- Grid List
Filter
Spectroscopy of Rubber...
$190.00
{"id":11242209604,"title":"Spectroscopy of Rubber and Rubbery Materials","handle":"978-1-85957-280-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V. M. Litvinov and P. P. De \u003cbr\u003eISBN\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e978-1-85957-280-1\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003ePages: 654\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book deals with the application of spectroscopic techniques for characterisation of chemical and physical structures in viscoelastic materials, such as unvulcanised elastomers and their vulcanisates, various rubbery materials and some plastics, which when blended with particular additives (plasticisers) behave like rubbers. \u003cbr\u003e\u003cbr\u003eAnalysis of the rubbery materials is complicated by the fact that rubbery products, such as tyres, tubes, seals, V-belts, and hoses, contain in the rubbery matrix a significant amount of various compounds, i.e., fillers, vulcanising agents, antioxidants, and plasticisers. Due to the complex composition, no single technique can provide a good understanding of the effect of chemical and physical structures on the functional properties of rubbery materials. Thus spectroscopy has become a powerful tool for the determination of polymer structures. \u003cbr\u003e\u003cbr\u003eThe most comprehensive information on chemical and physical structures in relation to material properties can be obtained by using a combination of macroscopic techniques and methods that provide information on the molecular level. \u003cbr\u003e\u003cbr\u003eThe major part of the book is devoted to techniques that are the most frequently used for analysis of rubbery materials, i.e., various methods of nuclear magnetic resonance (NMR) and optical spectroscopy. The main objective of this present book is to discuss a wide range of applications of the spectroscopic techniques for the analysis of rubbery materials. \u003cbr\u003e\u003cbr\u003eThe book brings together the various spectroscopic techniques for obtaining the following information: chemical structure of rubbery materials, network structure analysis, heterogeneity of rubbery materials, physical properties of rubbery materials, functional properties and stability of rubbery materials, processing of rubbery materials and quality control. \u003cbr\u003e\u003cbr\u003eThe contents of this book are of interest to chemists, physicists, material scientists and technologists who seek a better understanding of rubbery materials.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eChapter Titles\u003c\/strong\u003e\u003cbr\u003e1. Characterisation of Elastomers Using (Multi) Hyphenated Thermogravimetric Analysis Techniques \u003cbr\u003e2. Photoacoustic Fourier Transform Infrared Spectroscopy of Rubbers and Related Materials \u003cbr\u003e3. Infrared Spectroscopy of Rubbers \u003cbr\u003e4. Application of Infrared Spectroscopy to Characterise Chemically Modified Rubbers and Rubbery Materials \u003cbr\u003e5. Infrared Spectroscopy of Rubbery Materials \u003cbr\u003e6. Crosslinking of EPDM and Polydiene Rubbers Studied by Optical Spectroscopy \u003cbr\u003e7. NMR Imaging of Elastomers \u003cbr\u003e8. NMR in Soft Polymeric Matter: Nanometer-Scale Probe \u003cbr\u003e9. Chemical Characterisation of Vulcanisates by High-Resolution Solid-State NMR \u003cbr\u003e10. Characterisation of Chemical and Physical Networks in Rubbery Materials Using Proton NMR Magnetisation Relaxation \u003cbr\u003e11. High-Resolution NMR of Elastomers \u003cbr\u003e12. 129Xe NMR of Elastomers in Blends and Composites \u003cbr\u003e13. Swollen Rubbery Materials: Chemistry and Physical Properties Studied by NMR Techniques \u003cbr\u003e14. Multidimensional NMR Techniques for the Characterisation of Viscoelastic Materials \u003cbr\u003e15. Deuterium NMR in Rubbery Materials\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eVictor M. Litvinov\u003c\/strong\u003e is a senior researcher at the Department of Molecular Identification and Quantification at DSM Research, Campus Geleen, The Netherlands. He is responsible for the characterisation of chemical and physical structures in organic and inorganic materials by solid-state NMR techniques, applications of the method for quality control and establishing structure-property relationships. After graduating in 1973 from the Moscow Academy for Fine Chemical Technology, he worked in the Scientific Council on High-Performance Polymer Materials at the Presidium Academy of Sciences in Moscow, Russia. In 1978, he received a Ph.D. in macromolecular chemistry. From 1985 until 1992, he worked at the Institute of Synthetic Polymer Material of Academy of Sciences, Russia. In 1992, he joined DSM Research. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePrajnaparamita De\u003c\/strong\u003e is a Professor in the Rubber Technology center at the Indian Institute of Technology, Kharagpur, India. She has been working in the characterisation of polymers and rubbers for last 20 years, especially in the field of infrared spectroscopic studies.She has also worked on thermoplastic elastomers, adhesion, blends, polymer-filler bonding, utilisation of waste polymers and rubbers. Prajna has published about 130 research papers in international journals and delivered lectures in various universities, companies and at conferences in several countries.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:06-04:00","created_at":"2017-06-22T21:13:07-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","acrylic polymers","additives","analysis","belts","book","elastomers","fillers","infrared spectroscopy","NMR","p-testing","photoacoustic fourier transform","physical properties","plasticisers","plasticizers","plastics","polymer","processing","quality control","rubber","rubbery materials","stability","thermogravimetric","tubes","tyres"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378331332,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Spectroscopy of Rubber and Rubbery Materials","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-280-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-280-1.jpg?v=1499727987"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-280-1.jpg?v=1499727987","options":["Title"],"media":[{"alt":null,"id":358760120413,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-280-1.jpg?v=1499727987"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-280-1.jpg?v=1499727987","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V. M. Litvinov and P. P. De \u003cbr\u003eISBN\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e978-1-85957-280-1\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003ePages: 654\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book deals with the application of spectroscopic techniques for characterisation of chemical and physical structures in viscoelastic materials, such as unvulcanised elastomers and their vulcanisates, various rubbery materials and some plastics, which when blended with particular additives (plasticisers) behave like rubbers. \u003cbr\u003e\u003cbr\u003eAnalysis of the rubbery materials is complicated by the fact that rubbery products, such as tyres, tubes, seals, V-belts, and hoses, contain in the rubbery matrix a significant amount of various compounds, i.e., fillers, vulcanising agents, antioxidants, and plasticisers. Due to the complex composition, no single technique can provide a good understanding of the effect of chemical and physical structures on the functional properties of rubbery materials. Thus spectroscopy has become a powerful tool for the determination of polymer structures. \u003cbr\u003e\u003cbr\u003eThe most comprehensive information on chemical and physical structures in relation to material properties can be obtained by using a combination of macroscopic techniques and methods that provide information on the molecular level. \u003cbr\u003e\u003cbr\u003eThe major part of the book is devoted to techniques that are the most frequently used for analysis of rubbery materials, i.e., various methods of nuclear magnetic resonance (NMR) and optical spectroscopy. The main objective of this present book is to discuss a wide range of applications of the spectroscopic techniques for the analysis of rubbery materials. \u003cbr\u003e\u003cbr\u003eThe book brings together the various spectroscopic techniques for obtaining the following information: chemical structure of rubbery materials, network structure analysis, heterogeneity of rubbery materials, physical properties of rubbery materials, functional properties and stability of rubbery materials, processing of rubbery materials and quality control. \u003cbr\u003e\u003cbr\u003eThe contents of this book are of interest to chemists, physicists, material scientists and technologists who seek a better understanding of rubbery materials.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eChapter Titles\u003c\/strong\u003e\u003cbr\u003e1. Characterisation of Elastomers Using (Multi) Hyphenated Thermogravimetric Analysis Techniques \u003cbr\u003e2. Photoacoustic Fourier Transform Infrared Spectroscopy of Rubbers and Related Materials \u003cbr\u003e3. Infrared Spectroscopy of Rubbers \u003cbr\u003e4. Application of Infrared Spectroscopy to Characterise Chemically Modified Rubbers and Rubbery Materials \u003cbr\u003e5. Infrared Spectroscopy of Rubbery Materials \u003cbr\u003e6. Crosslinking of EPDM and Polydiene Rubbers Studied by Optical Spectroscopy \u003cbr\u003e7. NMR Imaging of Elastomers \u003cbr\u003e8. NMR in Soft Polymeric Matter: Nanometer-Scale Probe \u003cbr\u003e9. Chemical Characterisation of Vulcanisates by High-Resolution Solid-State NMR \u003cbr\u003e10. Characterisation of Chemical and Physical Networks in Rubbery Materials Using Proton NMR Magnetisation Relaxation \u003cbr\u003e11. High-Resolution NMR of Elastomers \u003cbr\u003e12. 129Xe NMR of Elastomers in Blends and Composites \u003cbr\u003e13. Swollen Rubbery Materials: Chemistry and Physical Properties Studied by NMR Techniques \u003cbr\u003e14. Multidimensional NMR Techniques for the Characterisation of Viscoelastic Materials \u003cbr\u003e15. Deuterium NMR in Rubbery Materials\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eVictor M. Litvinov\u003c\/strong\u003e is a senior researcher at the Department of Molecular Identification and Quantification at DSM Research, Campus Geleen, The Netherlands. He is responsible for the characterisation of chemical and physical structures in organic and inorganic materials by solid-state NMR techniques, applications of the method for quality control and establishing structure-property relationships. After graduating in 1973 from the Moscow Academy for Fine Chemical Technology, he worked in the Scientific Council on High-Performance Polymer Materials at the Presidium Academy of Sciences in Moscow, Russia. In 1978, he received a Ph.D. in macromolecular chemistry. From 1985 until 1992, he worked at the Institute of Synthetic Polymer Material of Academy of Sciences, Russia. In 1992, he joined DSM Research. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePrajnaparamita De\u003c\/strong\u003e is a Professor in the Rubber Technology center at the Indian Institute of Technology, Kharagpur, India. She has been working in the characterisation of polymers and rubbers for last 20 years, especially in the field of infrared spectroscopic studies.She has also worked on thermoplastic elastomers, adhesion, blends, polymer-filler bonding, utilisation of waste polymers and rubbers. Prajna has published about 130 research papers in international journals and delivered lectures in various universities, companies and at conferences in several countries.\u003cbr\u003e\u003cbr\u003e"}
Sputtering Materials f...
$199.00
{"id":11242250820,"title":"Sputtering Materials for VLSI and Thin Film Devices, 1st Edition","handle":"9780815515937","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J Sarkar \u003cbr\u003eISBN 9780815515937 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eUnique coverage of sputtering target manufacturing methods in the light of semiconductor, displays, data storage and photovoltaic industry requirements\u003cbr\u003e\u003cbr\u003ePractical information on technology trends, role of sputtering and major OEMs\u003cbr\u003e\u003cbr\u003eDiscussion on properties of a wide variety of thin films which include silicides, conductors, diffusion barriers, transparent conducting oxides, magnetic films etc.\u003cbr\u003e\u003cbr\u003ePractical case-studies on target performance and troubleshooting\u003cbr\u003e\u003cbr\u003eEssential technological information for students, engineers and scientists working in the semiconductor, display, data storage and photovoltaic industry\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eAn important resource for the microelectronics and flat panel display industries, this book focuses on the development of sputtering targets for the conductor, diffusion barrier, reflective, data storage and display applications.\u003cbr\u003e\u003cbr\u003eSarkar reviews essential microelectronics industry topics, including: history and technology trends; chip making fundamentals; deposition and properties of thin films; and the role of sputtering target performance on overall production yield. Materials science fundamentals, types of metallic materials for conductors, diffusion barrier, data storage, and flat panel display applications are also discussed.\u003cbr\u003e\u003cbr\u003eThe author illustrates his arguments with case studies and real-world examples of troubleshooting in an industrial setting.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eResearchers, engineers, undergraduate and graduate students in the fields of semiconductors, displays, thin films (nanotechnology and MEMS) and related industries.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSputtering Materials for VLSI and Thin Film Devices, 1st Edition\u003cbr\u003eChapter 1: Sputtering materials for microelectronic industry\u003cbr\u003eChapter 2: Sputter deposition of thin films\u003cbr\u003eChapter 3: Performance of sputtering targets and productivity\u003cbr\u003eChapter 4: Sputtering target manufacturing\u003cbr\u003eChapter 5: Sputtering targets for integrated circuits\u003cbr\u003eChapter 6: Sputtering targets for displays and photovoltaic devices\u003cbr\u003eChapter 7: Ferromagnetic sputtering targets for silicide and data storage applications\u003cbr\u003eChapter 8: Troubleshooting\u003cbr\u003eAppendix I Diffusion and phase transformation\u003cbr\u003eAppendix II Crystallographic texture\u003cbr\u003eAppendix III Phase change materials\u003cbr\u003eAppendix IV Mechanical property evaluation\u003cbr\u003eAppendix V Units and conversion factors\u003cbr\u003eAppendix VI Periodic table\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:17-04:00","created_at":"2017-06-22T21:15:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","conversion","crystallographic texture","diffusion","flat panel","microelectronics","OEMs","p-applications","photovoltaic industry","polymer","sputtering","thin films","troubleshooting"],"price":19900,"price_min":19900,"price_max":19900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378473732,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Sputtering Materials for VLSI and Thin Film Devices, 1st Edition","public_title":null,"options":["Default Title"],"price":19900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780815515937","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9780815515937_d0b3fd08-84b2-4684-9912-1cfd304bc799.jpg?v=1499955872"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9780815515937_d0b3fd08-84b2-4684-9912-1cfd304bc799.jpg?v=1499955872","options":["Title"],"media":[{"alt":null,"id":358761365597,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9780815515937_d0b3fd08-84b2-4684-9912-1cfd304bc799.jpg?v=1499955872"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9780815515937_d0b3fd08-84b2-4684-9912-1cfd304bc799.jpg?v=1499955872","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J Sarkar \u003cbr\u003eISBN 9780815515937 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eUnique coverage of sputtering target manufacturing methods in the light of semiconductor, displays, data storage and photovoltaic industry requirements\u003cbr\u003e\u003cbr\u003ePractical information on technology trends, role of sputtering and major OEMs\u003cbr\u003e\u003cbr\u003eDiscussion on properties of a wide variety of thin films which include silicides, conductors, diffusion barriers, transparent conducting oxides, magnetic films etc.\u003cbr\u003e\u003cbr\u003ePractical case-studies on target performance and troubleshooting\u003cbr\u003e\u003cbr\u003eEssential technological information for students, engineers and scientists working in the semiconductor, display, data storage and photovoltaic industry\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eAn important resource for the microelectronics and flat panel display industries, this book focuses on the development of sputtering targets for the conductor, diffusion barrier, reflective, data storage and display applications.\u003cbr\u003e\u003cbr\u003eSarkar reviews essential microelectronics industry topics, including: history and technology trends; chip making fundamentals; deposition and properties of thin films; and the role of sputtering target performance on overall production yield. Materials science fundamentals, types of metallic materials for conductors, diffusion barrier, data storage, and flat panel display applications are also discussed.\u003cbr\u003e\u003cbr\u003eThe author illustrates his arguments with case studies and real-world examples of troubleshooting in an industrial setting.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eResearchers, engineers, undergraduate and graduate students in the fields of semiconductors, displays, thin films (nanotechnology and MEMS) and related industries.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSputtering Materials for VLSI and Thin Film Devices, 1st Edition\u003cbr\u003eChapter 1: Sputtering materials for microelectronic industry\u003cbr\u003eChapter 2: Sputter deposition of thin films\u003cbr\u003eChapter 3: Performance of sputtering targets and productivity\u003cbr\u003eChapter 4: Sputtering target manufacturing\u003cbr\u003eChapter 5: Sputtering targets for integrated circuits\u003cbr\u003eChapter 6: Sputtering targets for displays and photovoltaic devices\u003cbr\u003eChapter 7: Ferromagnetic sputtering targets for silicide and data storage applications\u003cbr\u003eChapter 8: Troubleshooting\u003cbr\u003eAppendix I Diffusion and phase transformation\u003cbr\u003eAppendix II Crystallographic texture\u003cbr\u003eAppendix III Phase change materials\u003cbr\u003eAppendix IV Mechanical property evaluation\u003cbr\u003eAppendix V Units and conversion factors\u003cbr\u003eAppendix VI Periodic table\u003cbr\u003e\u003cbr\u003e"}
Stabilisers for Polyol...
$119.00
{"id":11242207172,"title":"Stabilisers for Polyolefins","handle":"978-1-85957-285-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Kröhnke and F. Werner, Clariant Huningue \u003cbr\u003eISBN 978-1-85957-285-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: Nov 2001\u003cbr\u003e\u003c\/span\u003ePages 132\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the first technical breakthrough occurred in the development of plastics at the beginning of the 20th century, plastic materials have become increasingly important. As well as research into polymer synthesis, the polymer industry is permanently challenged to improve the stability and lifetime of polymers. Demanding requirements can only be reached by means of the addition of small amounts of appropriate stabilisers, which maintain or even improve the initial properties of plastic materials. \u003cbr\u003e\u003cbr\u003eIn this review, the authors describe the main types of stabilisers with the focus on those categories for polyolefins. They also elucidate some of the physical and chemical aspects of such products when incorporated into the polymer matrix, discussing stability during weathering, heat ageing, and processing. Examples of the stabilisation of a variety of different articles are presented to reinforce the points discussed. The review is supported by several hundred relevant abstracts selected from the Rapra Abstracts database\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eChristoph Kröhnke\u003c\/strong\u003e is presently Team leader in the Development Group of Clariant's Business Line Polymer Additives. His expertise lies mainly in the field of solid-state polymer chemistry and physics. Since 1991 he has been particularly involved in the area of polymer degradation and stabilisation.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrédéric Werner\u003c\/strong\u003e joined Clariant's Business Line Polymer Additives in 1999 as regional technical manager for South Europe, Eastern Europe, and Mexico. He provides technical support to customers in the area of polyolefins and engineering plastics with products including amongst others processing, long-term heat, and light stabilisers.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:12:59-04:00","created_at":"2017-06-22T21:12:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","additives","ageing","book","degradation","heat","p-additives","p-applications","plastics","polymer","polymers","polyolefines","polyolefins","stabilisers"],"price":11900,"price_min":11900,"price_max":11900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378325700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Stabilisers for Polyolefins","public_title":null,"options":["Default Title"],"price":11900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-285-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895","options":["Title"],"media":[{"alt":null,"id":358762512477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Kröhnke and F. Werner, Clariant Huningue \u003cbr\u003eISBN 978-1-85957-285-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: Nov 2001\u003cbr\u003e\u003c\/span\u003ePages 132\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the first technical breakthrough occurred in the development of plastics at the beginning of the 20th century, plastic materials have become increasingly important. As well as research into polymer synthesis, the polymer industry is permanently challenged to improve the stability and lifetime of polymers. Demanding requirements can only be reached by means of the addition of small amounts of appropriate stabilisers, which maintain or even improve the initial properties of plastic materials. \u003cbr\u003e\u003cbr\u003eIn this review, the authors describe the main types of stabilisers with the focus on those categories for polyolefins. They also elucidate some of the physical and chemical aspects of such products when incorporated into the polymer matrix, discussing stability during weathering, heat ageing, and processing. Examples of the stabilisation of a variety of different articles are presented to reinforce the points discussed. The review is supported by several hundred relevant abstracts selected from the Rapra Abstracts database\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eChristoph Kröhnke\u003c\/strong\u003e is presently Team leader in the Development Group of Clariant's Business Line Polymer Additives. His expertise lies mainly in the field of solid-state polymer chemistry and physics. Since 1991 he has been particularly involved in the area of polymer degradation and stabilisation.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrédéric Werner\u003c\/strong\u003e joined Clariant's Business Line Polymer Additives in 1999 as regional technical manager for South Europe, Eastern Europe, and Mexico. He provides technical support to customers in the area of polyolefins and engineering plastics with products including amongst others processing, long-term heat, and light stabilisers.\u003cbr\u003e\u003cbr\u003e"}
Stimuli Responsive Dru...
$135.00
{"id":11242242308,"title":"Stimuli Responsive Drug Delivery SystemsFrom Introduction to Application","handle":"978-1-84735-416-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anil Bajpai, Sandeep Shukla, Rajesh Saini and Atul Tiwari \u003cbr\u003eISBN 978-1-84735-416-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003ePages: 370, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nStimuli responsive drug delivery systems have emerged as one of the most innovative classes of polymer materials in modern materials science. The polymer architectures exhibiting a large change in their physicochemical behaviors in response to minor signals from the environments have fabricated potentially useful materials for pharmaceutical and biomedical applications. The most advanced stimuli responsive drug delivery systems have also explored a new strategy to design targeted delivery systems to treat complex diseases like cancers and related tumors.\u003cbr\u003e\u003cbr\u003eStimuli Responsive Drug Delivery Systems offers a convincing approach to understanding the basic principles of drug delivery process, their mathematical modeling, different types of drug delivery systems, various polymer systems responsive to stimuli such as swelling, pH, temperature, electric and magnetic fields, chemical agents, and more. The material covered in this book provides a wide spectrum of information - academic, research, and professional - for the biomedical, pharmaceutical and polymer chemistry communities. \u003cbr\u003e\u003cbr\u003eThe book also presents the commercial scenario of drug delivery systems and highlights upcoming challenges and existing future prospects of this field. An exhaustive bibliography of the book also enables students and researchers of various disciplines to acquire the additional information they may require.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Responsive Stimuli-sensitive Materials\u003cbr\u003e1.2.1 Swelling-controlled Systems\u003cbr\u003e1.2.2 Magnetic-sensitive Release Systems\u003cbr\u003e1.3 Concept of Controlled Drug Delivery\u003cbr\u003e1.3.1 Controlled Drug Delivery\u003cbr\u003e1.3.2 Advantages of Controlled Drug Delivery\u003cbr\u003e1.3.3 Types of Controlled Drug Delivery\u003cbr\u003e1.3.3.1 Diffusion-controlled System\u003cbr\u003e1.3.3.1.1 Reservoir Devices\u003cbr\u003e1.3.3.1.2 Matrix Devices\u003cbr\u003e1.3.3.1.3 Laminated Matrix Devices\u003cbr\u003e1.3.3.2 Swelling-controlled Systems\u003cbr\u003e1.3.3.3 Chemically Controlled Systems\u003cbr\u003e1.3.3.3.1 Matrix with Covalently Attached Drug\u003cbr\u003e1.3.3.3.2 Devices with Entrapped Drug\u003cbr\u003e1.3.3.4 Other Delivery Systems\u003cbr\u003e1.4 Targeted Drug Delivery\u003cbr\u003e1.4.1 Major Schemes of Targeted Drug Delivery\u003cbr\u003e1.4.2 Types of Targeting Methods\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e1.4.2.1 Physical Targeting\u003cbr\u003e1.4.2.2 Passive Targeting\u003cbr\u003e1.4.2.3 Active Targeting\u003cbr\u003e1.5 Mathematical Modelling of Drug Delivery [80]\u003cbr\u003e1.5.1 Factors Operative in Release Mechanisms\u003cbr\u003e1.5.2 Empirical and Semi-empirical Mathematical Models\u003cbr\u003e1.5.2.1 Peppas Equation\u003cbr\u003e1.5.2.2 Hopfenberg Model\u003cbr\u003e1.5.2.3 Cooney Model\u003cbr\u003e1.5.2.4 Artificial Neural Networks\u003cbr\u003e1.5.3 Mechanistic Realistic Models\u003cbr\u003e1.5.3.1 Theories Based on Fick’s Law of Diffusion\u003cbr\u003e1.5.3.2 Theories Considering Polymer Swelling\u003cbr\u003e1.5.3.3 Theories Considering Polymer Swelling and Polymer and Drug Dissolution\u003cbr\u003e1.5.3.4 Theories Considering Polymer Erosion\/ Degradation\u003cbr\u003e1.6 Some Milestones in the Fields of Controlled Drug Delivery\u003cbr\u003e1.7 Future Challenges and Scope\u003cbr\u003e2 pH-Sensitive Release Systems\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Swelling Behaviour of pH-sensitive Hydrogels in Buffer Solution\u003cbr\u003e2.3 Phase Transition Behaviour of pH-responsive Hydrogels\u003cbr\u003e2.4 Types of pH-sensitive Hydrogels\u003cbr\u003e2.4.1 Ionic Hydrogels\u003cbr\u003e2.4.1.1 Anionic Hydrogels\u003cbr\u003e2.4.1.2 Cationic Hydrogels\u003cbr\u003e2.4.1.3 Polyamphoteric Hydrogels\u003cbr\u003e2.4.2 Non-ionic Hydrogels\u003cbr\u003e2.5 Properties of pH-sensitive Hydrogels\u003cbr\u003e2.6 Drug Release Mechanisms from Hydrogel Devices\u003cbr\u003e2.7 Applications of pH-sensitive Hydrogels\u003cbr\u003e2.7.1 Poly(ε-caprolactone) (PCL)\u003cbr\u003e2.7.2 Poly(ethylene glycol) (PEG)\u003cbr\u003e2.7.3 Chitosan\u003cbr\u003e2.7.4 Alginate\u003cbr\u003e2.7.5 Poly(2-acrylamido-2-methylpropane sulfonic acid (AMPS) sodium salt)\u003cbr\u003e2.8 pH-sensitive Hydrogel in Insulin Delivery\u003cbr\u003e2.9 pH-sensitive Copolymers and their Application to Nasal Delivery\u003cbr\u003e2.10 pH-dependent Systems for Glucose-stimulated Drug Delivery\u003cbr\u003e2.11 Application of pH-sensitive Polymers to Colon-specific Drug Delivery\u003cbr\u003e3 Temperature-sensitive Release Systems\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Types of Temperature-sensitive Hydrogels\u003cbr\u003e3.2.1 Negative Temperature-sensitive Hydrogels\u003cbr\u003e3.2.2 Positive Temperature-sensitive Hydrogels\u003cbr\u003e3.2.3 Thermoreversible Gels\u003cbr\u003e3.3 Thermosensitivity\u003cbr\u003e3.4 Phase Transition with LCST and UCST\u003cbr\u003e3.5 Factors Affecting LCST\u003cbr\u003e3.6 Phase Transition Behaviour of Stimuli-responsive Hydrogels\u003cbr\u003e\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e3.7 Important Preparation Methods of Temperature-sensitive Hydrogels\u003cbr\u003e3.7.1 Emulsion Polymerisation\u003cbr\u003e3.7.2 Frontal Polymerisation Synthesis of Temperature-sensitive Hydrogels\u003cbr\u003e3.7.3 A Little Introduction of Atom Transfer Radical Polymerisations (ATRP) Techniques\u003cbr\u003e3.8 Delivery of Biologically Active Agents by LCST Hydrogels\u003cbr\u003e3.9 Applications of Temperature-sensitive Hydrogels in Drug Release\u003cbr\u003e3.10 Uses of Thermoreversible Hydrogels\u003cbr\u003e4 Magnetically Responsive Targeted Drug Delivery\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Concept of Magnetic Drug Targeting\u003cbr\u003e4.3 Nanoparticulates in Magnetic Targeted Drug Delivery\u003cbr\u003e4.4 Theory: Magnetic Basics\u003cbr\u003e4.5 Types of Magnetism\u003cbr\u003e4.5.1 Paramagnetism\u003cbr\u003e4.5.2 Ferromagnetism and Ferrimagnetism\u003cbr\u003e4.5.3 Antiferromagnetism\u003cbr\u003e4.6 Magnetic Field\u003cbr\u003e4.7 Magnetic Material\u003cbr\u003e4.8 Incorporation of Iron Oxide\u003cbr\u003e4.9 Methods of Incorporation of Iron Oxide\u003cbr\u003e4.9.1 Coprecipitation\u003cbr\u003e4.9.2 Thermal Decomposition\u003cbr\u003e4.9.3 Microemulsions\u003cbr\u003e4.9.4 Miscellaneous\u003cbr\u003e4.10 Advantages of Magnetic-controlled and Targeted Drug Delivery\u003cbr\u003e4.11 Applications of Magnetic-controlled and Targeted Drug Delivery\u003cbr\u003e4.11.1 Drug Delivery to Tumours\u003cbr\u003e4.11.2 MRI Contrast Agents\u003cbr\u003e4.11.3 Hyperthermia\u003cbr\u003e4.11.4 Cell Labelling and Magnetic Separation\u003cbr\u003e4.12 Future Challenges and Prospects\u003cbr\u003e5 Electric Sensitive Release Systems\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Theories of Electrosensitive Release System.\u003cbr\u003e5.2.1 Donnan Equilibrium Theory\u003cbr\u003e5.2.2 Mixture Theory\u003cbr\u003e5.2.3 The Generalised Triphasic Theory\u003cbr\u003e5.2.4 Refined Multieffect-coupling Electric-Stimulus (rMECe) Model\u003cbr\u003e5.2.4.1 Theory and Formulation\u003cbr\u003e5.2.4.2 Boundary and Initial Conditions\u003cbr\u003e5.2.4.3 Discretisation of the Transient Governing Equations of the MECe Model\u003cbr\u003e5.3 Measurement of Bending Angle\u003cbr\u003e5.4 Application of Electrosensitive Release System\u003cbr\u003e6 Swelling-controlled Release Systems\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Swelling Studies\u003cbr\u003e6.2.1 Swelling Experiments\u003cbr\u003e6.2.2 Dynamics of Water Sorption\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e6.2.3 Penetration Velocity Measurement\u003cbr\u003e6.2.4 Network Parameters\u003cbr\u003e6.3 Water in Hydrogels\u003cbr\u003e6.4 Measurement of Swelling Pressure\u003cbr\u003e6.4.1 Calculation of the Swelling Pressure in Equilibrium\u003cbr\u003e6.5 Theories of Swelling\u003cbr\u003e6.5.1 Equilibrium Swelling Theory\u003cbr\u003e6.5.2 Rubber Elasticity Theory\u003cbr\u003e6.5.3 Molecular Theory of Polymer Gels\u003cbr\u003e6.5.3.1 Mesh Chains as the Characteristic Gel Units\u003cbr\u003e6.5.3.2 Star Polymers as the Characteristic Gel Units\u003cbr\u003e6.6 Model of Drug Release from Swellable Polymers\u003cbr\u003e6.6.1 Mathematical Definition of the Swelling-controlled Release Problem\u003cbr\u003e6.6.2 Development of a Mathematical Model for Solvent Transport\u003cbr\u003e6.6.3 Development of Mathematical Model for Drug Transport\u003cbr\u003e6.7 Drug Loading on Swellable Polymers\u003cbr\u003e6.8 Drug Loading into Micelles\u003cbr\u003e6.9 Application of Swelling-controlled Systems\u003cbr\u003e7 Chemical Controlled-release Systems\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Types of Chemical Controlled-release Systems\u003cbr\u003e7.2.1 Molecularly Imprinted Gels\u003cbr\u003e7.2.2 Protein-sensitive Hydrogels\u003cbr\u003e7.2.2.1 Antigen-sensitive Hydrogels\u003cbr\u003e7.2.2.2 Enzyme-sensitive Hydrogels\u003cbr\u003e7.2.2.3 Thrombin-sensitive Hydrogels\u003cbr\u003e7.2.2.4 Lectin-loaded Hydrogels\u003cbr\u003e7.2.3 Ionic-strength-responsive Polymers\u003cbr\u003e7.2.4 Glucose Oxidase-loaded Hydrogels\u003cbr\u003e7.2.5 Glucose-sensitive Release Systems\u003cbr\u003e7.2.5.1 Gel-immobilised Systems\u003cbr\u003e7.2.5.2 Solution-gel Phase Reversible Systems\u003cbr\u003e7.2.5.3 pH-sensitive Glucose Systems\u003cbr\u003e7.2.5.4 Multieffect-coupling Glucose-stimulus (MECglu) Model for Glucose-sensitive Hydrogels\u003cbr\u003e7.2.6 Osmotic Pressure-sensitive Hydrogels\u003cbr\u003e8 State-of-the-Art of Commercially Available Polymer-based Drug-delivery Technologies\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Basic Commercial Ingredients for Drug-delivery Systems\u003cbr\u003e8.2.1 Pluronics®: BASF SE Chemical Company\u003cbr\u003e8.2.2 Tetronics®: BASF SE Chemical Company\u003cbr\u003e8.2.3 Starburst®: Dendritic Nanotechnologies, Inc.\u003cbr\u003e8.2.4 SuperFect®\/PolyFect®: QIAGEN Inc.\u003cbr\u003e8.3 Injectable Drug-delivery Systems\u003cbr\u003e8.3.1 Chroniject™: Oakwood Technologies\u003cbr\u003e8.3.2 Zoladex Depot®: AstraZeneca\u003cbr\u003e8.3.3 Lupron Depot®: TAP Pharmaceuticals\u003cbr\u003e8.3.4 Sandostatin LAR®: Novartis\u003cbr\u003e8.3.5 Nutropin Depot®: Genentech, Inc. and Alkermes Inc.\u003cbr\u003e8.3.6 Prolease®: Alkermes Inc.\u003cbr\u003e8.3.7 Medisorb®: Alkermes, Inc.\u003cbr\u003eStimuli-Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e8.3.8 Medusa®: Flamel Technologies, Inc.\u003cbr\u003e8.3.9 OctoDEX®\/SynBiosys®\/PolyActive®: OctoPlus, Inc.\u003cbr\u003e8.3.10 Alzamer® Depot™ , ALZA Corporation\u003cbr\u003e8.3.11 Atrigel®: Atrix Laboratories\u003cbr\u003e8.4 Implantable or Ointment-based Drug-delivery Systems\u003cbr\u003e8.4.1 Gliadel Wafer®: Eisai Corporation of North America\u003cbr\u003e8.4.2 VivaGel™: Starphama, Plc\u003cbr\u003e8.4.3 BST-Gel®: BioSyntech, Inc.\u003cbr\u003e8.4.4 Stratus® CS: Dade Behring, Inc.\u003cbr\u003e8.4.5 Evacet®: The Liposome Company, Inc.\u003cbr\u003e8.5 Oral Drug-delivery Products\u003cbr\u003e8.5.1 Pulsincap™: Scherer, Inc.\u003cbr\u003e8.5.2 Geomatrix®: SkyePharma, Plc\u003cbr\u003e8.5.3 Micropump®: Flamel Technologies, Inc.\u003cbr\u003e8.5.4 Renagel®: Genzyme Corporation\u003cbr\u003e8.5.5 Threeform®: Lek Pharmaceutical and Chemical Company\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:51-04:00","created_at":"2017-06-22T21:14:51-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","Cooney Model","degradation","diffusion","diffusion-controlled","drug delivery","Hopfenberg Model","hydrogels","mathematical model","matrix","modelling","pH","polymer swelling","release mechanisms","release systems","reversible systems","swelling"],"price":13500,"price_min":13500,"price_max":19000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443332,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"978-1-84735-416-7","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Stimuli Responsive Drug Delivery SystemsFrom Introduction to Application - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-416-7","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50450782724,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"978-1-84735-416-7","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Stimuli Responsive Drug Delivery SystemsFrom Introduction to Application - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-416-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-416-7_a5cb72ce-ab4d-4bd1-9df6-8fbfac632418.jpg?v=1499955947"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-416-7_a5cb72ce-ab4d-4bd1-9df6-8fbfac632418.jpg?v=1499955947","options":["Cover"],"media":[{"alt":null,"id":358766313565,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-416-7_a5cb72ce-ab4d-4bd1-9df6-8fbfac632418.jpg?v=1499955947"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-416-7_a5cb72ce-ab4d-4bd1-9df6-8fbfac632418.jpg?v=1499955947","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anil Bajpai, Sandeep Shukla, Rajesh Saini and Atul Tiwari \u003cbr\u003eISBN 978-1-84735-416-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003ePages: 370, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nStimuli responsive drug delivery systems have emerged as one of the most innovative classes of polymer materials in modern materials science. The polymer architectures exhibiting a large change in their physicochemical behaviors in response to minor signals from the environments have fabricated potentially useful materials for pharmaceutical and biomedical applications. The most advanced stimuli responsive drug delivery systems have also explored a new strategy to design targeted delivery systems to treat complex diseases like cancers and related tumors.\u003cbr\u003e\u003cbr\u003eStimuli Responsive Drug Delivery Systems offers a convincing approach to understanding the basic principles of drug delivery process, their mathematical modeling, different types of drug delivery systems, various polymer systems responsive to stimuli such as swelling, pH, temperature, electric and magnetic fields, chemical agents, and more. The material covered in this book provides a wide spectrum of information - academic, research, and professional - for the biomedical, pharmaceutical and polymer chemistry communities. \u003cbr\u003e\u003cbr\u003eThe book also presents the commercial scenario of drug delivery systems and highlights upcoming challenges and existing future prospects of this field. An exhaustive bibliography of the book also enables students and researchers of various disciplines to acquire the additional information they may require.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Responsive Stimuli-sensitive Materials\u003cbr\u003e1.2.1 Swelling-controlled Systems\u003cbr\u003e1.2.2 Magnetic-sensitive Release Systems\u003cbr\u003e1.3 Concept of Controlled Drug Delivery\u003cbr\u003e1.3.1 Controlled Drug Delivery\u003cbr\u003e1.3.2 Advantages of Controlled Drug Delivery\u003cbr\u003e1.3.3 Types of Controlled Drug Delivery\u003cbr\u003e1.3.3.1 Diffusion-controlled System\u003cbr\u003e1.3.3.1.1 Reservoir Devices\u003cbr\u003e1.3.3.1.2 Matrix Devices\u003cbr\u003e1.3.3.1.3 Laminated Matrix Devices\u003cbr\u003e1.3.3.2 Swelling-controlled Systems\u003cbr\u003e1.3.3.3 Chemically Controlled Systems\u003cbr\u003e1.3.3.3.1 Matrix with Covalently Attached Drug\u003cbr\u003e1.3.3.3.2 Devices with Entrapped Drug\u003cbr\u003e1.3.3.4 Other Delivery Systems\u003cbr\u003e1.4 Targeted Drug Delivery\u003cbr\u003e1.4.1 Major Schemes of Targeted Drug Delivery\u003cbr\u003e1.4.2 Types of Targeting Methods\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e1.4.2.1 Physical Targeting\u003cbr\u003e1.4.2.2 Passive Targeting\u003cbr\u003e1.4.2.3 Active Targeting\u003cbr\u003e1.5 Mathematical Modelling of Drug Delivery [80]\u003cbr\u003e1.5.1 Factors Operative in Release Mechanisms\u003cbr\u003e1.5.2 Empirical and Semi-empirical Mathematical Models\u003cbr\u003e1.5.2.1 Peppas Equation\u003cbr\u003e1.5.2.2 Hopfenberg Model\u003cbr\u003e1.5.2.3 Cooney Model\u003cbr\u003e1.5.2.4 Artificial Neural Networks\u003cbr\u003e1.5.3 Mechanistic Realistic Models\u003cbr\u003e1.5.3.1 Theories Based on Fick’s Law of Diffusion\u003cbr\u003e1.5.3.2 Theories Considering Polymer Swelling\u003cbr\u003e1.5.3.3 Theories Considering Polymer Swelling and Polymer and Drug Dissolution\u003cbr\u003e1.5.3.4 Theories Considering Polymer Erosion\/ Degradation\u003cbr\u003e1.6 Some Milestones in the Fields of Controlled Drug Delivery\u003cbr\u003e1.7 Future Challenges and Scope\u003cbr\u003e2 pH-Sensitive Release Systems\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Swelling Behaviour of pH-sensitive Hydrogels in Buffer Solution\u003cbr\u003e2.3 Phase Transition Behaviour of pH-responsive Hydrogels\u003cbr\u003e2.4 Types of pH-sensitive Hydrogels\u003cbr\u003e2.4.1 Ionic Hydrogels\u003cbr\u003e2.4.1.1 Anionic Hydrogels\u003cbr\u003e2.4.1.2 Cationic Hydrogels\u003cbr\u003e2.4.1.3 Polyamphoteric Hydrogels\u003cbr\u003e2.4.2 Non-ionic Hydrogels\u003cbr\u003e2.5 Properties of pH-sensitive Hydrogels\u003cbr\u003e2.6 Drug Release Mechanisms from Hydrogel Devices\u003cbr\u003e2.7 Applications of pH-sensitive Hydrogels\u003cbr\u003e2.7.1 Poly(ε-caprolactone) (PCL)\u003cbr\u003e2.7.2 Poly(ethylene glycol) (PEG)\u003cbr\u003e2.7.3 Chitosan\u003cbr\u003e2.7.4 Alginate\u003cbr\u003e2.7.5 Poly(2-acrylamido-2-methylpropane sulfonic acid (AMPS) sodium salt)\u003cbr\u003e2.8 pH-sensitive Hydrogel in Insulin Delivery\u003cbr\u003e2.9 pH-sensitive Copolymers and their Application to Nasal Delivery\u003cbr\u003e2.10 pH-dependent Systems for Glucose-stimulated Drug Delivery\u003cbr\u003e2.11 Application of pH-sensitive Polymers to Colon-specific Drug Delivery\u003cbr\u003e3 Temperature-sensitive Release Systems\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Types of Temperature-sensitive Hydrogels\u003cbr\u003e3.2.1 Negative Temperature-sensitive Hydrogels\u003cbr\u003e3.2.2 Positive Temperature-sensitive Hydrogels\u003cbr\u003e3.2.3 Thermoreversible Gels\u003cbr\u003e3.3 Thermosensitivity\u003cbr\u003e3.4 Phase Transition with LCST and UCST\u003cbr\u003e3.5 Factors Affecting LCST\u003cbr\u003e3.6 Phase Transition Behaviour of Stimuli-responsive Hydrogels\u003cbr\u003e\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e3.7 Important Preparation Methods of Temperature-sensitive Hydrogels\u003cbr\u003e3.7.1 Emulsion Polymerisation\u003cbr\u003e3.7.2 Frontal Polymerisation Synthesis of Temperature-sensitive Hydrogels\u003cbr\u003e3.7.3 A Little Introduction of Atom Transfer Radical Polymerisations (ATRP) Techniques\u003cbr\u003e3.8 Delivery of Biologically Active Agents by LCST Hydrogels\u003cbr\u003e3.9 Applications of Temperature-sensitive Hydrogels in Drug Release\u003cbr\u003e3.10 Uses of Thermoreversible Hydrogels\u003cbr\u003e4 Magnetically Responsive Targeted Drug Delivery\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Concept of Magnetic Drug Targeting\u003cbr\u003e4.3 Nanoparticulates in Magnetic Targeted Drug Delivery\u003cbr\u003e4.4 Theory: Magnetic Basics\u003cbr\u003e4.5 Types of Magnetism\u003cbr\u003e4.5.1 Paramagnetism\u003cbr\u003e4.5.2 Ferromagnetism and Ferrimagnetism\u003cbr\u003e4.5.3 Antiferromagnetism\u003cbr\u003e4.6 Magnetic Field\u003cbr\u003e4.7 Magnetic Material\u003cbr\u003e4.8 Incorporation of Iron Oxide\u003cbr\u003e4.9 Methods of Incorporation of Iron Oxide\u003cbr\u003e4.9.1 Coprecipitation\u003cbr\u003e4.9.2 Thermal Decomposition\u003cbr\u003e4.9.3 Microemulsions\u003cbr\u003e4.9.4 Miscellaneous\u003cbr\u003e4.10 Advantages of Magnetic-controlled and Targeted Drug Delivery\u003cbr\u003e4.11 Applications of Magnetic-controlled and Targeted Drug Delivery\u003cbr\u003e4.11.1 Drug Delivery to Tumours\u003cbr\u003e4.11.2 MRI Contrast Agents\u003cbr\u003e4.11.3 Hyperthermia\u003cbr\u003e4.11.4 Cell Labelling and Magnetic Separation\u003cbr\u003e4.12 Future Challenges and Prospects\u003cbr\u003e5 Electric Sensitive Release Systems\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Theories of Electrosensitive Release System.\u003cbr\u003e5.2.1 Donnan Equilibrium Theory\u003cbr\u003e5.2.2 Mixture Theory\u003cbr\u003e5.2.3 The Generalised Triphasic Theory\u003cbr\u003e5.2.4 Refined Multieffect-coupling Electric-Stimulus (rMECe) Model\u003cbr\u003e5.2.4.1 Theory and Formulation\u003cbr\u003e5.2.4.2 Boundary and Initial Conditions\u003cbr\u003e5.2.4.3 Discretisation of the Transient Governing Equations of the MECe Model\u003cbr\u003e5.3 Measurement of Bending Angle\u003cbr\u003e5.4 Application of Electrosensitive Release System\u003cbr\u003e6 Swelling-controlled Release Systems\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Swelling Studies\u003cbr\u003e6.2.1 Swelling Experiments\u003cbr\u003e6.2.2 Dynamics of Water Sorption\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e6.2.3 Penetration Velocity Measurement\u003cbr\u003e6.2.4 Network Parameters\u003cbr\u003e6.3 Water in Hydrogels\u003cbr\u003e6.4 Measurement of Swelling Pressure\u003cbr\u003e6.4.1 Calculation of the Swelling Pressure in Equilibrium\u003cbr\u003e6.5 Theories of Swelling\u003cbr\u003e6.5.1 Equilibrium Swelling Theory\u003cbr\u003e6.5.2 Rubber Elasticity Theory\u003cbr\u003e6.5.3 Molecular Theory of Polymer Gels\u003cbr\u003e6.5.3.1 Mesh Chains as the Characteristic Gel Units\u003cbr\u003e6.5.3.2 Star Polymers as the Characteristic Gel Units\u003cbr\u003e6.6 Model of Drug Release from Swellable Polymers\u003cbr\u003e6.6.1 Mathematical Definition of the Swelling-controlled Release Problem\u003cbr\u003e6.6.2 Development of a Mathematical Model for Solvent Transport\u003cbr\u003e6.6.3 Development of Mathematical Model for Drug Transport\u003cbr\u003e6.7 Drug Loading on Swellable Polymers\u003cbr\u003e6.8 Drug Loading into Micelles\u003cbr\u003e6.9 Application of Swelling-controlled Systems\u003cbr\u003e7 Chemical Controlled-release Systems\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Types of Chemical Controlled-release Systems\u003cbr\u003e7.2.1 Molecularly Imprinted Gels\u003cbr\u003e7.2.2 Protein-sensitive Hydrogels\u003cbr\u003e7.2.2.1 Antigen-sensitive Hydrogels\u003cbr\u003e7.2.2.2 Enzyme-sensitive Hydrogels\u003cbr\u003e7.2.2.3 Thrombin-sensitive Hydrogels\u003cbr\u003e7.2.2.4 Lectin-loaded Hydrogels\u003cbr\u003e7.2.3 Ionic-strength-responsive Polymers\u003cbr\u003e7.2.4 Glucose Oxidase-loaded Hydrogels\u003cbr\u003e7.2.5 Glucose-sensitive Release Systems\u003cbr\u003e7.2.5.1 Gel-immobilised Systems\u003cbr\u003e7.2.5.2 Solution-gel Phase Reversible Systems\u003cbr\u003e7.2.5.3 pH-sensitive Glucose Systems\u003cbr\u003e7.2.5.4 Multieffect-coupling Glucose-stimulus (MECglu) Model for Glucose-sensitive Hydrogels\u003cbr\u003e7.2.6 Osmotic Pressure-sensitive Hydrogels\u003cbr\u003e8 State-of-the-Art of Commercially Available Polymer-based Drug-delivery Technologies\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Basic Commercial Ingredients for Drug-delivery Systems\u003cbr\u003e8.2.1 Pluronics®: BASF SE Chemical Company\u003cbr\u003e8.2.2 Tetronics®: BASF SE Chemical Company\u003cbr\u003e8.2.3 Starburst®: Dendritic Nanotechnologies, Inc.\u003cbr\u003e8.2.4 SuperFect®\/PolyFect®: QIAGEN Inc.\u003cbr\u003e8.3 Injectable Drug-delivery Systems\u003cbr\u003e8.3.1 Chroniject™: Oakwood Technologies\u003cbr\u003e8.3.2 Zoladex Depot®: AstraZeneca\u003cbr\u003e8.3.3 Lupron Depot®: TAP Pharmaceuticals\u003cbr\u003e8.3.4 Sandostatin LAR®: Novartis\u003cbr\u003e8.3.5 Nutropin Depot®: Genentech, Inc. and Alkermes Inc.\u003cbr\u003e8.3.6 Prolease®: Alkermes Inc.\u003cbr\u003e8.3.7 Medisorb®: Alkermes, Inc.\u003cbr\u003eStimuli-Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e8.3.8 Medusa®: Flamel Technologies, Inc.\u003cbr\u003e8.3.9 OctoDEX®\/SynBiosys®\/PolyActive®: OctoPlus, Inc.\u003cbr\u003e8.3.10 Alzamer® Depot™ , ALZA Corporation\u003cbr\u003e8.3.11 Atrigel®: Atrix Laboratories\u003cbr\u003e8.4 Implantable or Ointment-based Drug-delivery Systems\u003cbr\u003e8.4.1 Gliadel Wafer®: Eisai Corporation of North America\u003cbr\u003e8.4.2 VivaGel™: Starphama, Plc\u003cbr\u003e8.4.3 BST-Gel®: BioSyntech, Inc.\u003cbr\u003e8.4.4 Stratus® CS: Dade Behring, Inc.\u003cbr\u003e8.4.5 Evacet®: The Liposome Company, Inc.\u003cbr\u003e8.5 Oral Drug-delivery Products\u003cbr\u003e8.5.1 Pulsincap™: Scherer, Inc.\u003cbr\u003e8.5.2 Geomatrix®: SkyePharma, Plc\u003cbr\u003e8.5.3 Micropump®: Flamel Technologies, Inc.\u003cbr\u003e8.5.4 Renagel®: Genzyme Corporation\u003cbr\u003e8.5.5 Threeform®: Lek Pharmaceutical and Chemical Company\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Structure and Properti...
$205.00
{"id":11242242948,"title":"Structure and Properties of Crosslinked Polymers","handle":"978-1-84735-559-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","crosslinked polymers","epoxy polymers","nanocomposites","p-additives","p-structural","polymer","supersegmental structure"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Structure and Properties of Crosslinked Polymers","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-559-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","options":["Title"],"media":[{"alt":null,"id":358766608477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Structure, Deformation...
$239.00
{"id":11242200644,"title":"Structure, Deformation, and Integrity of Materials: Volume I: Fundamentals and Elasticity \/ Volume II: Plasticity, Visco-elasticity, and Fracture, 2 Volumes","handle":"978-3-527-31426-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gijsbertus de With \u003cbr\u003eISBN 978-3-527-31426-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006 \u003cbr\u003e\u003c\/span\u003eHardcover\u003cbr\u003e894 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis first integrated approach to thermomechanics deals equally with the atomic scale, the mesoscale of microstructures and morphology, as well as the macroscopic level of actual components and workpieces for applications. With some 85 examples and 150 problems, it covers the three important material classes of ceramics, polymers, and metals in a didactic manner. The renowned author surveys mechanical material behavior at both the introductory and advanced level, providing a reading incentive to both students as well as specialists in such disciplines as materials science, chemistry, physics, and mechanical engineering. Backed by five appendices on symbols, abbreviations, data sheets, materials properties, statistics, and a summary of contact mechanics.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nVolume I: Fundamentals and Elasticity. \u003cbr\u003e\u003cbr\u003eA. Overview. \u003cbr\u003e\u003cbr\u003eIntroduction. \u003cbr\u003e\u003cbr\u003eConstitutive Behaviour. \u003cbr\u003e\u003cbr\u003eB. Basics. \u003cbr\u003e\u003cbr\u003eMathematical Preliminaries. \u003cbr\u003e\u003cbr\u003eKinematics. \u003cbr\u003e\u003cbr\u003eKinetics. \u003cbr\u003e\u003cbr\u003eThermodynamics. \u003cbr\u003e\u003cbr\u003eC, Q and S Mechanics. \u003cbr\u003e\u003cbr\u003eStructure and Bonding. \u003cbr\u003e\u003cbr\u003eC. Elasticity. \u003cbr\u003e\u003cbr\u003eContinuum Elasticity. \u003cbr\u003e\u003cbr\u003eElasticity of Structures. \u003cbr\u003e\u003cbr\u003eMolecular Basis of Elasticity. \u003cbr\u003e\u003cbr\u003eMicrostructural Aspects of Elasticity. \u003cbr\u003e\u003cbr\u003eAppendix A: Units, Physical Constants, and Conversion Factors. \u003cbr\u003e\u003cbr\u003eAppendix B: Properties of Structural Materials. \u003cbr\u003e\u003cbr\u003eAppendix C: Properties of Plane Areas. \u003cbr\u003e\u003cbr\u003eVolume II: Plasticity and Fracture. \u003cbr\u003e\u003cbr\u003eD. Plasticity. \u003cbr\u003e\u003cbr\u003eContinuum Plasticity. \u003cbr\u003e\u003cbr\u003eApplications of Plasticity Theory. \u003cbr\u003e\u003cbr\u003eDislocations. \u003cbr\u003e\u003cbr\u003eDislocations and Plasticity. \u003cbr\u003e\u003cbr\u003eMechanisms in Polymers \u003cbr\u003e\u003cbr\u003eContinuum Visco-elasticity \u003cbr\u003e\u003cbr\u003eApplications of Visco-elasticity Theory \u003cbr\u003e\u003cbr\u003eStructural Aspects of Visco-elasticity \u003cbr\u003e\u003cbr\u003eE. Fracture. \u003cbr\u003e\u003cbr\u003eContinuum Fracture. \u003cbr\u003e\u003cbr\u003eApplications of Fracture Theory. \u003cbr\u003e\u003cbr\u003eStructural Aspects of Fracture. \u003cbr\u003e\u003cbr\u003eFatigue. \u003cbr\u003e\u003cbr\u003ePerspective and Outlook. \u003cbr\u003e\u003cbr\u003eAppendix D: Statistics. \u003cbr\u003e\u003cbr\u003eAppendix E: Contact Mechanics.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eGijsbertus de With\u003c\/b\u003e is full professor in materials science. He graduated from Utrecht State University and received his Ph.D. in 1977 from the University of Twente on the 'Structure and charge distribution of molecular crystals'. In the same year, he joined Philips Research Laboratories, Eindhoven. In 1985 he was appointed part-time professor and in 1996 he became full professor at the Eindhoven University of Technology. His research interests include the chemical and mechanical processing as well as the chemo-mechanical behaviour of multi-phase materials and he holds about 10 patents.","published_at":"2017-06-22T21:12:39-04:00","created_at":"2017-06-22T21:12:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","bonding","book","elasticity","fracture","general","kinematics","macroscopic","microstructures","morphology","plasticity","statisctics","structure","thermodynamics","units","visco-elasticity","wiley"," kinetics"],"price":23900,"price_min":23900,"price_max":23900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378305796,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Structure, Deformation, and Integrity of Materials: Volume I: Fundamentals and Elasticity \/ Volume II: Plasticity, Visco-elasticity, and Fracture, 2 Volumes","public_title":null,"options":["Default Title"],"price":23900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-31426-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31426-3_690d2417-25c2-40bf-b586-2b6c9747d6b6.jpg?v=1499955997"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31426-3_690d2417-25c2-40bf-b586-2b6c9747d6b6.jpg?v=1499955997","options":["Title"],"media":[{"alt":null,"id":358768935005,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31426-3_690d2417-25c2-40bf-b586-2b6c9747d6b6.jpg?v=1499955997"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31426-3_690d2417-25c2-40bf-b586-2b6c9747d6b6.jpg?v=1499955997","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gijsbertus de With \u003cbr\u003eISBN 978-3-527-31426-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006 \u003cbr\u003e\u003c\/span\u003eHardcover\u003cbr\u003e894 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis first integrated approach to thermomechanics deals equally with the atomic scale, the mesoscale of microstructures and morphology, as well as the macroscopic level of actual components and workpieces for applications. With some 85 examples and 150 problems, it covers the three important material classes of ceramics, polymers, and metals in a didactic manner. The renowned author surveys mechanical material behavior at both the introductory and advanced level, providing a reading incentive to both students as well as specialists in such disciplines as materials science, chemistry, physics, and mechanical engineering. Backed by five appendices on symbols, abbreviations, data sheets, materials properties, statistics, and a summary of contact mechanics.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nVolume I: Fundamentals and Elasticity. \u003cbr\u003e\u003cbr\u003eA. Overview. \u003cbr\u003e\u003cbr\u003eIntroduction. \u003cbr\u003e\u003cbr\u003eConstitutive Behaviour. \u003cbr\u003e\u003cbr\u003eB. Basics. \u003cbr\u003e\u003cbr\u003eMathematical Preliminaries. \u003cbr\u003e\u003cbr\u003eKinematics. \u003cbr\u003e\u003cbr\u003eKinetics. \u003cbr\u003e\u003cbr\u003eThermodynamics. \u003cbr\u003e\u003cbr\u003eC, Q and S Mechanics. \u003cbr\u003e\u003cbr\u003eStructure and Bonding. \u003cbr\u003e\u003cbr\u003eC. Elasticity. \u003cbr\u003e\u003cbr\u003eContinuum Elasticity. \u003cbr\u003e\u003cbr\u003eElasticity of Structures. \u003cbr\u003e\u003cbr\u003eMolecular Basis of Elasticity. \u003cbr\u003e\u003cbr\u003eMicrostructural Aspects of Elasticity. \u003cbr\u003e\u003cbr\u003eAppendix A: Units, Physical Constants, and Conversion Factors. \u003cbr\u003e\u003cbr\u003eAppendix B: Properties of Structural Materials. \u003cbr\u003e\u003cbr\u003eAppendix C: Properties of Plane Areas. \u003cbr\u003e\u003cbr\u003eVolume II: Plasticity and Fracture. \u003cbr\u003e\u003cbr\u003eD. Plasticity. \u003cbr\u003e\u003cbr\u003eContinuum Plasticity. \u003cbr\u003e\u003cbr\u003eApplications of Plasticity Theory. \u003cbr\u003e\u003cbr\u003eDislocations. \u003cbr\u003e\u003cbr\u003eDislocations and Plasticity. \u003cbr\u003e\u003cbr\u003eMechanisms in Polymers \u003cbr\u003e\u003cbr\u003eContinuum Visco-elasticity \u003cbr\u003e\u003cbr\u003eApplications of Visco-elasticity Theory \u003cbr\u003e\u003cbr\u003eStructural Aspects of Visco-elasticity \u003cbr\u003e\u003cbr\u003eE. Fracture. \u003cbr\u003e\u003cbr\u003eContinuum Fracture. \u003cbr\u003e\u003cbr\u003eApplications of Fracture Theory. \u003cbr\u003e\u003cbr\u003eStructural Aspects of Fracture. \u003cbr\u003e\u003cbr\u003eFatigue. \u003cbr\u003e\u003cbr\u003ePerspective and Outlook. \u003cbr\u003e\u003cbr\u003eAppendix D: Statistics. \u003cbr\u003e\u003cbr\u003eAppendix E: Contact Mechanics.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eGijsbertus de With\u003c\/b\u003e is full professor in materials science. He graduated from Utrecht State University and received his Ph.D. in 1977 from the University of Twente on the 'Structure and charge distribution of molecular crystals'. In the same year, he joined Philips Research Laboratories, Eindhoven. In 1985 he was appointed part-time professor and in 1996 he became full professor at the Eindhoven University of Technology. His research interests include the chemical and mechanical processing as well as the chemo-mechanical behaviour of multi-phase materials and he holds about 10 patents."}
Sulfur. History, Techn...
$270.00
{"id":7703513366685,"title":"Sulfur. History, Technology, Applications \u0026 Industry, 3rd Edition","handle":"sulfur-history-technology-applications-industry-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Gerald Kutney \u003cbr\u003eISBN 978-1-77467-026-2\u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003ePublished: Jan. 2023\u003cbr\u003eThird Edition\u003cbr\u003ePages 238+viii \u003cbr\u003eTables 42\u003cbr\u003eFigures 33\u003cbr\u003e\n\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThis book, scientific and technical in nature, is written in a clear and concise style by the author who aims at presenting scholarly content to be understood by those who do not have a strong background in chemistry, and the text will be enjoyed until the last page by anyone. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe latest edition of this highly regarded book is a reference that brings the latest information on the evolving role of sulfur in several industrial processes, as well as its relationship to the environment. It is dedicated to those who need to know about the modalities and potentialities of sulfur use.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has seven chapters, each devoted to either method of production or a set of applications as they intertwined during different stages of industrial and technological developments. The first chapter is a brief introduction that provides an overview of the physical properties of sulfur, its natural sources, and its ancient markets.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eIt is followed by the “Sulfur Age,” also known as the Industrial Age, during which the dominant market for sulfur and sulfuric acid emerged, such as the Leblanc industry and phosphate fertilizers. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSicily was the first global supplier of sulfur. Sulfur demand soared, becoming the first global commodity industry. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eLarge sulfur deposits were discovered in Texas and Louisiana. Hidden under the quagmire, the elusive deposits remained beyond the technology of the day. A new inventive process was discovered by Herman Frasch. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHis technology created the great sulfur companies of the world, and America became the largest producer (and user) of sulfur (China is the major producer of sulfur today). Herman Frasch is less known but of similar stature as Edison. His patented inventions gave the edge to American industry, which went from 100% import to becoming the largest producer and exporter in less than one decade.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSulfur is a common contaminant of oil and natural gas. It must be removed from these materials before they can be used as energy sources. It is the basis of the most modern industry. Recovery of sulfur from oil sands is the further extension of the present process, and its future is discussed.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe sulfur industry is an excellent “case study” of entrepreneurship and its relationship with investors. This book reveals the characteristics of entrepreneurs and inventors and the approaches required to formulate goals. Most importantly, it shows how to succeed in new ventures. Rockefeller might have become a failed entrepreneur if Frasch had not rescued him from his “bad investment.” Frasch turned certain failures into successes through his technological expertise and determination. Frasch’s major expertise was in the oil industry and specifically in the removal of sulfur from oil.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSulfur deposits cover most regions of the world and their exploration techniques have been investigated in detail throughout this text.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe interested audience of this book goes far beyond the boundaries of sulfur applications and the oil industry, and as such, it should be found in every technical, university, and public library. \u003cbr data-mce-fragment=\"1\"\u003e \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Le Roi du Sol \u003cbr data-mce-fragment=\"1\"\u003e2 The Sulfur Age\u003cbr data-mce-fragment=\"1\"\u003e2.1 Sulfuric acid manufacturing\u003cbr data-mce-fragment=\"1\"\u003e2.1.1 The Nordhausen process\u003cbr data-mce-fragment=\"1\"\u003e2.1.2 The Bell \u003cbr data-mce-fragment=\"1\"\u003e2.1.3 The chamber \u003cbr data-mce-fragment=\"1\"\u003e2.1.4 The contact \u003cbr data-mce-fragment=\"1\"\u003e2.1.5 Metallurgical sulfuric \u003cbr data-mce-fragment=\"1\"\u003e2.1.6 Pyrites\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.1 Spain\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.2 Italy\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.3 Norway\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.4 Canada\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.5 China\u003cbr data-mce-fragment=\"1\"\u003e2.2 Sulfuric acid \u003cbr data-mce-fragment=\"1\"\u003e2.2.1 The Leblanc \u003cbr data-mce-fragment=\"1\"\u003e2.2.2 Phosphate \u003cbr data-mce-fragment=\"1\"\u003e3 Native Sulfur - Sicily\u003cbr data-mce-fragment=\"1\"\u003e3.1 Ancient sulfur\u003cbr data-mce-fragment=\"1\"\u003e3.2 Renaissance sulfur\u003cbr data-mce-fragment=\"1\"\u003e3.3 Industrial revolution (“Sulfur Age”)\u003cbr data-mce-fragment=\"1\"\u003e3.3.1 Sicily \u003cbr data-mce-fragment=\"1\"\u003e3.3.2 The Zolfare, the Solfatari \u0026amp; the Carusi\u003cbr data-mce-fragment=\"1\"\u003e3.3.3 The Doppioni, Calcarella, Calcaroni \u0026amp; the Gill furnace\u003cbr data-mce-fragment=\"1\"\u003e3.3.4 The Gabelloti \u003cbr data-mce-fragment=\"1\"\u003e3.3.5 The British wine merchants\u003cbr data-mce-fragment=\"1\"\u003e3.3.6 The Sulfur War of 1840\u003cbr data-mce-fragment=\"1\"\u003e3.3.7 The post-Sulfur War era \u0026amp; the rise of pyrites\u003cbr data-mce-fragment=\"1\"\u003e3.4 The cartels \u003cbr data-mce-fragment=\"1\"\u003e3.4.1 Anglo-Sicilian Sulfur Company (ASSC): 1896 to 1906\u003cbr data-mce-fragment=\"1\"\u003e3.4.2 Consorzio Obligatorio per D'Industrial Solfifera Siciliana (COISS): 1906 to 1932\u003cbr data-mce-fragment=\"1\"\u003e3.4.3 Ufficio per la Vendita dello Zolfo Italiano (UVZI): 1934 to 1940\u003cbr data-mce-fragment=\"1\"\u003e3.4.4 Ente Zolfi Italiani (EZI): 1940 to 1962\u003cbr data-mce-fragment=\"1\"\u003e3.4.5 Ente Minerario Siciliano (EMS): 1962 to 1985\u003cbr data-mce-fragment=\"1\"\u003e4 Frasch Sulfur – Texas\/Louisiana \u003cbr data-mce-fragment=\"1\"\u003e4.1 Native (non-Frasch) sulfur mines \u003cbr data-mce-fragment=\"1\"\u003e4.2 Herman Frasch \u003cbr data-mce-fragment=\"1\"\u003e4.2.1 His life \u0026amp; family\u003cbr data-mce-fragment=\"1\"\u003e4.2.2 His oil ventures \u003cbr data-mce-fragment=\"1\"\u003e4.2.3 His alkali venture\u003cbr data-mce-fragment=\"1\"\u003e4.2.4 His salt ventures\u003cbr data-mce-fragment=\"1\"\u003e4.2.5 His sulfur ventures: Union Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5 The other sulfur companies\u003cbr data-mce-fragment=\"1\"\u003e4.5.1 Freeport Sulfur \u003cbr data-mce-fragment=\"1\"\u003e4.5.2 Texas Gulf Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.3 Duval Texas Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.4 Jefferson Lake Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.5 Sulexco \u003cbr data-mce-fragment=\"1\"\u003e4.6 Liquid sulfur \u003cbr data-mce-fragment=\"1\"\u003e4.7 Non-U.S. Frasch mines\u003cbr data-mce-fragment=\"1\"\u003e4.7.1 Mexico \u003cbr data-mce-fragment=\"1\"\u003e4.7.2 Poland \u003cbr data-mce-fragment=\"1\"\u003e4.7.3 U.S.S.R.\u003cbr data-mce-fragment=\"1\"\u003e4.7.4 Iraq \u003cbr data-mce-fragment=\"1\"\u003e4.7.5 Brazil \u003cbr data-mce-fragment=\"1\"\u003e5 Recovered Sulfur - Alberta\u003cbr data-mce-fragment=\"1\"\u003e5.1 Sour, more sour, \u0026amp; sourest\u003cbr data-mce-fragment=\"1\"\u003e5.2 Alberta \u0026amp; the global sulfur market\u003cbr data-mce-fragment=\"1\"\u003e5.3 Sulfur blocks \u0026amp; broken sulfur\u003cbr data-mce-fragment=\"1\"\u003e5.4 Sulfur forming: slate \u0026amp; prills\u003cbr data-mce-fragment=\"1\"\u003e5.5 Marketing \u0026amp; \u003cbr data-mce-fragment=\"1\"\u003e5.5.1 Cansulex \u0026amp; Prism\u003cbr data-mce-fragment=\"1\"\u003e5.5.2 Alberta to Vancouver\u003cbr data-mce-fragment=\"1\"\u003e5.6 The global competition\u003cbr data-mce-fragment=\"1\"\u003e5.6.1 U.S. \u003cbr data-mce-fragment=\"1\"\u003e5.6.2 Western Europe \u003cbr data-mce-fragment=\"1\"\u003e5.6.3 Persian Gulf\u003cbr data-mce-fragment=\"1\"\u003e5.6.3.1 Iran \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.2 Iraq \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.3 Saudi Arabia \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.4 Other \u003cbr data-mce-fragment=\"1\"\u003e5.6.4 Caspian Sea \u003cbr data-mce-fragment=\"1\"\u003e5.6.5 Japan \u003cbr data-mce-fragment=\"1\"\u003e5.7 Sulfur pricing: the penny syndrome \u003cbr data-mce-fragment=\"1\"\u003e6 The Sulfur Entrepreneur \u003cbr data-mce-fragment=\"1\"\u003e6.1 The desperate entrepreneur \u0026amp; the reluctant investor\u003cbr data-mce-fragment=\"1\"\u003e6.1.1 Institutional investors\u003cbr data-mce-fragment=\"1\"\u003e6.1.2 Private investors \u003cbr data-mce-fragment=\"1\"\u003e6.1.3 Entrepreneurs \u003cbr data-mce-fragment=\"1\"\u003e6.2 The revolutionary technology: to switch or not to switch, that is the question\u003cbr data-mce-fragment=\"1\"\u003e6.3 The ultimate venture: the monopoly game\u003cbr data-mce-fragment=\"1\"\u003e6.4 Who killed the sulfur entrepreneur? \u003cbr data-mce-fragment=\"1\"\u003e6.5 Climate change will cause sulfur change\u003cbr data-mce-fragment=\"1\"\u003eReferences \u003cbr data-mce-fragment=\"1\"\u003eAppendix I. Sulexco Agreements\u003cbr data-mce-fragment=\"1\"\u003eAppendix II. FTC Review of Sulexco\u003cbr data-mce-fragment=\"1\"\u003eAppendix III. Global Sulfur Production\u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\n\u003c\/div\u003e","published_at":"2023-02-24T12:38:03-05:00","created_at":"2023-02-24T12:25:51-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","applications","book","fertilizers","general","natural sources","oil sands","physical properties","Sulfur","Sulfuric acid","Sulphur","technological developments"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393768095901,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Sulfur. History, Technology, Applications \u0026 Industry, 3rd Edition","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-026-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670262-Case.png?v=1677260232"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670262-Case.png?v=1677260232","options":["Title"],"media":[{"alt":null,"id":27339755061405,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670262-Case.png?v=1677260232"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670262-Case.png?v=1677260232","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Gerald Kutney \u003cbr\u003eISBN 978-1-77467-026-2\u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003ePublished: Jan. 2023\u003cbr\u003eThird Edition\u003cbr\u003ePages 238+viii \u003cbr\u003eTables 42\u003cbr\u003eFigures 33\u003cbr\u003e\n\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThis book, scientific and technical in nature, is written in a clear and concise style by the author who aims at presenting scholarly content to be understood by those who do not have a strong background in chemistry, and the text will be enjoyed until the last page by anyone. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe latest edition of this highly regarded book is a reference that brings the latest information on the evolving role of sulfur in several industrial processes, as well as its relationship to the environment. It is dedicated to those who need to know about the modalities and potentialities of sulfur use.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has seven chapters, each devoted to either method of production or a set of applications as they intertwined during different stages of industrial and technological developments. The first chapter is a brief introduction that provides an overview of the physical properties of sulfur, its natural sources, and its ancient markets.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eIt is followed by the “Sulfur Age,” also known as the Industrial Age, during which the dominant market for sulfur and sulfuric acid emerged, such as the Leblanc industry and phosphate fertilizers. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSicily was the first global supplier of sulfur. Sulfur demand soared, becoming the first global commodity industry. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eLarge sulfur deposits were discovered in Texas and Louisiana. Hidden under the quagmire, the elusive deposits remained beyond the technology of the day. A new inventive process was discovered by Herman Frasch. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHis technology created the great sulfur companies of the world, and America became the largest producer (and user) of sulfur (China is the major producer of sulfur today). Herman Frasch is less known but of similar stature as Edison. His patented inventions gave the edge to American industry, which went from 100% import to becoming the largest producer and exporter in less than one decade.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSulfur is a common contaminant of oil and natural gas. It must be removed from these materials before they can be used as energy sources. It is the basis of the most modern industry. Recovery of sulfur from oil sands is the further extension of the present process, and its future is discussed.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe sulfur industry is an excellent “case study” of entrepreneurship and its relationship with investors. This book reveals the characteristics of entrepreneurs and inventors and the approaches required to formulate goals. Most importantly, it shows how to succeed in new ventures. Rockefeller might have become a failed entrepreneur if Frasch had not rescued him from his “bad investment.” Frasch turned certain failures into successes through his technological expertise and determination. Frasch’s major expertise was in the oil industry and specifically in the removal of sulfur from oil.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eSulfur deposits cover most regions of the world and their exploration techniques have been investigated in detail throughout this text.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe interested audience of this book goes far beyond the boundaries of sulfur applications and the oil industry, and as such, it should be found in every technical, university, and public library. \u003cbr data-mce-fragment=\"1\"\u003e \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Le Roi du Sol \u003cbr data-mce-fragment=\"1\"\u003e2 The Sulfur Age\u003cbr data-mce-fragment=\"1\"\u003e2.1 Sulfuric acid manufacturing\u003cbr data-mce-fragment=\"1\"\u003e2.1.1 The Nordhausen process\u003cbr data-mce-fragment=\"1\"\u003e2.1.2 The Bell \u003cbr data-mce-fragment=\"1\"\u003e2.1.3 The chamber \u003cbr data-mce-fragment=\"1\"\u003e2.1.4 The contact \u003cbr data-mce-fragment=\"1\"\u003e2.1.5 Metallurgical sulfuric \u003cbr data-mce-fragment=\"1\"\u003e2.1.6 Pyrites\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.1 Spain\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.2 Italy\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.3 Norway\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.4 Canada\u003cbr data-mce-fragment=\"1\"\u003e2.1.6.5 China\u003cbr data-mce-fragment=\"1\"\u003e2.2 Sulfuric acid \u003cbr data-mce-fragment=\"1\"\u003e2.2.1 The Leblanc \u003cbr data-mce-fragment=\"1\"\u003e2.2.2 Phosphate \u003cbr data-mce-fragment=\"1\"\u003e3 Native Sulfur - Sicily\u003cbr data-mce-fragment=\"1\"\u003e3.1 Ancient sulfur\u003cbr data-mce-fragment=\"1\"\u003e3.2 Renaissance sulfur\u003cbr data-mce-fragment=\"1\"\u003e3.3 Industrial revolution (“Sulfur Age”)\u003cbr data-mce-fragment=\"1\"\u003e3.3.1 Sicily \u003cbr data-mce-fragment=\"1\"\u003e3.3.2 The Zolfare, the Solfatari \u0026amp; the Carusi\u003cbr data-mce-fragment=\"1\"\u003e3.3.3 The Doppioni, Calcarella, Calcaroni \u0026amp; the Gill furnace\u003cbr data-mce-fragment=\"1\"\u003e3.3.4 The Gabelloti \u003cbr data-mce-fragment=\"1\"\u003e3.3.5 The British wine merchants\u003cbr data-mce-fragment=\"1\"\u003e3.3.6 The Sulfur War of 1840\u003cbr data-mce-fragment=\"1\"\u003e3.3.7 The post-Sulfur War era \u0026amp; the rise of pyrites\u003cbr data-mce-fragment=\"1\"\u003e3.4 The cartels \u003cbr data-mce-fragment=\"1\"\u003e3.4.1 Anglo-Sicilian Sulfur Company (ASSC): 1896 to 1906\u003cbr data-mce-fragment=\"1\"\u003e3.4.2 Consorzio Obligatorio per D'Industrial Solfifera Siciliana (COISS): 1906 to 1932\u003cbr data-mce-fragment=\"1\"\u003e3.4.3 Ufficio per la Vendita dello Zolfo Italiano (UVZI): 1934 to 1940\u003cbr data-mce-fragment=\"1\"\u003e3.4.4 Ente Zolfi Italiani (EZI): 1940 to 1962\u003cbr data-mce-fragment=\"1\"\u003e3.4.5 Ente Minerario Siciliano (EMS): 1962 to 1985\u003cbr data-mce-fragment=\"1\"\u003e4 Frasch Sulfur – Texas\/Louisiana \u003cbr data-mce-fragment=\"1\"\u003e4.1 Native (non-Frasch) sulfur mines \u003cbr data-mce-fragment=\"1\"\u003e4.2 Herman Frasch \u003cbr data-mce-fragment=\"1\"\u003e4.2.1 His life \u0026amp; family\u003cbr data-mce-fragment=\"1\"\u003e4.2.2 His oil ventures \u003cbr data-mce-fragment=\"1\"\u003e4.2.3 His alkali venture\u003cbr data-mce-fragment=\"1\"\u003e4.2.4 His salt ventures\u003cbr data-mce-fragment=\"1\"\u003e4.2.5 His sulfur ventures: Union Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5 The other sulfur companies\u003cbr data-mce-fragment=\"1\"\u003e4.5.1 Freeport Sulfur \u003cbr data-mce-fragment=\"1\"\u003e4.5.2 Texas Gulf Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.3 Duval Texas Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.4 Jefferson Lake Sulfur\u003cbr data-mce-fragment=\"1\"\u003e4.5.5 Sulexco \u003cbr data-mce-fragment=\"1\"\u003e4.6 Liquid sulfur \u003cbr data-mce-fragment=\"1\"\u003e4.7 Non-U.S. Frasch mines\u003cbr data-mce-fragment=\"1\"\u003e4.7.1 Mexico \u003cbr data-mce-fragment=\"1\"\u003e4.7.2 Poland \u003cbr data-mce-fragment=\"1\"\u003e4.7.3 U.S.S.R.\u003cbr data-mce-fragment=\"1\"\u003e4.7.4 Iraq \u003cbr data-mce-fragment=\"1\"\u003e4.7.5 Brazil \u003cbr data-mce-fragment=\"1\"\u003e5 Recovered Sulfur - Alberta\u003cbr data-mce-fragment=\"1\"\u003e5.1 Sour, more sour, \u0026amp; sourest\u003cbr data-mce-fragment=\"1\"\u003e5.2 Alberta \u0026amp; the global sulfur market\u003cbr data-mce-fragment=\"1\"\u003e5.3 Sulfur blocks \u0026amp; broken sulfur\u003cbr data-mce-fragment=\"1\"\u003e5.4 Sulfur forming: slate \u0026amp; prills\u003cbr data-mce-fragment=\"1\"\u003e5.5 Marketing \u0026amp; \u003cbr data-mce-fragment=\"1\"\u003e5.5.1 Cansulex \u0026amp; Prism\u003cbr data-mce-fragment=\"1\"\u003e5.5.2 Alberta to Vancouver\u003cbr data-mce-fragment=\"1\"\u003e5.6 The global competition\u003cbr data-mce-fragment=\"1\"\u003e5.6.1 U.S. \u003cbr data-mce-fragment=\"1\"\u003e5.6.2 Western Europe \u003cbr data-mce-fragment=\"1\"\u003e5.6.3 Persian Gulf\u003cbr data-mce-fragment=\"1\"\u003e5.6.3.1 Iran \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.2 Iraq \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.3 Saudi Arabia \u003cbr data-mce-fragment=\"1\"\u003e5.6.3.4 Other \u003cbr data-mce-fragment=\"1\"\u003e5.6.4 Caspian Sea \u003cbr data-mce-fragment=\"1\"\u003e5.6.5 Japan \u003cbr data-mce-fragment=\"1\"\u003e5.7 Sulfur pricing: the penny syndrome \u003cbr data-mce-fragment=\"1\"\u003e6 The Sulfur Entrepreneur \u003cbr data-mce-fragment=\"1\"\u003e6.1 The desperate entrepreneur \u0026amp; the reluctant investor\u003cbr data-mce-fragment=\"1\"\u003e6.1.1 Institutional investors\u003cbr data-mce-fragment=\"1\"\u003e6.1.2 Private investors \u003cbr data-mce-fragment=\"1\"\u003e6.1.3 Entrepreneurs \u003cbr data-mce-fragment=\"1\"\u003e6.2 The revolutionary technology: to switch or not to switch, that is the question\u003cbr data-mce-fragment=\"1\"\u003e6.3 The ultimate venture: the monopoly game\u003cbr data-mce-fragment=\"1\"\u003e6.4 Who killed the sulfur entrepreneur? \u003cbr data-mce-fragment=\"1\"\u003e6.5 Climate change will cause sulfur change\u003cbr data-mce-fragment=\"1\"\u003eReferences \u003cbr data-mce-fragment=\"1\"\u003eAppendix I. Sulexco Agreements\u003cbr data-mce-fragment=\"1\"\u003eAppendix II. FTC Review of Sulexco\u003cbr data-mce-fragment=\"1\"\u003eAppendix III. Global Sulfur Production\u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\n\u003c\/div\u003e"}
Supercritical Fluid Cl...
$231.00
{"id":11242207812,"title":"Supercritical Fluid Cleaning","handle":"0-8155-1416-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: John McHardy, Samuel P. Sawan \u003cbr\u003e10-ISBN 0-8155-1416-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-0-8155-1416-9 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 290, Figures: 51, Tables: 42\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAlthough supercritical fluid (SCF) technology is now widely used in extraction and purification processes (in the petrochemical, food and pharmaceuticals industries), this book is the first to address the new application of cleaning. The objective is to provide a roadmap for readers who want to know whether SCF technology can meet their own processing and cleaning needs. It is particularly helpful to those striving to balance the requirements for a clean product and a clean environment. The interdisciplinary subject matter will appeal to scientists and engineers in all specialties ranging from materials and polymer sciences to chemistry and physics. It is also useful to those developing new processes for other applications, and references given at the end of each chapter provide links to the wider body of SCF literature.\u003cbr\u003eThe book is organized with topics progressing from the fundamental nature of the supercritical state, through process conditions and materials interactions, to economic considerations. Practical examples are included to show how the technology has been successfully applied. The first four chapters consider principles governing SCF processing, detailing issues such as solubility, design for cleanability, and the dynamics of particle removal. The next three chapters discuss surfactants and microemulsions, SCF interaction with polymers, and the use of supercritical carbon dioxide as a cleaning solvent. The closing chapters focus on more practical considerations such as scale-up, equipment costs, and financial analysis.\u003cbr\u003eMany contributors to this book belong to the \"Joint Association for the Advancement of SCF Technology: (JAAST). A primary motivation for the formation of JAAST was the growing worldwide need to replace ozone-depleting compounds (ODCs) and smog-forming volatile organic compounds (VOCs) in manufacturing processes. Although aqueous cleaning has been adopted successfully for many applications, water is not a panacea and SCF technology has emerged as a leading alternative.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nThe Supercritical State\u003cbr\u003eSolubility in Supercritical Fluid Cleaning\u003cbr\u003eDesign for Cleanability\u003cbr\u003eDynamics of Particle Removal by Supercritical Carbon Dioxide\u003cbr\u003eSurfactants and Microemulsions in Supercritical Fluids\u003cbr\u003eEvaluation of Supercritical Fluid Interactions with Polymeric Materials\u003cbr\u003eA Survey on the Use of Supercritical Carbon Dioxide as a Cleaning Solvent\u003cbr\u003ePrecision Cleaning with Supercritical Fluid: A Case Study\u003cbr\u003eScaleup Considerations\u003cbr\u003eEquipment Cost Considerations and Financial Analysis of Supercritical Fluid Processing\u003cbr\u003eA Practical Guide to Supercritical Fluid Cleaning\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eJohn McHardy\u003c\/strong\u003e is presently scientist Component and Materials Laboratory Hughes Aircraft Company, where he has played a major role in the technical and commercial development of supercritical fluid cleaning. He has made many contributions to environmental and electrochemical technology and has acted as an internal consultant in the area: such as corrosion, metal migration batteries, heterogeneous catalysis and solid state materials. Dr. McHardy has to his credit over twenty-five research publications, one book, and seven patents.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSamuel P. Sawan\u003c\/strong\u003e is professor, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts. He is a member of the American Chemical Society, the Society of Plastic Engineers, Sigma Xi and SPIE.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:01-04:00","created_at":"2017-06-22T21:13:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","book","cleanability","environment","extraction","particle removal","poly","purification","solubility","supercritical fluid"],"price":23100,"price_min":23100,"price_max":23100,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Supercritical Fluid Cleaning","public_title":null,"options":["Default Title"],"price":23100,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1416-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1416-6_be3faffa-f496-438c-bb3a-467f9ae9b513.jpg?v=1499956058"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1416-6_be3faffa-f496-438c-bb3a-467f9ae9b513.jpg?v=1499956058","options":["Title"],"media":[{"alt":null,"id":358772408413,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1416-6_be3faffa-f496-438c-bb3a-467f9ae9b513.jpg?v=1499956058"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1416-6_be3faffa-f496-438c-bb3a-467f9ae9b513.jpg?v=1499956058","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: John McHardy, Samuel P. Sawan \u003cbr\u003e10-ISBN 0-8155-1416-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-0-8155-1416-9 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 290, Figures: 51, Tables: 42\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAlthough supercritical fluid (SCF) technology is now widely used in extraction and purification processes (in the petrochemical, food and pharmaceuticals industries), this book is the first to address the new application of cleaning. The objective is to provide a roadmap for readers who want to know whether SCF technology can meet their own processing and cleaning needs. It is particularly helpful to those striving to balance the requirements for a clean product and a clean environment. The interdisciplinary subject matter will appeal to scientists and engineers in all specialties ranging from materials and polymer sciences to chemistry and physics. It is also useful to those developing new processes for other applications, and references given at the end of each chapter provide links to the wider body of SCF literature.\u003cbr\u003eThe book is organized with topics progressing from the fundamental nature of the supercritical state, through process conditions and materials interactions, to economic considerations. Practical examples are included to show how the technology has been successfully applied. The first four chapters consider principles governing SCF processing, detailing issues such as solubility, design for cleanability, and the dynamics of particle removal. The next three chapters discuss surfactants and microemulsions, SCF interaction with polymers, and the use of supercritical carbon dioxide as a cleaning solvent. The closing chapters focus on more practical considerations such as scale-up, equipment costs, and financial analysis.\u003cbr\u003eMany contributors to this book belong to the \"Joint Association for the Advancement of SCF Technology: (JAAST). A primary motivation for the formation of JAAST was the growing worldwide need to replace ozone-depleting compounds (ODCs) and smog-forming volatile organic compounds (VOCs) in manufacturing processes. Although aqueous cleaning has been adopted successfully for many applications, water is not a panacea and SCF technology has emerged as a leading alternative.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nThe Supercritical State\u003cbr\u003eSolubility in Supercritical Fluid Cleaning\u003cbr\u003eDesign for Cleanability\u003cbr\u003eDynamics of Particle Removal by Supercritical Carbon Dioxide\u003cbr\u003eSurfactants and Microemulsions in Supercritical Fluids\u003cbr\u003eEvaluation of Supercritical Fluid Interactions with Polymeric Materials\u003cbr\u003eA Survey on the Use of Supercritical Carbon Dioxide as a Cleaning Solvent\u003cbr\u003ePrecision Cleaning with Supercritical Fluid: A Case Study\u003cbr\u003eScaleup Considerations\u003cbr\u003eEquipment Cost Considerations and Financial Analysis of Supercritical Fluid Processing\u003cbr\u003eA Practical Guide to Supercritical Fluid Cleaning\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eJohn McHardy\u003c\/strong\u003e is presently scientist Component and Materials Laboratory Hughes Aircraft Company, where he has played a major role in the technical and commercial development of supercritical fluid cleaning. He has made many contributions to environmental and electrochemical technology and has acted as an internal consultant in the area: such as corrosion, metal migration batteries, heterogeneous catalysis and solid state materials. Dr. McHardy has to his credit over twenty-five research publications, one book, and seven patents.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSamuel P. Sawan\u003c\/strong\u003e is professor, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts. He is a member of the American Chemical Society, the Society of Plastic Engineers, Sigma Xi and SPIE.\u003cbr\u003e\u003cbr\u003e"}
Superlattice to Nanoel...
$190.00
{"id":11242251076,"title":"Superlattice to Nanoelectronics, 2nd Edition","handle":"978-0-08-096813-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Raphael Tsu \u003cbr\u003eISBN 978-0-08-096813-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e346 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSuperlattice to Nanoelectronics, Second Edition, traces the history of the development of superlattices and quantum wells from their origins in 1969. Topics discussed include the birth of the superlattice; resonant tunneling via man-made quantum well states; optical properties and Raman scattering in man-made quantum systems; dielectric function and doping of a superlattice; and quantum step and activation energy. The book also covers semiconductor atomic superlattice; Si quantum dots fabricated from annealing amorphous silicon; capacitance, dielectric constant, and doping quantum dots; porous silicon; and quantum impedance of electrons.\n\u003cul\u003e\n\u003cli\u003eWritten by one of the founders of this field\u003c\/li\u003e\n\u003cli\u003eDelivers over 20% new material, including new research and new technological applications\u003c\/li\u003e\n\u003cli\u003eProvides a basic understanding of the physics involved from first principles, while adding new depth, using basic mathematics and an explanation of the background essentials\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSuperlattice\u003cbr\u003e\u003cbr\u003eResonant tunneling via man-made quantum well states\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eOptical properties and Raman scattering in man-made quantum systems\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eDielectric function and doping of a superlattice\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eQuantum step and activation energy\u003cbr\u003e\u003cbr\u003eSemiconductor atomic superlattice (sas)\u003cbr\u003e\u003cbr\u003eSi quantum dots\u003cbr\u003e\u003cbr\u003eCapacitance, dielectric constant and doping quantum dots\u003cbr\u003e\u003cbr\u003ePorous silicon\u003cbr\u003e\u003cbr\u003eSome novel devices\u003cbr\u003e\u003cbr\u003eQuantum impedance of electrons\u003cbr\u003e\u003cbr\u003eWhy super and why nano\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:18-04:00","created_at":"2017-06-22T21:15:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","dielectric","optical properties","p-applications","poly","Raman","semiconductor","superlattice"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378474500,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Superlattice to Nanoelectronics, 2nd Edition","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08-096813-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-096813-1_3c545a29-0ca4-43f2-b1ae-6011d6fbf813.jpg?v=1499956084"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-096813-1_3c545a29-0ca4-43f2-b1ae-6011d6fbf813.jpg?v=1499956084","options":["Title"],"media":[{"alt":null,"id":358773719133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-096813-1_3c545a29-0ca4-43f2-b1ae-6011d6fbf813.jpg?v=1499956084"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-096813-1_3c545a29-0ca4-43f2-b1ae-6011d6fbf813.jpg?v=1499956084","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Raphael Tsu \u003cbr\u003eISBN 978-0-08-096813-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e346 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSuperlattice to Nanoelectronics, Second Edition, traces the history of the development of superlattices and quantum wells from their origins in 1969. Topics discussed include the birth of the superlattice; resonant tunneling via man-made quantum well states; optical properties and Raman scattering in man-made quantum systems; dielectric function and doping of a superlattice; and quantum step and activation energy. The book also covers semiconductor atomic superlattice; Si quantum dots fabricated from annealing amorphous silicon; capacitance, dielectric constant, and doping quantum dots; porous silicon; and quantum impedance of electrons.\n\u003cul\u003e\n\u003cli\u003eWritten by one of the founders of this field\u003c\/li\u003e\n\u003cli\u003eDelivers over 20% new material, including new research and new technological applications\u003c\/li\u003e\n\u003cli\u003eProvides a basic understanding of the physics involved from first principles, while adding new depth, using basic mathematics and an explanation of the background essentials\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSuperlattice\u003cbr\u003e\u003cbr\u003eResonant tunneling via man-made quantum well states\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eOptical properties and Raman scattering in man-made quantum systems\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eDielectric function and doping of a superlattice\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eQuantum step and activation energy\u003cbr\u003e\u003cbr\u003eSemiconductor atomic superlattice (sas)\u003cbr\u003e\u003cbr\u003eSi quantum dots\u003cbr\u003e\u003cbr\u003eCapacitance, dielectric constant and doping quantum dots\u003cbr\u003e\u003cbr\u003ePorous silicon\u003cbr\u003e\u003cbr\u003eSome novel devices\u003cbr\u003e\u003cbr\u003eQuantum impedance of electrons\u003cbr\u003e\u003cbr\u003eWhy super and why nano\u003cbr\u003e\u003cbr\u003e"}
Surface Engineering of...
$205.00
{"id":11242240068,"title":"Surface Engineering of Polymeric Biomaterials","handle":"9781847356581","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Todorka G Vladkova \u003cbr\u003eISBN 9781847356581 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003ctable width=\"100%\" border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd class=\"pmore\"\u003ePublished: 2013\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\nHardcover Pages: 590\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties.\u003cbr\u003e\u003cbr\u003eThis book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered.\u003cbr\u003e\u003cbr\u003eThe theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials is presented. The book also includes information on the most used conventional and advanced surface engineering methods.\u003cbr\u003e\u003cbr\u003eThe book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e1.1 Specific Objectives of Biomaterial Surface Engineering \u003cbr\u003e1.2 Theoretical Basis of Biomaterial Surface Engineering \u003cbr\u003e1.2.1 Protein Adsorption \u003cbr\u003e1.2.1.1 Specific Protein Adsorption \u003cbr\u003e1.2.1.2 Non-specific Protein Adsorption \u003cbr\u003e1.2.2 Initial Cell\/Biomaterial Surface Interactions \u003cbr\u003e1.3 Biomaterial Surface Engineering Approaches \u003cbr\u003e\u003cbr\u003e2 Surface Engineering Methods \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Physicochemical Methods \u003cbr\u003e2.2.1 Blending\u003cbr\u003e2.2.2 Acid Etching \u003cbr\u003e2.2.3 Surface Grafting \u003cbr\u003e2.2.3.1 Graft Polymerisation \u003cbr\u003e2.2.3.2 Polymer Brushes. \u003cbr\u003e2.2.4 Plasma Techniques \u003cbr\u003e2.2.5 Photon Irradiation \u003cbr\u003e2.2.6 Ion-beam Modification \u003cbr\u003e2.2.7 Adsorption from Solution (Thin Film\/Coating Preparation Methods) \u003cbr\u003e2.2.7.1 Dip Coating\u003cbr\u003e2.2.7.2 Spin Coating \u003cbr\u003e2.2.7.3 Langmuir–Blodgett Films \u003cbr\u003e2.2.7.4 Self-assembled Monolayers \u003cbr\u003e2.2.7.5 Self-assembled Monolayers with Molecular Gradients \u003cbr\u003e2.2.7.6 Layer-by-Layer Assembly \u003cbr\u003e2.3 Biological Methods \u003cbr\u003e2.3.1 Biomolecule Immobilisation by Physical Adsorption \u003cbr\u003e2.3.2 Biomolecule Immobilisation by Blending \u003cbr\u003e2.3.3 Electrostatic Attachment of Biomolecules \u003cbr\u003e2.3.3.1 LbL Technique using Polyelectrolytes\u003cbr\u003e2.3.3.2 Electrochemical Polymerisation Using Conducting Polymers \u003cbr\u003e2.3.4 Covalent Bonding of Biomolecules \u003cbr\u003e2.3.4.1 Thiol-mediated Bonding\u003cbr\u003e2.3.4.2 Hydroxyl Group-Mediated Bonding \u003cbr\u003e2.3.4.3 Carboxylate Group-Mediated Bonding\u003cbr\u003e2.3.4.4 Photoinitiated Coupling of Biomolecules \u003cbr\u003e2.3.4.5 Enzymic Coagulation of Biomolecules\u003cbr\u003e2.3.4.6 iomolecules Bonding with ‘Click’ Reactions\u003cbr\u003e2.4 Surface Micro- and Nano-structuring \u003cbr\u003e2.4.1 Photolithography\u003cbr\u003e2.4.2 Ion Lithography and Focused Ion Beam Lithography\u003cbr\u003e2.4.3 Electron Lithography \u003cbr\u003e2.4.4 Soft Lithography\u003cbr\u003e2.4.5 Dip Pen Nanolithography \u003cbr\u003e2.4.6 Near-field Scanning Methods\u003cbr\u003e2.4.7 General Methods of Nano- and Micro-bioarray Patterning \u003cbr\u003e\u003cbr\u003e3 Surface Engineering of Biomaterials Reducing Protein Adsorption\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Surface Engineering of Biomaterials to Reduce Undesirable\/Uncontrolled Responses to Implants and Extracorporeal Devices \u003cbr\u003e3.2.1 Polyethylene Glycol-coated Surfaces \u003cbr\u003e3.2.1.1 Photopolymerised or Photocrosslinked Coatings\u003cbr\u003e3.2.1.2 Chemical Coupling of PEG \u003cbr\u003e3.2.1.2.1 \u003cspan\u003eChemical Coupling based on the Reactivity of the Terminal Hydroxyl Groups \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e3.2.1.2.2 \u003cspan\u003eCovalent Attachment by Employment of Functionalised\u003c\/span\u003e\u003cbr\u003e\u003cspan\u003ePEG (Derivative Terminal OH Groups)\u003c\/span\u003e\u003cbr\u003e3.2.1.3 Non-covalent Immobilisation\u003cbr\u003e3.2.2 Non-PEGylated Hydrophilic Surfaces \u003cbr\u003e3.2.3 Zwitterionic Polymer Thin Layers \u003cbr\u003e3.2.4 Hydrophilic Surfaces of Hyperbranched Polymers \u003cbr\u003e3.2.5 Multi-layer Thin Films \u003cbr\u003e3.2.6 Hydrogels and Hydrogel Coatings \u003cbr\u003e3.2.6.1 PEG-based Hydrogel Coatings \u003cbr\u003e3.2.6.2 Hydrogel Coatings of Other Polymers \u003cbr\u003e3.2.6.3 Hydrogels of Zwitterionic Polymers \u003cbr\u003e3.2.7 Patterned Surfaces\u003cbr\u003e3.2.7.1 Backfill Non-fouling Polymers and Procedures \u003cbr\u003e3.2.7.2 Micro- and Nano-patterning Techniques\u003cbr\u003e3.3 Surface Engineering of Biomaterial Surfaces\u003cbr\u003eReducing\/Eliminating Non-specific Adsorption on\u003cbr\u003eBiosensors and Bioassays \u003cbr\u003e3.4 Surface Engineering of Microfluidic Devices \u003cbr\u003e3.4.1 Dynamic Coating \u003cbr\u003e3.4.2 Permanent Coatings\u003cbr\u003e3.4.2.1 Plasma Treatments\u003cbr\u003e3.4.2.2 Laser Treatments.\u003cbr\u003e3.4.2.3 Surface Graft Polymerisation\u003cbr\u003e3.4.2.4 Patterning of Microfluidics\u003cbr\u003e3.4.2.5 Covalent Modification\u003cbr\u003e3.4.2.6 Self-assembled Monolayers\u003cbr\u003e3.4.2.7 Polyelectrolyte Multi-layer Coatings\u003cbr\u003e\u003cbr\u003e4 Surface Engineering of\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Strongly Hydrophilic and Strongly Hydrophobic Surfaces \u003cbr\u003e4.2.1 Strongly Hydrophilic Surfaces\u003cbr\u003e4.2.2 Strongly Hydrophobic Surfaces \u003cbr\u003e4.3 Biomaterials with Micro- and Nano-domain Surfaces\u003cbr\u003e4.4 The Immobilisation of Heparin and Other Bioactive Molecules \u003cbr\u003e4.4.1 Heparinised Surfaces \u003cbr\u003e4.4.2 Immobilisation of Other Bioactive Molecules \u003cbr\u003e4.5 Albumin Coating \u003cbr\u003e4.6 Endothelial Cells Attachment \u003cbr\u003e4.7 Natural Biomembrane Mimetic Surfaces\u003cbr\u003e4.8 Polyelectrolyte Multi-layers \u003cbr\u003e4.9 Micro- and Nanostructured Blood Contacting Surfaces \u003cbr\u003e\u003cbr\u003e5 Surface Engineering of Bio-interactive Biomaterials \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Surface Engineering of Biomaterials Promoting Cell Attachment\/Adhesion \u003cbr\u003e5.2.1 Cell\/Biomaterial Surface Interaction\u003cbr\u003e5.2.2 Surface Engineering of Cell Adhesive Biomaterials\u003cbr\u003evia Physicochemical Modification \u003cbr\u003e5.2.2.1 Control the Surface Energy (Hydrophilic\/Hydrophobic Balance) \u003cbr\u003eBlood Contacting Polymeric Biomaterials \u003cbr\u003e5.2.2.2 Creation of Positively Charged Surfaces\u003cbr\u003e5.2.2.3 Surface Micro-architecture Manipulation\u003cbr\u003e5.2.2.4 Creation of Polyelectrolyte Multi-layers \u003cbr\u003e5.2.2.5 Temperature-responsive Polymer Coatings \u003cbr\u003e5.2.2.6 Other Functional Polymer Coatings \u003cbr\u003e5.2.2.7 Multi-layer Thin Films for Cell\u003cbr\u003eEncapsulation \u003cbr\u003e5.2.3 Surface\u003cbr\u003evia Biomolecule Immobilisation \u003cbr\u003eEngineering of Cell Adhesive Biomaterials\u003cbr\u003e5.2.3.1 Cell Adhesion Ligands \u003cbr\u003e5.2.3.2 Non-covalent Immobilisation of Biomolecules \u003cbr\u003e5.2.3.3 Covalent Bonding of Biomolecules \u003cbr\u003e5.2.3.4 Patterning of Biomolecules on Biomaterial Surfaces \u003cbr\u003e5.3 Surface Engineering of Drug Delivery Systems \u003cbr\u003e5.3.1 Drug Delivery Systems \u003cbr\u003e5.3.1.1 Hydrogel Controlled Release Formulations \u003cbr\u003e5.3.1.2 Functionalised Electrospun Nanofibres Drug Delivery Carriers\u003cbr\u003e5.3.1.3 Drug Loaded Micro- and Nano-particles \u003cbr\u003e5.3.1.4 Drug Loaded Magnetic Nanoparticles\u003cbr\u003e5.3.1.5 Electrostimulated Drug Release Systems \u003cbr\u003e5.3.2 Polymeric Thin Films and Coatings for Drug and Gene Delivery\u003cbr\u003e5.3.3 Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.1 Matrices and Scaffolds for Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.2 Bioactive Proteins and Peptides \u003cbr\u003e5.3.3.3 Strategies for Bioactive Factors Controlled Delivery \u003cbr\u003eSurface Engineering of Polymeric Biomaterials\u003cbr\u003e5.4 Surface Engineering of Biomaterials Reducing Bacterial Adhesion\u003cbr\u003e5.4.1 Biomaterials Resistant to Bacterial Adhesion\u003cbr\u003e5.4.2 Nanocomposite Polymer Coatings Containing Inorganic Biocides\u003cbr\u003e5.4.3 Antibiotic Conjugated Polymer Coatings \u003cbr\u003e5.4.4 Biomimetic Antibacterial Coatings\u003cbr\u003e5.4.5 Antibacterial Coatings Based on Cationic Polymers \u003cbr\u003e\u003cbr\u003e6 Biomaterial Surface Characterisation \u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Surface Morphology Observation\u003cbr\u003e6.3 Contact Angle Measurements \u003cbr\u003e6.3.1 Surface Tension and Determination of its Components \u003cbr\u003e6.3.2 Methods of Contact Angle Measurement\u003cbr\u003e6.3.2.1 Drop and Bubble Methods for Contact Angle Measurement \u003cbr\u003e6.3.2.2 Wilhelmy Plate Method \u003cbr\u003e6.4 Surface Forces Measurement\u003cbr\u003e6.5 Ellipsometry Measurements \u003cbr\u003e6.6 Surface Chemical Composition Characterisation \u003cbr\u003e6.6.1 Spectroscopy Methods (ATR-FTIR, TOF-SIMS, and XPS) \u003cbr\u003e6.6.2 Colorimetric Determination of Surface Functional Groups Density \u003cbr\u003e6.6.3 Radiotracer Method \u003cbr\u003e6.6.4 Estimating the Thickness of Grafted Polymer Layers \u003cbr\u003e6.7 Characterisation of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.1 Estimating the Density and Thickness of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.2 Characterisation of Biomolecules Attachment to\/Detachment from Biomaterial Surfaces \u003cbr\u003e6.7.3 Bioactivity Evaluation of Proteins Immobilised on Biomaterial Surface\u003cbr\u003e6.7.4 Spatial Distribution of Proteins and Adhering Cell Characterisation\u003cbr\u003e6.8 Evaluation of Cell Behaviour on Biomaterial Surfaces. 500 \u003cbr\u003e6.8.1 Cell Proliferation\u003cbr\u003e6.8.2 Cell Imaging\u003cbr\u003e6.8.3 Cell Migration\u003cbr\u003e6.8.4 Cell Function Analysis\u003cbr\u003e6.9 Tests for Biocompatibility\u003cbr\u003e\u003cbr\u003e7 Summary and Outlook \u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:43-04:00","created_at":"2017-06-22T21:14:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","bioactive","biocides","biomaterials","biopolymer","biopolymers","book","coatings","drug delivery","micro- and nano-particles","polymeric biomaterials","polymers","surface","tin films"],"price":20500,"price_min":20500,"price_max":25000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433412,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"9781847356581","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Surface Engineering of Polymeric Biomaterials - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":25000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356581","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50451906692,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"9781847356581","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Surface Engineering of Polymeric Biomaterials - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":20500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356581","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107","options":["Cover"],"media":[{"alt":null,"id":358775554141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Todorka G Vladkova \u003cbr\u003eISBN 9781847356581 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003ctable width=\"100%\" border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd class=\"pmore\"\u003ePublished: 2013\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\nHardcover Pages: 590\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties.\u003cbr\u003e\u003cbr\u003eThis book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered.\u003cbr\u003e\u003cbr\u003eThe theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials is presented. The book also includes information on the most used conventional and advanced surface engineering methods.\u003cbr\u003e\u003cbr\u003eThe book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e1.1 Specific Objectives of Biomaterial Surface Engineering \u003cbr\u003e1.2 Theoretical Basis of Biomaterial Surface Engineering \u003cbr\u003e1.2.1 Protein Adsorption \u003cbr\u003e1.2.1.1 Specific Protein Adsorption \u003cbr\u003e1.2.1.2 Non-specific Protein Adsorption \u003cbr\u003e1.2.2 Initial Cell\/Biomaterial Surface Interactions \u003cbr\u003e1.3 Biomaterial Surface Engineering Approaches \u003cbr\u003e\u003cbr\u003e2 Surface Engineering Methods \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Physicochemical Methods \u003cbr\u003e2.2.1 Blending\u003cbr\u003e2.2.2 Acid Etching \u003cbr\u003e2.2.3 Surface Grafting \u003cbr\u003e2.2.3.1 Graft Polymerisation \u003cbr\u003e2.2.3.2 Polymer Brushes. \u003cbr\u003e2.2.4 Plasma Techniques \u003cbr\u003e2.2.5 Photon Irradiation \u003cbr\u003e2.2.6 Ion-beam Modification \u003cbr\u003e2.2.7 Adsorption from Solution (Thin Film\/Coating Preparation Methods) \u003cbr\u003e2.2.7.1 Dip Coating\u003cbr\u003e2.2.7.2 Spin Coating \u003cbr\u003e2.2.7.3 Langmuir–Blodgett Films \u003cbr\u003e2.2.7.4 Self-assembled Monolayers \u003cbr\u003e2.2.7.5 Self-assembled Monolayers with Molecular Gradients \u003cbr\u003e2.2.7.6 Layer-by-Layer Assembly \u003cbr\u003e2.3 Biological Methods \u003cbr\u003e2.3.1 Biomolecule Immobilisation by Physical Adsorption \u003cbr\u003e2.3.2 Biomolecule Immobilisation by Blending \u003cbr\u003e2.3.3 Electrostatic Attachment of Biomolecules \u003cbr\u003e2.3.3.1 LbL Technique using Polyelectrolytes\u003cbr\u003e2.3.3.2 Electrochemical Polymerisation Using Conducting Polymers \u003cbr\u003e2.3.4 Covalent Bonding of Biomolecules \u003cbr\u003e2.3.4.1 Thiol-mediated Bonding\u003cbr\u003e2.3.4.2 Hydroxyl Group-Mediated Bonding \u003cbr\u003e2.3.4.3 Carboxylate Group-Mediated Bonding\u003cbr\u003e2.3.4.4 Photoinitiated Coupling of Biomolecules \u003cbr\u003e2.3.4.5 Enzymic Coagulation of Biomolecules\u003cbr\u003e2.3.4.6 iomolecules Bonding with ‘Click’ Reactions\u003cbr\u003e2.4 Surface Micro- and Nano-structuring \u003cbr\u003e2.4.1 Photolithography\u003cbr\u003e2.4.2 Ion Lithography and Focused Ion Beam Lithography\u003cbr\u003e2.4.3 Electron Lithography \u003cbr\u003e2.4.4 Soft Lithography\u003cbr\u003e2.4.5 Dip Pen Nanolithography \u003cbr\u003e2.4.6 Near-field Scanning Methods\u003cbr\u003e2.4.7 General Methods of Nano- and Micro-bioarray Patterning \u003cbr\u003e\u003cbr\u003e3 Surface Engineering of Biomaterials Reducing Protein Adsorption\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Surface Engineering of Biomaterials to Reduce Undesirable\/Uncontrolled Responses to Implants and Extracorporeal Devices \u003cbr\u003e3.2.1 Polyethylene Glycol-coated Surfaces \u003cbr\u003e3.2.1.1 Photopolymerised or Photocrosslinked Coatings\u003cbr\u003e3.2.1.2 Chemical Coupling of PEG \u003cbr\u003e3.2.1.2.1 \u003cspan\u003eChemical Coupling based on the Reactivity of the Terminal Hydroxyl Groups \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e3.2.1.2.2 \u003cspan\u003eCovalent Attachment by Employment of Functionalised\u003c\/span\u003e\u003cbr\u003e\u003cspan\u003ePEG (Derivative Terminal OH Groups)\u003c\/span\u003e\u003cbr\u003e3.2.1.3 Non-covalent Immobilisation\u003cbr\u003e3.2.2 Non-PEGylated Hydrophilic Surfaces \u003cbr\u003e3.2.3 Zwitterionic Polymer Thin Layers \u003cbr\u003e3.2.4 Hydrophilic Surfaces of Hyperbranched Polymers \u003cbr\u003e3.2.5 Multi-layer Thin Films \u003cbr\u003e3.2.6 Hydrogels and Hydrogel Coatings \u003cbr\u003e3.2.6.1 PEG-based Hydrogel Coatings \u003cbr\u003e3.2.6.2 Hydrogel Coatings of Other Polymers \u003cbr\u003e3.2.6.3 Hydrogels of Zwitterionic Polymers \u003cbr\u003e3.2.7 Patterned Surfaces\u003cbr\u003e3.2.7.1 Backfill Non-fouling Polymers and Procedures \u003cbr\u003e3.2.7.2 Micro- and Nano-patterning Techniques\u003cbr\u003e3.3 Surface Engineering of Biomaterial Surfaces\u003cbr\u003eReducing\/Eliminating Non-specific Adsorption on\u003cbr\u003eBiosensors and Bioassays \u003cbr\u003e3.4 Surface Engineering of Microfluidic Devices \u003cbr\u003e3.4.1 Dynamic Coating \u003cbr\u003e3.4.2 Permanent Coatings\u003cbr\u003e3.4.2.1 Plasma Treatments\u003cbr\u003e3.4.2.2 Laser Treatments.\u003cbr\u003e3.4.2.3 Surface Graft Polymerisation\u003cbr\u003e3.4.2.4 Patterning of Microfluidics\u003cbr\u003e3.4.2.5 Covalent Modification\u003cbr\u003e3.4.2.6 Self-assembled Monolayers\u003cbr\u003e3.4.2.7 Polyelectrolyte Multi-layer Coatings\u003cbr\u003e\u003cbr\u003e4 Surface Engineering of\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Strongly Hydrophilic and Strongly Hydrophobic Surfaces \u003cbr\u003e4.2.1 Strongly Hydrophilic Surfaces\u003cbr\u003e4.2.2 Strongly Hydrophobic Surfaces \u003cbr\u003e4.3 Biomaterials with Micro- and Nano-domain Surfaces\u003cbr\u003e4.4 The Immobilisation of Heparin and Other Bioactive Molecules \u003cbr\u003e4.4.1 Heparinised Surfaces \u003cbr\u003e4.4.2 Immobilisation of Other Bioactive Molecules \u003cbr\u003e4.5 Albumin Coating \u003cbr\u003e4.6 Endothelial Cells Attachment \u003cbr\u003e4.7 Natural Biomembrane Mimetic Surfaces\u003cbr\u003e4.8 Polyelectrolyte Multi-layers \u003cbr\u003e4.9 Micro- and Nanostructured Blood Contacting Surfaces \u003cbr\u003e\u003cbr\u003e5 Surface Engineering of Bio-interactive Biomaterials \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Surface Engineering of Biomaterials Promoting Cell Attachment\/Adhesion \u003cbr\u003e5.2.1 Cell\/Biomaterial Surface Interaction\u003cbr\u003e5.2.2 Surface Engineering of Cell Adhesive Biomaterials\u003cbr\u003evia Physicochemical Modification \u003cbr\u003e5.2.2.1 Control the Surface Energy (Hydrophilic\/Hydrophobic Balance) \u003cbr\u003eBlood Contacting Polymeric Biomaterials \u003cbr\u003e5.2.2.2 Creation of Positively Charged Surfaces\u003cbr\u003e5.2.2.3 Surface Micro-architecture Manipulation\u003cbr\u003e5.2.2.4 Creation of Polyelectrolyte Multi-layers \u003cbr\u003e5.2.2.5 Temperature-responsive Polymer Coatings \u003cbr\u003e5.2.2.6 Other Functional Polymer Coatings \u003cbr\u003e5.2.2.7 Multi-layer Thin Films for Cell\u003cbr\u003eEncapsulation \u003cbr\u003e5.2.3 Surface\u003cbr\u003evia Biomolecule Immobilisation \u003cbr\u003eEngineering of Cell Adhesive Biomaterials\u003cbr\u003e5.2.3.1 Cell Adhesion Ligands \u003cbr\u003e5.2.3.2 Non-covalent Immobilisation of Biomolecules \u003cbr\u003e5.2.3.3 Covalent Bonding of Biomolecules \u003cbr\u003e5.2.3.4 Patterning of Biomolecules on Biomaterial Surfaces \u003cbr\u003e5.3 Surface Engineering of Drug Delivery Systems \u003cbr\u003e5.3.1 Drug Delivery Systems \u003cbr\u003e5.3.1.1 Hydrogel Controlled Release Formulations \u003cbr\u003e5.3.1.2 Functionalised Electrospun Nanofibres Drug Delivery Carriers\u003cbr\u003e5.3.1.3 Drug Loaded Micro- and Nano-particles \u003cbr\u003e5.3.1.4 Drug Loaded Magnetic Nanoparticles\u003cbr\u003e5.3.1.5 Electrostimulated Drug Release Systems \u003cbr\u003e5.3.2 Polymeric Thin Films and Coatings for Drug and Gene Delivery\u003cbr\u003e5.3.3 Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.1 Matrices and Scaffolds for Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.2 Bioactive Proteins and Peptides \u003cbr\u003e5.3.3.3 Strategies for Bioactive Factors Controlled Delivery \u003cbr\u003eSurface Engineering of Polymeric Biomaterials\u003cbr\u003e5.4 Surface Engineering of Biomaterials Reducing Bacterial Adhesion\u003cbr\u003e5.4.1 Biomaterials Resistant to Bacterial Adhesion\u003cbr\u003e5.4.2 Nanocomposite Polymer Coatings Containing Inorganic Biocides\u003cbr\u003e5.4.3 Antibiotic Conjugated Polymer Coatings \u003cbr\u003e5.4.4 Biomimetic Antibacterial Coatings\u003cbr\u003e5.4.5 Antibacterial Coatings Based on Cationic Polymers \u003cbr\u003e\u003cbr\u003e6 Biomaterial Surface Characterisation \u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Surface Morphology Observation\u003cbr\u003e6.3 Contact Angle Measurements \u003cbr\u003e6.3.1 Surface Tension and Determination of its Components \u003cbr\u003e6.3.2 Methods of Contact Angle Measurement\u003cbr\u003e6.3.2.1 Drop and Bubble Methods for Contact Angle Measurement \u003cbr\u003e6.3.2.2 Wilhelmy Plate Method \u003cbr\u003e6.4 Surface Forces Measurement\u003cbr\u003e6.5 Ellipsometry Measurements \u003cbr\u003e6.6 Surface Chemical Composition Characterisation \u003cbr\u003e6.6.1 Spectroscopy Methods (ATR-FTIR, TOF-SIMS, and XPS) \u003cbr\u003e6.6.2 Colorimetric Determination of Surface Functional Groups Density \u003cbr\u003e6.6.3 Radiotracer Method \u003cbr\u003e6.6.4 Estimating the Thickness of Grafted Polymer Layers \u003cbr\u003e6.7 Characterisation of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.1 Estimating the Density and Thickness of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.2 Characterisation of Biomolecules Attachment to\/Detachment from Biomaterial Surfaces \u003cbr\u003e6.7.3 Bioactivity Evaluation of Proteins Immobilised on Biomaterial Surface\u003cbr\u003e6.7.4 Spatial Distribution of Proteins and Adhering Cell Characterisation\u003cbr\u003e6.8 Evaluation of Cell Behaviour on Biomaterial Surfaces. 500 \u003cbr\u003e6.8.1 Cell Proliferation\u003cbr\u003e6.8.2 Cell Imaging\u003cbr\u003e6.8.3 Cell Migration\u003cbr\u003e6.8.4 Cell Function Analysis\u003cbr\u003e6.9 Tests for Biocompatibility\u003cbr\u003e\u003cbr\u003e7 Summary and Outlook \u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}
Template polymerization
$85.00
{"id":738270773348,"title":"Template polymerization","handle":"template-polymerization","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cdiv\u003eAuthor: Stefan Polowinski, Technical University of Lodz, Poland \u003c\/div\u003e\n\u003cdiv\u003eISBN \u003cspan\u003e978-1-895198-15-7\u003c\/span\u003e\u003cbr\u003e151 pp., 60 figures, 18 tables\u003c\/div\u003e\n\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cspan\u003eIntroducing the first published monograph devoted to this emerging technology \u003cbr\u003eTemplate polymerization is a new field in polymer synthesis but common practice in the biosynthesis since DNA is the most popular template or matrix on which proteins are built by living species. \u003cbr\u003e\u003cbr\u003eThis field is relevant to the synthesis of polymers of controlled structure but its application goes beyond the synthesis. Materials are formulated in complex mixtures always containing components which can be regarded as templates on which other materials are formed, modified, or are interacted with. In the new product development, the relevance of these phenomena is controlled by the order of addition which affects probabilities and preferences of interaction. \u003cbr\u003e\u003cbr\u003eThe current publication outlines mechanisms of template polymerization, polycondensation, and copolymerization. These mechanisms, illustrated with numerous examples, indicate a range of possibilities which can be encountered in materials and utilized to modify their properties. The orientation of substrates on a template and their effect on modification of their reactivity and properties such as, for example, absorption of light or water are also discussed. Several chapters contain information on these studies discussed with sufficient detail to give reader comprehensive understanding of the methods used in various research laboratories and their findings. \u003cbr\u003e\u003cbr\u003eKinetics of template polymerization is discussed from both theoretical and analytical sides. First, the kinetic equations which are useful in the analysis of template polymerization are discussed. The theories quoted were verified by the experiments. The chapter contains data on several groups of typical reaction mechanisms. This chapter is followed by the discussion of properties of materials which are obtained in template polymerization. These products are compared with materials made from similar monomers but without the advent of a template. \u003cbr\u003e\u003cbr\u003eSeveral ideas are given regarding potential applications of this interesting technology. The book is completed by the in-depth, expert discussion of methods which can be applied to study template polymerization. Similar methods and techniques can be applied to study the effect of materials in multicomponent mixtures from which commercial products are manufactured. This may allow one to understand various properties observed in multicomponent systems. \u003cbr\u003e\u003cbr\u003eThis book concentrates on the subject of the template (matrix) polymerization but it is a relevant source of information for those involved in any aspect of polymer synthesis, processing, and application. Since it is written in a very direct manner by one of the leading experts in this technology, the book can be used in a university classroom, by a researcher, engineer in production, or any other person who wants to understand what happens when materials interact with each other.\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.General Mechanism of Template Polymerization \u003cbr\u003e2.1 Template Polycondensation\u003cbr\u003e2.2 Chain Template Polymerization\u003cbr\u003e2.3 Template Copolymerization \u003cbr\u003e3.Templates and Orientation of Substrates on Template \u003cbr\u003e4.Examples of Template Polymerization\u003cbr\u003e4.1 Polyacids as Templates\u003cbr\u003e4.2 Polyimines and Polyamines as Templates\u003cbr\u003e4.3 Polybase Ionenes as Templates\u003cbr\u003e4.4 Poly(ethylene oxide) and Poly(vinyl pyrrolidone) as Templates\u003cbr\u003e4.5 Poly(methyl methacrylate) as Template\u003cbr\u003e4.6 Poly(vinylopyridines) as Templates\u003cbr\u003e4.7 Other Templates\u003cbr\u003e4.8 Multimonomers as Templates\u003cbr\u003e4.9 Ring-opening Polymerization\u003cbr\u003e5.Examples of Template Copolymerization\u003cbr\u003e5.1 Template Copolycondensation\u003cbr\u003e5.2 Ring Opening Template Copolymerization\u003cbr\u003e5.3 Radical Template Copolymerization\u003cbr\u003e5.3.1 Copolymerization with Participation of Multimonomers\u003cbr\u003e5.3.2 Copolymerization of Two Different Multimonomers \u003cbr\u003e5.3.3 Copolymerization without Multimonomers\u003cbr\u003e6.Examples of Template Polycondensation \u003cbr\u003e7.Secondary Reactions in Template Polymerization \u003cbr\u003e8.Kinetics of Template Polymerization \u003cbr\u003e8.2 Template Ring-opening Polymerization Kinetics \u003cbr\u003e8.3 Template Radical Polymerization Kinetics\u003cbr\u003e8.4 Kinetics of Multimonomer Polymerization 9.Products of Template Polymerization \u003cbr\u003e9.1 Polymers with Ladder-type Structure\u003cbr\u003e9.2 Polymer Complexes\u003cbr\u003e10.Potential Applications \u003cbr\u003e11.Experimental Techniques Used in the Study of Template Polymerization\u003cbr\u003e11.1 Methods of Examination of Polymerization Process\u003cbr\u003e11.2 Methods of Examination of Template Polymerization Products\u003cbr\u003e11.2.1 Polymeric Complexes\u003cbr\u003e11.2.2 Ladder Polymers","published_at":"2017-06-22T21:13:20-04:00","created_at":"2018-04-05T20:26:14-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["biosynthesis","blends","book","copolymerization","DNA","polymer","polymer synthesis","polymerization","polymers"],"price":8500,"price_min":8500,"price_max":8500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":8103392313444,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Template polymerization","public_title":null,"options":["Default Title"],"price":8500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-15-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-15-7.jpg?v=1522975074"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-15-7.jpg?v=1522975074","options":["Title"],"media":[{"alt":null,"id":810375938141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-15-7.jpg?v=1522975074"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-15-7.jpg?v=1522975074","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cdiv\u003eAuthor: Stefan Polowinski, Technical University of Lodz, Poland \u003c\/div\u003e\n\u003cdiv\u003eISBN \u003cspan\u003e978-1-895198-15-7\u003c\/span\u003e\u003cbr\u003e151 pp., 60 figures, 18 tables\u003c\/div\u003e\n\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cspan\u003eIntroducing the first published monograph devoted to this emerging technology \u003cbr\u003eTemplate polymerization is a new field in polymer synthesis but common practice in the biosynthesis since DNA is the most popular template or matrix on which proteins are built by living species. \u003cbr\u003e\u003cbr\u003eThis field is relevant to the synthesis of polymers of controlled structure but its application goes beyond the synthesis. Materials are formulated in complex mixtures always containing components which can be regarded as templates on which other materials are formed, modified, or are interacted with. In the new product development, the relevance of these phenomena is controlled by the order of addition which affects probabilities and preferences of interaction. \u003cbr\u003e\u003cbr\u003eThe current publication outlines mechanisms of template polymerization, polycondensation, and copolymerization. These mechanisms, illustrated with numerous examples, indicate a range of possibilities which can be encountered in materials and utilized to modify their properties. The orientation of substrates on a template and their effect on modification of their reactivity and properties such as, for example, absorption of light or water are also discussed. Several chapters contain information on these studies discussed with sufficient detail to give reader comprehensive understanding of the methods used in various research laboratories and their findings. \u003cbr\u003e\u003cbr\u003eKinetics of template polymerization is discussed from both theoretical and analytical sides. First, the kinetic equations which are useful in the analysis of template polymerization are discussed. The theories quoted were verified by the experiments. The chapter contains data on several groups of typical reaction mechanisms. This chapter is followed by the discussion of properties of materials which are obtained in template polymerization. These products are compared with materials made from similar monomers but without the advent of a template. \u003cbr\u003e\u003cbr\u003eSeveral ideas are given regarding potential applications of this interesting technology. The book is completed by the in-depth, expert discussion of methods which can be applied to study template polymerization. Similar methods and techniques can be applied to study the effect of materials in multicomponent mixtures from which commercial products are manufactured. This may allow one to understand various properties observed in multicomponent systems. \u003cbr\u003e\u003cbr\u003eThis book concentrates on the subject of the template (matrix) polymerization but it is a relevant source of information for those involved in any aspect of polymer synthesis, processing, and application. Since it is written in a very direct manner by one of the leading experts in this technology, the book can be used in a university classroom, by a researcher, engineer in production, or any other person who wants to understand what happens when materials interact with each other.\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.General Mechanism of Template Polymerization \u003cbr\u003e2.1 Template Polycondensation\u003cbr\u003e2.2 Chain Template Polymerization\u003cbr\u003e2.3 Template Copolymerization \u003cbr\u003e3.Templates and Orientation of Substrates on Template \u003cbr\u003e4.Examples of Template Polymerization\u003cbr\u003e4.1 Polyacids as Templates\u003cbr\u003e4.2 Polyimines and Polyamines as Templates\u003cbr\u003e4.3 Polybase Ionenes as Templates\u003cbr\u003e4.4 Poly(ethylene oxide) and Poly(vinyl pyrrolidone) as Templates\u003cbr\u003e4.5 Poly(methyl methacrylate) as Template\u003cbr\u003e4.6 Poly(vinylopyridines) as Templates\u003cbr\u003e4.7 Other Templates\u003cbr\u003e4.8 Multimonomers as Templates\u003cbr\u003e4.9 Ring-opening Polymerization\u003cbr\u003e5.Examples of Template Copolymerization\u003cbr\u003e5.1 Template Copolycondensation\u003cbr\u003e5.2 Ring Opening Template Copolymerization\u003cbr\u003e5.3 Radical Template Copolymerization\u003cbr\u003e5.3.1 Copolymerization with Participation of Multimonomers\u003cbr\u003e5.3.2 Copolymerization of Two Different Multimonomers \u003cbr\u003e5.3.3 Copolymerization without Multimonomers\u003cbr\u003e6.Examples of Template Polycondensation \u003cbr\u003e7.Secondary Reactions in Template Polymerization \u003cbr\u003e8.Kinetics of Template Polymerization \u003cbr\u003e8.2 Template Ring-opening Polymerization Kinetics \u003cbr\u003e8.3 Template Radical Polymerization Kinetics\u003cbr\u003e8.4 Kinetics of Multimonomer Polymerization 9.Products of Template Polymerization \u003cbr\u003e9.1 Polymers with Ladder-type Structure\u003cbr\u003e9.2 Polymer Complexes\u003cbr\u003e10.Potential Applications \u003cbr\u003e11.Experimental Techniques Used in the Study of Template Polymerization\u003cbr\u003e11.1 Methods of Examination of Polymerization Process\u003cbr\u003e11.2 Methods of Examination of Template Polymerization Products\u003cbr\u003e11.2.1 Polymeric Complexes\u003cbr\u003e11.2.2 Ladder Polymers"}
The Effect of Creep an...
$325.00
{"id":11242203844,"title":"The Effect of Creep and Other Time Related Factors on Plastics and Elastomers","handle":"978-0-8155-1585-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence McKeen \u003cbr\u003eISBN 978-0-8155-1585-2\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2009\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThe second edition of the classic databook, The Effect of Creep and Other Time Related Factors on Plastics and Elastomers (originally published in 1991), has been extensively revised with the addition of an abundance of new data, the removal of all out-dated information, and the complete rebuilding of the product and company listings.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis new edition also has been reorganized from a polymer chemistry point of view. Plastics of similar polymer types are grouped into chapters, each with an introduction that briefly explains the chemistry of the polymers used in the plastics. An extensive introductory chapter has also been added, which summarizes the chemistry of making polymers, the formulation of plastics, creep-testing, test methods, measurements, and charts, as well as theory and plastic selection.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eEach chapter is generally organized by product and concludes with comparisons of brand or generic products. The appendices include a list of trade names, plastics sold under those names, and manufacturer. A list of conversion factors for stress measures is also included.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Styrenics Section 2.2 Polystyrene (PS)Section 2.3 Acrylonitrile Styrene Acrylate (ASA) Section 2.4 Styrene Acrylonitrile (SAN)Section 2.5 Acrylonitrile Butadiene Styrene (ABS) Section 2.6 Methyl Methacrylate Acrylonitrile Butadiene Styrene (MABS)Section 2.7 Styrene Maleic Anhydride (SMA)Section 2.8 Styrenic Block Copolymers (SBC)Section 2.9 Blends\u003cbr\u003e3. PolyethersSection 3.2 Acetals (POM)Section 3.3 Acetal Copolymers (POM-Co)Section 3.4 Modified Polyphenylene Ether\/Polyphenylene Oxides (PPE, PPO)\u003cbr\u003e4. Polyesters Section 4.2 Polycarbonate (PC)Section 4.3 (PBT)Section 4.4 (PET)Section 4.5 (LCP)Section 4.6 Blends\u003cbr\u003e5. Polyimides Section 5.2 PolyetherimideSection 5.3 Polyamide Imide Section 5.4 Polyimide\u003cbr\u003e6. Polyamides Section 6.2 Nylon 6Section 6.3 Nylon 11Section 6.4 Nylon 12Section 6.5 Nylon 66Section 6.6 Nylon 610Section 6.7 Nylon 612Section 6.8 Nylon 666 Section 6.9 Nylon AmorphousSection 6.10 Nylon 46 Section 6.11 PPASection 6.12 PAASection 6.13 - PACM 12Section 6.14 - Polyamide Blends\u003cbr\u003e7. Polyolefins \u0026amp; AcrylicsSection 7.2 Polyethylene (PE) Section 7.3 Crosslinked Polyethylene (PEX)Section 7.4 Polypropylene (PP) Section 7.5 Polytrimethyl Pentene (PMP)Section 7.6 Ultrahigh Molecular Weight Polyethylene (UHMWPE) Section 7.7 Rigid Polyvinyl Chloride (PVC)Section 7.8 Cyclic Olefin Copolymer (COC) Section 7.9 Polymethyl Methacrylate (PMMA)8. Thermoplastic ElastomersSection 8.2 - Thermoplastic Polyurethane Elastomers (TPU)Section 8.3 - Thermoplastic Copolyester Elastomers (TPE-E or COPE)Section 8.4 - Thermoplastic Polyether Block Amide Elastomers (PEBA)9. Fluoropolymers Section 9.2 Polytetrafluoroethylene (PTFE)Section 9.3 Polyethylene Chlorotrifluoroethylene (ECTFE)Section 9.4 Polyethylene Tetrafluoroethylene (ETFE)Section 9.5 Fluorinated Ethylene Propylene (FEP)Section 9.6 Perfluoro Alkoxy (PFA)Section 9.7 Polychlorotrifluoroethylene (PCTFE)Section 9.8 Polyvinylidene Fluoride (PVDF)10. High-Temperature Section 10.2 Polyetheretherketone (PEEK)Section 10.3 Polyether Sulfone (PES)Section 10.4 Polyphenylene Sulfide (PPS)Section 10.5 Polysulfone (PSU)Section 10.6 Polyphenylsulfone (PPSU) \u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eLaurence W. McKeen earned a B.S. in Chemistry from Rensselaer Polytechnic Institute in 1973 and a Ph.D. in 1978 from the University of Wisconsin. He began his career with DuPont in 1978 as a mass spectroscopist but moved into product development in the Teflon Finishes group in 1980. Dr. McKeen has accumulated over 28 years of experience in product development and applications, working with customers in a wide range of industries, which has led to the creation of dozens of commercial products.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:49-04:00","created_at":"2017-06-22T21:12:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","alloys","book","creep","elastomers","elongation","impact strength","material","modulus","nylon","plastics","polyamides","polyesters","polyimides","polyolefins","Polyvinyl Chloride (PVC)","strain","stress","styrene","styrenics","tensil strength","thermal aging","thermoplastic","thermoplastics"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316676,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Creep and Other Time Related Factors on Plastics and Elastomers","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1585-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1585-2_ff910ba1-52c1-43c1-8abc-7ad723bfac7d.jpg?v=1499956225"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1585-2_ff910ba1-52c1-43c1-8abc-7ad723bfac7d.jpg?v=1499956225","options":["Title"],"media":[{"alt":null,"id":358781321309,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1585-2_ff910ba1-52c1-43c1-8abc-7ad723bfac7d.jpg?v=1499956225"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1585-2_ff910ba1-52c1-43c1-8abc-7ad723bfac7d.jpg?v=1499956225","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence McKeen \u003cbr\u003eISBN 978-0-8155-1585-2\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2009\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThe second edition of the classic databook, The Effect of Creep and Other Time Related Factors on Plastics and Elastomers (originally published in 1991), has been extensively revised with the addition of an abundance of new data, the removal of all out-dated information, and the complete rebuilding of the product and company listings.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis new edition also has been reorganized from a polymer chemistry point of view. Plastics of similar polymer types are grouped into chapters, each with an introduction that briefly explains the chemistry of the polymers used in the plastics. An extensive introductory chapter has also been added, which summarizes the chemistry of making polymers, the formulation of plastics, creep-testing, test methods, measurements, and charts, as well as theory and plastic selection.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eEach chapter is generally organized by product and concludes with comparisons of brand or generic products. The appendices include a list of trade names, plastics sold under those names, and manufacturer. A list of conversion factors for stress measures is also included.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Styrenics Section 2.2 Polystyrene (PS)Section 2.3 Acrylonitrile Styrene Acrylate (ASA) Section 2.4 Styrene Acrylonitrile (SAN)Section 2.5 Acrylonitrile Butadiene Styrene (ABS) Section 2.6 Methyl Methacrylate Acrylonitrile Butadiene Styrene (MABS)Section 2.7 Styrene Maleic Anhydride (SMA)Section 2.8 Styrenic Block Copolymers (SBC)Section 2.9 Blends\u003cbr\u003e3. PolyethersSection 3.2 Acetals (POM)Section 3.3 Acetal Copolymers (POM-Co)Section 3.4 Modified Polyphenylene Ether\/Polyphenylene Oxides (PPE, PPO)\u003cbr\u003e4. Polyesters Section 4.2 Polycarbonate (PC)Section 4.3 (PBT)Section 4.4 (PET)Section 4.5 (LCP)Section 4.6 Blends\u003cbr\u003e5. Polyimides Section 5.2 PolyetherimideSection 5.3 Polyamide Imide Section 5.4 Polyimide\u003cbr\u003e6. Polyamides Section 6.2 Nylon 6Section 6.3 Nylon 11Section 6.4 Nylon 12Section 6.5 Nylon 66Section 6.6 Nylon 610Section 6.7 Nylon 612Section 6.8 Nylon 666 Section 6.9 Nylon AmorphousSection 6.10 Nylon 46 Section 6.11 PPASection 6.12 PAASection 6.13 - PACM 12Section 6.14 - Polyamide Blends\u003cbr\u003e7. Polyolefins \u0026amp; AcrylicsSection 7.2 Polyethylene (PE) Section 7.3 Crosslinked Polyethylene (PEX)Section 7.4 Polypropylene (PP) Section 7.5 Polytrimethyl Pentene (PMP)Section 7.6 Ultrahigh Molecular Weight Polyethylene (UHMWPE) Section 7.7 Rigid Polyvinyl Chloride (PVC)Section 7.8 Cyclic Olefin Copolymer (COC) Section 7.9 Polymethyl Methacrylate (PMMA)8. Thermoplastic ElastomersSection 8.2 - Thermoplastic Polyurethane Elastomers (TPU)Section 8.3 - Thermoplastic Copolyester Elastomers (TPE-E or COPE)Section 8.4 - Thermoplastic Polyether Block Amide Elastomers (PEBA)9. Fluoropolymers Section 9.2 Polytetrafluoroethylene (PTFE)Section 9.3 Polyethylene Chlorotrifluoroethylene (ECTFE)Section 9.4 Polyethylene Tetrafluoroethylene (ETFE)Section 9.5 Fluorinated Ethylene Propylene (FEP)Section 9.6 Perfluoro Alkoxy (PFA)Section 9.7 Polychlorotrifluoroethylene (PCTFE)Section 9.8 Polyvinylidene Fluoride (PVDF)10. High-Temperature Section 10.2 Polyetheretherketone (PEEK)Section 10.3 Polyether Sulfone (PES)Section 10.4 Polyphenylene Sulfide (PPS)Section 10.5 Polysulfone (PSU)Section 10.6 Polyphenylsulfone (PPSU) \u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eLaurence W. McKeen earned a B.S. in Chemistry from Rensselaer Polytechnic Institute in 1973 and a Ph.D. in 1978 from the University of Wisconsin. He began his career with DuPont in 1978 as a mass spectroscopist but moved into product development in the Teflon Finishes group in 1980. Dr. McKeen has accumulated over 28 years of experience in product development and applications, working with customers in a wide range of industries, which has led to the creation of dozens of commercial products.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
The Effect of Long Ter...
$265.00
{"id":11242246212,"title":"The Effect of Long Term Thermal Exposure on Plastics and Elastomers, 1st Edition","handle":"9780323221085","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: L McKeen \u003cbr\u003eISBN 9780323221085 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2013\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEssential data and practical guidance for engineers and scientists working with plastics for use in high-temperature environments\u003cbr\u003e\u003cbr\u003eIncludes introductory chapters on polymer chemistry and its effect on thermal stability, providing the underpinning knowledge required to utilize the data\u003cbr\u003e\u003cbr\u003eCovers a wide range of commercial polymer classes, saving readers the need to contact suppliers\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThis reference guide brings together a wide range of essential data on the effect of long-term thermal exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data is supported by explanations of how to make use of the data in real-world engineering contexts.\u003cbr\u003e\u003cbr\u003eHigh heat environments are common in automotive, oil and gas, household appliances, coatings, space and aeronautics and many more end uses. As a result, thermal stability data are critically important to engineers designing parts, particularly that replace metals, work that is common today as they look for ways to reduce weight. The data tables in this book enable engineers and scientists to select the right materials for a given product or application across a wide range of sectors.\u003cbr\u003e\u003cbr\u003eSeveral polymer classes are covered, including polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics and more, saving readers the need to contact suppliers. The book also includes introductory sections to provide background on plastic\/polymer chemistry and formulation and plastic testing methods, providing the knowledge required to make the best use of the data.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, product designers, and materials scientists.\u003cbr\u003e\u003cbr\u003eSectors: construction; consumer goods; medical devices; oil \u0026amp; gas; automotive \u0026amp; aerospace.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Plastics and Polymers\u003cbr\u003ePrinciples of Thermal Stabilization\u003cbr\u003eIntroduction to Plastics Testing\u003cbr\u003eStyrene-Based Plastics\u003cbr\u003ePolyesters\u003cbr\u003ePolyimides\u003cbr\u003ePolyamides (Nylons)\u003cbr\u003ePolyolefins, Polyvinyls, and Acrylics\u003cbr\u003eFluoropolymers\u003cbr\u003eHigh Temperature\/ High-Performance Polymers\u003cbr\u003eElastomers and Rubbers\u003cbr\u003eEnvironmentally Friendly Polymers","published_at":"2017-06-22T21:15:02-04:00","created_at":"2017-06-22T21:15:02-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","biodegradation","book","elastomers","environmentally friendly polymer","material","medical devices","plastics","poly","polymers","polymers stability","rubber","testing","testing formulations","thermal","thermal stabilization"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378454468,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Long Term Thermal Exposure on Plastics and Elastomers, 1st Edition","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780323221085","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9780323221085_73a8d2fd-295b-4c1a-a36b-6df4c6274f32.jpg?v=1499956254"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9780323221085_73a8d2fd-295b-4c1a-a36b-6df4c6274f32.jpg?v=1499956254","options":["Title"],"media":[{"alt":null,"id":358782468189,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9780323221085_73a8d2fd-295b-4c1a-a36b-6df4c6274f32.jpg?v=1499956254"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9780323221085_73a8d2fd-295b-4c1a-a36b-6df4c6274f32.jpg?v=1499956254","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: L McKeen \u003cbr\u003eISBN 9780323221085 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2013\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEssential data and practical guidance for engineers and scientists working with plastics for use in high-temperature environments\u003cbr\u003e\u003cbr\u003eIncludes introductory chapters on polymer chemistry and its effect on thermal stability, providing the underpinning knowledge required to utilize the data\u003cbr\u003e\u003cbr\u003eCovers a wide range of commercial polymer classes, saving readers the need to contact suppliers\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThis reference guide brings together a wide range of essential data on the effect of long-term thermal exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data is supported by explanations of how to make use of the data in real-world engineering contexts.\u003cbr\u003e\u003cbr\u003eHigh heat environments are common in automotive, oil and gas, household appliances, coatings, space and aeronautics and many more end uses. As a result, thermal stability data are critically important to engineers designing parts, particularly that replace metals, work that is common today as they look for ways to reduce weight. The data tables in this book enable engineers and scientists to select the right materials for a given product or application across a wide range of sectors.\u003cbr\u003e\u003cbr\u003eSeveral polymer classes are covered, including polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics and more, saving readers the need to contact suppliers. The book also includes introductory sections to provide background on plastic\/polymer chemistry and formulation and plastic testing methods, providing the knowledge required to make the best use of the data.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, product designers, and materials scientists.\u003cbr\u003e\u003cbr\u003eSectors: construction; consumer goods; medical devices; oil \u0026amp; gas; automotive \u0026amp; aerospace.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Plastics and Polymers\u003cbr\u003ePrinciples of Thermal Stabilization\u003cbr\u003eIntroduction to Plastics Testing\u003cbr\u003eStyrene-Based Plastics\u003cbr\u003ePolyesters\u003cbr\u003ePolyimides\u003cbr\u003ePolyamides (Nylons)\u003cbr\u003ePolyolefins, Polyvinyls, and Acrylics\u003cbr\u003eFluoropolymers\u003cbr\u003eHigh Temperature\/ High-Performance Polymers\u003cbr\u003eElastomers and Rubbers\u003cbr\u003eEnvironmentally Friendly Polymers"}
The Effect of Steriliz...
$314.00
{"id":11242208388,"title":"The Effect of Sterilization Methods on Plastics and Elastomers, 2nd Edition","handle":"978-0-8155-1505-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Liesl K. Massey \u003cbr\u003eISBN 978-0-8155-1505-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e412 pages · 8.5\" x 11\" Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively updated second edition was created for medical device, medical packaging, and food packaging design engineers, material product technical support, and research\/development personnel. This comprehensive databook contains important characteristics and properties data on the effects of sterilization methods on plastics and elastomers. It provides a ready reference for comparing materials in the same family as well as materials in different families. \u003cbr\u003e\u003cbr\u003eData are presented on 43 major plastic and elastomer packaging materials, including biodegradable or organic polymers. New to this edition are resin chapters containing textual summary information including category; a general description; applications; resistances to particular sterilization methods; and regulatory status considerations for use in medical devices and medical\/food packaging. The resin chapter material supplier trade name product data is presented in a graphical and tabular format, with results normalized to SI units, retaining the familiar format of the best selling first edition and allowing easy comparison between materials and test conditions.\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/a\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eMED108000: MEDICAL \/ Instruments \u0026amp; Supplies\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBIC CODES\u003c\/strong\u003e\u003cbr\u003eTDCP: Plastics \u0026amp; polymers technology\u003cbr\u003eTGM: Materials science\u003cbr\u003eMBG: Medical equipment and techniques\u003cbr\u003e\u003cbr\u003e\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003c\/a\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSterilization Methods\u003cbr\u003e\u003cbr\u003eSterilization Stability of Materials\u003cbr\u003e\u003cbr\u003eComparative Radiation Stability\u003cbr\u003e\u003cbr\u003eThe Effect of Ionizing Radiation on Polymers\u003cbr\u003e\u003cbr\u003eRadiation Stabilizers\u003cbr\u003e\u003cbr\u003eThe Effects of Gamma Sterilization on Color Change\u003cbr\u003e\u003cbr\u003eRegulatory Status\u003cbr\u003e\u003cbr\u003eResin Chapters\u003cbr\u003e\u003cbr\u003eAcetal\u003cbr\u003e\u003cbr\u003eABS\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNylon\u003cbr\u003e\u003cbr\u003ePolycarbonate\u003cbr\u003e\u003cbr\u003ePolyester\u003cbr\u003e\u003cbr\u003eLiquid Crystal Polymer\u003cbr\u003e\u003cbr\u003ePolyimide\u003cbr\u003e\u003cbr\u003ePolyketone\u003cbr\u003e\u003cbr\u003ePolyolefin\u003cbr\u003e\u003cbr\u003ePolyphenylene Sulfide\u003cbr\u003e\u003cbr\u003ePolystyrene\u003cbr\u003e\u003cbr\u003ePolysulfone\u003cbr\u003e\u003cbr\u003ePolyurethane\u003cbr\u003e\u003cbr\u003eStyrene Acrylonitrile\u003cbr\u003e\u003cbr\u003eStyrene Butadiene Copolymers\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride\u003cbr\u003e\u003cbr\u003eThermoplastic Alloys\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers\u003cbr\u003e\u003cbr\u003eSilicone\u003cbr\u003e\u003cbr\u003eBiodegradable or Organic\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003eIndices\u003cbr\u003e\u003cbr\u003eTable and Graph Index\u003cbr\u003e\u003cbr\u003eTrade Name Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLiesl K. Massey\u003c\/strong\u003e\u003cbr\u003eFina Oil and Chemical Company\u003cbr\u003eEducated as a mechanical engineer and MBS, Liesl K. Massey brings substantial and varied plastics industry experience from Fina Oil and Chemical Company and Ferro Corporation to her writing occupation. Past responsibilities include technical service support, new product introductions, account management, and customer service management of a wide range of resin and additive products. She is a past committee member of the annual SPE Polyolefins Conference and is currently consulting within the polymer and polymer additives market.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:03-04:00","created_at":"2017-06-22T21:13:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","book","elastomers","Gamma Sterilization","general","medical","methods","p-applications","plastics","polymer","polymers","radiation","stability","sterlization"],"price":31400,"price_min":31400,"price_max":31400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378328004,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Sterilization Methods on Plastics and Elastomers, 2nd Edition","public_title":null,"options":["Default Title"],"price":31400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1505-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302","options":["Title"],"media":[{"alt":null,"id":358783483997,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Liesl K. Massey \u003cbr\u003eISBN 978-0-8155-1505-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e412 pages · 8.5\" x 11\" Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively updated second edition was created for medical device, medical packaging, and food packaging design engineers, material product technical support, and research\/development personnel. This comprehensive databook contains important characteristics and properties data on the effects of sterilization methods on plastics and elastomers. It provides a ready reference for comparing materials in the same family as well as materials in different families. \u003cbr\u003e\u003cbr\u003eData are presented on 43 major plastic and elastomer packaging materials, including biodegradable or organic polymers. New to this edition are resin chapters containing textual summary information including category; a general description; applications; resistances to particular sterilization methods; and regulatory status considerations for use in medical devices and medical\/food packaging. The resin chapter material supplier trade name product data is presented in a graphical and tabular format, with results normalized to SI units, retaining the familiar format of the best selling first edition and allowing easy comparison between materials and test conditions.\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/a\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eMED108000: MEDICAL \/ Instruments \u0026amp; Supplies\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBIC CODES\u003c\/strong\u003e\u003cbr\u003eTDCP: Plastics \u0026amp; polymers technology\u003cbr\u003eTGM: Materials science\u003cbr\u003eMBG: Medical equipment and techniques\u003cbr\u003e\u003cbr\u003e\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003c\/a\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSterilization Methods\u003cbr\u003e\u003cbr\u003eSterilization Stability of Materials\u003cbr\u003e\u003cbr\u003eComparative Radiation Stability\u003cbr\u003e\u003cbr\u003eThe Effect of Ionizing Radiation on Polymers\u003cbr\u003e\u003cbr\u003eRadiation Stabilizers\u003cbr\u003e\u003cbr\u003eThe Effects of Gamma Sterilization on Color Change\u003cbr\u003e\u003cbr\u003eRegulatory Status\u003cbr\u003e\u003cbr\u003eResin Chapters\u003cbr\u003e\u003cbr\u003eAcetal\u003cbr\u003e\u003cbr\u003eABS\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNylon\u003cbr\u003e\u003cbr\u003ePolycarbonate\u003cbr\u003e\u003cbr\u003ePolyester\u003cbr\u003e\u003cbr\u003eLiquid Crystal Polymer\u003cbr\u003e\u003cbr\u003ePolyimide\u003cbr\u003e\u003cbr\u003ePolyketone\u003cbr\u003e\u003cbr\u003ePolyolefin\u003cbr\u003e\u003cbr\u003ePolyphenylene Sulfide\u003cbr\u003e\u003cbr\u003ePolystyrene\u003cbr\u003e\u003cbr\u003ePolysulfone\u003cbr\u003e\u003cbr\u003ePolyurethane\u003cbr\u003e\u003cbr\u003eStyrene Acrylonitrile\u003cbr\u003e\u003cbr\u003eStyrene Butadiene Copolymers\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride\u003cbr\u003e\u003cbr\u003eThermoplastic Alloys\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers\u003cbr\u003e\u003cbr\u003eSilicone\u003cbr\u003e\u003cbr\u003eBiodegradable or Organic\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003eIndices\u003cbr\u003e\u003cbr\u003eTable and Graph Index\u003cbr\u003e\u003cbr\u003eTrade Name Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLiesl K. Massey\u003c\/strong\u003e\u003cbr\u003eFina Oil and Chemical Company\u003cbr\u003eEducated as a mechanical engineer and MBS, Liesl K. Massey brings substantial and varied plastics industry experience from Fina Oil and Chemical Company and Ferro Corporation to her writing occupation. Past responsibilities include technical service support, new product introductions, account management, and customer service management of a wide range of resin and additive products. She is a past committee member of the annual SPE Polyolefins Conference and is currently consulting within the polymer and polymer additives market.\u003cbr\u003e\u003cbr\u003e"}
The Effect of Steriliz...
$280.00
{"id":11242223620,"title":"The Effect of Sterilization on Plastics and Elastomers, 3rd Edition","handle":"978-1-4557-2598-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2598-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2012 \u003cbr\u003e\u003c\/span\u003e480 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eEssential data and practical guidance for engineers and scientists working with plastics in applications that require sterile packaging and equipment.\u003c\/li\u003e\n\u003cli\u003e3rd edition includes new introductory chapters on sterilization processes and polymer chemistry, providing the underpinning knowledge required to utilize the data.'\u003c\/li\u003e\n\u003cli\u003eProvides essential information and guidance for FDA submissions required for new Medical Devices.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\u003cbr\u003eThis reference guide brings together a wide range of essential data on the sterilization of plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data tables in this book enable engineers and scientists to select the right materials, and right sterilization method for a given product or application.\u003cbr\u003e\u003cbr\u003eThe third edition includes new text chapters that provide the underpinning knowledge required to make the best use of the data. Larry McKeen has also added detailed descriptions of sterilization methods for most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics. Data has been updated throughout, with expanded information on newer classes of polymer utilized in medical devices and sterile packaging, such as UHMWPE, high-temperature plastics (PEEK, PES, PPS, etc.), PBT, PETG, etc. The resulting Handbook is an essential reference for Plastics Engineers, Materials Scientists, and Chemists working in contexts where sterilization is required, such as food packaging, pharmaceutical packaging, and medical devices.\u003cbr\u003e\u003cbr\u003e \u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePlastics engineers, product designers, packaging engineers and materials scientists.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cul\u003e\n\u003cli\u003eMedical device and packaging designers and users; polymer and coatings chemists; producers and users of sterile packaging products and medical devices.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cul\u003e\n\u003cli\u003eSectors: food, beverage and pharmaceutical packaging; medical devices; chemical processing; agriculture; defense.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Sterilization Processes\u003cbr\u003e\u003cbr\u003eIntroduction to Plastics and Polymers\u003cbr\u003e\u003cbr\u003eProperties of Plastics\u003cbr\u003e\u003cbr\u003eMarkets and Applications for Plastics requiring sterilization\u003cbr\u003e\u003cbr\u003eStyrene-based Plastics\u003cbr\u003e\u003cbr\u003ePolyesters\u003cbr\u003e\u003cbr\u003ePolyimides\u003cbr\u003e\u003cbr\u003ePolyamides (Nylons)\u003cbr\u003e\u003cbr\u003ePolyolefins, Polyvinyls \u0026amp; Acrylics\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eHigh Temperature\/ High-Performance Polymers\u003cbr\u003e\u003cbr\u003eElastomers and rubbers\u003cbr\u003e\u003cbr\u003eEnvironmentally friendly polymers (biosource and biodegradable)\u003cbr\u003e\u003cbr\u003eAppendices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence W McKeen, Senior Research Associate, DuPont, Wilmington, DE, USA","published_at":"2017-06-22T21:13:53-04:00","created_at":"2017-06-22T21:13:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","environmentally friendly polymers","FDA","material","medical devices","nylons","p-applications","plastics","polimides","poly","polyesters","rubbers","sterilization","styrene-based"," elastomers"],"price":28000,"price_min":28000,"price_max":28000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378380356,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Sterilization on Plastics and Elastomers, 3rd Edition","public_title":null,"options":["Default Title"],"price":28000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2598-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2598-4_e4f601a5-3342-44e9-a9b4-5a8bcb1bf175.jpg?v=1499956341"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2598-4_e4f601a5-3342-44e9-a9b4-5a8bcb1bf175.jpg?v=1499956341","options":["Title"],"media":[{"alt":null,"id":358785253469,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2598-4_e4f601a5-3342-44e9-a9b4-5a8bcb1bf175.jpg?v=1499956341"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2598-4_e4f601a5-3342-44e9-a9b4-5a8bcb1bf175.jpg?v=1499956341","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2598-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2012 \u003cbr\u003e\u003c\/span\u003e480 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eEssential data and practical guidance for engineers and scientists working with plastics in applications that require sterile packaging and equipment.\u003c\/li\u003e\n\u003cli\u003e3rd edition includes new introductory chapters on sterilization processes and polymer chemistry, providing the underpinning knowledge required to utilize the data.'\u003c\/li\u003e\n\u003cli\u003eProvides essential information and guidance for FDA submissions required for new Medical Devices.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\u003cbr\u003eThis reference guide brings together a wide range of essential data on the sterilization of plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data tables in this book enable engineers and scientists to select the right materials, and right sterilization method for a given product or application.\u003cbr\u003e\u003cbr\u003eThe third edition includes new text chapters that provide the underpinning knowledge required to make the best use of the data. Larry McKeen has also added detailed descriptions of sterilization methods for most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics. Data has been updated throughout, with expanded information on newer classes of polymer utilized in medical devices and sterile packaging, such as UHMWPE, high-temperature plastics (PEEK, PES, PPS, etc.), PBT, PETG, etc. The resulting Handbook is an essential reference for Plastics Engineers, Materials Scientists, and Chemists working in contexts where sterilization is required, such as food packaging, pharmaceutical packaging, and medical devices.\u003cbr\u003e\u003cbr\u003e \u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePlastics engineers, product designers, packaging engineers and materials scientists.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cul\u003e\n\u003cli\u003eMedical device and packaging designers and users; polymer and coatings chemists; producers and users of sterile packaging products and medical devices.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cul\u003e\n\u003cli\u003eSectors: food, beverage and pharmaceutical packaging; medical devices; chemical processing; agriculture; defense.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Sterilization Processes\u003cbr\u003e\u003cbr\u003eIntroduction to Plastics and Polymers\u003cbr\u003e\u003cbr\u003eProperties of Plastics\u003cbr\u003e\u003cbr\u003eMarkets and Applications for Plastics requiring sterilization\u003cbr\u003e\u003cbr\u003eStyrene-based Plastics\u003cbr\u003e\u003cbr\u003ePolyesters\u003cbr\u003e\u003cbr\u003ePolyimides\u003cbr\u003e\u003cbr\u003ePolyamides (Nylons)\u003cbr\u003e\u003cbr\u003ePolyolefins, Polyvinyls \u0026amp; Acrylics\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eHigh Temperature\/ High-Performance Polymers\u003cbr\u003e\u003cbr\u003eElastomers and rubbers\u003cbr\u003e\u003cbr\u003eEnvironmentally friendly polymers (biosource and biodegradable)\u003cbr\u003e\u003cbr\u003eAppendices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence W McKeen, Senior Research Associate, DuPont, Wilmington, DE, USA"}
The Effect of Temperat...
$330.00
{"id":11242208260,"title":"The Effect of Temperature and Other Factors on Plastics","handle":"978-0-8155-1568-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W. McKeen, Editor \u003cbr\u003eISBN 978-0-8155-1568-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e2nd Edition, 824 pages, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is an update to the first edition compiled and published in 1990 by William Woishnis. A lot has changed in the field since 1990 and a lot has not changed. There are new plastic materials. There has been a huge turnover in ownership of plastics producing companies. There has been a lot of consolidation, which of course means discontinued products. Thus, this update is much more extensive than the usual \"next edition.\"\u003cbr\u003e\u003cbr\u003eIt has been reorganized from a chemistry point of view. Plastics of similar polymer types are grouped into nine chapters. Each of these chapters includes an introduction with a brief explanation of the chemistry of the polymers used in the plastics.\u003cbr\u003e\u003cbr\u003eAn extensive first chapter has been added as an introduction that summarizes the chemistry of making polymers, the formulation of plastics, testing and test methods, and plastic selection.\u003cbr\u003e\u003cbr\u003eMost plastic products and parts are expected to be used in environments other than room temperature and standard humidity conditions. Chapters 2-10 are a databank that serves as an evaluation of plastics as they are exposed to varying operating conditions at different temperatures, humidity, and other factors. Over 900 graphs for more than 45 generic families of plastics are contained in these chapters. \u003cstrong\u003eThe following types of graphs may also be included:\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA. Properties as Functions of Temperature\u003cbr\u003e(1) Flexural modulus\/strength\u003cbr\u003e(2) Tensile modulus\/strength\u003cbr\u003e(3) Shear modulus\/strength\u003cbr\u003e(4) Impact strength\u003cbr\u003e(5) Hardness\u003cbr\u003e(6) Torsional modulus\u003cbr\u003e(7) Coefficient of thermal expansion\u003cbr\u003e(8) Dielectric constant\u003cbr\u003e(9) Dissipation factor\u003cbr\u003e(10) Water absorption\u003cbr\u003e(11) Specific volume\/heat\u003cbr\u003e(12) Pressure-volume-temperature plots\u003cbr\u003e\u003cbr\u003eB: Stress vs. Strain Curves at Various Temperatures\u003cbr\u003e(1) Strain rates\u003cbr\u003e(2) Humidity levels\u003cbr\u003e\u003cbr\u003eC: Mechanical Properties as a Function of...\u003cbr\u003e(1) Strain rate\u003cbr\u003e(2) Humidity level\u003cbr\u003e\u003cbr\u003eD: Electric Properties as a Function of...\u003cbr\u003e(1) Humidity level\u003cbr\u003e(2) Frequency\u003cbr\u003e\u003cbr\u003eE: Also Included\u003cbr\u003e(1) Properties vs. Thickness\u003cbr\u003e(2) Dimensions vs. Moisture\u003cbr\u003e(3) Properties vs. Glass Content and other Formulation Factors\u003cbr\u003e\u003cbr\u003eChapter 11 contains extensive mechanical and electrical data in tabular form. The tables contain data on several thousand plastics. Similarly, Chapter 12 contains thermal data on several thousand plastics. \u003cbr\u003eData from the first edition have only been removed if those products were discontinued, and many products were. Product names and manufacturers have been updated.\u003cbr\u003e\u003cbr\u003e• Detailed introductions of plastics properties, testing procedures, and principles of plastics design. \u003cbr\u003e• The only \"databook\" available on the effects of temperature and humidity conditions on plastics and elastomers. \u003cbr\u003e• More than 1,000 graphs and tables allow for easy comparison between products. \u003cbr\u003e• Covers more than 70 types of plastics, and summarizes the chemistry of each type.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eTEC016020: TECHNOLOGY \/ Industrial Design \/ Product \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction to Plastic Properties\u003c\/strong\u003e\u003cbr\u003e1.1. Plastics and Polymers \u003cbr\u003e1.1.1. Polymerization \u003cbr\u003e1.1.2. Copolymers \u003cbr\u003e1.1.3. Linear, Branched and Crosslinked Polymers \u003cbr\u003e1.1.4. Molecular Weight \u003cbr\u003e1.1.5. Thermosets vs. Thermoplastics \u003cbr\u003e1.1.6. Crystalline vs. Amorphous \u003cbr\u003e1.1.7. Blends \u003cbr\u003e1.1.8. Elastomers \u003cbr\u003e1.1.9. Additives \u003cbr\u003e1.2. Testing of Plastics \u003cbr\u003e1.2.1. Mechanical Property Testing of Plastics \u003cbr\u003e1.2.2. Impact Property Testing of Plastics \u003cbr\u003e1.2.3. Thermal Property Testing of Plastics \u003cbr\u003e1.3. Principles of Plastic Product Design \u003cbr\u003e1.3.1. Rigidity of Plastics Materials \u003cbr\u003e1.3.2. The Assessment of Maximum Service Temperature \u003cbr\u003e1.3.3. Toughness \u003cbr\u003e1.4. Summary \u003cbr\u003e\u003cstrong\u003e2. Styrenics\u003c\/strong\u003e\u003cbr\u003e2.1. Background \u003cbr\u003e2.2. Polystyrene (PS) \u003cbr\u003e2.3. Acrylonitrile Styrene Acrylate (ASA) \u003cbr\u003e2.4. Styrene Acrylonitrile (SAN) \u003cbr\u003e2.5. Acrylonitrile Butadiene Styrene (ABS) \u003cbr\u003e2.6. Styrene Maleic Anhydride (SMA) \u003cbr\u003e2.7. Styrenic Block Copolymers (SBC) \u003cbr\u003e2.8. Blends \u003cbr\u003e\u003cstrong\u003e3. Polyethers\u003c\/strong\u003e\u003cbr\u003e3.1. Background \u003cbr\u003e3.2. Acetals (POM) \u003cbr\u003e3.3. Acetal Copolymers (POM-Co) \u003cbr\u003e3.4. Modified Polyphenylene Ether\/Polyphenylene Oxides (PPE, PPO) \u003cbr\u003e\u003cstrong\u003e4. Polyesters\u003c\/strong\u003e\u003cbr\u003e4.1. Background \u003cbr\u003e4.2. Polycarbonate (PC) \u003cbr\u003e4.3. Polybutylene Terephthalate (PBT) \u003cbr\u003e4.4. Polyethylene Terephthalate (PET) \u003cbr\u003e4.5. Liquid Crystalline Polymers (LCP) \u003cbr\u003e4.6. Polycyclohexylene-dimethylene Terephthalate (PCT) \u003cbr\u003e4.7. Polyester Blends and Alloys \u003cbr\u003e\u003cstrong\u003e5. Polyimides\u003c\/strong\u003e\u003cbr\u003e5.1. Background \u003cbr\u003e5.2. Polyetherimide (PEI) \u003cbr\u003e5.3. Polyamide-imide (PAI) \u003cbr\u003e5.4. Polyimide (PI) \u003cbr\u003e6. Polyamides \u003cbr\u003e6.1. Background \u003cbr\u003e6.2. Nylon 6 \u003cbr\u003e6.3. Nylon 11 \u003cbr\u003e6.4. Nylon 12 \u003cbr\u003e6.5. Nylon 66 \u003cbr\u003e6.6. Nylon 610 \u003cbr\u003e6.7. Nylon 612 \u003cbr\u003e6.8. Nylon 666 \u003cbr\u003e6.9. Nylon Amorphous \u003cbr\u003e6.10. Nylon 46 \u003cbr\u003e6.11. PPA \u003cbr\u003e6.12. PAA \u003cbr\u003e6.13. PA Blends \u003cbr\u003e\u003cstrong\u003e7. Polyolefins and Acrylics\u003c\/strong\u003e\u003cbr\u003e7.1. Background \u003cbr\u003e7.2. Polyethylene (PE) \u003cbr\u003e7.3. Poly Propylene (PP) \u003cbr\u003e7.4. Polytrimethyl Pentene (PTP) \u003cbr\u003e7.5. Ultrahigh Molecular Weight Polyethylene (UHMWPE) \u003cbr\u003e7.6. Rigid Polyvinyl Chloride (PVC) \u003cbr\u003e7.7. Cyclic Olefin Copolymer (COC) \u003cbr\u003e7.8. Polymethyl Methacrylate (PMMA) \u003cbr\u003e\u003cstrong\u003e8. Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e8.1. Background \u003cbr\u003e8.2. Thermoplastic Polyurethane Elastomers (TPU) \u003cbr\u003e8.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE) \u003cbr\u003e8.4. Thermoplastic Polyether Block Amide Elastomers (PEBA) \u003cbr\u003e\u003cstrong\u003e9. Fluoropolymers\u003c\/strong\u003e\u003cbr\u003e9.1. Background \u003cbr\u003e9.2. Polytetrafluoroethylene (PTFE) \u003cbr\u003e9.3. Polyethylene Chlorotrifluoroethylene (ECTFE) \u003cbr\u003e9.4. Polyethylene Tetrafluoroethylene (ETFE) \u003cbr\u003e9.5. Fluorinated Ethylene Propylene (FEP) \u003cbr\u003e9.6. Perfluoro Alkoxy (PFA) \u003cbr\u003e9.7. Polychlorotrifluoroethylene (PCTFE) \u003cbr\u003e9.8. Polyvinylidene Fluoride (PVDF) \u003cbr\u003e\u003cstrong\u003e10. Miscellaneous High Temperature Plastics\u003c\/strong\u003e\u003cbr\u003e10.1. Background \u003cbr\u003e10.2. Polyetheretherketone (PEEK) \u003cbr\u003e10.3. Polyether Sulfone (PES) \u003cbr\u003e10.4. Polyphenylene Sulfide (PPS) \u003cbr\u003e10.5. Polysulfone (PSU) \u003cbr\u003e\u003cstrong\u003e11. Tables of Selected ISO 10350 Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e11.1. Styrenics \u003cbr\u003e11.2. Polyethers \u003cbr\u003e11.3. Polyesters \u003cbr\u003e11.4. Polyimides \u003cbr\u003e11.5. Polyamides \u003cbr\u003e11.6. Polyolefins and Acrylics \u003cbr\u003e11.7. Thermoplastic Elastomers \u003cbr\u003e11.8. Fluoropolymers \u003cbr\u003e11.9. Miscellaneous High Temperature Plastics \u003cbr\u003e\u003cstrong\u003e12. Tables of Selected Thermal Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e12.1. Styrenics \u003cbr\u003e12.2. Polyethers \u003cbr\u003e12.3. Polyesters \u003cbr\u003e12.4. Polyimides \u003cbr\u003e12.5. Polyamides \u003cbr\u003e12.6. Polyolefins and Acrylics \u003cbr\u003e12.7. Thermoplastic Elastomers \u003cbr\u003e12.8. Fluoropolymers \u003cbr\u003e12.9. Miscellaneous High Temperature Plastics \u003cbr\u003eAppendices: \u003cbr\u003eAbbreviations \u003cbr\u003eTradenames \u003cbr\u003eConversion Factors?\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLaurence W. McKeen\u003c\/strong\u003e\u003cbr\u003e\u003ci\u003eDuPont Teflon Finishes Group (former), Delaware, U.S.A.\u003c\/i\u003e\u003cbr\u003eDr. Laurence W. McKeen earned a B.S. in Chemistry from Rensselaer Polytechnic Institute in 1973 and a Ph.D. in 1978 from the University of Wisconsin. He began his career with DuPont in 1978 as a mass spectroscopist but moved into product development in the Teflon® Finishes group in 1980. He has accumulated over 28 years of experience in product development and application working with customers in a wide range of industries which has led to dozens of commercial products.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:02-04:00","created_at":"2017-06-22T21:13:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","book","coefficient thermal expansion","dielectric constant","dissipation factor","flexural modulus\/strength","hardness","impact strength","nylon","p-properties","poly","polyamides","polyesters","polyethers","polyimides","polymer","properties","shear modulus\/strength","styrenics","tensile modulus\/strength","torsional modulus","water absorption"],"price":33000,"price_min":33000,"price_max":33000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327876,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Temperature and Other Factors on Plastics","public_title":null,"options":["Default Title"],"price":33000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1568-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368","options":["Title"],"media":[{"alt":null,"id":358785286237,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W. McKeen, Editor \u003cbr\u003eISBN 978-0-8155-1568-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e2nd Edition, 824 pages, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is an update to the first edition compiled and published in 1990 by William Woishnis. A lot has changed in the field since 1990 and a lot has not changed. There are new plastic materials. There has been a huge turnover in ownership of plastics producing companies. There has been a lot of consolidation, which of course means discontinued products. Thus, this update is much more extensive than the usual \"next edition.\"\u003cbr\u003e\u003cbr\u003eIt has been reorganized from a chemistry point of view. Plastics of similar polymer types are grouped into nine chapters. Each of these chapters includes an introduction with a brief explanation of the chemistry of the polymers used in the plastics.\u003cbr\u003e\u003cbr\u003eAn extensive first chapter has been added as an introduction that summarizes the chemistry of making polymers, the formulation of plastics, testing and test methods, and plastic selection.\u003cbr\u003e\u003cbr\u003eMost plastic products and parts are expected to be used in environments other than room temperature and standard humidity conditions. Chapters 2-10 are a databank that serves as an evaluation of plastics as they are exposed to varying operating conditions at different temperatures, humidity, and other factors. Over 900 graphs for more than 45 generic families of plastics are contained in these chapters. \u003cstrong\u003eThe following types of graphs may also be included:\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA. Properties as Functions of Temperature\u003cbr\u003e(1) Flexural modulus\/strength\u003cbr\u003e(2) Tensile modulus\/strength\u003cbr\u003e(3) Shear modulus\/strength\u003cbr\u003e(4) Impact strength\u003cbr\u003e(5) Hardness\u003cbr\u003e(6) Torsional modulus\u003cbr\u003e(7) Coefficient of thermal expansion\u003cbr\u003e(8) Dielectric constant\u003cbr\u003e(9) Dissipation factor\u003cbr\u003e(10) Water absorption\u003cbr\u003e(11) Specific volume\/heat\u003cbr\u003e(12) Pressure-volume-temperature plots\u003cbr\u003e\u003cbr\u003eB: Stress vs. Strain Curves at Various Temperatures\u003cbr\u003e(1) Strain rates\u003cbr\u003e(2) Humidity levels\u003cbr\u003e\u003cbr\u003eC: Mechanical Properties as a Function of...\u003cbr\u003e(1) Strain rate\u003cbr\u003e(2) Humidity level\u003cbr\u003e\u003cbr\u003eD: Electric Properties as a Function of...\u003cbr\u003e(1) Humidity level\u003cbr\u003e(2) Frequency\u003cbr\u003e\u003cbr\u003eE: Also Included\u003cbr\u003e(1) Properties vs. Thickness\u003cbr\u003e(2) Dimensions vs. Moisture\u003cbr\u003e(3) Properties vs. Glass Content and other Formulation Factors\u003cbr\u003e\u003cbr\u003eChapter 11 contains extensive mechanical and electrical data in tabular form. The tables contain data on several thousand plastics. Similarly, Chapter 12 contains thermal data on several thousand plastics. \u003cbr\u003eData from the first edition have only been removed if those products were discontinued, and many products were. Product names and manufacturers have been updated.\u003cbr\u003e\u003cbr\u003e• Detailed introductions of plastics properties, testing procedures, and principles of plastics design. \u003cbr\u003e• The only \"databook\" available on the effects of temperature and humidity conditions on plastics and elastomers. \u003cbr\u003e• More than 1,000 graphs and tables allow for easy comparison between products. \u003cbr\u003e• Covers more than 70 types of plastics, and summarizes the chemistry of each type.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eTEC016020: TECHNOLOGY \/ Industrial Design \/ Product \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction to Plastic Properties\u003c\/strong\u003e\u003cbr\u003e1.1. Plastics and Polymers \u003cbr\u003e1.1.1. Polymerization \u003cbr\u003e1.1.2. Copolymers \u003cbr\u003e1.1.3. Linear, Branched and Crosslinked Polymers \u003cbr\u003e1.1.4. Molecular Weight \u003cbr\u003e1.1.5. Thermosets vs. Thermoplastics \u003cbr\u003e1.1.6. Crystalline vs. Amorphous \u003cbr\u003e1.1.7. Blends \u003cbr\u003e1.1.8. Elastomers \u003cbr\u003e1.1.9. Additives \u003cbr\u003e1.2. Testing of Plastics \u003cbr\u003e1.2.1. Mechanical Property Testing of Plastics \u003cbr\u003e1.2.2. Impact Property Testing of Plastics \u003cbr\u003e1.2.3. Thermal Property Testing of Plastics \u003cbr\u003e1.3. Principles of Plastic Product Design \u003cbr\u003e1.3.1. Rigidity of Plastics Materials \u003cbr\u003e1.3.2. The Assessment of Maximum Service Temperature \u003cbr\u003e1.3.3. Toughness \u003cbr\u003e1.4. Summary \u003cbr\u003e\u003cstrong\u003e2. Styrenics\u003c\/strong\u003e\u003cbr\u003e2.1. Background \u003cbr\u003e2.2. Polystyrene (PS) \u003cbr\u003e2.3. Acrylonitrile Styrene Acrylate (ASA) \u003cbr\u003e2.4. Styrene Acrylonitrile (SAN) \u003cbr\u003e2.5. Acrylonitrile Butadiene Styrene (ABS) \u003cbr\u003e2.6. Styrene Maleic Anhydride (SMA) \u003cbr\u003e2.7. Styrenic Block Copolymers (SBC) \u003cbr\u003e2.8. Blends \u003cbr\u003e\u003cstrong\u003e3. Polyethers\u003c\/strong\u003e\u003cbr\u003e3.1. Background \u003cbr\u003e3.2. Acetals (POM) \u003cbr\u003e3.3. Acetal Copolymers (POM-Co) \u003cbr\u003e3.4. Modified Polyphenylene Ether\/Polyphenylene Oxides (PPE, PPO) \u003cbr\u003e\u003cstrong\u003e4. Polyesters\u003c\/strong\u003e\u003cbr\u003e4.1. Background \u003cbr\u003e4.2. Polycarbonate (PC) \u003cbr\u003e4.3. Polybutylene Terephthalate (PBT) \u003cbr\u003e4.4. Polyethylene Terephthalate (PET) \u003cbr\u003e4.5. Liquid Crystalline Polymers (LCP) \u003cbr\u003e4.6. Polycyclohexylene-dimethylene Terephthalate (PCT) \u003cbr\u003e4.7. Polyester Blends and Alloys \u003cbr\u003e\u003cstrong\u003e5. Polyimides\u003c\/strong\u003e\u003cbr\u003e5.1. Background \u003cbr\u003e5.2. Polyetherimide (PEI) \u003cbr\u003e5.3. Polyamide-imide (PAI) \u003cbr\u003e5.4. Polyimide (PI) \u003cbr\u003e6. Polyamides \u003cbr\u003e6.1. Background \u003cbr\u003e6.2. Nylon 6 \u003cbr\u003e6.3. Nylon 11 \u003cbr\u003e6.4. Nylon 12 \u003cbr\u003e6.5. Nylon 66 \u003cbr\u003e6.6. Nylon 610 \u003cbr\u003e6.7. Nylon 612 \u003cbr\u003e6.8. Nylon 666 \u003cbr\u003e6.9. Nylon Amorphous \u003cbr\u003e6.10. Nylon 46 \u003cbr\u003e6.11. PPA \u003cbr\u003e6.12. PAA \u003cbr\u003e6.13. PA Blends \u003cbr\u003e\u003cstrong\u003e7. Polyolefins and Acrylics\u003c\/strong\u003e\u003cbr\u003e7.1. Background \u003cbr\u003e7.2. Polyethylene (PE) \u003cbr\u003e7.3. Poly Propylene (PP) \u003cbr\u003e7.4. Polytrimethyl Pentene (PTP) \u003cbr\u003e7.5. Ultrahigh Molecular Weight Polyethylene (UHMWPE) \u003cbr\u003e7.6. Rigid Polyvinyl Chloride (PVC) \u003cbr\u003e7.7. Cyclic Olefin Copolymer (COC) \u003cbr\u003e7.8. Polymethyl Methacrylate (PMMA) \u003cbr\u003e\u003cstrong\u003e8. Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e8.1. Background \u003cbr\u003e8.2. Thermoplastic Polyurethane Elastomers (TPU) \u003cbr\u003e8.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE) \u003cbr\u003e8.4. Thermoplastic Polyether Block Amide Elastomers (PEBA) \u003cbr\u003e\u003cstrong\u003e9. Fluoropolymers\u003c\/strong\u003e\u003cbr\u003e9.1. Background \u003cbr\u003e9.2. Polytetrafluoroethylene (PTFE) \u003cbr\u003e9.3. Polyethylene Chlorotrifluoroethylene (ECTFE) \u003cbr\u003e9.4. Polyethylene Tetrafluoroethylene (ETFE) \u003cbr\u003e9.5. Fluorinated Ethylene Propylene (FEP) \u003cbr\u003e9.6. Perfluoro Alkoxy (PFA) \u003cbr\u003e9.7. Polychlorotrifluoroethylene (PCTFE) \u003cbr\u003e9.8. Polyvinylidene Fluoride (PVDF) \u003cbr\u003e\u003cstrong\u003e10. Miscellaneous High Temperature Plastics\u003c\/strong\u003e\u003cbr\u003e10.1. Background \u003cbr\u003e10.2. Polyetheretherketone (PEEK) \u003cbr\u003e10.3. Polyether Sulfone (PES) \u003cbr\u003e10.4. Polyphenylene Sulfide (PPS) \u003cbr\u003e10.5. Polysulfone (PSU) \u003cbr\u003e\u003cstrong\u003e11. Tables of Selected ISO 10350 Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e11.1. Styrenics \u003cbr\u003e11.2. Polyethers \u003cbr\u003e11.3. Polyesters \u003cbr\u003e11.4. Polyimides \u003cbr\u003e11.5. Polyamides \u003cbr\u003e11.6. Polyolefins and Acrylics \u003cbr\u003e11.7. Thermoplastic Elastomers \u003cbr\u003e11.8. Fluoropolymers \u003cbr\u003e11.9. Miscellaneous High Temperature Plastics \u003cbr\u003e\u003cstrong\u003e12. Tables of Selected Thermal Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e12.1. Styrenics \u003cbr\u003e12.2. Polyethers \u003cbr\u003e12.3. Polyesters \u003cbr\u003e12.4. Polyimides \u003cbr\u003e12.5. Polyamides \u003cbr\u003e12.6. Polyolefins and Acrylics \u003cbr\u003e12.7. Thermoplastic Elastomers \u003cbr\u003e12.8. Fluoropolymers \u003cbr\u003e12.9. Miscellaneous High Temperature Plastics \u003cbr\u003eAppendices: \u003cbr\u003eAbbreviations \u003cbr\u003eTradenames \u003cbr\u003eConversion Factors?\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLaurence W. McKeen\u003c\/strong\u003e\u003cbr\u003e\u003ci\u003eDuPont Teflon Finishes Group (former), Delaware, U.S.A.\u003c\/i\u003e\u003cbr\u003eDr. Laurence W. McKeen earned a B.S. in Chemistry from Rensselaer Polytechnic Institute in 1973 and a Ph.D. in 1978 from the University of Wisconsin. He began his career with DuPont in 1978 as a mass spectroscopist but moved into product development in the Teflon® Finishes group in 1980. He has accumulated over 28 years of experience in product development and application working with customers in a wide range of industries which has led to dozens of commercial products.\u003cbr\u003e\u003cbr\u003e"}
The Effect of UV Light...
$325.00
{"id":11242233284,"title":"The Effect of UV Light and Weather on Plastics and Elastomers","handle":"0-8155-1525-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Liesl Massey \u003cbr\u003e10-ISBN 0-8155-1525-1 \u003cbr\u003e\u003cspan\u003e13-ISBN 978 0-8155-1525-8 \u003c\/span\u003e\u003cbr\u003e2nd Edition, Pages 488, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively updated, comprehensive databook was created for design and application engineers, scientists, and material producer technical support and research and development personnel. Important weathering characteristics and material properties of plastics and elastomers are presented in discussion, tabular and graphical sections. It provides a ready reference for comparing materials in the same family as well as materials in different families.\u003cbr\u003e\u003cbr\u003eData are presented on 80 major plastic and elastomer materials, including biodegradable or organic polymers. New to this edition, the resin chapters each contain textual summary information including category, general description, and weathering properties detailing information of the material’s susceptibility or immunity to weathering including discussion of test results. Extensive references are provided. The resin chapter material supplier trade name product data are presented in a graphical and tabular format, with results normalized to SI units, retaining the familiar format of the 1st edition and allowing easy comparison between materials and test conditions.\u003cbr\u003e\u003cbr\u003eThe Effects of UV Light and Weather, 2nd Edition:\u003cbr\u003e• Covers thermoplastics, thermoplastic blends\/alloys, biodegradable thermoplastic alloys, thermosets, thermoplastic elastomers, and thermosetting elastomers (rubbers).\u003cbr\u003e• The introductory chapter provides basic information on the components of weathering, post-exposure material properties affected by weathering, and a review of testing environments.\u003cbr\u003e• Expanded resin information includes brief discussions weathering stabilizers, including color stabilizers.\u003cbr\u003e• Commonly used standardized weathering tests are discussed, including; indoor and outdoor exposures, accelerated outdoor exposure, conventional aging, artificial accelerated tests.\u003cbr\u003e• Presents results of exposure conditions conducted in a variety of environments, from Arizona, Florida, and California to Ohio and Pennsylvania to Okinawa, Japan.\u003cbr\u003e• Retained material properties data are provided on retained properties including tensile strength and elongation, ductility and embrittlement.\u003cbr\u003e• Retained surface and appearance properties data are provided on retained properties including color change, yellowing, and cracking, among others.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction to Weathering\u003cbr\u003eTest Methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermoplastics\u003cbr\u003e\u003c\/strong\u003eABS \u003cbr\u003eAcrylonitrile-Butadiene-Styrene \u003cbr\u003eAcrylonitrile Styrene Acrylate \/ Acrylonitrile-Butadiene-Styrene Capstock \u003cbr\u003eAcetal\u003cbr\u003eAcrylonitrile Styrene Acrylate\u003cbr\u003eAcrylic \u003cbr\u003eAcrylic and Acrylic Copolymer\u003cbr\u003eAcrylic and Polyvinyl Chloride Coextrusion\u003cbr\u003eCellulosic Plastic\u003cbr\u003eCellulose Acetate Butyrate\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eFluoropolymers\u003c\/strong\u003e\u003cbr\u003eFluoropolymers Overview \u003cbr\u003ePolytetrafluoroethylene (PTFE or TFE) \u003cbr\u003eFluorinated Ethylene Propylene (FEP)\u003cbr\u003ePerfluoroalkoxy PFA and MFA\u003cbr\u003ePolyvinylidene fluoride (PVDF)\u003cbr\u003ePolychlorotrifluoroethylene (PCTFE)\u003cbr\u003eEthylene-chlorotrifluoroethylene (ECTFE)\u003cbr\u003eEthylene-tetrafluoroethylene (ETFE) \u003cbr\u003ePolyvinylfluoride (PVF)\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eIonomer\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyphenylene Oxide\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eNylon\u003c\/strong\u003e \u003cbr\u003eNylon Overview \u003cbr\u003eNylon 6 \u003cbr\u003eNylon 12\u003cbr\u003eNylon with Glass Fiber\u003cbr\u003eNylon 66\u003cbr\u003eNylon 6,6 T\u003cbr\u003eNylon MXD6\u003cbr\u003ePolyarylamide\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolycarbonate\u003c\/strong\u003e \u003cbr\u003ePolycarbonate\u003cbr\u003ePolycarbonate Blends\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyester\u003c\/strong\u003e\u003cbr\u003ePolybutylene Terephthalate\u003cbr\u003ePolyethylene Terephthalate\u003cbr\u003eLiquid Crystal Polymers\u003cbr\u003ePolyarylate\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyimide\u003c\/strong\u003e\u003cbr\u003ePolyamideimide\u003cbr\u003ePolyetherimide\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyketone\u003c\/strong\u003e \u003cbr\u003ePolyetheretherketone – PEEK\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyolefin\u003c\/strong\u003e\u003cbr\u003ePolyethylene Overview \u003cbr\u003eLow Density Polyethylene\u003cbr\u003eHigh Density Polyethylene \u003cbr\u003eUltrahigh Molecular Weight Polyethylene\u003cbr\u003ePolyethylene Copolymers \u003cbr\u003ePolypropylene\u003cbr\u003ePolymethylpentene\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyphenylene Sulfide\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolystyrene\u003c\/strong\u003e\u003cbr\u003eGeneral Purpose Polystyrene\u003cbr\u003eHigh Impact Polystyrene\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolysulfone\u003c\/strong\u003e\u003cbr\u003ePolyethersulfone\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eStyrene Acrylonitrile Copolymer\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eStyrene Butadiene Copolymer\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eVinyl Resin\u003c\/strong\u003e \u003cbr\u003ePolyvinyl Chloride\u003cbr\u003eChlorinated Polyvinyl Chloride\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermoplastic Blends \/ Alloys\u003c\/strong\u003e\u003cbr\u003eABS Vinyl Resin Alloy\u003cbr\u003eABS Polyvinyl Chloride Alloy\u003cbr\u003eAcrylic (PMMA) Polyvinyl Alloy\u003cbr\u003ePolycarbonate ABS Alloy Chapter\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eBiodegradable Thermoplastic Alloys\u003c\/strong\u003e\u003cbr\u003eBiodegradable Polyethylene Films \u003cbr\u003eBiodegradable Polyethylene Films \u003cbr\u003eStarch Synthetic Resin Alloy\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermosets\u003c\/strong\u003e\u003cbr\u003ePolyester\u003cbr\u003eThermoset Polyester\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyurethane\u003c\/strong\u003e \u003cbr\u003ePolyurethane Reaction Injection Molding System\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003eThermoplastic Elastomers Overview \u003cbr\u003eChlorinate Polyethylene Elastomer\u003cbr\u003eOlefinic Thermoplastic Elastomer\u003cbr\u003ePolyester Thermoplastic Elastomer\u003cbr\u003ePoly Styrene Butadiene Styrene Thermoplastic \u003cbr\u003eStyrenic Thermoplastic Elastomer\u003cbr\u003eUrethane Thermoplastic Elastomer\u003cbr\u003eNitrile Thermoplastic Elastomers\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermoset Elastomers or Rubbers\u003c\/strong\u003e\u003cbr\u003eThermoset Elastomers or Rubbers Overview \u003cbr\u003eButyl Rubber, Bromobutyl Rubber, and Chlorobutyl Rubber\u003cbr\u003eChlorosulfonated Polyethylene Rubber\u003cbr\u003eEthylene Propylene Copolymer\u003cbr\u003eEthylene Propylene Diene Methylene Terpolymer (EPDM)\u003cbr\u003eNeoprene Rubber \u003cbr\u003ePolybutadiene\u003cbr\u003ePolyisoprene Rubber\u003cbr\u003ePolyurethane \u003cbr\u003eSilicone Rubber\u003c\/p\u003e\n\u003cp\u003eAppendix 1: Fluoropolymers in coatings applications \u003cbr\u003eAppendix 2: Coil Coatings \u003cbr\u003eEnd Notes to Tables \u003cbr\u003eGlossary of Terms\u003cbr\u003eGraph Index\u003cbr\u003eTable Index\u003cbr\u003eTradename Index\u003cbr\u003eReferences\u003c\/p\u003e","published_at":"2018-02-13T13:35:34-05:00","created_at":"2017-06-22T21:14:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","alloys","biodegradable","blends","copolymers","films","liquid crystal","PEEK","plastics","polyamideimide","polyarylate","polybutylene terephthalate","polycarbonate","polyester","polyetheretherketone","polyetherimide","polyethersulfone","polyethylene","polyethylene terephthalate","polyimide","polyketone","polymers","polymethylpentene","polyolefin","polyphenylene sulfide","polypropylene","polystyrene","polysulfone","rubbers","thermoplastic elastomers","thermoplastics","thermosets","thermosetting elastomers"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413572,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of UV Light and Weather on Plastics and Elastomers","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978 0-8155-1525-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1525-1_ff6c896a-0cad-4d01-9f63-6643060eda2f.jpg?v=1499956399"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1525-1_ff6c896a-0cad-4d01-9f63-6643060eda2f.jpg?v=1499956399","options":["Title"],"media":[{"alt":null,"id":358790856797,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1525-1_ff6c896a-0cad-4d01-9f63-6643060eda2f.jpg?v=1499956399"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1525-1_ff6c896a-0cad-4d01-9f63-6643060eda2f.jpg?v=1499956399","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Liesl Massey \u003cbr\u003e10-ISBN 0-8155-1525-1 \u003cbr\u003e\u003cspan\u003e13-ISBN 978 0-8155-1525-8 \u003c\/span\u003e\u003cbr\u003e2nd Edition, Pages 488, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively updated, comprehensive databook was created for design and application engineers, scientists, and material producer technical support and research and development personnel. Important weathering characteristics and material properties of plastics and elastomers are presented in discussion, tabular and graphical sections. It provides a ready reference for comparing materials in the same family as well as materials in different families.\u003cbr\u003e\u003cbr\u003eData are presented on 80 major plastic and elastomer materials, including biodegradable or organic polymers. New to this edition, the resin chapters each contain textual summary information including category, general description, and weathering properties detailing information of the material’s susceptibility or immunity to weathering including discussion of test results. Extensive references are provided. The resin chapter material supplier trade name product data are presented in a graphical and tabular format, with results normalized to SI units, retaining the familiar format of the 1st edition and allowing easy comparison between materials and test conditions.\u003cbr\u003e\u003cbr\u003eThe Effects of UV Light and Weather, 2nd Edition:\u003cbr\u003e• Covers thermoplastics, thermoplastic blends\/alloys, biodegradable thermoplastic alloys, thermosets, thermoplastic elastomers, and thermosetting elastomers (rubbers).\u003cbr\u003e• The introductory chapter provides basic information on the components of weathering, post-exposure material properties affected by weathering, and a review of testing environments.\u003cbr\u003e• Expanded resin information includes brief discussions weathering stabilizers, including color stabilizers.\u003cbr\u003e• Commonly used standardized weathering tests are discussed, including; indoor and outdoor exposures, accelerated outdoor exposure, conventional aging, artificial accelerated tests.\u003cbr\u003e• Presents results of exposure conditions conducted in a variety of environments, from Arizona, Florida, and California to Ohio and Pennsylvania to Okinawa, Japan.\u003cbr\u003e• Retained material properties data are provided on retained properties including tensile strength and elongation, ductility and embrittlement.\u003cbr\u003e• Retained surface and appearance properties data are provided on retained properties including color change, yellowing, and cracking, among others.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction to Weathering\u003cbr\u003eTest Methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermoplastics\u003cbr\u003e\u003c\/strong\u003eABS \u003cbr\u003eAcrylonitrile-Butadiene-Styrene \u003cbr\u003eAcrylonitrile Styrene Acrylate \/ Acrylonitrile-Butadiene-Styrene Capstock \u003cbr\u003eAcetal\u003cbr\u003eAcrylonitrile Styrene Acrylate\u003cbr\u003eAcrylic \u003cbr\u003eAcrylic and Acrylic Copolymer\u003cbr\u003eAcrylic and Polyvinyl Chloride Coextrusion\u003cbr\u003eCellulosic Plastic\u003cbr\u003eCellulose Acetate Butyrate\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eFluoropolymers\u003c\/strong\u003e\u003cbr\u003eFluoropolymers Overview \u003cbr\u003ePolytetrafluoroethylene (PTFE or TFE) \u003cbr\u003eFluorinated Ethylene Propylene (FEP)\u003cbr\u003ePerfluoroalkoxy PFA and MFA\u003cbr\u003ePolyvinylidene fluoride (PVDF)\u003cbr\u003ePolychlorotrifluoroethylene (PCTFE)\u003cbr\u003eEthylene-chlorotrifluoroethylene (ECTFE)\u003cbr\u003eEthylene-tetrafluoroethylene (ETFE) \u003cbr\u003ePolyvinylfluoride (PVF)\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eIonomer\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyphenylene Oxide\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eNylon\u003c\/strong\u003e \u003cbr\u003eNylon Overview \u003cbr\u003eNylon 6 \u003cbr\u003eNylon 12\u003cbr\u003eNylon with Glass Fiber\u003cbr\u003eNylon 66\u003cbr\u003eNylon 6,6 T\u003cbr\u003eNylon MXD6\u003cbr\u003ePolyarylamide\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolycarbonate\u003c\/strong\u003e \u003cbr\u003ePolycarbonate\u003cbr\u003ePolycarbonate Blends\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyester\u003c\/strong\u003e\u003cbr\u003ePolybutylene Terephthalate\u003cbr\u003ePolyethylene Terephthalate\u003cbr\u003eLiquid Crystal Polymers\u003cbr\u003ePolyarylate\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyimide\u003c\/strong\u003e\u003cbr\u003ePolyamideimide\u003cbr\u003ePolyetherimide\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyketone\u003c\/strong\u003e \u003cbr\u003ePolyetheretherketone – PEEK\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyolefin\u003c\/strong\u003e\u003cbr\u003ePolyethylene Overview \u003cbr\u003eLow Density Polyethylene\u003cbr\u003eHigh Density Polyethylene \u003cbr\u003eUltrahigh Molecular Weight Polyethylene\u003cbr\u003ePolyethylene Copolymers \u003cbr\u003ePolypropylene\u003cbr\u003ePolymethylpentene\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyphenylene Sulfide\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolystyrene\u003c\/strong\u003e\u003cbr\u003eGeneral Purpose Polystyrene\u003cbr\u003eHigh Impact Polystyrene\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolysulfone\u003c\/strong\u003e\u003cbr\u003ePolyethersulfone\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eStyrene Acrylonitrile Copolymer\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eStyrene Butadiene Copolymer\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eVinyl Resin\u003c\/strong\u003e \u003cbr\u003ePolyvinyl Chloride\u003cbr\u003eChlorinated Polyvinyl Chloride\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermoplastic Blends \/ Alloys\u003c\/strong\u003e\u003cbr\u003eABS Vinyl Resin Alloy\u003cbr\u003eABS Polyvinyl Chloride Alloy\u003cbr\u003eAcrylic (PMMA) Polyvinyl Alloy\u003cbr\u003ePolycarbonate ABS Alloy Chapter\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eBiodegradable Thermoplastic Alloys\u003c\/strong\u003e\u003cbr\u003eBiodegradable Polyethylene Films \u003cbr\u003eBiodegradable Polyethylene Films \u003cbr\u003eStarch Synthetic Resin Alloy\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermosets\u003c\/strong\u003e\u003cbr\u003ePolyester\u003cbr\u003eThermoset Polyester\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolyurethane\u003c\/strong\u003e \u003cbr\u003ePolyurethane Reaction Injection Molding System\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003eThermoplastic Elastomers Overview \u003cbr\u003eChlorinate Polyethylene Elastomer\u003cbr\u003eOlefinic Thermoplastic Elastomer\u003cbr\u003ePolyester Thermoplastic Elastomer\u003cbr\u003ePoly Styrene Butadiene Styrene Thermoplastic \u003cbr\u003eStyrenic Thermoplastic Elastomer\u003cbr\u003eUrethane Thermoplastic Elastomer\u003cbr\u003eNitrile Thermoplastic Elastomers\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eThermoset Elastomers or Rubbers\u003c\/strong\u003e\u003cbr\u003eThermoset Elastomers or Rubbers Overview \u003cbr\u003eButyl Rubber, Bromobutyl Rubber, and Chlorobutyl Rubber\u003cbr\u003eChlorosulfonated Polyethylene Rubber\u003cbr\u003eEthylene Propylene Copolymer\u003cbr\u003eEthylene Propylene Diene Methylene Terpolymer (EPDM)\u003cbr\u003eNeoprene Rubber \u003cbr\u003ePolybutadiene\u003cbr\u003ePolyisoprene Rubber\u003cbr\u003ePolyurethane \u003cbr\u003eSilicone Rubber\u003c\/p\u003e\n\u003cp\u003eAppendix 1: Fluoropolymers in coatings applications \u003cbr\u003eAppendix 2: Coil Coatings \u003cbr\u003eEnd Notes to Tables \u003cbr\u003eGlossary of Terms\u003cbr\u003eGraph Index\u003cbr\u003eTable Index\u003cbr\u003eTradename Index\u003cbr\u003eReferences\u003c\/p\u003e"}
The Effect of UV Light...
$300.00
{"id":11242223556,"title":"The Effect of UV Light and Weather on Plastics and Elastomers, 3 Ed","handle":"978-1-4557-2851-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence McKeen \u003cbr\u003eISBN 978-1-4557-2851-0\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2013 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003eHardbound, 512 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis reference guide brings together a wide range of essential data on the effect of weather and UV light exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data is supported by explanations of how to make use of the data in real-world engineering contexts.\u003cbr\u003e\u003cbr\u003eOutdoor usage, in both normal and extreme environments, has a variety of effects on the different plastics and elastomers suitable for outdoor applications - such as discoloring and brittleness. The data tables in this book enable engineers and scientists to select the right materials for a given product or application, across a wide range of sectors including construction, packaging, signage, consumer (e.g. toys, outdoor furniture), automotive \u0026amp; aerospace, defense, etc.\u003cbr\u003e\u003cbr\u003eThe third edition includes new text chapters that provide the underpinning knowledge required to make the best use of the data.\u003cbr\u003e\u003cbr\u003eLarry McKeen has also added detailed descriptions of the effect of weathering on the most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics, etc. - and explanations of the effect of weather on the polymers being treated - making this book an invaluable design guide as well as an industry standard data source. Data has been updated throughout, with 25% new data. The resulting Handbook is an essential reference for Plastics Engineers, Materials Scientists, and Chemists working in contexts where outdoor use is envisaged.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Plastics and\u003cbr\u003e\u003cbr\u003ePolymers\u003cbr\u003e\u003cbr\u003e2. Introduction to Environmental testing\u003cbr\u003e\u003cbr\u003e3. Production of plastic films and articles\u003cbr\u003e\u003cbr\u003e4. Principles of photochemistry\u003cbr\u003e\u003cbr\u003e5. Markets and Applications for Plastics requiring UV and weathering performance\u003cbr\u003e\u003cbr\u003e6. Styrene-based Plastics\u003cbr\u003e\u003cbr\u003e7. Polyesters\u003cbr\u003e\u003cbr\u003e8. Polyimides\u003cbr\u003e\u003cbr\u003e9. Polyamides (Nylons)\u003cbr\u003e\u003cbr\u003e10. Polyolefins, Polyvinyls \u0026amp; Acrylics\u003cbr\u003e\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e\u003cbr\u003e12. High Temperature\/ High-Performance Polymers\u003cbr\u003e\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e\u003cbr\u003e14. Environmentally friendly polymers (biosource and biodegradable)\u003cbr\u003e\u003cbr\u003eAppendices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence McKeen, Senior Research Associate, DuPont, Wilmington, DE, USA","published_at":"2017-06-22T21:13:53-04:00","created_at":"2017-06-22T21:13:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","elastomers","environmentally friendly polymers","material","p-properties","Photochemistry","plastics","polymers","rubbers","UV exposure","weathering"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378379780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of UV Light and Weather on Plastics and Elastomers, 3 Ed","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2851-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2851-0_a03875be-66e8-43d3-a394-f7ed21fdf79a.jpg?v=1499956459"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2851-0_a03875be-66e8-43d3-a394-f7ed21fdf79a.jpg?v=1499956459","options":["Title"],"media":[{"alt":null,"id":358793740381,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2851-0_a03875be-66e8-43d3-a394-f7ed21fdf79a.jpg?v=1499956459"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2851-0_a03875be-66e8-43d3-a394-f7ed21fdf79a.jpg?v=1499956459","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence McKeen \u003cbr\u003eISBN 978-1-4557-2851-0\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2013 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003eHardbound, 512 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis reference guide brings together a wide range of essential data on the effect of weather and UV light exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data is supported by explanations of how to make use of the data in real-world engineering contexts.\u003cbr\u003e\u003cbr\u003eOutdoor usage, in both normal and extreme environments, has a variety of effects on the different plastics and elastomers suitable for outdoor applications - such as discoloring and brittleness. The data tables in this book enable engineers and scientists to select the right materials for a given product or application, across a wide range of sectors including construction, packaging, signage, consumer (e.g. toys, outdoor furniture), automotive \u0026amp; aerospace, defense, etc.\u003cbr\u003e\u003cbr\u003eThe third edition includes new text chapters that provide the underpinning knowledge required to make the best use of the data.\u003cbr\u003e\u003cbr\u003eLarry McKeen has also added detailed descriptions of the effect of weathering on the most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics, etc. - and explanations of the effect of weather on the polymers being treated - making this book an invaluable design guide as well as an industry standard data source. Data has been updated throughout, with 25% new data. The resulting Handbook is an essential reference for Plastics Engineers, Materials Scientists, and Chemists working in contexts where outdoor use is envisaged.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Plastics and\u003cbr\u003e\u003cbr\u003ePolymers\u003cbr\u003e\u003cbr\u003e2. Introduction to Environmental testing\u003cbr\u003e\u003cbr\u003e3. Production of plastic films and articles\u003cbr\u003e\u003cbr\u003e4. Principles of photochemistry\u003cbr\u003e\u003cbr\u003e5. Markets and Applications for Plastics requiring UV and weathering performance\u003cbr\u003e\u003cbr\u003e6. Styrene-based Plastics\u003cbr\u003e\u003cbr\u003e7. Polyesters\u003cbr\u003e\u003cbr\u003e8. Polyimides\u003cbr\u003e\u003cbr\u003e9. Polyamides (Nylons)\u003cbr\u003e\u003cbr\u003e10. Polyolefins, Polyvinyls \u0026amp; Acrylics\u003cbr\u003e\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e\u003cbr\u003e12. High Temperature\/ High-Performance Polymers\u003cbr\u003e\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e\u003cbr\u003e14. Environmentally friendly polymers (biosource and biodegradable)\u003cbr\u003e\u003cbr\u003eAppendices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence McKeen, Senior Research Associate, DuPont, Wilmington, DE, USA"}
The Instant Expert: Pl...
$125.00
{"id":11242236228,"title":"The Instant Expert: Plastics, Processing and Properties","handle":"978-1-906479-05-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Vannessa Goodship \u003cbr\u003eISBN 978-1-906479-05-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010 \u003cbr\u003e\u003c\/span\u003ePages 190 softcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Instant Expert: Plastics, Processing, and Properties provides clear\u003cbr\u003edescriptions of the wide range of plastic materials, and explanations of the\u003cbr\u003ebasic shaping and finishing processes. The author also talks about materials\u003cbr\u003eproperties and testing, and provides some simple examples of why particular\u003cbr\u003eplastics are used in common or more challenging applications. Common\u003cbr\u003eabbreviations are explained.\u003cbr\u003eReadable from cover-to-cover, or easily referred to when questions arise,\u003cbr\u003ethis book will be indispensable. \u003cbr\u003e\u003cbr\u003ePlastics - they are everywhere.\" The first sentence of this book hints at\u003cbr\u003ethe problem it seeks to address. The shear diversity of plastics materials\u003cbr\u003ehas led to their use in products as varied as disposable packaging,\u003cbr\u003elife-saving medical devices, giant wind-turbine blades and tiny electronic\u003cbr\u003ecomponents. Their prices and properties vary as widely, and they can be\u003cbr\u003emoulded, extruded, blown, formed, and shaped in many other ways.\u003cbr\u003eTraditionally made from petrochemicals, designers can now also choose from a\u003cbr\u003erange of natural materials. The performance will depend on chemical\u003cbr\u003econstitution, but also on the selection of processing aids and property\u003cbr\u003emodifiers which can be added to the basic material.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003ePart 1: Polymers and plastics \u003c\/strong\u003e\u003cbr\u003eIntroduction \u003cbr\u003eMaterials \u003cbr\u003ePolymers \u003cbr\u003ePlastics \u003cbr\u003eAdditives - from polymers to plastics \u003cbr\u003eBlends \u003cbr\u003eComposites and laminates \u003cbr\u003eThermoplastic fibres \u003cbr\u003eBiopolymers \u003cbr\u003eScope of plastic materials \u003cbr\u003e\u003cstrong\u003ePart 2: Processing \u003c\/strong\u003e \u003cbr\u003eThe principles of plastics processing \u003cbr\u003eExtrusion \u003cbr\u003eTwin-screw machines \u003cbr\u003eProcessing beyond the screw \u003cbr\u003eCompounding \u003cbr\u003eCoextrusion \u003cbr\u003eInjection Moulding \u003cbr\u003eBlow Moulding \u003cbr\u003eFilm Blowing \u003cbr\u003eThermoforming \u003cbr\u003eCompression Moulding \u003cbr\u003eInjection compression moulding \u003cbr\u003eRotational moulding \u003cbr\u003eCalendering \u003cbr\u003eIntrusion moulding \u003cbr\u003eTransfer moulding \u003cbr\u003eReaction Injection Moulding \u003cbr\u003eMaking fibre reinforced structural components \u003cbr\u003eMelt spinning \u003cbr\u003eElectrospinning \u003cbr\u003eProducing Plastic Foams \u003cbr\u003eFinishing Operations \u003cbr\u003eDecoration: Painting, Plating, and Printing \u003cbr\u003e\u003cstrong\u003ePart 3: Properties \u003c\/strong\u003e\u003cbr\u003eQuality and Testing \u003cbr\u003eIntroduction to Common Methods \u003cbr\u003ePhysical Properties \u003cbr\u003eMechanical Properties of Plastics and their effect on performance \u003cbr\u003eThermal Properties \u003cbr\u003eElectrical Properties \u003cbr\u003eOther Properties \u003cbr\u003eSafety Factors - a cautionary comment \u003cbr\u003e\u003cstrong\u003e4. The Scope and Application of plastic materials \u003c\/strong\u003e\u003cbr\u003eTypical Applications of common plastics \u003cbr\u003e-Packaging Materials \u003cbr\u003e-Medical Products and Devices \u003cbr\u003e-Automotive Applications \u003cbr\u003e-Electrical and Electronic goods \u003cbr\u003e-Construction and structural engineering \u003cbr\u003eGreen Issues: reuse and disposal of plastics \u003cbr\u003eNature's polymer processing\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:31-04:00","created_at":"2017-06-22T21:14:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","application","book","material","plastics","processing"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Instant Expert: Plastics, Processing and Properties","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-906479-05-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-906479-05-3_ec614b02-9966-4bf9-94ae-596b1431a17f.jpg?v=1499956482"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-906479-05-3_ec614b02-9966-4bf9-94ae-596b1431a17f.jpg?v=1499956482","options":["Title"],"media":[{"alt":null,"id":358795509853,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-906479-05-3_ec614b02-9966-4bf9-94ae-596b1431a17f.jpg?v=1499956482"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-906479-05-3_ec614b02-9966-4bf9-94ae-596b1431a17f.jpg?v=1499956482","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Vannessa Goodship \u003cbr\u003eISBN 978-1-906479-05-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010 \u003cbr\u003e\u003c\/span\u003ePages 190 softcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Instant Expert: Plastics, Processing, and Properties provides clear\u003cbr\u003edescriptions of the wide range of plastic materials, and explanations of the\u003cbr\u003ebasic shaping and finishing processes. The author also talks about materials\u003cbr\u003eproperties and testing, and provides some simple examples of why particular\u003cbr\u003eplastics are used in common or more challenging applications. Common\u003cbr\u003eabbreviations are explained.\u003cbr\u003eReadable from cover-to-cover, or easily referred to when questions arise,\u003cbr\u003ethis book will be indispensable. \u003cbr\u003e\u003cbr\u003ePlastics - they are everywhere.\" The first sentence of this book hints at\u003cbr\u003ethe problem it seeks to address. The shear diversity of plastics materials\u003cbr\u003ehas led to their use in products as varied as disposable packaging,\u003cbr\u003elife-saving medical devices, giant wind-turbine blades and tiny electronic\u003cbr\u003ecomponents. Their prices and properties vary as widely, and they can be\u003cbr\u003emoulded, extruded, blown, formed, and shaped in many other ways.\u003cbr\u003eTraditionally made from petrochemicals, designers can now also choose from a\u003cbr\u003erange of natural materials. The performance will depend on chemical\u003cbr\u003econstitution, but also on the selection of processing aids and property\u003cbr\u003emodifiers which can be added to the basic material.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003ePart 1: Polymers and plastics \u003c\/strong\u003e\u003cbr\u003eIntroduction \u003cbr\u003eMaterials \u003cbr\u003ePolymers \u003cbr\u003ePlastics \u003cbr\u003eAdditives - from polymers to plastics \u003cbr\u003eBlends \u003cbr\u003eComposites and laminates \u003cbr\u003eThermoplastic fibres \u003cbr\u003eBiopolymers \u003cbr\u003eScope of plastic materials \u003cbr\u003e\u003cstrong\u003ePart 2: Processing \u003c\/strong\u003e \u003cbr\u003eThe principles of plastics processing \u003cbr\u003eExtrusion \u003cbr\u003eTwin-screw machines \u003cbr\u003eProcessing beyond the screw \u003cbr\u003eCompounding \u003cbr\u003eCoextrusion \u003cbr\u003eInjection Moulding \u003cbr\u003eBlow Moulding \u003cbr\u003eFilm Blowing \u003cbr\u003eThermoforming \u003cbr\u003eCompression Moulding \u003cbr\u003eInjection compression moulding \u003cbr\u003eRotational moulding \u003cbr\u003eCalendering \u003cbr\u003eIntrusion moulding \u003cbr\u003eTransfer moulding \u003cbr\u003eReaction Injection Moulding \u003cbr\u003eMaking fibre reinforced structural components \u003cbr\u003eMelt spinning \u003cbr\u003eElectrospinning \u003cbr\u003eProducing Plastic Foams \u003cbr\u003eFinishing Operations \u003cbr\u003eDecoration: Painting, Plating, and Printing \u003cbr\u003e\u003cstrong\u003ePart 3: Properties \u003c\/strong\u003e\u003cbr\u003eQuality and Testing \u003cbr\u003eIntroduction to Common Methods \u003cbr\u003ePhysical Properties \u003cbr\u003eMechanical Properties of Plastics and their effect on performance \u003cbr\u003eThermal Properties \u003cbr\u003eElectrical Properties \u003cbr\u003eOther Properties \u003cbr\u003eSafety Factors - a cautionary comment \u003cbr\u003e\u003cstrong\u003e4. The Scope and Application of plastic materials \u003c\/strong\u003e\u003cbr\u003eTypical Applications of common plastics \u003cbr\u003e-Packaging Materials \u003cbr\u003e-Medical Products and Devices \u003cbr\u003e-Automotive Applications \u003cbr\u003e-Electrical and Electronic goods \u003cbr\u003e-Construction and structural engineering \u003cbr\u003eGreen Issues: reuse and disposal of plastics \u003cbr\u003eNature's polymer processing\u003cbr\u003e\u003cbr\u003e"}
The Plastics Compendiu...
$190.00
{"id":11242234436,"title":"The Plastics Compendium Vol 1","handle":"978-1-85957-058-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.C. Hough and R. Dolbey \u003cbr\u003eISBN 978-1-85957-058-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003c\/span\u003e \u003cbr\u003ePages 414\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe properties and processability of plastics materials are subject to a number of influences. Factors such as a chemical constitution, molecular weight and degree of crystallinity are clearly of primary importance, but they do not tell the whole story. Commercial grades of plastics contain reinforcing agents and fillers, plasticisers and lubricants, which may enhance one aspect of a material's performance whilst diminishing another. Accurate data on the performance of the most widely available modified grades are therefore essential when specifying materials for ever more demanding applications. The relative costs of materials may also be significant when large production runs are planned or if a number of materials meet the required performance criteria. All these aspects are addressed in \u003ci\u003eThe Plastics Compendium\u003c\/i\u003e; a unique resource from Rapra Technology.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eVolume 1 of \u003ci\u003eThe Plastics Compendium\u003c\/i\u003e contains clearly presented data on 351 generic and modified material types, in the following main sections:\u003c\/p\u003e\n\u003cli\u003eProperty and commercial data sheets\u003c\/li\u003e\n\u003cli\u003eAn alphabetical trade name index\u003c\/li\u003e\n\u003cli\u003eA listing of suppliers’ (or their agents’) addresses, together with telephone, telex and fax numbers, in up to 15 European countries and the USA\u003c\/li\u003e\n\u003cli\u003eA detailed alphabetical index to the materials for which data are listed.\n\u003cp\u003eThe property and commercial data sheets provide three types of information:\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003eTextual information presented in the form of Advantages, Disadvantages and Typical Applications\u003c\/li\u003e\n\u003cli\u003eMaterials data; listing values of 24 key properties (where applicable) for all 351 materials (including mechanical and electrical properties, flammability, recommended material drying time and moulding temperature, mould shrinkage, maximum operating temperature, water absorption and cost)\u003c\/li\u003e\n\u003cli\u003eSource data; listing suppliers and their trade names.\u003c\/li\u003e","published_at":"2017-06-22T21:14:26-04:00","created_at":"2017-06-22T21:14:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","absorption","book","composites","crystallinity","drying time","elastomers","fillers","flammability","lubricants","mold","molding","molecular weight","mould shrinkage","moulding temperature","plasticisers","plastics","polymer","properties","reference","reinforcing","testing","thermoplastics","thermosets"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378416644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Plastics Compendium Vol 1","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-058-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.C. Hough and R. Dolbey \u003cbr\u003eISBN 978-1-85957-058-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003c\/span\u003e \u003cbr\u003ePages 414\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe properties and processability of plastics materials are subject to a number of influences. Factors such as a chemical constitution, molecular weight and degree of crystallinity are clearly of primary importance, but they do not tell the whole story. Commercial grades of plastics contain reinforcing agents and fillers, plasticisers and lubricants, which may enhance one aspect of a material's performance whilst diminishing another. Accurate data on the performance of the most widely available modified grades are therefore essential when specifying materials for ever more demanding applications. The relative costs of materials may also be significant when large production runs are planned or if a number of materials meet the required performance criteria. All these aspects are addressed in \u003ci\u003eThe Plastics Compendium\u003c\/i\u003e; a unique resource from Rapra Technology.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eVolume 1 of \u003ci\u003eThe Plastics Compendium\u003c\/i\u003e contains clearly presented data on 351 generic and modified material types, in the following main sections:\u003c\/p\u003e\n\u003cli\u003eProperty and commercial data sheets\u003c\/li\u003e\n\u003cli\u003eAn alphabetical trade name index\u003c\/li\u003e\n\u003cli\u003eA listing of suppliers’ (or their agents’) addresses, together with telephone, telex and fax numbers, in up to 15 European countries and the USA\u003c\/li\u003e\n\u003cli\u003eA detailed alphabetical index to the materials for which data are listed.\n\u003cp\u003eThe property and commercial data sheets provide three types of information:\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003eTextual information presented in the form of Advantages, Disadvantages and Typical Applications\u003c\/li\u003e\n\u003cli\u003eMaterials data; listing values of 24 key properties (where applicable) for all 351 materials (including mechanical and electrical properties, flammability, recommended material drying time and moulding temperature, mould shrinkage, maximum operating temperature, water absorption and cost)\u003c\/li\u003e\n\u003cli\u003eSource data; listing suppliers and their trade names.\u003c\/li\u003e"}