polymeric structures for packaging of electronic devices, namely nanoelectronic packaging such as nanoelectronic circuits packaging and nanoelectromechanical packaging NEMS. Optimized polymeric structures of organic electronic packages are the subject of this chapter.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction to Polymers for Electronic Engineers\u003cbr\u003e1.1 Overview \u003cbr\u003e1.2 Synthetic electronic polymers\u003cbr\u003e1.3 Chemistry of electronic polymers \u003cbr\u003e1.3.1 Electronic resins\u003cbr\u003e1.3.2 Hydrocarbons (nature and electronic applications) \u003cbr\u003e1.4 Concepts of electronic polymers \u003cbr\u003e1. 4.1 Bond type of polymer\u003cbr\u003e1. 4.2 Chain geometry of polymers\u003cbr\u003e1. 4.3 Characteristics and properties of polymers \u003cbr\u003e1.4.4 Polymer morphology \u003cbr\u003e1.5 Classification of polymer families and types \u003cbr\u003e1.5.1 Electronic thermoplastic polymers \u003cbr\u003e1.5.2 Electronic thermosetting polymers \u003cbr\u003e1.5.3 Electronic elastomers \u003cbr\u003e1.6 Micro- and nano-electronic polymers \u003cbr\u003e1.7 Electronic copolymers and copolymerization \u003cbr\u003e1.8 Electronic oligomers\u003cbr\u003e1.9 Electronic polymer-based compounds \u003cbr\u003e1.9.1 Electronic inorganic polymers \u003cbr\u003e1.9.2 Electronic organometallic polymers \u003cbr\u003e1.9.3 Electronic complex polymers \u003cbr\u003e1.9.4 Electronic small molecules \u003cbr\u003e1.9.5 Electronic nanocomposites \u003cbr\u003e\u003cbr\u003e2 Electronics for Polymer Engineers\u003cbr\u003e2.1 Electrical conductivity of electronic polymers\u003cbr\u003e2.2 Electronic polymers “electrical conductivity” theory \u003cbr\u003e2.3 Electronic polymers “charge transport and charge transfer” theory \u003cbr\u003e2.4 Electronic polymers “molecular orbital” theory \u003cbr\u003e2.5 Electronic polymers “valence bond and Lewis structure” theory \u003cbr\u003e2.6 Electronic polymers “electroluminescent” theory \u003cbr\u003e2.7 Electronic polymers “piezoelectricity” theory \u003cbr\u003e2.8 Electronic polymers “electroactivity” theory \u003cbr\u003e2.9 Fundamentals of microelectronics for polymers \u003cbr\u003e2.10 Fundamentals of nanoelectronics for polymers \u003cbr\u003e2.11 Fundamentals of optoelectronics for polymers \u003cbr\u003e\u003cbr\u003e3 Optimized Electronic Polymers, Small Molecules, Complexes, \u003cbr\u003e and Elastomers for Organic Electronic Systems \u003cbr\u003e3.1 Electronic polymers \u003cbr\u003e3.2 Electroactive polymers \u003cbr\u003e3.2.1 Electronic-electroactive polymers \u003cbr\u003e3.2.2 Ionic-electroactive polymers \u003cbr\u003e3.3 Non-electroactive polymers \u003cbr\u003e3.3.1 Chemically activated polymers\u003cbr\u003e3.3.2 Shape memory polymers \u003cbr\u003e3.3.3 Electronic inflatable structure polymers \u003cbr\u003e3.3.4 Electronic light-activated polymers \u003cbr\u003e3.3.5 Magnetically activated polymers \u003cbr\u003e3.3.6 Electronic thermally activated gels \u003cbr\u003e3.4 Electronic conductive (conjugated and doped) polymers \u003cbr\u003e3.4.1 Electronic extrinsically conductive polymers \u003cbr\u003e3.4.2 Electronic intrinsically (inherently) conductive polymers \u003cbr\u003e3.5 Electronic piezoelectric and pyroelectric polymers \u003cbr\u003e3.5.1 Electronic bulk piezoelectric polymers \u003cbr\u003e3.5.2 Electronic piezoelectric\/polymeric composites \u003cbr\u003e3.5.3 Electronic voided charged piezoelectric polymers \u003cbr\u003e3.6 Microelectronic polymers \u003cbr\u003e3.6.1 Microelectronic three-dimensional conjugated macromolecules \u003cbr\u003e3.6.2 Microelectronic low-k polymers in microelectronics \u003cbr\u003e3.6.3 Organic\/inorganic hybrid nanocomposites for microelectronics \u003cbr\u003e3.7 Nanoelectronic polymers (nanopolymers) \u003cbr\u003e3.7.1 Electroactive nanostructured polymers \u003cbr\u003e3.7.2 Self-assembled nanostructured polymers \u003cbr\u003e3.7.3 Non-self-assembled nanostructured polymers \u003cbr\u003e3.7.4 Numbered nanoscale dimension polymers\u003cbr\u003e3.8 Optoelectronic polymers \u003cbr\u003e3.8.1 Optoelectronic light-emitting polymers \u003cbr\u003e3.8.2 Optoelectronic light transporting polymers \u003cbr\u003e3.8.3 Optoelectronic light receiving (absorbing) polymers \u003cbr\u003e3.9 Actuation polymers \u003cbr\u003e3.9.1 Stretchable electronic polymers \u003cbr\u003e3.9.2 Robotic polymers \u003cbr\u003e3.10 Electronic small molecules \u003cbr\u003e3.10.1 Electronic small molecules based on polycyclic aromatics \u003cbr\u003e3.10.2 Solution-processable electronic small molecules \u003cbr\u003e3.10.3 Electronic small molecule dyes \u003cbr\u003e3.10.4 Donor-p-acceptor structure electronic small molecules \u003cbr\u003e3.10.5 Optoelectronic small molecules \u003cbr\u003e3.10.6 Organic p-conjugated electronic small molecules \u003cbr\u003e3.11 Organic electronic complexes \u003cbr\u003e3.11.1 Polymeric metal complexes \u003cbr\u003e3.11.2 Small molecule complexes \u003cbr\u003e3.11.3 Heavy-metal complexes \u003cbr\u003e3.12 Electronic elastomers \u003cbr\u003e3.12.1 Electronic liquid crystalline elastomers \u003cbr\u003e3.12.2 Ferroelectric elastomers \u003cbr\u003e3.12.3 Electrostrictive grafted elastomers \u003cbr\u003e3.12.4 Optoelectronic elastomers \u003cbr\u003e3.12.5 Electrostatic elastomers \u003cbr\u003e3.12.6 Electroviscoelastic elastomers \u003cbr\u003e3.12.7 Electromagnetic-interference-shielding elastomers \u003cbr\u003e3.12.8 Electronic stretchable elastomers \u003cbr\u003e\u003cbr\u003e4 Optimization of Electrical, Electronic and Optical Properties of Organic Electronic Structures \u003cbr\u003e4.1 Overview \u003cbr\u003e4.2 Electrical properties \u003cbr\u003e4.3 Electronic properties \u003cbr\u003e4.3.1 HOMO-LUMO energy (band) gaps\u003cbr\u003e4.3.2 Electronic excitation energy \u003cbr\u003e4.3.3 Absorption wavelength \u003cbr\u003e4.4 Optical properties \u003cbr\u003e4.4.1 Transparency and colorlessness \u003cbr\u003e4.4.2 Refractive index \u003cbr\u003e4.4.3 Optical absorption \u003cbr\u003e4.4.4 Birefringence \u003cbr\u003e4.4.5 Optical transmission \u003cbr\u003e4.4.6 Polarizability\u003cbr\u003e4.4.7 Haze \u003cbr\u003e4.4.8 Photoconductivity \u003cbr\u003e4.4.9 Optical emission \u003cbr\u003e4.4.10 Luminescence \u003cbr\u003e\u003cbr\u003e5 Optimization of Polymeric Structures of Organic Printed Circuit Boards \u003cbr\u003e5.1 Overview \u003cbr\u003e5.2 Polymers for conventional printed circuit boards \u003cbr\u003e5.2.1 Dielectric substrate-based polymeric printed circuit boards \u003cbr\u003e5.2.2 Prepreg polymeric printed circuit boards \u003cbr\u003e5.2.3 Polymeric single-sided printed circuit boards \u003cbr\u003e5.2.4 Polymeric structures of double-sided printed circuit boards \u003cbr\u003e5.2.5 Polymeric structures of multilayered printed circuit boards\u003cbr\u003e5.3 Polymeric structures of flexible printed circuit boards \u003cbr\u003e5.3.1 Polymeric structures of single-sided flexible printed circuit boards \u003cbr\u003e5.3.2 Polymeric structures of double-sided flexible printed circuit boards \u003cbr\u003e5.3.3 Polymeric structures of multilayer flexible printed circuit boards \u003cbr\u003e5.3.4 Polymeric structures of rigid-flexible printed circuit boards \u003cbr\u003e5.3.5 Polymeric structures of dual access (back-bared) flexible printed circuit boards \u003cbr\u003e5.3.6 Polymeric structures of polymer thick-film flexible printed circuit boards \u003cbr\u003e5.4 Polymeric structures of ultra-multilayer printed circuit boards \u003cbr\u003e5.5 Polymeric structure of three-dimensional printed circuit boards \u003cbr\u003e5.5.1 Polymers in molded interconnected devices \u003cbr\u003e5.5.2 Combination of molded interconnected device polymers \u003cbr\u003e5.5.3 Manufacturing methods of molded interconnected devices \u003cbr\u003e5.6 Functions of advanced printed circuit boards optimized \u003cbr\u003e5.6.1 Printed circuit boards embedded in a polymeric substrate \u003cbr\u003e5.6.2 Polymeric microelectronic printed circuit boards \u003cbr\u003e5.6.3 Polymeric nanoelectronic printed circuit boards \u003cbr\u003e5.6.4 Polymeric optoelectronic printed circuit boards \u003cbr\u003e5.6.5 Polymeric structures of smart-textile printed circuit boards \u003cbr\u003e5.7 Polymeric structures of rapid printed circuit boards (state of the art) \u003cbr\u003e\u003cbr\u003e6 Optimized Polymeric Structures of Organic Active Electronic Components \u003cbr\u003e6.1 Overview \u003cbr\u003e6.2 Polymeric structures of organic semiconductors \u003cbr\u003e6.2.1 Polymeric structures of organic integrated circuits \u003cbr\u003e6.2.2 Polymeric structures of organic transistors \u003cbr\u003e6.2.3 Polymeric structures of organic diodes \u003cbr\u003e6.2.4 Polymeric structures of organic optoelectronic systems \u003cbr\u003e6.3 Polymeric structures of organic display technologies \u003cbr\u003e6.4 Polymeric structures of organic discharge devices \u003cbr\u003e6.5 Polymeric structures of organic power sources \u003cbr\u003e6.5.1 Polymeric structures of organic batteries \u003cbr\u003e6.5.2 Polymeric structures of organic fuel cells \u003cbr\u003e6.5.3 Polymeric structures of organic thermoelectric generators \u003cbr\u003e6.5.4 Polymeric structures for organic piezoelectric pressure \u003cbr\u003e\u003cbr\u003e7 Polymeric Structures Optimized for Organic Passive Electronic Components \u003cbr\u003e7.1 Overview \u003cbr\u003e7.2 Organic film resistors \u003cbr\u003e7.2.1 Thin film resistors \u003cbr\u003e7.2.2 Thick film resistors \u003cbr\u003e7.3 Organic capacitors \u003cbr\u003e7.3.1 Organic film capacitors \u003cbr\u003e7.3.2 Aluminum polymer capacitors \u003cbr\u003e7.3.3 Tantalum polymer capacitors \u003cbr\u003e7.3.4 Functional polymer capacitor \u003cbr\u003e7.4 Organic magnetic systems \u003cbr\u003e7.4.1 Magnetic polymers \u003cbr\u003e7.4.2 Organic\/polymeric magnets \u003cbr\u003e7.5 Organic networks \u003cbr\u003e7.6 Organic transducers \u003cbr\u003e7.6.1 Piezoelectric polymer transducers \u003cbr\u003e7.6.2 Ionic polymer transducers \u003cbr\u003e7.6.3 Elastomeric transducers \u003cbr\u003e7.7 Organic sensors \u003cbr\u003e7.7.1 Organic gas sensors \u003cbr\u003e7.7.2 Organic optical sensors \u003cbr\u003e7.7.3 Organic fiber optic-sensors \u003cbr\u003e7.7.4 Organic, flexible sensors \u003cbr\u003e7.8 Organic antennas \u003cbr\u003e7.9 Organic actuators \u003cbr\u003e7.9.1 All-organic\/polymeric actuators \u003cbr\u003e7.9.2 Conducting polymer actuators \u003cbr\u003e7.9.3 Ionomeric polymer-metal composite actuators \u003cbr\u003e7.9.4 Piezoelectric polymer actuators \u003cbr\u003e7.9.5 Flexible elastomeric actuators \u003cbr\u003e7.9.6 Conjugated polymer actuators \u003cbr\u003e7.9.7 Polymeric microactuators \u003cbr\u003e\u003cbr\u003e8 Optimizing Polymeric Structures in Organic Optoelectronics \u003cbr\u003e8.1 Overview \u003cbr\u003e8.2 Optical polymers\u003cbr\u003e8.2.1 Optical electroactive conjugated polymers \u003cbr\u003e8.2.2 Transparent (photonic) polymers \u003cbr\u003e8.2.3 Optical organic photovoltaic polymers \u003cbr\u003e8.2.4 Electroluminescent polymers \u003cbr\u003e8.2.5 Electro-phosphorescent polymers \u003cbr\u003e8.3 Properties of optical polymers \u003cbr\u003e8.4 Physical properties of optical polymers \u003cbr\u003e8.5 Organic optoelectronic systems \u003cbr\u003e8.5.1 Optical polymers for forming organic optoelectronic emitters \u003cbr\u003e8.5.2 Optical polymers for organic electroluminescent systems \u003cbr\u003e8.5.3 Organic photonics \u003cbr\u003e8.5.4 Organic optical amplifiers \u003cbr\u003e8.5.5 Organic optical detectors and receivers \u003cbr\u003e8.5.6 Organic optoelectronic thin-films \u003cbr\u003e8.5.7 Organic electro-optic modulators \u003cbr\u003e\u003cbr\u003e9 Optimizing Polymeric Structures of Organic Electronic Packages \u003cbr\u003e9.1 Overview \u003cbr\u003e9.2 Polymers in organic electronic packaging \u003cbr\u003e9.3 Polymeric structures of packaging systems \u003cbr\u003e9.3.1 Polymeric dual in-line package \u003cbr\u003e9.3.2 Polymeric single in-line package \u003cbr\u003e9.3.3 Polymeric zig-zag in-line package\u003cbr\u003e9.4 Structures of organic microelectronic packaging \u003cbr\u003e9.4.1 Practical concept of organic microelectronic packaging \u003cbr\u003e9.4.2 Organic microelectronic packages \u003cbr\u003e9.5 Electrically and thermally conductive polymer adhesives \u003cbr\u003e9.6 Organic microelectromechanical packaging \u003cbr\u003e9.6.1 Polymeric thin-film multilayer packaging \u003cbr\u003e9.6.2 Microelectromechanical packaging \u003cbr\u003e9.6.3 Vacuum and air cavity packaged organic microelectromechanical systems \u003cbr\u003e9.6.4 Organic encapsulation gels \u003cbr\u003e9.6.5 Organic near-hermetic (quasi-hermetic) materials \u003cbr\u003e9.7 Organic nanoelectronic packaging \u003cbr\u003e9.7.1 Polymeric system-on a-chip (or nanochip) \u003cbr\u003e9.7.2 Polymeric nanoscaled systems \u003cbr\u003e9.7.3 Nanoelectronic circuit packaging (nanopackaging) \u003cbr\u003e9.7.4 Organic nanoelectromechanical packaging \u003cbr\u003e9.8 Organic optoelectronic packaging \u003cbr\u003e9.8.1 Polymeric optoelectronic waveguides \u003cbr\u003e9.8.2 Organic optocoupler (optoisolator) packaging \u003cbr\u003e9.8.3 Organic microoptoelectromechanical systems packaging\u003cbr\u003e9.9 Polymeric packages \u003cbr\u003e9.10 Polymeric adhesive packages \u003cbr\u003e\u003cbr\u003e Index\u003cbr\u003e"}